xref: /openbmc/linux/drivers/dma/pl330.c (revision 0244ad00)
1 /*
2  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
3  *		http://www.samsung.com
4  *
5  * Copyright (C) 2010 Samsung Electronics Co. Ltd.
6  *	Jaswinder Singh <jassi.brar@samsung.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/io.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/amba/bus.h>
25 #include <linux/amba/pl330.h>
26 #include <linux/scatterlist.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/err.h>
30 
31 #include "dmaengine.h"
32 #define PL330_MAX_CHAN		8
33 #define PL330_MAX_IRQS		32
34 #define PL330_MAX_PERI		32
35 
36 enum pl330_srccachectrl {
37 	SCCTRL0,	/* Noncacheable and nonbufferable */
38 	SCCTRL1,	/* Bufferable only */
39 	SCCTRL2,	/* Cacheable, but do not allocate */
40 	SCCTRL3,	/* Cacheable and bufferable, but do not allocate */
41 	SINVALID1,
42 	SINVALID2,
43 	SCCTRL6,	/* Cacheable write-through, allocate on reads only */
44 	SCCTRL7,	/* Cacheable write-back, allocate on reads only */
45 };
46 
47 enum pl330_dstcachectrl {
48 	DCCTRL0,	/* Noncacheable and nonbufferable */
49 	DCCTRL1,	/* Bufferable only */
50 	DCCTRL2,	/* Cacheable, but do not allocate */
51 	DCCTRL3,	/* Cacheable and bufferable, but do not allocate */
52 	DINVALID1,	/* AWCACHE = 0x1000 */
53 	DINVALID2,
54 	DCCTRL6,	/* Cacheable write-through, allocate on writes only */
55 	DCCTRL7,	/* Cacheable write-back, allocate on writes only */
56 };
57 
58 enum pl330_byteswap {
59 	SWAP_NO,
60 	SWAP_2,
61 	SWAP_4,
62 	SWAP_8,
63 	SWAP_16,
64 };
65 
66 enum pl330_reqtype {
67 	MEMTOMEM,
68 	MEMTODEV,
69 	DEVTOMEM,
70 	DEVTODEV,
71 };
72 
73 /* Register and Bit field Definitions */
74 #define DS			0x0
75 #define DS_ST_STOP		0x0
76 #define DS_ST_EXEC		0x1
77 #define DS_ST_CMISS		0x2
78 #define DS_ST_UPDTPC		0x3
79 #define DS_ST_WFE		0x4
80 #define DS_ST_ATBRR		0x5
81 #define DS_ST_QBUSY		0x6
82 #define DS_ST_WFP		0x7
83 #define DS_ST_KILL		0x8
84 #define DS_ST_CMPLT		0x9
85 #define DS_ST_FLTCMP		0xe
86 #define DS_ST_FAULT		0xf
87 
88 #define DPC			0x4
89 #define INTEN			0x20
90 #define ES			0x24
91 #define INTSTATUS		0x28
92 #define INTCLR			0x2c
93 #define FSM			0x30
94 #define FSC			0x34
95 #define FTM			0x38
96 
97 #define _FTC			0x40
98 #define FTC(n)			(_FTC + (n)*0x4)
99 
100 #define _CS			0x100
101 #define CS(n)			(_CS + (n)*0x8)
102 #define CS_CNS			(1 << 21)
103 
104 #define _CPC			0x104
105 #define CPC(n)			(_CPC + (n)*0x8)
106 
107 #define _SA			0x400
108 #define SA(n)			(_SA + (n)*0x20)
109 
110 #define _DA			0x404
111 #define DA(n)			(_DA + (n)*0x20)
112 
113 #define _CC			0x408
114 #define CC(n)			(_CC + (n)*0x20)
115 
116 #define CC_SRCINC		(1 << 0)
117 #define CC_DSTINC		(1 << 14)
118 #define CC_SRCPRI		(1 << 8)
119 #define CC_DSTPRI		(1 << 22)
120 #define CC_SRCNS		(1 << 9)
121 #define CC_DSTNS		(1 << 23)
122 #define CC_SRCIA		(1 << 10)
123 #define CC_DSTIA		(1 << 24)
124 #define CC_SRCBRSTLEN_SHFT	4
125 #define CC_DSTBRSTLEN_SHFT	18
126 #define CC_SRCBRSTSIZE_SHFT	1
127 #define CC_DSTBRSTSIZE_SHFT	15
128 #define CC_SRCCCTRL_SHFT	11
129 #define CC_SRCCCTRL_MASK	0x7
130 #define CC_DSTCCTRL_SHFT	25
131 #define CC_DRCCCTRL_MASK	0x7
132 #define CC_SWAP_SHFT		28
133 
134 #define _LC0			0x40c
135 #define LC0(n)			(_LC0 + (n)*0x20)
136 
137 #define _LC1			0x410
138 #define LC1(n)			(_LC1 + (n)*0x20)
139 
140 #define DBGSTATUS		0xd00
141 #define DBG_BUSY		(1 << 0)
142 
143 #define DBGCMD			0xd04
144 #define DBGINST0		0xd08
145 #define DBGINST1		0xd0c
146 
147 #define CR0			0xe00
148 #define CR1			0xe04
149 #define CR2			0xe08
150 #define CR3			0xe0c
151 #define CR4			0xe10
152 #define CRD			0xe14
153 
154 #define PERIPH_ID		0xfe0
155 #define PERIPH_REV_SHIFT	20
156 #define PERIPH_REV_MASK		0xf
157 #define PERIPH_REV_R0P0		0
158 #define PERIPH_REV_R1P0		1
159 #define PERIPH_REV_R1P1		2
160 
161 #define CR0_PERIPH_REQ_SET	(1 << 0)
162 #define CR0_BOOT_EN_SET		(1 << 1)
163 #define CR0_BOOT_MAN_NS		(1 << 2)
164 #define CR0_NUM_CHANS_SHIFT	4
165 #define CR0_NUM_CHANS_MASK	0x7
166 #define CR0_NUM_PERIPH_SHIFT	12
167 #define CR0_NUM_PERIPH_MASK	0x1f
168 #define CR0_NUM_EVENTS_SHIFT	17
169 #define CR0_NUM_EVENTS_MASK	0x1f
170 
171 #define CR1_ICACHE_LEN_SHIFT	0
172 #define CR1_ICACHE_LEN_MASK	0x7
173 #define CR1_NUM_ICACHELINES_SHIFT	4
174 #define CR1_NUM_ICACHELINES_MASK	0xf
175 
176 #define CRD_DATA_WIDTH_SHIFT	0
177 #define CRD_DATA_WIDTH_MASK	0x7
178 #define CRD_WR_CAP_SHIFT	4
179 #define CRD_WR_CAP_MASK		0x7
180 #define CRD_WR_Q_DEP_SHIFT	8
181 #define CRD_WR_Q_DEP_MASK	0xf
182 #define CRD_RD_CAP_SHIFT	12
183 #define CRD_RD_CAP_MASK		0x7
184 #define CRD_RD_Q_DEP_SHIFT	16
185 #define CRD_RD_Q_DEP_MASK	0xf
186 #define CRD_DATA_BUFF_SHIFT	20
187 #define CRD_DATA_BUFF_MASK	0x3ff
188 
189 #define PART			0x330
190 #define DESIGNER		0x41
191 #define REVISION		0x0
192 #define INTEG_CFG		0x0
193 #define PERIPH_ID_VAL		((PART << 0) | (DESIGNER << 12))
194 
195 #define PL330_STATE_STOPPED		(1 << 0)
196 #define PL330_STATE_EXECUTING		(1 << 1)
197 #define PL330_STATE_WFE			(1 << 2)
198 #define PL330_STATE_FAULTING		(1 << 3)
199 #define PL330_STATE_COMPLETING		(1 << 4)
200 #define PL330_STATE_WFP			(1 << 5)
201 #define PL330_STATE_KILLING		(1 << 6)
202 #define PL330_STATE_FAULT_COMPLETING	(1 << 7)
203 #define PL330_STATE_CACHEMISS		(1 << 8)
204 #define PL330_STATE_UPDTPC		(1 << 9)
205 #define PL330_STATE_ATBARRIER		(1 << 10)
206 #define PL330_STATE_QUEUEBUSY		(1 << 11)
207 #define PL330_STATE_INVALID		(1 << 15)
208 
209 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
210 				| PL330_STATE_WFE | PL330_STATE_FAULTING)
211 
212 #define CMD_DMAADDH		0x54
213 #define CMD_DMAEND		0x00
214 #define CMD_DMAFLUSHP		0x35
215 #define CMD_DMAGO		0xa0
216 #define CMD_DMALD		0x04
217 #define CMD_DMALDP		0x25
218 #define CMD_DMALP		0x20
219 #define CMD_DMALPEND		0x28
220 #define CMD_DMAKILL		0x01
221 #define CMD_DMAMOV		0xbc
222 #define CMD_DMANOP		0x18
223 #define CMD_DMARMB		0x12
224 #define CMD_DMASEV		0x34
225 #define CMD_DMAST		0x08
226 #define CMD_DMASTP		0x29
227 #define CMD_DMASTZ		0x0c
228 #define CMD_DMAWFE		0x36
229 #define CMD_DMAWFP		0x30
230 #define CMD_DMAWMB		0x13
231 
232 #define SZ_DMAADDH		3
233 #define SZ_DMAEND		1
234 #define SZ_DMAFLUSHP		2
235 #define SZ_DMALD		1
236 #define SZ_DMALDP		2
237 #define SZ_DMALP		2
238 #define SZ_DMALPEND		2
239 #define SZ_DMAKILL		1
240 #define SZ_DMAMOV		6
241 #define SZ_DMANOP		1
242 #define SZ_DMARMB		1
243 #define SZ_DMASEV		2
244 #define SZ_DMAST		1
245 #define SZ_DMASTP		2
246 #define SZ_DMASTZ		1
247 #define SZ_DMAWFE		2
248 #define SZ_DMAWFP		2
249 #define SZ_DMAWMB		1
250 #define SZ_DMAGO		6
251 
252 #define BRST_LEN(ccr)		((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
253 #define BRST_SIZE(ccr)		(1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
254 
255 #define BYTE_TO_BURST(b, ccr)	((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
256 #define BURST_TO_BYTE(c, ccr)	((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
257 
258 /*
259  * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
260  * at 1byte/burst for P<->M and M<->M respectively.
261  * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
262  * should be enough for P<->M and M<->M respectively.
263  */
264 #define MCODE_BUFF_PER_REQ	256
265 
266 /* If the _pl330_req is available to the client */
267 #define IS_FREE(req)	(*((u8 *)((req)->mc_cpu)) == CMD_DMAEND)
268 
269 /* Use this _only_ to wait on transient states */
270 #define UNTIL(t, s)	while (!(_state(t) & (s))) cpu_relax();
271 
272 #ifdef PL330_DEBUG_MCGEN
273 static unsigned cmd_line;
274 #define PL330_DBGCMD_DUMP(off, x...)	do { \
275 						printk("%x:", cmd_line); \
276 						printk(x); \
277 						cmd_line += off; \
278 					} while (0)
279 #define PL330_DBGMC_START(addr)		(cmd_line = addr)
280 #else
281 #define PL330_DBGCMD_DUMP(off, x...)	do {} while (0)
282 #define PL330_DBGMC_START(addr)		do {} while (0)
283 #endif
284 
285 /* The number of default descriptors */
286 
287 #define NR_DEFAULT_DESC	16
288 
289 /* Populated by the PL330 core driver for DMA API driver's info */
290 struct pl330_config {
291 	u32	periph_id;
292 #define DMAC_MODE_NS	(1 << 0)
293 	unsigned int	mode;
294 	unsigned int	data_bus_width:10; /* In number of bits */
295 	unsigned int	data_buf_dep:10;
296 	unsigned int	num_chan:4;
297 	unsigned int	num_peri:6;
298 	u32		peri_ns;
299 	unsigned int	num_events:6;
300 	u32		irq_ns;
301 };
302 
303 /* Handle to the DMAC provided to the PL330 core */
304 struct pl330_info {
305 	/* Owning device */
306 	struct device *dev;
307 	/* Size of MicroCode buffers for each channel. */
308 	unsigned mcbufsz;
309 	/* ioremap'ed address of PL330 registers. */
310 	void __iomem	*base;
311 	/* Client can freely use it. */
312 	void	*client_data;
313 	/* PL330 core data, Client must not touch it. */
314 	void	*pl330_data;
315 	/* Populated by the PL330 core driver during pl330_add */
316 	struct pl330_config	pcfg;
317 	/*
318 	 * If the DMAC has some reset mechanism, then the
319 	 * client may want to provide pointer to the method.
320 	 */
321 	void (*dmac_reset)(struct pl330_info *pi);
322 };
323 
324 /**
325  * Request Configuration.
326  * The PL330 core does not modify this and uses the last
327  * working configuration if the request doesn't provide any.
328  *
329  * The Client may want to provide this info only for the
330  * first request and a request with new settings.
331  */
332 struct pl330_reqcfg {
333 	/* Address Incrementing */
334 	unsigned dst_inc:1;
335 	unsigned src_inc:1;
336 
337 	/*
338 	 * For now, the SRC & DST protection levels
339 	 * and burst size/length are assumed same.
340 	 */
341 	bool nonsecure;
342 	bool privileged;
343 	bool insnaccess;
344 	unsigned brst_len:5;
345 	unsigned brst_size:3; /* in power of 2 */
346 
347 	enum pl330_dstcachectrl dcctl;
348 	enum pl330_srccachectrl scctl;
349 	enum pl330_byteswap swap;
350 	struct pl330_config *pcfg;
351 };
352 
353 /*
354  * One cycle of DMAC operation.
355  * There may be more than one xfer in a request.
356  */
357 struct pl330_xfer {
358 	u32 src_addr;
359 	u32 dst_addr;
360 	/* Size to xfer */
361 	u32 bytes;
362 	/*
363 	 * Pointer to next xfer in the list.
364 	 * The last xfer in the req must point to NULL.
365 	 */
366 	struct pl330_xfer *next;
367 };
368 
369 /* The xfer callbacks are made with one of these arguments. */
370 enum pl330_op_err {
371 	/* The all xfers in the request were success. */
372 	PL330_ERR_NONE,
373 	/* If req aborted due to global error. */
374 	PL330_ERR_ABORT,
375 	/* If req failed due to problem with Channel. */
376 	PL330_ERR_FAIL,
377 };
378 
379 /* A request defining Scatter-Gather List ending with NULL xfer. */
380 struct pl330_req {
381 	enum pl330_reqtype rqtype;
382 	/* Index of peripheral for the xfer. */
383 	unsigned peri:5;
384 	/* Unique token for this xfer, set by the client. */
385 	void *token;
386 	/* Callback to be called after xfer. */
387 	void (*xfer_cb)(void *token, enum pl330_op_err err);
388 	/* If NULL, req will be done at last set parameters. */
389 	struct pl330_reqcfg *cfg;
390 	/* Pointer to first xfer in the request. */
391 	struct pl330_xfer *x;
392 	/* Hook to attach to DMAC's list of reqs with due callback */
393 	struct list_head rqd;
394 };
395 
396 /*
397  * To know the status of the channel and DMAC, the client
398  * provides a pointer to this structure. The PL330 core
399  * fills it with current information.
400  */
401 struct pl330_chanstatus {
402 	/*
403 	 * If the DMAC engine halted due to some error,
404 	 * the client should remove-add DMAC.
405 	 */
406 	bool dmac_halted;
407 	/*
408 	 * If channel is halted due to some error,
409 	 * the client should ABORT/FLUSH and START the channel.
410 	 */
411 	bool faulting;
412 	/* Location of last load */
413 	u32 src_addr;
414 	/* Location of last store */
415 	u32 dst_addr;
416 	/*
417 	 * Pointer to the currently active req, NULL if channel is
418 	 * inactive, even though the requests may be present.
419 	 */
420 	struct pl330_req *top_req;
421 	/* Pointer to req waiting second in the queue if any. */
422 	struct pl330_req *wait_req;
423 };
424 
425 enum pl330_chan_op {
426 	/* Start the channel */
427 	PL330_OP_START,
428 	/* Abort the active xfer */
429 	PL330_OP_ABORT,
430 	/* Stop xfer and flush queue */
431 	PL330_OP_FLUSH,
432 };
433 
434 struct _xfer_spec {
435 	u32 ccr;
436 	struct pl330_req *r;
437 	struct pl330_xfer *x;
438 };
439 
440 enum dmamov_dst {
441 	SAR = 0,
442 	CCR,
443 	DAR,
444 };
445 
446 enum pl330_dst {
447 	SRC = 0,
448 	DST,
449 };
450 
451 enum pl330_cond {
452 	SINGLE,
453 	BURST,
454 	ALWAYS,
455 };
456 
457 struct _pl330_req {
458 	u32 mc_bus;
459 	void *mc_cpu;
460 	/* Number of bytes taken to setup MC for the req */
461 	u32 mc_len;
462 	struct pl330_req *r;
463 };
464 
465 /* ToBeDone for tasklet */
466 struct _pl330_tbd {
467 	bool reset_dmac;
468 	bool reset_mngr;
469 	u8 reset_chan;
470 };
471 
472 /* A DMAC Thread */
473 struct pl330_thread {
474 	u8 id;
475 	int ev;
476 	/* If the channel is not yet acquired by any client */
477 	bool free;
478 	/* Parent DMAC */
479 	struct pl330_dmac *dmac;
480 	/* Only two at a time */
481 	struct _pl330_req req[2];
482 	/* Index of the last enqueued request */
483 	unsigned lstenq;
484 	/* Index of the last submitted request or -1 if the DMA is stopped */
485 	int req_running;
486 };
487 
488 enum pl330_dmac_state {
489 	UNINIT,
490 	INIT,
491 	DYING,
492 };
493 
494 /* A DMAC */
495 struct pl330_dmac {
496 	spinlock_t		lock;
497 	/* Holds list of reqs with due callbacks */
498 	struct list_head	req_done;
499 	/* Pointer to platform specific stuff */
500 	struct pl330_info	*pinfo;
501 	/* Maximum possible events/irqs */
502 	int			events[32];
503 	/* BUS address of MicroCode buffer */
504 	dma_addr_t		mcode_bus;
505 	/* CPU address of MicroCode buffer */
506 	void			*mcode_cpu;
507 	/* List of all Channel threads */
508 	struct pl330_thread	*channels;
509 	/* Pointer to the MANAGER thread */
510 	struct pl330_thread	*manager;
511 	/* To handle bad news in interrupt */
512 	struct tasklet_struct	tasks;
513 	struct _pl330_tbd	dmac_tbd;
514 	/* State of DMAC operation */
515 	enum pl330_dmac_state	state;
516 };
517 
518 enum desc_status {
519 	/* In the DMAC pool */
520 	FREE,
521 	/*
522 	 * Allocated to some channel during prep_xxx
523 	 * Also may be sitting on the work_list.
524 	 */
525 	PREP,
526 	/*
527 	 * Sitting on the work_list and already submitted
528 	 * to the PL330 core. Not more than two descriptors
529 	 * of a channel can be BUSY at any time.
530 	 */
531 	BUSY,
532 	/*
533 	 * Sitting on the channel work_list but xfer done
534 	 * by PL330 core
535 	 */
536 	DONE,
537 };
538 
539 struct dma_pl330_chan {
540 	/* Schedule desc completion */
541 	struct tasklet_struct task;
542 
543 	/* DMA-Engine Channel */
544 	struct dma_chan chan;
545 
546 	/* List of to be xfered descriptors */
547 	struct list_head work_list;
548 	/* List of completed descriptors */
549 	struct list_head completed_list;
550 
551 	/* Pointer to the DMAC that manages this channel,
552 	 * NULL if the channel is available to be acquired.
553 	 * As the parent, this DMAC also provides descriptors
554 	 * to the channel.
555 	 */
556 	struct dma_pl330_dmac *dmac;
557 
558 	/* To protect channel manipulation */
559 	spinlock_t lock;
560 
561 	/* Token of a hardware channel thread of PL330 DMAC
562 	 * NULL if the channel is available to be acquired.
563 	 */
564 	void *pl330_chid;
565 
566 	/* For D-to-M and M-to-D channels */
567 	int burst_sz; /* the peripheral fifo width */
568 	int burst_len; /* the number of burst */
569 	dma_addr_t fifo_addr;
570 
571 	/* for cyclic capability */
572 	bool cyclic;
573 };
574 
575 struct dma_pl330_dmac {
576 	struct pl330_info pif;
577 
578 	/* DMA-Engine Device */
579 	struct dma_device ddma;
580 
581 	/* Pool of descriptors available for the DMAC's channels */
582 	struct list_head desc_pool;
583 	/* To protect desc_pool manipulation */
584 	spinlock_t pool_lock;
585 
586 	/* Peripheral channels connected to this DMAC */
587 	struct dma_pl330_chan *peripherals; /* keep at end */
588 };
589 
590 struct dma_pl330_desc {
591 	/* To attach to a queue as child */
592 	struct list_head node;
593 
594 	/* Descriptor for the DMA Engine API */
595 	struct dma_async_tx_descriptor txd;
596 
597 	/* Xfer for PL330 core */
598 	struct pl330_xfer px;
599 
600 	struct pl330_reqcfg rqcfg;
601 	struct pl330_req req;
602 
603 	enum desc_status status;
604 
605 	/* The channel which currently holds this desc */
606 	struct dma_pl330_chan *pchan;
607 };
608 
609 struct dma_pl330_filter_args {
610 	struct dma_pl330_dmac *pdmac;
611 	unsigned int chan_id;
612 };
613 
614 static inline void _callback(struct pl330_req *r, enum pl330_op_err err)
615 {
616 	if (r && r->xfer_cb)
617 		r->xfer_cb(r->token, err);
618 }
619 
620 static inline bool _queue_empty(struct pl330_thread *thrd)
621 {
622 	return (IS_FREE(&thrd->req[0]) && IS_FREE(&thrd->req[1]))
623 		? true : false;
624 }
625 
626 static inline bool _queue_full(struct pl330_thread *thrd)
627 {
628 	return (IS_FREE(&thrd->req[0]) || IS_FREE(&thrd->req[1]))
629 		? false : true;
630 }
631 
632 static inline bool is_manager(struct pl330_thread *thrd)
633 {
634 	struct pl330_dmac *pl330 = thrd->dmac;
635 
636 	/* MANAGER is indexed at the end */
637 	if (thrd->id == pl330->pinfo->pcfg.num_chan)
638 		return true;
639 	else
640 		return false;
641 }
642 
643 /* If manager of the thread is in Non-Secure mode */
644 static inline bool _manager_ns(struct pl330_thread *thrd)
645 {
646 	struct pl330_dmac *pl330 = thrd->dmac;
647 
648 	return (pl330->pinfo->pcfg.mode & DMAC_MODE_NS) ? true : false;
649 }
650 
651 static inline u32 get_revision(u32 periph_id)
652 {
653 	return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
654 }
655 
656 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[],
657 		enum pl330_dst da, u16 val)
658 {
659 	if (dry_run)
660 		return SZ_DMAADDH;
661 
662 	buf[0] = CMD_DMAADDH;
663 	buf[0] |= (da << 1);
664 	*((u16 *)&buf[1]) = val;
665 
666 	PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n",
667 		da == 1 ? "DA" : "SA", val);
668 
669 	return SZ_DMAADDH;
670 }
671 
672 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
673 {
674 	if (dry_run)
675 		return SZ_DMAEND;
676 
677 	buf[0] = CMD_DMAEND;
678 
679 	PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
680 
681 	return SZ_DMAEND;
682 }
683 
684 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
685 {
686 	if (dry_run)
687 		return SZ_DMAFLUSHP;
688 
689 	buf[0] = CMD_DMAFLUSHP;
690 
691 	peri &= 0x1f;
692 	peri <<= 3;
693 	buf[1] = peri;
694 
695 	PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
696 
697 	return SZ_DMAFLUSHP;
698 }
699 
700 static inline u32 _emit_LD(unsigned dry_run, u8 buf[],	enum pl330_cond cond)
701 {
702 	if (dry_run)
703 		return SZ_DMALD;
704 
705 	buf[0] = CMD_DMALD;
706 
707 	if (cond == SINGLE)
708 		buf[0] |= (0 << 1) | (1 << 0);
709 	else if (cond == BURST)
710 		buf[0] |= (1 << 1) | (1 << 0);
711 
712 	PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
713 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
714 
715 	return SZ_DMALD;
716 }
717 
718 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
719 		enum pl330_cond cond, u8 peri)
720 {
721 	if (dry_run)
722 		return SZ_DMALDP;
723 
724 	buf[0] = CMD_DMALDP;
725 
726 	if (cond == BURST)
727 		buf[0] |= (1 << 1);
728 
729 	peri &= 0x1f;
730 	peri <<= 3;
731 	buf[1] = peri;
732 
733 	PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
734 		cond == SINGLE ? 'S' : 'B', peri >> 3);
735 
736 	return SZ_DMALDP;
737 }
738 
739 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
740 		unsigned loop, u8 cnt)
741 {
742 	if (dry_run)
743 		return SZ_DMALP;
744 
745 	buf[0] = CMD_DMALP;
746 
747 	if (loop)
748 		buf[0] |= (1 << 1);
749 
750 	cnt--; /* DMAC increments by 1 internally */
751 	buf[1] = cnt;
752 
753 	PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
754 
755 	return SZ_DMALP;
756 }
757 
758 struct _arg_LPEND {
759 	enum pl330_cond cond;
760 	bool forever;
761 	unsigned loop;
762 	u8 bjump;
763 };
764 
765 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
766 		const struct _arg_LPEND *arg)
767 {
768 	enum pl330_cond cond = arg->cond;
769 	bool forever = arg->forever;
770 	unsigned loop = arg->loop;
771 	u8 bjump = arg->bjump;
772 
773 	if (dry_run)
774 		return SZ_DMALPEND;
775 
776 	buf[0] = CMD_DMALPEND;
777 
778 	if (loop)
779 		buf[0] |= (1 << 2);
780 
781 	if (!forever)
782 		buf[0] |= (1 << 4);
783 
784 	if (cond == SINGLE)
785 		buf[0] |= (0 << 1) | (1 << 0);
786 	else if (cond == BURST)
787 		buf[0] |= (1 << 1) | (1 << 0);
788 
789 	buf[1] = bjump;
790 
791 	PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
792 			forever ? "FE" : "END",
793 			cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
794 			loop ? '1' : '0',
795 			bjump);
796 
797 	return SZ_DMALPEND;
798 }
799 
800 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
801 {
802 	if (dry_run)
803 		return SZ_DMAKILL;
804 
805 	buf[0] = CMD_DMAKILL;
806 
807 	return SZ_DMAKILL;
808 }
809 
810 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
811 		enum dmamov_dst dst, u32 val)
812 {
813 	if (dry_run)
814 		return SZ_DMAMOV;
815 
816 	buf[0] = CMD_DMAMOV;
817 	buf[1] = dst;
818 	*((u32 *)&buf[2]) = val;
819 
820 	PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
821 		dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
822 
823 	return SZ_DMAMOV;
824 }
825 
826 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[])
827 {
828 	if (dry_run)
829 		return SZ_DMANOP;
830 
831 	buf[0] = CMD_DMANOP;
832 
833 	PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n");
834 
835 	return SZ_DMANOP;
836 }
837 
838 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
839 {
840 	if (dry_run)
841 		return SZ_DMARMB;
842 
843 	buf[0] = CMD_DMARMB;
844 
845 	PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
846 
847 	return SZ_DMARMB;
848 }
849 
850 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
851 {
852 	if (dry_run)
853 		return SZ_DMASEV;
854 
855 	buf[0] = CMD_DMASEV;
856 
857 	ev &= 0x1f;
858 	ev <<= 3;
859 	buf[1] = ev;
860 
861 	PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
862 
863 	return SZ_DMASEV;
864 }
865 
866 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
867 {
868 	if (dry_run)
869 		return SZ_DMAST;
870 
871 	buf[0] = CMD_DMAST;
872 
873 	if (cond == SINGLE)
874 		buf[0] |= (0 << 1) | (1 << 0);
875 	else if (cond == BURST)
876 		buf[0] |= (1 << 1) | (1 << 0);
877 
878 	PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
879 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
880 
881 	return SZ_DMAST;
882 }
883 
884 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
885 		enum pl330_cond cond, u8 peri)
886 {
887 	if (dry_run)
888 		return SZ_DMASTP;
889 
890 	buf[0] = CMD_DMASTP;
891 
892 	if (cond == BURST)
893 		buf[0] |= (1 << 1);
894 
895 	peri &= 0x1f;
896 	peri <<= 3;
897 	buf[1] = peri;
898 
899 	PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
900 		cond == SINGLE ? 'S' : 'B', peri >> 3);
901 
902 	return SZ_DMASTP;
903 }
904 
905 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[])
906 {
907 	if (dry_run)
908 		return SZ_DMASTZ;
909 
910 	buf[0] = CMD_DMASTZ;
911 
912 	PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n");
913 
914 	return SZ_DMASTZ;
915 }
916 
917 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev,
918 		unsigned invalidate)
919 {
920 	if (dry_run)
921 		return SZ_DMAWFE;
922 
923 	buf[0] = CMD_DMAWFE;
924 
925 	ev &= 0x1f;
926 	ev <<= 3;
927 	buf[1] = ev;
928 
929 	if (invalidate)
930 		buf[1] |= (1 << 1);
931 
932 	PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n",
933 		ev >> 3, invalidate ? ", I" : "");
934 
935 	return SZ_DMAWFE;
936 }
937 
938 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
939 		enum pl330_cond cond, u8 peri)
940 {
941 	if (dry_run)
942 		return SZ_DMAWFP;
943 
944 	buf[0] = CMD_DMAWFP;
945 
946 	if (cond == SINGLE)
947 		buf[0] |= (0 << 1) | (0 << 0);
948 	else if (cond == BURST)
949 		buf[0] |= (1 << 1) | (0 << 0);
950 	else
951 		buf[0] |= (0 << 1) | (1 << 0);
952 
953 	peri &= 0x1f;
954 	peri <<= 3;
955 	buf[1] = peri;
956 
957 	PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
958 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
959 
960 	return SZ_DMAWFP;
961 }
962 
963 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
964 {
965 	if (dry_run)
966 		return SZ_DMAWMB;
967 
968 	buf[0] = CMD_DMAWMB;
969 
970 	PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
971 
972 	return SZ_DMAWMB;
973 }
974 
975 struct _arg_GO {
976 	u8 chan;
977 	u32 addr;
978 	unsigned ns;
979 };
980 
981 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
982 		const struct _arg_GO *arg)
983 {
984 	u8 chan = arg->chan;
985 	u32 addr = arg->addr;
986 	unsigned ns = arg->ns;
987 
988 	if (dry_run)
989 		return SZ_DMAGO;
990 
991 	buf[0] = CMD_DMAGO;
992 	buf[0] |= (ns << 1);
993 
994 	buf[1] = chan & 0x7;
995 
996 	*((u32 *)&buf[2]) = addr;
997 
998 	return SZ_DMAGO;
999 }
1000 
1001 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
1002 
1003 /* Returns Time-Out */
1004 static bool _until_dmac_idle(struct pl330_thread *thrd)
1005 {
1006 	void __iomem *regs = thrd->dmac->pinfo->base;
1007 	unsigned long loops = msecs_to_loops(5);
1008 
1009 	do {
1010 		/* Until Manager is Idle */
1011 		if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
1012 			break;
1013 
1014 		cpu_relax();
1015 	} while (--loops);
1016 
1017 	if (!loops)
1018 		return true;
1019 
1020 	return false;
1021 }
1022 
1023 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
1024 		u8 insn[], bool as_manager)
1025 {
1026 	void __iomem *regs = thrd->dmac->pinfo->base;
1027 	u32 val;
1028 
1029 	val = (insn[0] << 16) | (insn[1] << 24);
1030 	if (!as_manager) {
1031 		val |= (1 << 0);
1032 		val |= (thrd->id << 8); /* Channel Number */
1033 	}
1034 	writel(val, regs + DBGINST0);
1035 
1036 	val = *((u32 *)&insn[2]);
1037 	writel(val, regs + DBGINST1);
1038 
1039 	/* If timed out due to halted state-machine */
1040 	if (_until_dmac_idle(thrd)) {
1041 		dev_err(thrd->dmac->pinfo->dev, "DMAC halted!\n");
1042 		return;
1043 	}
1044 
1045 	/* Get going */
1046 	writel(0, regs + DBGCMD);
1047 }
1048 
1049 /*
1050  * Mark a _pl330_req as free.
1051  * We do it by writing DMAEND as the first instruction
1052  * because no valid request is going to have DMAEND as
1053  * its first instruction to execute.
1054  */
1055 static void mark_free(struct pl330_thread *thrd, int idx)
1056 {
1057 	struct _pl330_req *req = &thrd->req[idx];
1058 
1059 	_emit_END(0, req->mc_cpu);
1060 	req->mc_len = 0;
1061 
1062 	thrd->req_running = -1;
1063 }
1064 
1065 static inline u32 _state(struct pl330_thread *thrd)
1066 {
1067 	void __iomem *regs = thrd->dmac->pinfo->base;
1068 	u32 val;
1069 
1070 	if (is_manager(thrd))
1071 		val = readl(regs + DS) & 0xf;
1072 	else
1073 		val = readl(regs + CS(thrd->id)) & 0xf;
1074 
1075 	switch (val) {
1076 	case DS_ST_STOP:
1077 		return PL330_STATE_STOPPED;
1078 	case DS_ST_EXEC:
1079 		return PL330_STATE_EXECUTING;
1080 	case DS_ST_CMISS:
1081 		return PL330_STATE_CACHEMISS;
1082 	case DS_ST_UPDTPC:
1083 		return PL330_STATE_UPDTPC;
1084 	case DS_ST_WFE:
1085 		return PL330_STATE_WFE;
1086 	case DS_ST_FAULT:
1087 		return PL330_STATE_FAULTING;
1088 	case DS_ST_ATBRR:
1089 		if (is_manager(thrd))
1090 			return PL330_STATE_INVALID;
1091 		else
1092 			return PL330_STATE_ATBARRIER;
1093 	case DS_ST_QBUSY:
1094 		if (is_manager(thrd))
1095 			return PL330_STATE_INVALID;
1096 		else
1097 			return PL330_STATE_QUEUEBUSY;
1098 	case DS_ST_WFP:
1099 		if (is_manager(thrd))
1100 			return PL330_STATE_INVALID;
1101 		else
1102 			return PL330_STATE_WFP;
1103 	case DS_ST_KILL:
1104 		if (is_manager(thrd))
1105 			return PL330_STATE_INVALID;
1106 		else
1107 			return PL330_STATE_KILLING;
1108 	case DS_ST_CMPLT:
1109 		if (is_manager(thrd))
1110 			return PL330_STATE_INVALID;
1111 		else
1112 			return PL330_STATE_COMPLETING;
1113 	case DS_ST_FLTCMP:
1114 		if (is_manager(thrd))
1115 			return PL330_STATE_INVALID;
1116 		else
1117 			return PL330_STATE_FAULT_COMPLETING;
1118 	default:
1119 		return PL330_STATE_INVALID;
1120 	}
1121 }
1122 
1123 static void _stop(struct pl330_thread *thrd)
1124 {
1125 	void __iomem *regs = thrd->dmac->pinfo->base;
1126 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
1127 
1128 	if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
1129 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1130 
1131 	/* Return if nothing needs to be done */
1132 	if (_state(thrd) == PL330_STATE_COMPLETING
1133 		  || _state(thrd) == PL330_STATE_KILLING
1134 		  || _state(thrd) == PL330_STATE_STOPPED)
1135 		return;
1136 
1137 	_emit_KILL(0, insn);
1138 
1139 	/* Stop generating interrupts for SEV */
1140 	writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN);
1141 
1142 	_execute_DBGINSN(thrd, insn, is_manager(thrd));
1143 }
1144 
1145 /* Start doing req 'idx' of thread 'thrd' */
1146 static bool _trigger(struct pl330_thread *thrd)
1147 {
1148 	void __iomem *regs = thrd->dmac->pinfo->base;
1149 	struct _pl330_req *req;
1150 	struct pl330_req *r;
1151 	struct _arg_GO go;
1152 	unsigned ns;
1153 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
1154 	int idx;
1155 
1156 	/* Return if already ACTIVE */
1157 	if (_state(thrd) != PL330_STATE_STOPPED)
1158 		return true;
1159 
1160 	idx = 1 - thrd->lstenq;
1161 	if (!IS_FREE(&thrd->req[idx]))
1162 		req = &thrd->req[idx];
1163 	else {
1164 		idx = thrd->lstenq;
1165 		if (!IS_FREE(&thrd->req[idx]))
1166 			req = &thrd->req[idx];
1167 		else
1168 			req = NULL;
1169 	}
1170 
1171 	/* Return if no request */
1172 	if (!req || !req->r)
1173 		return true;
1174 
1175 	r = req->r;
1176 
1177 	if (r->cfg)
1178 		ns = r->cfg->nonsecure ? 1 : 0;
1179 	else if (readl(regs + CS(thrd->id)) & CS_CNS)
1180 		ns = 1;
1181 	else
1182 		ns = 0;
1183 
1184 	/* See 'Abort Sources' point-4 at Page 2-25 */
1185 	if (_manager_ns(thrd) && !ns)
1186 		dev_info(thrd->dmac->pinfo->dev, "%s:%d Recipe for ABORT!\n",
1187 			__func__, __LINE__);
1188 
1189 	go.chan = thrd->id;
1190 	go.addr = req->mc_bus;
1191 	go.ns = ns;
1192 	_emit_GO(0, insn, &go);
1193 
1194 	/* Set to generate interrupts for SEV */
1195 	writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1196 
1197 	/* Only manager can execute GO */
1198 	_execute_DBGINSN(thrd, insn, true);
1199 
1200 	thrd->req_running = idx;
1201 
1202 	return true;
1203 }
1204 
1205 static bool _start(struct pl330_thread *thrd)
1206 {
1207 	switch (_state(thrd)) {
1208 	case PL330_STATE_FAULT_COMPLETING:
1209 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1210 
1211 		if (_state(thrd) == PL330_STATE_KILLING)
1212 			UNTIL(thrd, PL330_STATE_STOPPED)
1213 
1214 	case PL330_STATE_FAULTING:
1215 		_stop(thrd);
1216 
1217 	case PL330_STATE_KILLING:
1218 	case PL330_STATE_COMPLETING:
1219 		UNTIL(thrd, PL330_STATE_STOPPED)
1220 
1221 	case PL330_STATE_STOPPED:
1222 		return _trigger(thrd);
1223 
1224 	case PL330_STATE_WFP:
1225 	case PL330_STATE_QUEUEBUSY:
1226 	case PL330_STATE_ATBARRIER:
1227 	case PL330_STATE_UPDTPC:
1228 	case PL330_STATE_CACHEMISS:
1229 	case PL330_STATE_EXECUTING:
1230 		return true;
1231 
1232 	case PL330_STATE_WFE: /* For RESUME, nothing yet */
1233 	default:
1234 		return false;
1235 	}
1236 }
1237 
1238 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1239 		const struct _xfer_spec *pxs, int cyc)
1240 {
1241 	int off = 0;
1242 	struct pl330_config *pcfg = pxs->r->cfg->pcfg;
1243 
1244 	/* check lock-up free version */
1245 	if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1246 		while (cyc--) {
1247 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1248 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1249 		}
1250 	} else {
1251 		while (cyc--) {
1252 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1253 			off += _emit_RMB(dry_run, &buf[off]);
1254 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1255 			off += _emit_WMB(dry_run, &buf[off]);
1256 		}
1257 	}
1258 
1259 	return off;
1260 }
1261 
1262 static inline int _ldst_devtomem(unsigned dry_run, u8 buf[],
1263 		const struct _xfer_spec *pxs, int cyc)
1264 {
1265 	int off = 0;
1266 
1267 	while (cyc--) {
1268 		off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1269 		off += _emit_LDP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1270 		off += _emit_ST(dry_run, &buf[off], ALWAYS);
1271 		off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri);
1272 	}
1273 
1274 	return off;
1275 }
1276 
1277 static inline int _ldst_memtodev(unsigned dry_run, u8 buf[],
1278 		const struct _xfer_spec *pxs, int cyc)
1279 {
1280 	int off = 0;
1281 
1282 	while (cyc--) {
1283 		off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1284 		off += _emit_LD(dry_run, &buf[off], ALWAYS);
1285 		off += _emit_STP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1286 		off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri);
1287 	}
1288 
1289 	return off;
1290 }
1291 
1292 static int _bursts(unsigned dry_run, u8 buf[],
1293 		const struct _xfer_spec *pxs, int cyc)
1294 {
1295 	int off = 0;
1296 
1297 	switch (pxs->r->rqtype) {
1298 	case MEMTODEV:
1299 		off += _ldst_memtodev(dry_run, &buf[off], pxs, cyc);
1300 		break;
1301 	case DEVTOMEM:
1302 		off += _ldst_devtomem(dry_run, &buf[off], pxs, cyc);
1303 		break;
1304 	case MEMTOMEM:
1305 		off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1306 		break;
1307 	default:
1308 		off += 0x40000000; /* Scare off the Client */
1309 		break;
1310 	}
1311 
1312 	return off;
1313 }
1314 
1315 /* Returns bytes consumed and updates bursts */
1316 static inline int _loop(unsigned dry_run, u8 buf[],
1317 		unsigned long *bursts, const struct _xfer_spec *pxs)
1318 {
1319 	int cyc, cycmax, szlp, szlpend, szbrst, off;
1320 	unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1321 	struct _arg_LPEND lpend;
1322 
1323 	/* Max iterations possible in DMALP is 256 */
1324 	if (*bursts >= 256*256) {
1325 		lcnt1 = 256;
1326 		lcnt0 = 256;
1327 		cyc = *bursts / lcnt1 / lcnt0;
1328 	} else if (*bursts > 256) {
1329 		lcnt1 = 256;
1330 		lcnt0 = *bursts / lcnt1;
1331 		cyc = 1;
1332 	} else {
1333 		lcnt1 = *bursts;
1334 		lcnt0 = 0;
1335 		cyc = 1;
1336 	}
1337 
1338 	szlp = _emit_LP(1, buf, 0, 0);
1339 	szbrst = _bursts(1, buf, pxs, 1);
1340 
1341 	lpend.cond = ALWAYS;
1342 	lpend.forever = false;
1343 	lpend.loop = 0;
1344 	lpend.bjump = 0;
1345 	szlpend = _emit_LPEND(1, buf, &lpend);
1346 
1347 	if (lcnt0) {
1348 		szlp *= 2;
1349 		szlpend *= 2;
1350 	}
1351 
1352 	/*
1353 	 * Max bursts that we can unroll due to limit on the
1354 	 * size of backward jump that can be encoded in DMALPEND
1355 	 * which is 8-bits and hence 255
1356 	 */
1357 	cycmax = (255 - (szlp + szlpend)) / szbrst;
1358 
1359 	cyc = (cycmax < cyc) ? cycmax : cyc;
1360 
1361 	off = 0;
1362 
1363 	if (lcnt0) {
1364 		off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1365 		ljmp0 = off;
1366 	}
1367 
1368 	off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1369 	ljmp1 = off;
1370 
1371 	off += _bursts(dry_run, &buf[off], pxs, cyc);
1372 
1373 	lpend.cond = ALWAYS;
1374 	lpend.forever = false;
1375 	lpend.loop = 1;
1376 	lpend.bjump = off - ljmp1;
1377 	off += _emit_LPEND(dry_run, &buf[off], &lpend);
1378 
1379 	if (lcnt0) {
1380 		lpend.cond = ALWAYS;
1381 		lpend.forever = false;
1382 		lpend.loop = 0;
1383 		lpend.bjump = off - ljmp0;
1384 		off += _emit_LPEND(dry_run, &buf[off], &lpend);
1385 	}
1386 
1387 	*bursts = lcnt1 * cyc;
1388 	if (lcnt0)
1389 		*bursts *= lcnt0;
1390 
1391 	return off;
1392 }
1393 
1394 static inline int _setup_loops(unsigned dry_run, u8 buf[],
1395 		const struct _xfer_spec *pxs)
1396 {
1397 	struct pl330_xfer *x = pxs->x;
1398 	u32 ccr = pxs->ccr;
1399 	unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1400 	int off = 0;
1401 
1402 	while (bursts) {
1403 		c = bursts;
1404 		off += _loop(dry_run, &buf[off], &c, pxs);
1405 		bursts -= c;
1406 	}
1407 
1408 	return off;
1409 }
1410 
1411 static inline int _setup_xfer(unsigned dry_run, u8 buf[],
1412 		const struct _xfer_spec *pxs)
1413 {
1414 	struct pl330_xfer *x = pxs->x;
1415 	int off = 0;
1416 
1417 	/* DMAMOV SAR, x->src_addr */
1418 	off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1419 	/* DMAMOV DAR, x->dst_addr */
1420 	off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1421 
1422 	/* Setup Loop(s) */
1423 	off += _setup_loops(dry_run, &buf[off], pxs);
1424 
1425 	return off;
1426 }
1427 
1428 /*
1429  * A req is a sequence of one or more xfer units.
1430  * Returns the number of bytes taken to setup the MC for the req.
1431  */
1432 static int _setup_req(unsigned dry_run, struct pl330_thread *thrd,
1433 		unsigned index, struct _xfer_spec *pxs)
1434 {
1435 	struct _pl330_req *req = &thrd->req[index];
1436 	struct pl330_xfer *x;
1437 	u8 *buf = req->mc_cpu;
1438 	int off = 0;
1439 
1440 	PL330_DBGMC_START(req->mc_bus);
1441 
1442 	/* DMAMOV CCR, ccr */
1443 	off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1444 
1445 	x = pxs->r->x;
1446 	do {
1447 		/* Error if xfer length is not aligned at burst size */
1448 		if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr)))
1449 			return -EINVAL;
1450 
1451 		pxs->x = x;
1452 		off += _setup_xfer(dry_run, &buf[off], pxs);
1453 
1454 		x = x->next;
1455 	} while (x);
1456 
1457 	/* DMASEV peripheral/event */
1458 	off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1459 	/* DMAEND */
1460 	off += _emit_END(dry_run, &buf[off]);
1461 
1462 	return off;
1463 }
1464 
1465 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1466 {
1467 	u32 ccr = 0;
1468 
1469 	if (rqc->src_inc)
1470 		ccr |= CC_SRCINC;
1471 
1472 	if (rqc->dst_inc)
1473 		ccr |= CC_DSTINC;
1474 
1475 	/* We set same protection levels for Src and DST for now */
1476 	if (rqc->privileged)
1477 		ccr |= CC_SRCPRI | CC_DSTPRI;
1478 	if (rqc->nonsecure)
1479 		ccr |= CC_SRCNS | CC_DSTNS;
1480 	if (rqc->insnaccess)
1481 		ccr |= CC_SRCIA | CC_DSTIA;
1482 
1483 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1484 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1485 
1486 	ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1487 	ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1488 
1489 	ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1490 	ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1491 
1492 	ccr |= (rqc->swap << CC_SWAP_SHFT);
1493 
1494 	return ccr;
1495 }
1496 
1497 static inline bool _is_valid(u32 ccr)
1498 {
1499 	enum pl330_dstcachectrl dcctl;
1500 	enum pl330_srccachectrl scctl;
1501 
1502 	dcctl = (ccr >> CC_DSTCCTRL_SHFT) & CC_DRCCCTRL_MASK;
1503 	scctl = (ccr >> CC_SRCCCTRL_SHFT) & CC_SRCCCTRL_MASK;
1504 
1505 	if (dcctl == DINVALID1 || dcctl == DINVALID2
1506 			|| scctl == SINVALID1 || scctl == SINVALID2)
1507 		return false;
1508 	else
1509 		return true;
1510 }
1511 
1512 /*
1513  * Submit a list of xfers after which the client wants notification.
1514  * Client is not notified after each xfer unit, just once after all
1515  * xfer units are done or some error occurs.
1516  */
1517 static int pl330_submit_req(void *ch_id, struct pl330_req *r)
1518 {
1519 	struct pl330_thread *thrd = ch_id;
1520 	struct pl330_dmac *pl330;
1521 	struct pl330_info *pi;
1522 	struct _xfer_spec xs;
1523 	unsigned long flags;
1524 	void __iomem *regs;
1525 	unsigned idx;
1526 	u32 ccr;
1527 	int ret = 0;
1528 
1529 	/* No Req or Unacquired Channel or DMAC */
1530 	if (!r || !thrd || thrd->free)
1531 		return -EINVAL;
1532 
1533 	pl330 = thrd->dmac;
1534 	pi = pl330->pinfo;
1535 	regs = pi->base;
1536 
1537 	if (pl330->state == DYING
1538 		|| pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1539 		dev_info(thrd->dmac->pinfo->dev, "%s:%d\n",
1540 			__func__, __LINE__);
1541 		return -EAGAIN;
1542 	}
1543 
1544 	/* If request for non-existing peripheral */
1545 	if (r->rqtype != MEMTOMEM && r->peri >= pi->pcfg.num_peri) {
1546 		dev_info(thrd->dmac->pinfo->dev,
1547 				"%s:%d Invalid peripheral(%u)!\n",
1548 				__func__, __LINE__, r->peri);
1549 		return -EINVAL;
1550 	}
1551 
1552 	spin_lock_irqsave(&pl330->lock, flags);
1553 
1554 	if (_queue_full(thrd)) {
1555 		ret = -EAGAIN;
1556 		goto xfer_exit;
1557 	}
1558 
1559 
1560 	/* Use last settings, if not provided */
1561 	if (r->cfg) {
1562 		/* Prefer Secure Channel */
1563 		if (!_manager_ns(thrd))
1564 			r->cfg->nonsecure = 0;
1565 		else
1566 			r->cfg->nonsecure = 1;
1567 
1568 		ccr = _prepare_ccr(r->cfg);
1569 	} else {
1570 		ccr = readl(regs + CC(thrd->id));
1571 	}
1572 
1573 	/* If this req doesn't have valid xfer settings */
1574 	if (!_is_valid(ccr)) {
1575 		ret = -EINVAL;
1576 		dev_info(thrd->dmac->pinfo->dev, "%s:%d Invalid CCR(%x)!\n",
1577 			__func__, __LINE__, ccr);
1578 		goto xfer_exit;
1579 	}
1580 
1581 	idx = IS_FREE(&thrd->req[0]) ? 0 : 1;
1582 
1583 	xs.ccr = ccr;
1584 	xs.r = r;
1585 
1586 	/* First dry run to check if req is acceptable */
1587 	ret = _setup_req(1, thrd, idx, &xs);
1588 	if (ret < 0)
1589 		goto xfer_exit;
1590 
1591 	if (ret > pi->mcbufsz / 2) {
1592 		dev_info(thrd->dmac->pinfo->dev,
1593 			"%s:%d Trying increasing mcbufsz\n",
1594 				__func__, __LINE__);
1595 		ret = -ENOMEM;
1596 		goto xfer_exit;
1597 	}
1598 
1599 	/* Hook the request */
1600 	thrd->lstenq = idx;
1601 	thrd->req[idx].mc_len = _setup_req(0, thrd, idx, &xs);
1602 	thrd->req[idx].r = r;
1603 
1604 	ret = 0;
1605 
1606 xfer_exit:
1607 	spin_unlock_irqrestore(&pl330->lock, flags);
1608 
1609 	return ret;
1610 }
1611 
1612 static void pl330_dotask(unsigned long data)
1613 {
1614 	struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
1615 	struct pl330_info *pi = pl330->pinfo;
1616 	unsigned long flags;
1617 	int i;
1618 
1619 	spin_lock_irqsave(&pl330->lock, flags);
1620 
1621 	/* The DMAC itself gone nuts */
1622 	if (pl330->dmac_tbd.reset_dmac) {
1623 		pl330->state = DYING;
1624 		/* Reset the manager too */
1625 		pl330->dmac_tbd.reset_mngr = true;
1626 		/* Clear the reset flag */
1627 		pl330->dmac_tbd.reset_dmac = false;
1628 	}
1629 
1630 	if (pl330->dmac_tbd.reset_mngr) {
1631 		_stop(pl330->manager);
1632 		/* Reset all channels */
1633 		pl330->dmac_tbd.reset_chan = (1 << pi->pcfg.num_chan) - 1;
1634 		/* Clear the reset flag */
1635 		pl330->dmac_tbd.reset_mngr = false;
1636 	}
1637 
1638 	for (i = 0; i < pi->pcfg.num_chan; i++) {
1639 
1640 		if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1641 			struct pl330_thread *thrd = &pl330->channels[i];
1642 			void __iomem *regs = pi->base;
1643 			enum pl330_op_err err;
1644 
1645 			_stop(thrd);
1646 
1647 			if (readl(regs + FSC) & (1 << thrd->id))
1648 				err = PL330_ERR_FAIL;
1649 			else
1650 				err = PL330_ERR_ABORT;
1651 
1652 			spin_unlock_irqrestore(&pl330->lock, flags);
1653 
1654 			_callback(thrd->req[1 - thrd->lstenq].r, err);
1655 			_callback(thrd->req[thrd->lstenq].r, err);
1656 
1657 			spin_lock_irqsave(&pl330->lock, flags);
1658 
1659 			thrd->req[0].r = NULL;
1660 			thrd->req[1].r = NULL;
1661 			mark_free(thrd, 0);
1662 			mark_free(thrd, 1);
1663 
1664 			/* Clear the reset flag */
1665 			pl330->dmac_tbd.reset_chan &= ~(1 << i);
1666 		}
1667 	}
1668 
1669 	spin_unlock_irqrestore(&pl330->lock, flags);
1670 
1671 	return;
1672 }
1673 
1674 /* Returns 1 if state was updated, 0 otherwise */
1675 static int pl330_update(const struct pl330_info *pi)
1676 {
1677 	struct pl330_req *rqdone, *tmp;
1678 	struct pl330_dmac *pl330;
1679 	unsigned long flags;
1680 	void __iomem *regs;
1681 	u32 val;
1682 	int id, ev, ret = 0;
1683 
1684 	if (!pi || !pi->pl330_data)
1685 		return 0;
1686 
1687 	regs = pi->base;
1688 	pl330 = pi->pl330_data;
1689 
1690 	spin_lock_irqsave(&pl330->lock, flags);
1691 
1692 	val = readl(regs + FSM) & 0x1;
1693 	if (val)
1694 		pl330->dmac_tbd.reset_mngr = true;
1695 	else
1696 		pl330->dmac_tbd.reset_mngr = false;
1697 
1698 	val = readl(regs + FSC) & ((1 << pi->pcfg.num_chan) - 1);
1699 	pl330->dmac_tbd.reset_chan |= val;
1700 	if (val) {
1701 		int i = 0;
1702 		while (i < pi->pcfg.num_chan) {
1703 			if (val & (1 << i)) {
1704 				dev_info(pi->dev,
1705 					"Reset Channel-%d\t CS-%x FTC-%x\n",
1706 						i, readl(regs + CS(i)),
1707 						readl(regs + FTC(i)));
1708 				_stop(&pl330->channels[i]);
1709 			}
1710 			i++;
1711 		}
1712 	}
1713 
1714 	/* Check which event happened i.e, thread notified */
1715 	val = readl(regs + ES);
1716 	if (pi->pcfg.num_events < 32
1717 			&& val & ~((1 << pi->pcfg.num_events) - 1)) {
1718 		pl330->dmac_tbd.reset_dmac = true;
1719 		dev_err(pi->dev, "%s:%d Unexpected!\n", __func__, __LINE__);
1720 		ret = 1;
1721 		goto updt_exit;
1722 	}
1723 
1724 	for (ev = 0; ev < pi->pcfg.num_events; ev++) {
1725 		if (val & (1 << ev)) { /* Event occurred */
1726 			struct pl330_thread *thrd;
1727 			u32 inten = readl(regs + INTEN);
1728 			int active;
1729 
1730 			/* Clear the event */
1731 			if (inten & (1 << ev))
1732 				writel(1 << ev, regs + INTCLR);
1733 
1734 			ret = 1;
1735 
1736 			id = pl330->events[ev];
1737 
1738 			thrd = &pl330->channels[id];
1739 
1740 			active = thrd->req_running;
1741 			if (active == -1) /* Aborted */
1742 				continue;
1743 
1744 			/* Detach the req */
1745 			rqdone = thrd->req[active].r;
1746 			thrd->req[active].r = NULL;
1747 
1748 			mark_free(thrd, active);
1749 
1750 			/* Get going again ASAP */
1751 			_start(thrd);
1752 
1753 			/* For now, just make a list of callbacks to be done */
1754 			list_add_tail(&rqdone->rqd, &pl330->req_done);
1755 		}
1756 	}
1757 
1758 	/* Now that we are in no hurry, do the callbacks */
1759 	list_for_each_entry_safe(rqdone, tmp, &pl330->req_done, rqd) {
1760 		list_del(&rqdone->rqd);
1761 
1762 		spin_unlock_irqrestore(&pl330->lock, flags);
1763 		_callback(rqdone, PL330_ERR_NONE);
1764 		spin_lock_irqsave(&pl330->lock, flags);
1765 	}
1766 
1767 updt_exit:
1768 	spin_unlock_irqrestore(&pl330->lock, flags);
1769 
1770 	if (pl330->dmac_tbd.reset_dmac
1771 			|| pl330->dmac_tbd.reset_mngr
1772 			|| pl330->dmac_tbd.reset_chan) {
1773 		ret = 1;
1774 		tasklet_schedule(&pl330->tasks);
1775 	}
1776 
1777 	return ret;
1778 }
1779 
1780 static int pl330_chan_ctrl(void *ch_id, enum pl330_chan_op op)
1781 {
1782 	struct pl330_thread *thrd = ch_id;
1783 	struct pl330_dmac *pl330;
1784 	unsigned long flags;
1785 	int ret = 0, active;
1786 
1787 	if (!thrd || thrd->free || thrd->dmac->state == DYING)
1788 		return -EINVAL;
1789 
1790 	pl330 = thrd->dmac;
1791 	active = thrd->req_running;
1792 
1793 	spin_lock_irqsave(&pl330->lock, flags);
1794 
1795 	switch (op) {
1796 	case PL330_OP_FLUSH:
1797 		/* Make sure the channel is stopped */
1798 		_stop(thrd);
1799 
1800 		thrd->req[0].r = NULL;
1801 		thrd->req[1].r = NULL;
1802 		mark_free(thrd, 0);
1803 		mark_free(thrd, 1);
1804 		break;
1805 
1806 	case PL330_OP_ABORT:
1807 		/* Make sure the channel is stopped */
1808 		_stop(thrd);
1809 
1810 		/* ABORT is only for the active req */
1811 		if (active == -1)
1812 			break;
1813 
1814 		thrd->req[active].r = NULL;
1815 		mark_free(thrd, active);
1816 
1817 		/* Start the next */
1818 	case PL330_OP_START:
1819 		if ((active == -1) && !_start(thrd))
1820 			ret = -EIO;
1821 		break;
1822 
1823 	default:
1824 		ret = -EINVAL;
1825 	}
1826 
1827 	spin_unlock_irqrestore(&pl330->lock, flags);
1828 	return ret;
1829 }
1830 
1831 /* Reserve an event */
1832 static inline int _alloc_event(struct pl330_thread *thrd)
1833 {
1834 	struct pl330_dmac *pl330 = thrd->dmac;
1835 	struct pl330_info *pi = pl330->pinfo;
1836 	int ev;
1837 
1838 	for (ev = 0; ev < pi->pcfg.num_events; ev++)
1839 		if (pl330->events[ev] == -1) {
1840 			pl330->events[ev] = thrd->id;
1841 			return ev;
1842 		}
1843 
1844 	return -1;
1845 }
1846 
1847 static bool _chan_ns(const struct pl330_info *pi, int i)
1848 {
1849 	return pi->pcfg.irq_ns & (1 << i);
1850 }
1851 
1852 /* Upon success, returns IdentityToken for the
1853  * allocated channel, NULL otherwise.
1854  */
1855 static void *pl330_request_channel(const struct pl330_info *pi)
1856 {
1857 	struct pl330_thread *thrd = NULL;
1858 	struct pl330_dmac *pl330;
1859 	unsigned long flags;
1860 	int chans, i;
1861 
1862 	if (!pi || !pi->pl330_data)
1863 		return NULL;
1864 
1865 	pl330 = pi->pl330_data;
1866 
1867 	if (pl330->state == DYING)
1868 		return NULL;
1869 
1870 	chans = pi->pcfg.num_chan;
1871 
1872 	spin_lock_irqsave(&pl330->lock, flags);
1873 
1874 	for (i = 0; i < chans; i++) {
1875 		thrd = &pl330->channels[i];
1876 		if ((thrd->free) && (!_manager_ns(thrd) ||
1877 					_chan_ns(pi, i))) {
1878 			thrd->ev = _alloc_event(thrd);
1879 			if (thrd->ev >= 0) {
1880 				thrd->free = false;
1881 				thrd->lstenq = 1;
1882 				thrd->req[0].r = NULL;
1883 				mark_free(thrd, 0);
1884 				thrd->req[1].r = NULL;
1885 				mark_free(thrd, 1);
1886 				break;
1887 			}
1888 		}
1889 		thrd = NULL;
1890 	}
1891 
1892 	spin_unlock_irqrestore(&pl330->lock, flags);
1893 
1894 	return thrd;
1895 }
1896 
1897 /* Release an event */
1898 static inline void _free_event(struct pl330_thread *thrd, int ev)
1899 {
1900 	struct pl330_dmac *pl330 = thrd->dmac;
1901 	struct pl330_info *pi = pl330->pinfo;
1902 
1903 	/* If the event is valid and was held by the thread */
1904 	if (ev >= 0 && ev < pi->pcfg.num_events
1905 			&& pl330->events[ev] == thrd->id)
1906 		pl330->events[ev] = -1;
1907 }
1908 
1909 static void pl330_release_channel(void *ch_id)
1910 {
1911 	struct pl330_thread *thrd = ch_id;
1912 	struct pl330_dmac *pl330;
1913 	unsigned long flags;
1914 
1915 	if (!thrd || thrd->free)
1916 		return;
1917 
1918 	_stop(thrd);
1919 
1920 	_callback(thrd->req[1 - thrd->lstenq].r, PL330_ERR_ABORT);
1921 	_callback(thrd->req[thrd->lstenq].r, PL330_ERR_ABORT);
1922 
1923 	pl330 = thrd->dmac;
1924 
1925 	spin_lock_irqsave(&pl330->lock, flags);
1926 	_free_event(thrd, thrd->ev);
1927 	thrd->free = true;
1928 	spin_unlock_irqrestore(&pl330->lock, flags);
1929 }
1930 
1931 /* Initialize the structure for PL330 configuration, that can be used
1932  * by the client driver the make best use of the DMAC
1933  */
1934 static void read_dmac_config(struct pl330_info *pi)
1935 {
1936 	void __iomem *regs = pi->base;
1937 	u32 val;
1938 
1939 	val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1940 	val &= CRD_DATA_WIDTH_MASK;
1941 	pi->pcfg.data_bus_width = 8 * (1 << val);
1942 
1943 	val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1944 	val &= CRD_DATA_BUFF_MASK;
1945 	pi->pcfg.data_buf_dep = val + 1;
1946 
1947 	val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1948 	val &= CR0_NUM_CHANS_MASK;
1949 	val += 1;
1950 	pi->pcfg.num_chan = val;
1951 
1952 	val = readl(regs + CR0);
1953 	if (val & CR0_PERIPH_REQ_SET) {
1954 		val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1955 		val += 1;
1956 		pi->pcfg.num_peri = val;
1957 		pi->pcfg.peri_ns = readl(regs + CR4);
1958 	} else {
1959 		pi->pcfg.num_peri = 0;
1960 	}
1961 
1962 	val = readl(regs + CR0);
1963 	if (val & CR0_BOOT_MAN_NS)
1964 		pi->pcfg.mode |= DMAC_MODE_NS;
1965 	else
1966 		pi->pcfg.mode &= ~DMAC_MODE_NS;
1967 
1968 	val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1969 	val &= CR0_NUM_EVENTS_MASK;
1970 	val += 1;
1971 	pi->pcfg.num_events = val;
1972 
1973 	pi->pcfg.irq_ns = readl(regs + CR3);
1974 }
1975 
1976 static inline void _reset_thread(struct pl330_thread *thrd)
1977 {
1978 	struct pl330_dmac *pl330 = thrd->dmac;
1979 	struct pl330_info *pi = pl330->pinfo;
1980 
1981 	thrd->req[0].mc_cpu = pl330->mcode_cpu
1982 				+ (thrd->id * pi->mcbufsz);
1983 	thrd->req[0].mc_bus = pl330->mcode_bus
1984 				+ (thrd->id * pi->mcbufsz);
1985 	thrd->req[0].r = NULL;
1986 	mark_free(thrd, 0);
1987 
1988 	thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
1989 				+ pi->mcbufsz / 2;
1990 	thrd->req[1].mc_bus = thrd->req[0].mc_bus
1991 				+ pi->mcbufsz / 2;
1992 	thrd->req[1].r = NULL;
1993 	mark_free(thrd, 1);
1994 }
1995 
1996 static int dmac_alloc_threads(struct pl330_dmac *pl330)
1997 {
1998 	struct pl330_info *pi = pl330->pinfo;
1999 	int chans = pi->pcfg.num_chan;
2000 	struct pl330_thread *thrd;
2001 	int i;
2002 
2003 	/* Allocate 1 Manager and 'chans' Channel threads */
2004 	pl330->channels = kzalloc((1 + chans) * sizeof(*thrd),
2005 					GFP_KERNEL);
2006 	if (!pl330->channels)
2007 		return -ENOMEM;
2008 
2009 	/* Init Channel threads */
2010 	for (i = 0; i < chans; i++) {
2011 		thrd = &pl330->channels[i];
2012 		thrd->id = i;
2013 		thrd->dmac = pl330;
2014 		_reset_thread(thrd);
2015 		thrd->free = true;
2016 	}
2017 
2018 	/* MANAGER is indexed at the end */
2019 	thrd = &pl330->channels[chans];
2020 	thrd->id = chans;
2021 	thrd->dmac = pl330;
2022 	thrd->free = false;
2023 	pl330->manager = thrd;
2024 
2025 	return 0;
2026 }
2027 
2028 static int dmac_alloc_resources(struct pl330_dmac *pl330)
2029 {
2030 	struct pl330_info *pi = pl330->pinfo;
2031 	int chans = pi->pcfg.num_chan;
2032 	int ret;
2033 
2034 	/*
2035 	 * Alloc MicroCode buffer for 'chans' Channel threads.
2036 	 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
2037 	 */
2038 	pl330->mcode_cpu = dma_alloc_coherent(pi->dev,
2039 				chans * pi->mcbufsz,
2040 				&pl330->mcode_bus, GFP_KERNEL);
2041 	if (!pl330->mcode_cpu) {
2042 		dev_err(pi->dev, "%s:%d Can't allocate memory!\n",
2043 			__func__, __LINE__);
2044 		return -ENOMEM;
2045 	}
2046 
2047 	ret = dmac_alloc_threads(pl330);
2048 	if (ret) {
2049 		dev_err(pi->dev, "%s:%d Can't to create channels for DMAC!\n",
2050 			__func__, __LINE__);
2051 		dma_free_coherent(pi->dev,
2052 				chans * pi->mcbufsz,
2053 				pl330->mcode_cpu, pl330->mcode_bus);
2054 		return ret;
2055 	}
2056 
2057 	return 0;
2058 }
2059 
2060 static int pl330_add(struct pl330_info *pi)
2061 {
2062 	struct pl330_dmac *pl330;
2063 	void __iomem *regs;
2064 	int i, ret;
2065 
2066 	if (!pi || !pi->dev)
2067 		return -EINVAL;
2068 
2069 	/* If already added */
2070 	if (pi->pl330_data)
2071 		return -EINVAL;
2072 
2073 	/*
2074 	 * If the SoC can perform reset on the DMAC, then do it
2075 	 * before reading its configuration.
2076 	 */
2077 	if (pi->dmac_reset)
2078 		pi->dmac_reset(pi);
2079 
2080 	regs = pi->base;
2081 
2082 	/* Check if we can handle this DMAC */
2083 	if ((pi->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) {
2084 		dev_err(pi->dev, "PERIPH_ID 0x%x !\n", pi->pcfg.periph_id);
2085 		return -EINVAL;
2086 	}
2087 
2088 	/* Read the configuration of the DMAC */
2089 	read_dmac_config(pi);
2090 
2091 	if (pi->pcfg.num_events == 0) {
2092 		dev_err(pi->dev, "%s:%d Can't work without events!\n",
2093 			__func__, __LINE__);
2094 		return -EINVAL;
2095 	}
2096 
2097 	pl330 = kzalloc(sizeof(*pl330), GFP_KERNEL);
2098 	if (!pl330) {
2099 		dev_err(pi->dev, "%s:%d Can't allocate memory!\n",
2100 			__func__, __LINE__);
2101 		return -ENOMEM;
2102 	}
2103 
2104 	/* Assign the info structure and private data */
2105 	pl330->pinfo = pi;
2106 	pi->pl330_data = pl330;
2107 
2108 	spin_lock_init(&pl330->lock);
2109 
2110 	INIT_LIST_HEAD(&pl330->req_done);
2111 
2112 	/* Use default MC buffer size if not provided */
2113 	if (!pi->mcbufsz)
2114 		pi->mcbufsz = MCODE_BUFF_PER_REQ * 2;
2115 
2116 	/* Mark all events as free */
2117 	for (i = 0; i < pi->pcfg.num_events; i++)
2118 		pl330->events[i] = -1;
2119 
2120 	/* Allocate resources needed by the DMAC */
2121 	ret = dmac_alloc_resources(pl330);
2122 	if (ret) {
2123 		dev_err(pi->dev, "Unable to create channels for DMAC\n");
2124 		kfree(pl330);
2125 		return ret;
2126 	}
2127 
2128 	tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
2129 
2130 	pl330->state = INIT;
2131 
2132 	return 0;
2133 }
2134 
2135 static int dmac_free_threads(struct pl330_dmac *pl330)
2136 {
2137 	struct pl330_info *pi = pl330->pinfo;
2138 	int chans = pi->pcfg.num_chan;
2139 	struct pl330_thread *thrd;
2140 	int i;
2141 
2142 	/* Release Channel threads */
2143 	for (i = 0; i < chans; i++) {
2144 		thrd = &pl330->channels[i];
2145 		pl330_release_channel((void *)thrd);
2146 	}
2147 
2148 	/* Free memory */
2149 	kfree(pl330->channels);
2150 
2151 	return 0;
2152 }
2153 
2154 static void dmac_free_resources(struct pl330_dmac *pl330)
2155 {
2156 	struct pl330_info *pi = pl330->pinfo;
2157 	int chans = pi->pcfg.num_chan;
2158 
2159 	dmac_free_threads(pl330);
2160 
2161 	dma_free_coherent(pi->dev, chans * pi->mcbufsz,
2162 				pl330->mcode_cpu, pl330->mcode_bus);
2163 }
2164 
2165 static void pl330_del(struct pl330_info *pi)
2166 {
2167 	struct pl330_dmac *pl330;
2168 
2169 	if (!pi || !pi->pl330_data)
2170 		return;
2171 
2172 	pl330 = pi->pl330_data;
2173 
2174 	pl330->state = UNINIT;
2175 
2176 	tasklet_kill(&pl330->tasks);
2177 
2178 	/* Free DMAC resources */
2179 	dmac_free_resources(pl330);
2180 
2181 	kfree(pl330);
2182 	pi->pl330_data = NULL;
2183 }
2184 
2185 /* forward declaration */
2186 static struct amba_driver pl330_driver;
2187 
2188 static inline struct dma_pl330_chan *
2189 to_pchan(struct dma_chan *ch)
2190 {
2191 	if (!ch)
2192 		return NULL;
2193 
2194 	return container_of(ch, struct dma_pl330_chan, chan);
2195 }
2196 
2197 static inline struct dma_pl330_desc *
2198 to_desc(struct dma_async_tx_descriptor *tx)
2199 {
2200 	return container_of(tx, struct dma_pl330_desc, txd);
2201 }
2202 
2203 static inline void fill_queue(struct dma_pl330_chan *pch)
2204 {
2205 	struct dma_pl330_desc *desc;
2206 	int ret;
2207 
2208 	list_for_each_entry(desc, &pch->work_list, node) {
2209 
2210 		/* If already submitted */
2211 		if (desc->status == BUSY)
2212 			continue;
2213 
2214 		ret = pl330_submit_req(pch->pl330_chid,
2215 						&desc->req);
2216 		if (!ret) {
2217 			desc->status = BUSY;
2218 		} else if (ret == -EAGAIN) {
2219 			/* QFull or DMAC Dying */
2220 			break;
2221 		} else {
2222 			/* Unacceptable request */
2223 			desc->status = DONE;
2224 			dev_err(pch->dmac->pif.dev, "%s:%d Bad Desc(%d)\n",
2225 					__func__, __LINE__, desc->txd.cookie);
2226 			tasklet_schedule(&pch->task);
2227 		}
2228 	}
2229 }
2230 
2231 static void pl330_tasklet(unsigned long data)
2232 {
2233 	struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data;
2234 	struct dma_pl330_desc *desc, *_dt;
2235 	unsigned long flags;
2236 
2237 	spin_lock_irqsave(&pch->lock, flags);
2238 
2239 	/* Pick up ripe tomatoes */
2240 	list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
2241 		if (desc->status == DONE) {
2242 			if (!pch->cyclic)
2243 				dma_cookie_complete(&desc->txd);
2244 			list_move_tail(&desc->node, &pch->completed_list);
2245 		}
2246 
2247 	/* Try to submit a req imm. next to the last completed cookie */
2248 	fill_queue(pch);
2249 
2250 	/* Make sure the PL330 Channel thread is active */
2251 	pl330_chan_ctrl(pch->pl330_chid, PL330_OP_START);
2252 
2253 	while (!list_empty(&pch->completed_list)) {
2254 		dma_async_tx_callback callback;
2255 		void *callback_param;
2256 
2257 		desc = list_first_entry(&pch->completed_list,
2258 					struct dma_pl330_desc, node);
2259 
2260 		callback = desc->txd.callback;
2261 		callback_param = desc->txd.callback_param;
2262 
2263 		if (pch->cyclic) {
2264 			desc->status = PREP;
2265 			list_move_tail(&desc->node, &pch->work_list);
2266 		} else {
2267 			desc->status = FREE;
2268 			list_move_tail(&desc->node, &pch->dmac->desc_pool);
2269 		}
2270 
2271 		if (callback) {
2272 			spin_unlock_irqrestore(&pch->lock, flags);
2273 			callback(callback_param);
2274 			spin_lock_irqsave(&pch->lock, flags);
2275 		}
2276 	}
2277 	spin_unlock_irqrestore(&pch->lock, flags);
2278 }
2279 
2280 static void dma_pl330_rqcb(void *token, enum pl330_op_err err)
2281 {
2282 	struct dma_pl330_desc *desc = token;
2283 	struct dma_pl330_chan *pch = desc->pchan;
2284 	unsigned long flags;
2285 
2286 	/* If desc aborted */
2287 	if (!pch)
2288 		return;
2289 
2290 	spin_lock_irqsave(&pch->lock, flags);
2291 
2292 	desc->status = DONE;
2293 
2294 	spin_unlock_irqrestore(&pch->lock, flags);
2295 
2296 	tasklet_schedule(&pch->task);
2297 }
2298 
2299 static bool pl330_dt_filter(struct dma_chan *chan, void *param)
2300 {
2301 	struct dma_pl330_filter_args *fargs = param;
2302 
2303 	if (chan->device != &fargs->pdmac->ddma)
2304 		return false;
2305 
2306 	return (chan->chan_id == fargs->chan_id);
2307 }
2308 
2309 bool pl330_filter(struct dma_chan *chan, void *param)
2310 {
2311 	u8 *peri_id;
2312 
2313 	if (chan->device->dev->driver != &pl330_driver.drv)
2314 		return false;
2315 
2316 	peri_id = chan->private;
2317 	return *peri_id == (unsigned)param;
2318 }
2319 EXPORT_SYMBOL(pl330_filter);
2320 
2321 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec,
2322 						struct of_dma *ofdma)
2323 {
2324 	int count = dma_spec->args_count;
2325 	struct dma_pl330_dmac *pdmac = ofdma->of_dma_data;
2326 	struct dma_pl330_filter_args fargs;
2327 	dma_cap_mask_t cap;
2328 
2329 	if (!pdmac)
2330 		return NULL;
2331 
2332 	if (count != 1)
2333 		return NULL;
2334 
2335 	fargs.pdmac = pdmac;
2336 	fargs.chan_id = dma_spec->args[0];
2337 
2338 	dma_cap_zero(cap);
2339 	dma_cap_set(DMA_SLAVE, cap);
2340 	dma_cap_set(DMA_CYCLIC, cap);
2341 
2342 	return dma_request_channel(cap, pl330_dt_filter, &fargs);
2343 }
2344 
2345 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2346 {
2347 	struct dma_pl330_chan *pch = to_pchan(chan);
2348 	struct dma_pl330_dmac *pdmac = pch->dmac;
2349 	unsigned long flags;
2350 
2351 	spin_lock_irqsave(&pch->lock, flags);
2352 
2353 	dma_cookie_init(chan);
2354 	pch->cyclic = false;
2355 
2356 	pch->pl330_chid = pl330_request_channel(&pdmac->pif);
2357 	if (!pch->pl330_chid) {
2358 		spin_unlock_irqrestore(&pch->lock, flags);
2359 		return -ENOMEM;
2360 	}
2361 
2362 	tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch);
2363 
2364 	spin_unlock_irqrestore(&pch->lock, flags);
2365 
2366 	return 1;
2367 }
2368 
2369 static int pl330_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg)
2370 {
2371 	struct dma_pl330_chan *pch = to_pchan(chan);
2372 	struct dma_pl330_desc *desc;
2373 	unsigned long flags;
2374 	struct dma_pl330_dmac *pdmac = pch->dmac;
2375 	struct dma_slave_config *slave_config;
2376 	LIST_HEAD(list);
2377 
2378 	switch (cmd) {
2379 	case DMA_TERMINATE_ALL:
2380 		spin_lock_irqsave(&pch->lock, flags);
2381 
2382 		/* FLUSH the PL330 Channel thread */
2383 		pl330_chan_ctrl(pch->pl330_chid, PL330_OP_FLUSH);
2384 
2385 		/* Mark all desc done */
2386 		list_for_each_entry(desc, &pch->work_list , node) {
2387 			desc->status = FREE;
2388 			dma_cookie_complete(&desc->txd);
2389 		}
2390 
2391 		list_for_each_entry(desc, &pch->completed_list , node) {
2392 			desc->status = FREE;
2393 			dma_cookie_complete(&desc->txd);
2394 		}
2395 
2396 		list_splice_tail_init(&pch->work_list, &pdmac->desc_pool);
2397 		list_splice_tail_init(&pch->completed_list, &pdmac->desc_pool);
2398 		spin_unlock_irqrestore(&pch->lock, flags);
2399 		break;
2400 	case DMA_SLAVE_CONFIG:
2401 		slave_config = (struct dma_slave_config *)arg;
2402 
2403 		if (slave_config->direction == DMA_MEM_TO_DEV) {
2404 			if (slave_config->dst_addr)
2405 				pch->fifo_addr = slave_config->dst_addr;
2406 			if (slave_config->dst_addr_width)
2407 				pch->burst_sz = __ffs(slave_config->dst_addr_width);
2408 			if (slave_config->dst_maxburst)
2409 				pch->burst_len = slave_config->dst_maxburst;
2410 		} else if (slave_config->direction == DMA_DEV_TO_MEM) {
2411 			if (slave_config->src_addr)
2412 				pch->fifo_addr = slave_config->src_addr;
2413 			if (slave_config->src_addr_width)
2414 				pch->burst_sz = __ffs(slave_config->src_addr_width);
2415 			if (slave_config->src_maxburst)
2416 				pch->burst_len = slave_config->src_maxburst;
2417 		}
2418 		break;
2419 	default:
2420 		dev_err(pch->dmac->pif.dev, "Not supported command.\n");
2421 		return -ENXIO;
2422 	}
2423 
2424 	return 0;
2425 }
2426 
2427 static void pl330_free_chan_resources(struct dma_chan *chan)
2428 {
2429 	struct dma_pl330_chan *pch = to_pchan(chan);
2430 	unsigned long flags;
2431 
2432 	tasklet_kill(&pch->task);
2433 
2434 	spin_lock_irqsave(&pch->lock, flags);
2435 
2436 	pl330_release_channel(pch->pl330_chid);
2437 	pch->pl330_chid = NULL;
2438 
2439 	if (pch->cyclic)
2440 		list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2441 
2442 	spin_unlock_irqrestore(&pch->lock, flags);
2443 }
2444 
2445 static enum dma_status
2446 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2447 		 struct dma_tx_state *txstate)
2448 {
2449 	return dma_cookie_status(chan, cookie, txstate);
2450 }
2451 
2452 static void pl330_issue_pending(struct dma_chan *chan)
2453 {
2454 	pl330_tasklet((unsigned long) to_pchan(chan));
2455 }
2456 
2457 /*
2458  * We returned the last one of the circular list of descriptor(s)
2459  * from prep_xxx, so the argument to submit corresponds to the last
2460  * descriptor of the list.
2461  */
2462 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2463 {
2464 	struct dma_pl330_desc *desc, *last = to_desc(tx);
2465 	struct dma_pl330_chan *pch = to_pchan(tx->chan);
2466 	dma_cookie_t cookie;
2467 	unsigned long flags;
2468 
2469 	spin_lock_irqsave(&pch->lock, flags);
2470 
2471 	/* Assign cookies to all nodes */
2472 	while (!list_empty(&last->node)) {
2473 		desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2474 		if (pch->cyclic) {
2475 			desc->txd.callback = last->txd.callback;
2476 			desc->txd.callback_param = last->txd.callback_param;
2477 		}
2478 
2479 		dma_cookie_assign(&desc->txd);
2480 
2481 		list_move_tail(&desc->node, &pch->work_list);
2482 	}
2483 
2484 	cookie = dma_cookie_assign(&last->txd);
2485 	list_add_tail(&last->node, &pch->work_list);
2486 	spin_unlock_irqrestore(&pch->lock, flags);
2487 
2488 	return cookie;
2489 }
2490 
2491 static inline void _init_desc(struct dma_pl330_desc *desc)
2492 {
2493 	desc->pchan = NULL;
2494 	desc->req.x = &desc->px;
2495 	desc->req.token = desc;
2496 	desc->rqcfg.swap = SWAP_NO;
2497 	desc->rqcfg.privileged = 0;
2498 	desc->rqcfg.insnaccess = 0;
2499 	desc->rqcfg.scctl = SCCTRL0;
2500 	desc->rqcfg.dcctl = DCCTRL0;
2501 	desc->req.cfg = &desc->rqcfg;
2502 	desc->req.xfer_cb = dma_pl330_rqcb;
2503 	desc->txd.tx_submit = pl330_tx_submit;
2504 
2505 	INIT_LIST_HEAD(&desc->node);
2506 }
2507 
2508 /* Returns the number of descriptors added to the DMAC pool */
2509 static int add_desc(struct dma_pl330_dmac *pdmac, gfp_t flg, int count)
2510 {
2511 	struct dma_pl330_desc *desc;
2512 	unsigned long flags;
2513 	int i;
2514 
2515 	if (!pdmac)
2516 		return 0;
2517 
2518 	desc = kmalloc(count * sizeof(*desc), flg);
2519 	if (!desc)
2520 		return 0;
2521 
2522 	spin_lock_irqsave(&pdmac->pool_lock, flags);
2523 
2524 	for (i = 0; i < count; i++) {
2525 		_init_desc(&desc[i]);
2526 		list_add_tail(&desc[i].node, &pdmac->desc_pool);
2527 	}
2528 
2529 	spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2530 
2531 	return count;
2532 }
2533 
2534 static struct dma_pl330_desc *
2535 pluck_desc(struct dma_pl330_dmac *pdmac)
2536 {
2537 	struct dma_pl330_desc *desc = NULL;
2538 	unsigned long flags;
2539 
2540 	if (!pdmac)
2541 		return NULL;
2542 
2543 	spin_lock_irqsave(&pdmac->pool_lock, flags);
2544 
2545 	if (!list_empty(&pdmac->desc_pool)) {
2546 		desc = list_entry(pdmac->desc_pool.next,
2547 				struct dma_pl330_desc, node);
2548 
2549 		list_del_init(&desc->node);
2550 
2551 		desc->status = PREP;
2552 		desc->txd.callback = NULL;
2553 	}
2554 
2555 	spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2556 
2557 	return desc;
2558 }
2559 
2560 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2561 {
2562 	struct dma_pl330_dmac *pdmac = pch->dmac;
2563 	u8 *peri_id = pch->chan.private;
2564 	struct dma_pl330_desc *desc;
2565 
2566 	/* Pluck one desc from the pool of DMAC */
2567 	desc = pluck_desc(pdmac);
2568 
2569 	/* If the DMAC pool is empty, alloc new */
2570 	if (!desc) {
2571 		if (!add_desc(pdmac, GFP_ATOMIC, 1))
2572 			return NULL;
2573 
2574 		/* Try again */
2575 		desc = pluck_desc(pdmac);
2576 		if (!desc) {
2577 			dev_err(pch->dmac->pif.dev,
2578 				"%s:%d ALERT!\n", __func__, __LINE__);
2579 			return NULL;
2580 		}
2581 	}
2582 
2583 	/* Initialize the descriptor */
2584 	desc->pchan = pch;
2585 	desc->txd.cookie = 0;
2586 	async_tx_ack(&desc->txd);
2587 
2588 	desc->req.peri = peri_id ? pch->chan.chan_id : 0;
2589 	desc->rqcfg.pcfg = &pch->dmac->pif.pcfg;
2590 
2591 	dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2592 
2593 	return desc;
2594 }
2595 
2596 static inline void fill_px(struct pl330_xfer *px,
2597 		dma_addr_t dst, dma_addr_t src, size_t len)
2598 {
2599 	px->next = NULL;
2600 	px->bytes = len;
2601 	px->dst_addr = dst;
2602 	px->src_addr = src;
2603 }
2604 
2605 static struct dma_pl330_desc *
2606 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2607 		dma_addr_t src, size_t len)
2608 {
2609 	struct dma_pl330_desc *desc = pl330_get_desc(pch);
2610 
2611 	if (!desc) {
2612 		dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n",
2613 			__func__, __LINE__);
2614 		return NULL;
2615 	}
2616 
2617 	/*
2618 	 * Ideally we should lookout for reqs bigger than
2619 	 * those that can be programmed with 256 bytes of
2620 	 * MC buffer, but considering a req size is seldom
2621 	 * going to be word-unaligned and more than 200MB,
2622 	 * we take it easy.
2623 	 * Also, should the limit is reached we'd rather
2624 	 * have the platform increase MC buffer size than
2625 	 * complicating this API driver.
2626 	 */
2627 	fill_px(&desc->px, dst, src, len);
2628 
2629 	return desc;
2630 }
2631 
2632 /* Call after fixing burst size */
2633 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2634 {
2635 	struct dma_pl330_chan *pch = desc->pchan;
2636 	struct pl330_info *pi = &pch->dmac->pif;
2637 	int burst_len;
2638 
2639 	burst_len = pi->pcfg.data_bus_width / 8;
2640 	burst_len *= pi->pcfg.data_buf_dep;
2641 	burst_len >>= desc->rqcfg.brst_size;
2642 
2643 	/* src/dst_burst_len can't be more than 16 */
2644 	if (burst_len > 16)
2645 		burst_len = 16;
2646 
2647 	while (burst_len > 1) {
2648 		if (!(len % (burst_len << desc->rqcfg.brst_size)))
2649 			break;
2650 		burst_len--;
2651 	}
2652 
2653 	return burst_len;
2654 }
2655 
2656 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2657 		struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2658 		size_t period_len, enum dma_transfer_direction direction,
2659 		unsigned long flags, void *context)
2660 {
2661 	struct dma_pl330_desc *desc = NULL, *first = NULL;
2662 	struct dma_pl330_chan *pch = to_pchan(chan);
2663 	struct dma_pl330_dmac *pdmac = pch->dmac;
2664 	unsigned int i;
2665 	dma_addr_t dst;
2666 	dma_addr_t src;
2667 
2668 	if (len % period_len != 0)
2669 		return NULL;
2670 
2671 	if (!is_slave_direction(direction)) {
2672 		dev_err(pch->dmac->pif.dev, "%s:%d Invalid dma direction\n",
2673 		__func__, __LINE__);
2674 		return NULL;
2675 	}
2676 
2677 	for (i = 0; i < len / period_len; i++) {
2678 		desc = pl330_get_desc(pch);
2679 		if (!desc) {
2680 			dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n",
2681 				__func__, __LINE__);
2682 
2683 			if (!first)
2684 				return NULL;
2685 
2686 			spin_lock_irqsave(&pdmac->pool_lock, flags);
2687 
2688 			while (!list_empty(&first->node)) {
2689 				desc = list_entry(first->node.next,
2690 						struct dma_pl330_desc, node);
2691 				list_move_tail(&desc->node, &pdmac->desc_pool);
2692 			}
2693 
2694 			list_move_tail(&first->node, &pdmac->desc_pool);
2695 
2696 			spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2697 
2698 			return NULL;
2699 		}
2700 
2701 		switch (direction) {
2702 		case DMA_MEM_TO_DEV:
2703 			desc->rqcfg.src_inc = 1;
2704 			desc->rqcfg.dst_inc = 0;
2705 			desc->req.rqtype = MEMTODEV;
2706 			src = dma_addr;
2707 			dst = pch->fifo_addr;
2708 			break;
2709 		case DMA_DEV_TO_MEM:
2710 			desc->rqcfg.src_inc = 0;
2711 			desc->rqcfg.dst_inc = 1;
2712 			desc->req.rqtype = DEVTOMEM;
2713 			src = pch->fifo_addr;
2714 			dst = dma_addr;
2715 			break;
2716 		default:
2717 			break;
2718 		}
2719 
2720 		desc->rqcfg.brst_size = pch->burst_sz;
2721 		desc->rqcfg.brst_len = 1;
2722 		fill_px(&desc->px, dst, src, period_len);
2723 
2724 		if (!first)
2725 			first = desc;
2726 		else
2727 			list_add_tail(&desc->node, &first->node);
2728 
2729 		dma_addr += period_len;
2730 	}
2731 
2732 	if (!desc)
2733 		return NULL;
2734 
2735 	pch->cyclic = true;
2736 	desc->txd.flags = flags;
2737 
2738 	return &desc->txd;
2739 }
2740 
2741 static struct dma_async_tx_descriptor *
2742 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2743 		dma_addr_t src, size_t len, unsigned long flags)
2744 {
2745 	struct dma_pl330_desc *desc;
2746 	struct dma_pl330_chan *pch = to_pchan(chan);
2747 	struct pl330_info *pi;
2748 	int burst;
2749 
2750 	if (unlikely(!pch || !len))
2751 		return NULL;
2752 
2753 	pi = &pch->dmac->pif;
2754 
2755 	desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2756 	if (!desc)
2757 		return NULL;
2758 
2759 	desc->rqcfg.src_inc = 1;
2760 	desc->rqcfg.dst_inc = 1;
2761 	desc->req.rqtype = MEMTOMEM;
2762 
2763 	/* Select max possible burst size */
2764 	burst = pi->pcfg.data_bus_width / 8;
2765 
2766 	while (burst > 1) {
2767 		if (!(len % burst))
2768 			break;
2769 		burst /= 2;
2770 	}
2771 
2772 	desc->rqcfg.brst_size = 0;
2773 	while (burst != (1 << desc->rqcfg.brst_size))
2774 		desc->rqcfg.brst_size++;
2775 
2776 	desc->rqcfg.brst_len = get_burst_len(desc, len);
2777 
2778 	desc->txd.flags = flags;
2779 
2780 	return &desc->txd;
2781 }
2782 
2783 static void __pl330_giveback_desc(struct dma_pl330_dmac *pdmac,
2784 				  struct dma_pl330_desc *first)
2785 {
2786 	unsigned long flags;
2787 	struct dma_pl330_desc *desc;
2788 
2789 	if (!first)
2790 		return;
2791 
2792 	spin_lock_irqsave(&pdmac->pool_lock, flags);
2793 
2794 	while (!list_empty(&first->node)) {
2795 		desc = list_entry(first->node.next,
2796 				struct dma_pl330_desc, node);
2797 		list_move_tail(&desc->node, &pdmac->desc_pool);
2798 	}
2799 
2800 	list_move_tail(&first->node, &pdmac->desc_pool);
2801 
2802 	spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2803 }
2804 
2805 static struct dma_async_tx_descriptor *
2806 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2807 		unsigned int sg_len, enum dma_transfer_direction direction,
2808 		unsigned long flg, void *context)
2809 {
2810 	struct dma_pl330_desc *first, *desc = NULL;
2811 	struct dma_pl330_chan *pch = to_pchan(chan);
2812 	struct scatterlist *sg;
2813 	int i;
2814 	dma_addr_t addr;
2815 
2816 	if (unlikely(!pch || !sgl || !sg_len))
2817 		return NULL;
2818 
2819 	addr = pch->fifo_addr;
2820 
2821 	first = NULL;
2822 
2823 	for_each_sg(sgl, sg, sg_len, i) {
2824 
2825 		desc = pl330_get_desc(pch);
2826 		if (!desc) {
2827 			struct dma_pl330_dmac *pdmac = pch->dmac;
2828 
2829 			dev_err(pch->dmac->pif.dev,
2830 				"%s:%d Unable to fetch desc\n",
2831 				__func__, __LINE__);
2832 			__pl330_giveback_desc(pdmac, first);
2833 
2834 			return NULL;
2835 		}
2836 
2837 		if (!first)
2838 			first = desc;
2839 		else
2840 			list_add_tail(&desc->node, &first->node);
2841 
2842 		if (direction == DMA_MEM_TO_DEV) {
2843 			desc->rqcfg.src_inc = 1;
2844 			desc->rqcfg.dst_inc = 0;
2845 			desc->req.rqtype = MEMTODEV;
2846 			fill_px(&desc->px,
2847 				addr, sg_dma_address(sg), sg_dma_len(sg));
2848 		} else {
2849 			desc->rqcfg.src_inc = 0;
2850 			desc->rqcfg.dst_inc = 1;
2851 			desc->req.rqtype = DEVTOMEM;
2852 			fill_px(&desc->px,
2853 				sg_dma_address(sg), addr, sg_dma_len(sg));
2854 		}
2855 
2856 		desc->rqcfg.brst_size = pch->burst_sz;
2857 		desc->rqcfg.brst_len = 1;
2858 	}
2859 
2860 	/* Return the last desc in the chain */
2861 	desc->txd.flags = flg;
2862 	return &desc->txd;
2863 }
2864 
2865 static irqreturn_t pl330_irq_handler(int irq, void *data)
2866 {
2867 	if (pl330_update(data))
2868 		return IRQ_HANDLED;
2869 	else
2870 		return IRQ_NONE;
2871 }
2872 
2873 #define PL330_DMA_BUSWIDTHS \
2874 	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
2875 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
2876 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
2877 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
2878 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
2879 
2880 static int pl330_dma_device_slave_caps(struct dma_chan *dchan,
2881 	struct dma_slave_caps *caps)
2882 {
2883 	caps->src_addr_widths = PL330_DMA_BUSWIDTHS;
2884 	caps->dstn_addr_widths = PL330_DMA_BUSWIDTHS;
2885 	caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2886 	caps->cmd_pause = false;
2887 	caps->cmd_terminate = true;
2888 
2889 	return 0;
2890 }
2891 
2892 static int
2893 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2894 {
2895 	struct dma_pl330_platdata *pdat;
2896 	struct dma_pl330_dmac *pdmac;
2897 	struct dma_pl330_chan *pch, *_p;
2898 	struct pl330_info *pi;
2899 	struct dma_device *pd;
2900 	struct resource *res;
2901 	int i, ret, irq;
2902 	int num_chan;
2903 
2904 	pdat = dev_get_platdata(&adev->dev);
2905 
2906 	/* Allocate a new DMAC and its Channels */
2907 	pdmac = devm_kzalloc(&adev->dev, sizeof(*pdmac), GFP_KERNEL);
2908 	if (!pdmac) {
2909 		dev_err(&adev->dev, "unable to allocate mem\n");
2910 		return -ENOMEM;
2911 	}
2912 
2913 	pi = &pdmac->pif;
2914 	pi->dev = &adev->dev;
2915 	pi->pl330_data = NULL;
2916 	pi->mcbufsz = pdat ? pdat->mcbuf_sz : 0;
2917 
2918 	res = &adev->res;
2919 	pi->base = devm_ioremap_resource(&adev->dev, res);
2920 	if (IS_ERR(pi->base))
2921 		return PTR_ERR(pi->base);
2922 
2923 	amba_set_drvdata(adev, pdmac);
2924 
2925 	irq = adev->irq[0];
2926 	ret = request_irq(irq, pl330_irq_handler, 0,
2927 			dev_name(&adev->dev), pi);
2928 	if (ret)
2929 		return ret;
2930 
2931 	pi->pcfg.periph_id = adev->periphid;
2932 	ret = pl330_add(pi);
2933 	if (ret)
2934 		goto probe_err1;
2935 
2936 	INIT_LIST_HEAD(&pdmac->desc_pool);
2937 	spin_lock_init(&pdmac->pool_lock);
2938 
2939 	/* Create a descriptor pool of default size */
2940 	if (!add_desc(pdmac, GFP_KERNEL, NR_DEFAULT_DESC))
2941 		dev_warn(&adev->dev, "unable to allocate desc\n");
2942 
2943 	pd = &pdmac->ddma;
2944 	INIT_LIST_HEAD(&pd->channels);
2945 
2946 	/* Initialize channel parameters */
2947 	if (pdat)
2948 		num_chan = max_t(int, pdat->nr_valid_peri, pi->pcfg.num_chan);
2949 	else
2950 		num_chan = max_t(int, pi->pcfg.num_peri, pi->pcfg.num_chan);
2951 
2952 	pdmac->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL);
2953 	if (!pdmac->peripherals) {
2954 		ret = -ENOMEM;
2955 		dev_err(&adev->dev, "unable to allocate pdmac->peripherals\n");
2956 		goto probe_err2;
2957 	}
2958 
2959 	for (i = 0; i < num_chan; i++) {
2960 		pch = &pdmac->peripherals[i];
2961 		if (!adev->dev.of_node)
2962 			pch->chan.private = pdat ? &pdat->peri_id[i] : NULL;
2963 		else
2964 			pch->chan.private = adev->dev.of_node;
2965 
2966 		INIT_LIST_HEAD(&pch->work_list);
2967 		INIT_LIST_HEAD(&pch->completed_list);
2968 		spin_lock_init(&pch->lock);
2969 		pch->pl330_chid = NULL;
2970 		pch->chan.device = pd;
2971 		pch->dmac = pdmac;
2972 
2973 		/* Add the channel to the DMAC list */
2974 		list_add_tail(&pch->chan.device_node, &pd->channels);
2975 	}
2976 
2977 	pd->dev = &adev->dev;
2978 	if (pdat) {
2979 		pd->cap_mask = pdat->cap_mask;
2980 	} else {
2981 		dma_cap_set(DMA_MEMCPY, pd->cap_mask);
2982 		if (pi->pcfg.num_peri) {
2983 			dma_cap_set(DMA_SLAVE, pd->cap_mask);
2984 			dma_cap_set(DMA_CYCLIC, pd->cap_mask);
2985 			dma_cap_set(DMA_PRIVATE, pd->cap_mask);
2986 		}
2987 	}
2988 
2989 	pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
2990 	pd->device_free_chan_resources = pl330_free_chan_resources;
2991 	pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
2992 	pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
2993 	pd->device_tx_status = pl330_tx_status;
2994 	pd->device_prep_slave_sg = pl330_prep_slave_sg;
2995 	pd->device_control = pl330_control;
2996 	pd->device_issue_pending = pl330_issue_pending;
2997 	pd->device_slave_caps = pl330_dma_device_slave_caps;
2998 
2999 	ret = dma_async_device_register(pd);
3000 	if (ret) {
3001 		dev_err(&adev->dev, "unable to register DMAC\n");
3002 		goto probe_err3;
3003 	}
3004 
3005 	if (adev->dev.of_node) {
3006 		ret = of_dma_controller_register(adev->dev.of_node,
3007 					 of_dma_pl330_xlate, pdmac);
3008 		if (ret) {
3009 			dev_err(&adev->dev,
3010 			"unable to register DMA to the generic DT DMA helpers\n");
3011 		}
3012 	}
3013 	/*
3014 	 * This is the limit for transfers with a buswidth of 1, larger
3015 	 * buswidths will have larger limits.
3016 	 */
3017 	ret = dma_set_max_seg_size(&adev->dev, 1900800);
3018 	if (ret)
3019 		dev_err(&adev->dev, "unable to set the seg size\n");
3020 
3021 
3022 	dev_info(&adev->dev,
3023 		"Loaded driver for PL330 DMAC-%d\n", adev->periphid);
3024 	dev_info(&adev->dev,
3025 		"\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
3026 		pi->pcfg.data_buf_dep,
3027 		pi->pcfg.data_bus_width / 8, pi->pcfg.num_chan,
3028 		pi->pcfg.num_peri, pi->pcfg.num_events);
3029 
3030 	return 0;
3031 probe_err3:
3032 	amba_set_drvdata(adev, NULL);
3033 
3034 	/* Idle the DMAC */
3035 	list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels,
3036 			chan.device_node) {
3037 
3038 		/* Remove the channel */
3039 		list_del(&pch->chan.device_node);
3040 
3041 		/* Flush the channel */
3042 		pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0);
3043 		pl330_free_chan_resources(&pch->chan);
3044 	}
3045 probe_err2:
3046 	pl330_del(pi);
3047 probe_err1:
3048 	free_irq(irq, pi);
3049 
3050 	return ret;
3051 }
3052 
3053 static int pl330_remove(struct amba_device *adev)
3054 {
3055 	struct dma_pl330_dmac *pdmac = amba_get_drvdata(adev);
3056 	struct dma_pl330_chan *pch, *_p;
3057 	struct pl330_info *pi;
3058 	int irq;
3059 
3060 	if (!pdmac)
3061 		return 0;
3062 
3063 	if (adev->dev.of_node)
3064 		of_dma_controller_free(adev->dev.of_node);
3065 
3066 	dma_async_device_unregister(&pdmac->ddma);
3067 	amba_set_drvdata(adev, NULL);
3068 
3069 	/* Idle the DMAC */
3070 	list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels,
3071 			chan.device_node) {
3072 
3073 		/* Remove the channel */
3074 		list_del(&pch->chan.device_node);
3075 
3076 		/* Flush the channel */
3077 		pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0);
3078 		pl330_free_chan_resources(&pch->chan);
3079 	}
3080 
3081 	pi = &pdmac->pif;
3082 
3083 	pl330_del(pi);
3084 
3085 	irq = adev->irq[0];
3086 	free_irq(irq, pi);
3087 
3088 	return 0;
3089 }
3090 
3091 static struct amba_id pl330_ids[] = {
3092 	{
3093 		.id	= 0x00041330,
3094 		.mask	= 0x000fffff,
3095 	},
3096 	{ 0, 0 },
3097 };
3098 
3099 MODULE_DEVICE_TABLE(amba, pl330_ids);
3100 
3101 static struct amba_driver pl330_driver = {
3102 	.drv = {
3103 		.owner = THIS_MODULE,
3104 		.name = "dma-pl330",
3105 	},
3106 	.id_table = pl330_ids,
3107 	.probe = pl330_probe,
3108 	.remove = pl330_remove,
3109 };
3110 
3111 module_amba_driver(pl330_driver);
3112 
3113 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
3114 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3115 MODULE_LICENSE("GPL");
3116