1 /* 2 * Topcliff PCH DMA controller driver 3 * Copyright (c) 2010 Intel Corporation 4 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 18 */ 19 20 #include <linux/dmaengine.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/init.h> 23 #include <linux/pci.h> 24 #include <linux/interrupt.h> 25 #include <linux/module.h> 26 #include <linux/pch_dma.h> 27 28 #include "dmaengine.h" 29 30 #define DRV_NAME "pch-dma" 31 32 #define DMA_CTL0_DISABLE 0x0 33 #define DMA_CTL0_SG 0x1 34 #define DMA_CTL0_ONESHOT 0x2 35 #define DMA_CTL0_MODE_MASK_BITS 0x3 36 #define DMA_CTL0_DIR_SHIFT_BITS 2 37 #define DMA_CTL0_BITS_PER_CH 4 38 39 #define DMA_CTL2_START_SHIFT_BITS 8 40 #define DMA_CTL2_IRQ_ENABLE_MASK ((1UL << DMA_CTL2_START_SHIFT_BITS) - 1) 41 42 #define DMA_STATUS_IDLE 0x0 43 #define DMA_STATUS_DESC_READ 0x1 44 #define DMA_STATUS_WAIT 0x2 45 #define DMA_STATUS_ACCESS 0x3 46 #define DMA_STATUS_BITS_PER_CH 2 47 #define DMA_STATUS_MASK_BITS 0x3 48 #define DMA_STATUS_SHIFT_BITS 16 49 #define DMA_STATUS_IRQ(x) (0x1 << (x)) 50 #define DMA_STATUS0_ERR(x) (0x1 << ((x) + 8)) 51 #define DMA_STATUS2_ERR(x) (0x1 << (x)) 52 53 #define DMA_DESC_WIDTH_SHIFT_BITS 12 54 #define DMA_DESC_WIDTH_1_BYTE (0x3 << DMA_DESC_WIDTH_SHIFT_BITS) 55 #define DMA_DESC_WIDTH_2_BYTES (0x2 << DMA_DESC_WIDTH_SHIFT_BITS) 56 #define DMA_DESC_WIDTH_4_BYTES (0x0 << DMA_DESC_WIDTH_SHIFT_BITS) 57 #define DMA_DESC_MAX_COUNT_1_BYTE 0x3FF 58 #define DMA_DESC_MAX_COUNT_2_BYTES 0x3FF 59 #define DMA_DESC_MAX_COUNT_4_BYTES 0x7FF 60 #define DMA_DESC_END_WITHOUT_IRQ 0x0 61 #define DMA_DESC_END_WITH_IRQ 0x1 62 #define DMA_DESC_FOLLOW_WITHOUT_IRQ 0x2 63 #define DMA_DESC_FOLLOW_WITH_IRQ 0x3 64 65 #define MAX_CHAN_NR 12 66 67 #define DMA_MASK_CTL0_MODE 0x33333333 68 #define DMA_MASK_CTL2_MODE 0x00003333 69 70 static unsigned int init_nr_desc_per_channel = 64; 71 module_param(init_nr_desc_per_channel, uint, 0644); 72 MODULE_PARM_DESC(init_nr_desc_per_channel, 73 "initial descriptors per channel (default: 64)"); 74 75 struct pch_dma_desc_regs { 76 u32 dev_addr; 77 u32 mem_addr; 78 u32 size; 79 u32 next; 80 }; 81 82 struct pch_dma_regs { 83 u32 dma_ctl0; 84 u32 dma_ctl1; 85 u32 dma_ctl2; 86 u32 dma_ctl3; 87 u32 dma_sts0; 88 u32 dma_sts1; 89 u32 dma_sts2; 90 u32 reserved3; 91 struct pch_dma_desc_regs desc[MAX_CHAN_NR]; 92 }; 93 94 struct pch_dma_desc { 95 struct pch_dma_desc_regs regs; 96 struct dma_async_tx_descriptor txd; 97 struct list_head desc_node; 98 struct list_head tx_list; 99 }; 100 101 struct pch_dma_chan { 102 struct dma_chan chan; 103 void __iomem *membase; 104 enum dma_transfer_direction dir; 105 struct tasklet_struct tasklet; 106 unsigned long err_status; 107 108 spinlock_t lock; 109 110 struct list_head active_list; 111 struct list_head queue; 112 struct list_head free_list; 113 unsigned int descs_allocated; 114 }; 115 116 #define PDC_DEV_ADDR 0x00 117 #define PDC_MEM_ADDR 0x04 118 #define PDC_SIZE 0x08 119 #define PDC_NEXT 0x0C 120 121 #define channel_readl(pdc, name) \ 122 readl((pdc)->membase + PDC_##name) 123 #define channel_writel(pdc, name, val) \ 124 writel((val), (pdc)->membase + PDC_##name) 125 126 struct pch_dma { 127 struct dma_device dma; 128 void __iomem *membase; 129 struct pci_pool *pool; 130 struct pch_dma_regs regs; 131 struct pch_dma_desc_regs ch_regs[MAX_CHAN_NR]; 132 struct pch_dma_chan channels[MAX_CHAN_NR]; 133 }; 134 135 #define PCH_DMA_CTL0 0x00 136 #define PCH_DMA_CTL1 0x04 137 #define PCH_DMA_CTL2 0x08 138 #define PCH_DMA_CTL3 0x0C 139 #define PCH_DMA_STS0 0x10 140 #define PCH_DMA_STS1 0x14 141 #define PCH_DMA_STS2 0x18 142 143 #define dma_readl(pd, name) \ 144 readl((pd)->membase + PCH_DMA_##name) 145 #define dma_writel(pd, name, val) \ 146 writel((val), (pd)->membase + PCH_DMA_##name) 147 148 static inline 149 struct pch_dma_desc *to_pd_desc(struct dma_async_tx_descriptor *txd) 150 { 151 return container_of(txd, struct pch_dma_desc, txd); 152 } 153 154 static inline struct pch_dma_chan *to_pd_chan(struct dma_chan *chan) 155 { 156 return container_of(chan, struct pch_dma_chan, chan); 157 } 158 159 static inline struct pch_dma *to_pd(struct dma_device *ddev) 160 { 161 return container_of(ddev, struct pch_dma, dma); 162 } 163 164 static inline struct device *chan2dev(struct dma_chan *chan) 165 { 166 return &chan->dev->device; 167 } 168 169 static inline struct device *chan2parent(struct dma_chan *chan) 170 { 171 return chan->dev->device.parent; 172 } 173 174 static inline 175 struct pch_dma_desc *pdc_first_active(struct pch_dma_chan *pd_chan) 176 { 177 return list_first_entry(&pd_chan->active_list, 178 struct pch_dma_desc, desc_node); 179 } 180 181 static inline 182 struct pch_dma_desc *pdc_first_queued(struct pch_dma_chan *pd_chan) 183 { 184 return list_first_entry(&pd_chan->queue, 185 struct pch_dma_desc, desc_node); 186 } 187 188 static void pdc_enable_irq(struct dma_chan *chan, int enable) 189 { 190 struct pch_dma *pd = to_pd(chan->device); 191 u32 val; 192 int pos; 193 194 if (chan->chan_id < 8) 195 pos = chan->chan_id; 196 else 197 pos = chan->chan_id + 8; 198 199 val = dma_readl(pd, CTL2); 200 201 if (enable) 202 val |= 0x1 << pos; 203 else 204 val &= ~(0x1 << pos); 205 206 dma_writel(pd, CTL2, val); 207 208 dev_dbg(chan2dev(chan), "pdc_enable_irq: chan %d -> %x\n", 209 chan->chan_id, val); 210 } 211 212 static void pdc_set_dir(struct dma_chan *chan) 213 { 214 struct pch_dma_chan *pd_chan = to_pd_chan(chan); 215 struct pch_dma *pd = to_pd(chan->device); 216 u32 val; 217 u32 mask_mode; 218 u32 mask_ctl; 219 220 if (chan->chan_id < 8) { 221 val = dma_readl(pd, CTL0); 222 223 mask_mode = DMA_CTL0_MODE_MASK_BITS << 224 (DMA_CTL0_BITS_PER_CH * chan->chan_id); 225 mask_ctl = DMA_MASK_CTL0_MODE & ~(DMA_CTL0_MODE_MASK_BITS << 226 (DMA_CTL0_BITS_PER_CH * chan->chan_id)); 227 val &= mask_mode; 228 if (pd_chan->dir == DMA_MEM_TO_DEV) 229 val |= 0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id + 230 DMA_CTL0_DIR_SHIFT_BITS); 231 else 232 val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id + 233 DMA_CTL0_DIR_SHIFT_BITS)); 234 235 val |= mask_ctl; 236 dma_writel(pd, CTL0, val); 237 } else { 238 int ch = chan->chan_id - 8; /* ch8-->0 ch9-->1 ... ch11->3 */ 239 val = dma_readl(pd, CTL3); 240 241 mask_mode = DMA_CTL0_MODE_MASK_BITS << 242 (DMA_CTL0_BITS_PER_CH * ch); 243 mask_ctl = DMA_MASK_CTL2_MODE & ~(DMA_CTL0_MODE_MASK_BITS << 244 (DMA_CTL0_BITS_PER_CH * ch)); 245 val &= mask_mode; 246 if (pd_chan->dir == DMA_MEM_TO_DEV) 247 val |= 0x1 << (DMA_CTL0_BITS_PER_CH * ch + 248 DMA_CTL0_DIR_SHIFT_BITS); 249 else 250 val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * ch + 251 DMA_CTL0_DIR_SHIFT_BITS)); 252 val |= mask_ctl; 253 dma_writel(pd, CTL3, val); 254 } 255 256 dev_dbg(chan2dev(chan), "pdc_set_dir: chan %d -> %x\n", 257 chan->chan_id, val); 258 } 259 260 static void pdc_set_mode(struct dma_chan *chan, u32 mode) 261 { 262 struct pch_dma *pd = to_pd(chan->device); 263 u32 val; 264 u32 mask_ctl; 265 u32 mask_dir; 266 267 if (chan->chan_id < 8) { 268 mask_ctl = DMA_MASK_CTL0_MODE & ~(DMA_CTL0_MODE_MASK_BITS << 269 (DMA_CTL0_BITS_PER_CH * chan->chan_id)); 270 mask_dir = 1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +\ 271 DMA_CTL0_DIR_SHIFT_BITS); 272 val = dma_readl(pd, CTL0); 273 val &= mask_dir; 274 val |= mode << (DMA_CTL0_BITS_PER_CH * chan->chan_id); 275 val |= mask_ctl; 276 dma_writel(pd, CTL0, val); 277 } else { 278 int ch = chan->chan_id - 8; /* ch8-->0 ch9-->1 ... ch11->3 */ 279 mask_ctl = DMA_MASK_CTL2_MODE & ~(DMA_CTL0_MODE_MASK_BITS << 280 (DMA_CTL0_BITS_PER_CH * ch)); 281 mask_dir = 1 << (DMA_CTL0_BITS_PER_CH * ch +\ 282 DMA_CTL0_DIR_SHIFT_BITS); 283 val = dma_readl(pd, CTL3); 284 val &= mask_dir; 285 val |= mode << (DMA_CTL0_BITS_PER_CH * ch); 286 val |= mask_ctl; 287 dma_writel(pd, CTL3, val); 288 } 289 290 dev_dbg(chan2dev(chan), "pdc_set_mode: chan %d -> %x\n", 291 chan->chan_id, val); 292 } 293 294 static u32 pdc_get_status0(struct pch_dma_chan *pd_chan) 295 { 296 struct pch_dma *pd = to_pd(pd_chan->chan.device); 297 u32 val; 298 299 val = dma_readl(pd, STS0); 300 return DMA_STATUS_MASK_BITS & (val >> (DMA_STATUS_SHIFT_BITS + 301 DMA_STATUS_BITS_PER_CH * pd_chan->chan.chan_id)); 302 } 303 304 static u32 pdc_get_status2(struct pch_dma_chan *pd_chan) 305 { 306 struct pch_dma *pd = to_pd(pd_chan->chan.device); 307 u32 val; 308 309 val = dma_readl(pd, STS2); 310 return DMA_STATUS_MASK_BITS & (val >> (DMA_STATUS_SHIFT_BITS + 311 DMA_STATUS_BITS_PER_CH * (pd_chan->chan.chan_id - 8))); 312 } 313 314 static bool pdc_is_idle(struct pch_dma_chan *pd_chan) 315 { 316 u32 sts; 317 318 if (pd_chan->chan.chan_id < 8) 319 sts = pdc_get_status0(pd_chan); 320 else 321 sts = pdc_get_status2(pd_chan); 322 323 324 if (sts == DMA_STATUS_IDLE) 325 return true; 326 else 327 return false; 328 } 329 330 static void pdc_dostart(struct pch_dma_chan *pd_chan, struct pch_dma_desc* desc) 331 { 332 if (!pdc_is_idle(pd_chan)) { 333 dev_err(chan2dev(&pd_chan->chan), 334 "BUG: Attempt to start non-idle channel\n"); 335 return; 336 } 337 338 dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> dev_addr: %x\n", 339 pd_chan->chan.chan_id, desc->regs.dev_addr); 340 dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> mem_addr: %x\n", 341 pd_chan->chan.chan_id, desc->regs.mem_addr); 342 dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> size: %x\n", 343 pd_chan->chan.chan_id, desc->regs.size); 344 dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> next: %x\n", 345 pd_chan->chan.chan_id, desc->regs.next); 346 347 if (list_empty(&desc->tx_list)) { 348 channel_writel(pd_chan, DEV_ADDR, desc->regs.dev_addr); 349 channel_writel(pd_chan, MEM_ADDR, desc->regs.mem_addr); 350 channel_writel(pd_chan, SIZE, desc->regs.size); 351 channel_writel(pd_chan, NEXT, desc->regs.next); 352 pdc_set_mode(&pd_chan->chan, DMA_CTL0_ONESHOT); 353 } else { 354 channel_writel(pd_chan, NEXT, desc->txd.phys); 355 pdc_set_mode(&pd_chan->chan, DMA_CTL0_SG); 356 } 357 } 358 359 static void pdc_chain_complete(struct pch_dma_chan *pd_chan, 360 struct pch_dma_desc *desc) 361 { 362 struct dma_async_tx_descriptor *txd = &desc->txd; 363 dma_async_tx_callback callback = txd->callback; 364 void *param = txd->callback_param; 365 366 list_splice_init(&desc->tx_list, &pd_chan->free_list); 367 list_move(&desc->desc_node, &pd_chan->free_list); 368 369 if (callback) 370 callback(param); 371 } 372 373 static void pdc_complete_all(struct pch_dma_chan *pd_chan) 374 { 375 struct pch_dma_desc *desc, *_d; 376 LIST_HEAD(list); 377 378 BUG_ON(!pdc_is_idle(pd_chan)); 379 380 if (!list_empty(&pd_chan->queue)) 381 pdc_dostart(pd_chan, pdc_first_queued(pd_chan)); 382 383 list_splice_init(&pd_chan->active_list, &list); 384 list_splice_init(&pd_chan->queue, &pd_chan->active_list); 385 386 list_for_each_entry_safe(desc, _d, &list, desc_node) 387 pdc_chain_complete(pd_chan, desc); 388 } 389 390 static void pdc_handle_error(struct pch_dma_chan *pd_chan) 391 { 392 struct pch_dma_desc *bad_desc; 393 394 bad_desc = pdc_first_active(pd_chan); 395 list_del(&bad_desc->desc_node); 396 397 list_splice_init(&pd_chan->queue, pd_chan->active_list.prev); 398 399 if (!list_empty(&pd_chan->active_list)) 400 pdc_dostart(pd_chan, pdc_first_active(pd_chan)); 401 402 dev_crit(chan2dev(&pd_chan->chan), "Bad descriptor submitted\n"); 403 dev_crit(chan2dev(&pd_chan->chan), "descriptor cookie: %d\n", 404 bad_desc->txd.cookie); 405 406 pdc_chain_complete(pd_chan, bad_desc); 407 } 408 409 static void pdc_advance_work(struct pch_dma_chan *pd_chan) 410 { 411 if (list_empty(&pd_chan->active_list) || 412 list_is_singular(&pd_chan->active_list)) { 413 pdc_complete_all(pd_chan); 414 } else { 415 pdc_chain_complete(pd_chan, pdc_first_active(pd_chan)); 416 pdc_dostart(pd_chan, pdc_first_active(pd_chan)); 417 } 418 } 419 420 static dma_cookie_t pd_tx_submit(struct dma_async_tx_descriptor *txd) 421 { 422 struct pch_dma_desc *desc = to_pd_desc(txd); 423 struct pch_dma_chan *pd_chan = to_pd_chan(txd->chan); 424 dma_cookie_t cookie; 425 426 spin_lock(&pd_chan->lock); 427 cookie = dma_cookie_assign(txd); 428 429 if (list_empty(&pd_chan->active_list)) { 430 list_add_tail(&desc->desc_node, &pd_chan->active_list); 431 pdc_dostart(pd_chan, desc); 432 } else { 433 list_add_tail(&desc->desc_node, &pd_chan->queue); 434 } 435 436 spin_unlock(&pd_chan->lock); 437 return 0; 438 } 439 440 static struct pch_dma_desc *pdc_alloc_desc(struct dma_chan *chan, gfp_t flags) 441 { 442 struct pch_dma_desc *desc = NULL; 443 struct pch_dma *pd = to_pd(chan->device); 444 dma_addr_t addr; 445 446 desc = pci_pool_alloc(pd->pool, flags, &addr); 447 if (desc) { 448 memset(desc, 0, sizeof(struct pch_dma_desc)); 449 INIT_LIST_HEAD(&desc->tx_list); 450 dma_async_tx_descriptor_init(&desc->txd, chan); 451 desc->txd.tx_submit = pd_tx_submit; 452 desc->txd.flags = DMA_CTRL_ACK; 453 desc->txd.phys = addr; 454 } 455 456 return desc; 457 } 458 459 static struct pch_dma_desc *pdc_desc_get(struct pch_dma_chan *pd_chan) 460 { 461 struct pch_dma_desc *desc, *_d; 462 struct pch_dma_desc *ret = NULL; 463 int i = 0; 464 465 spin_lock(&pd_chan->lock); 466 list_for_each_entry_safe(desc, _d, &pd_chan->free_list, desc_node) { 467 i++; 468 if (async_tx_test_ack(&desc->txd)) { 469 list_del(&desc->desc_node); 470 ret = desc; 471 break; 472 } 473 dev_dbg(chan2dev(&pd_chan->chan), "desc %p not ACKed\n", desc); 474 } 475 spin_unlock(&pd_chan->lock); 476 dev_dbg(chan2dev(&pd_chan->chan), "scanned %d descriptors\n", i); 477 478 if (!ret) { 479 ret = pdc_alloc_desc(&pd_chan->chan, GFP_NOIO); 480 if (ret) { 481 spin_lock(&pd_chan->lock); 482 pd_chan->descs_allocated++; 483 spin_unlock(&pd_chan->lock); 484 } else { 485 dev_err(chan2dev(&pd_chan->chan), 486 "failed to alloc desc\n"); 487 } 488 } 489 490 return ret; 491 } 492 493 static void pdc_desc_put(struct pch_dma_chan *pd_chan, 494 struct pch_dma_desc *desc) 495 { 496 if (desc) { 497 spin_lock(&pd_chan->lock); 498 list_splice_init(&desc->tx_list, &pd_chan->free_list); 499 list_add(&desc->desc_node, &pd_chan->free_list); 500 spin_unlock(&pd_chan->lock); 501 } 502 } 503 504 static int pd_alloc_chan_resources(struct dma_chan *chan) 505 { 506 struct pch_dma_chan *pd_chan = to_pd_chan(chan); 507 struct pch_dma_desc *desc; 508 LIST_HEAD(tmp_list); 509 int i; 510 511 if (!pdc_is_idle(pd_chan)) { 512 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n"); 513 return -EIO; 514 } 515 516 if (!list_empty(&pd_chan->free_list)) 517 return pd_chan->descs_allocated; 518 519 for (i = 0; i < init_nr_desc_per_channel; i++) { 520 desc = pdc_alloc_desc(chan, GFP_KERNEL); 521 522 if (!desc) { 523 dev_warn(chan2dev(chan), 524 "Only allocated %d initial descriptors\n", i); 525 break; 526 } 527 528 list_add_tail(&desc->desc_node, &tmp_list); 529 } 530 531 spin_lock_irq(&pd_chan->lock); 532 list_splice(&tmp_list, &pd_chan->free_list); 533 pd_chan->descs_allocated = i; 534 dma_cookie_init(chan); 535 spin_unlock_irq(&pd_chan->lock); 536 537 pdc_enable_irq(chan, 1); 538 539 return pd_chan->descs_allocated; 540 } 541 542 static void pd_free_chan_resources(struct dma_chan *chan) 543 { 544 struct pch_dma_chan *pd_chan = to_pd_chan(chan); 545 struct pch_dma *pd = to_pd(chan->device); 546 struct pch_dma_desc *desc, *_d; 547 LIST_HEAD(tmp_list); 548 549 BUG_ON(!pdc_is_idle(pd_chan)); 550 BUG_ON(!list_empty(&pd_chan->active_list)); 551 BUG_ON(!list_empty(&pd_chan->queue)); 552 553 spin_lock_irq(&pd_chan->lock); 554 list_splice_init(&pd_chan->free_list, &tmp_list); 555 pd_chan->descs_allocated = 0; 556 spin_unlock_irq(&pd_chan->lock); 557 558 list_for_each_entry_safe(desc, _d, &tmp_list, desc_node) 559 pci_pool_free(pd->pool, desc, desc->txd.phys); 560 561 pdc_enable_irq(chan, 0); 562 } 563 564 static enum dma_status pd_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 565 struct dma_tx_state *txstate) 566 { 567 struct pch_dma_chan *pd_chan = to_pd_chan(chan); 568 enum dma_status ret; 569 570 spin_lock_irq(&pd_chan->lock); 571 ret = dma_cookie_status(chan, cookie, txstate); 572 spin_unlock_irq(&pd_chan->lock); 573 574 return ret; 575 } 576 577 static void pd_issue_pending(struct dma_chan *chan) 578 { 579 struct pch_dma_chan *pd_chan = to_pd_chan(chan); 580 581 if (pdc_is_idle(pd_chan)) { 582 spin_lock(&pd_chan->lock); 583 pdc_advance_work(pd_chan); 584 spin_unlock(&pd_chan->lock); 585 } 586 } 587 588 static struct dma_async_tx_descriptor *pd_prep_slave_sg(struct dma_chan *chan, 589 struct scatterlist *sgl, unsigned int sg_len, 590 enum dma_transfer_direction direction, unsigned long flags, 591 void *context) 592 { 593 struct pch_dma_chan *pd_chan = to_pd_chan(chan); 594 struct pch_dma_slave *pd_slave = chan->private; 595 struct pch_dma_desc *first = NULL; 596 struct pch_dma_desc *prev = NULL; 597 struct pch_dma_desc *desc = NULL; 598 struct scatterlist *sg; 599 dma_addr_t reg; 600 int i; 601 602 if (unlikely(!sg_len)) { 603 dev_info(chan2dev(chan), "prep_slave_sg: length is zero!\n"); 604 return NULL; 605 } 606 607 if (direction == DMA_DEV_TO_MEM) 608 reg = pd_slave->rx_reg; 609 else if (direction == DMA_MEM_TO_DEV) 610 reg = pd_slave->tx_reg; 611 else 612 return NULL; 613 614 pd_chan->dir = direction; 615 pdc_set_dir(chan); 616 617 for_each_sg(sgl, sg, sg_len, i) { 618 desc = pdc_desc_get(pd_chan); 619 620 if (!desc) 621 goto err_desc_get; 622 623 desc->regs.dev_addr = reg; 624 desc->regs.mem_addr = sg_dma_address(sg); 625 desc->regs.size = sg_dma_len(sg); 626 desc->regs.next = DMA_DESC_FOLLOW_WITHOUT_IRQ; 627 628 switch (pd_slave->width) { 629 case PCH_DMA_WIDTH_1_BYTE: 630 if (desc->regs.size > DMA_DESC_MAX_COUNT_1_BYTE) 631 goto err_desc_get; 632 desc->regs.size |= DMA_DESC_WIDTH_1_BYTE; 633 break; 634 case PCH_DMA_WIDTH_2_BYTES: 635 if (desc->regs.size > DMA_DESC_MAX_COUNT_2_BYTES) 636 goto err_desc_get; 637 desc->regs.size |= DMA_DESC_WIDTH_2_BYTES; 638 break; 639 case PCH_DMA_WIDTH_4_BYTES: 640 if (desc->regs.size > DMA_DESC_MAX_COUNT_4_BYTES) 641 goto err_desc_get; 642 desc->regs.size |= DMA_DESC_WIDTH_4_BYTES; 643 break; 644 default: 645 goto err_desc_get; 646 } 647 648 if (!first) { 649 first = desc; 650 } else { 651 prev->regs.next |= desc->txd.phys; 652 list_add_tail(&desc->desc_node, &first->tx_list); 653 } 654 655 prev = desc; 656 } 657 658 if (flags & DMA_PREP_INTERRUPT) 659 desc->regs.next = DMA_DESC_END_WITH_IRQ; 660 else 661 desc->regs.next = DMA_DESC_END_WITHOUT_IRQ; 662 663 first->txd.cookie = -EBUSY; 664 desc->txd.flags = flags; 665 666 return &first->txd; 667 668 err_desc_get: 669 dev_err(chan2dev(chan), "failed to get desc or wrong parameters\n"); 670 pdc_desc_put(pd_chan, first); 671 return NULL; 672 } 673 674 static int pd_device_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, 675 unsigned long arg) 676 { 677 struct pch_dma_chan *pd_chan = to_pd_chan(chan); 678 struct pch_dma_desc *desc, *_d; 679 LIST_HEAD(list); 680 681 if (cmd != DMA_TERMINATE_ALL) 682 return -ENXIO; 683 684 spin_lock_irq(&pd_chan->lock); 685 686 pdc_set_mode(&pd_chan->chan, DMA_CTL0_DISABLE); 687 688 list_splice_init(&pd_chan->active_list, &list); 689 list_splice_init(&pd_chan->queue, &list); 690 691 list_for_each_entry_safe(desc, _d, &list, desc_node) 692 pdc_chain_complete(pd_chan, desc); 693 694 spin_unlock_irq(&pd_chan->lock); 695 696 return 0; 697 } 698 699 static void pdc_tasklet(unsigned long data) 700 { 701 struct pch_dma_chan *pd_chan = (struct pch_dma_chan *)data; 702 unsigned long flags; 703 704 if (!pdc_is_idle(pd_chan)) { 705 dev_err(chan2dev(&pd_chan->chan), 706 "BUG: handle non-idle channel in tasklet\n"); 707 return; 708 } 709 710 spin_lock_irqsave(&pd_chan->lock, flags); 711 if (test_and_clear_bit(0, &pd_chan->err_status)) 712 pdc_handle_error(pd_chan); 713 else 714 pdc_advance_work(pd_chan); 715 spin_unlock_irqrestore(&pd_chan->lock, flags); 716 } 717 718 static irqreturn_t pd_irq(int irq, void *devid) 719 { 720 struct pch_dma *pd = (struct pch_dma *)devid; 721 struct pch_dma_chan *pd_chan; 722 u32 sts0; 723 u32 sts2; 724 int i; 725 int ret0 = IRQ_NONE; 726 int ret2 = IRQ_NONE; 727 728 sts0 = dma_readl(pd, STS0); 729 sts2 = dma_readl(pd, STS2); 730 731 dev_dbg(pd->dma.dev, "pd_irq sts0: %x\n", sts0); 732 733 for (i = 0; i < pd->dma.chancnt; i++) { 734 pd_chan = &pd->channels[i]; 735 736 if (i < 8) { 737 if (sts0 & DMA_STATUS_IRQ(i)) { 738 if (sts0 & DMA_STATUS0_ERR(i)) 739 set_bit(0, &pd_chan->err_status); 740 741 tasklet_schedule(&pd_chan->tasklet); 742 ret0 = IRQ_HANDLED; 743 } 744 } else { 745 if (sts2 & DMA_STATUS_IRQ(i - 8)) { 746 if (sts2 & DMA_STATUS2_ERR(i)) 747 set_bit(0, &pd_chan->err_status); 748 749 tasklet_schedule(&pd_chan->tasklet); 750 ret2 = IRQ_HANDLED; 751 } 752 } 753 } 754 755 /* clear interrupt bits in status register */ 756 if (ret0) 757 dma_writel(pd, STS0, sts0); 758 if (ret2) 759 dma_writel(pd, STS2, sts2); 760 761 return ret0 | ret2; 762 } 763 764 #ifdef CONFIG_PM 765 static void pch_dma_save_regs(struct pch_dma *pd) 766 { 767 struct pch_dma_chan *pd_chan; 768 struct dma_chan *chan, *_c; 769 int i = 0; 770 771 pd->regs.dma_ctl0 = dma_readl(pd, CTL0); 772 pd->regs.dma_ctl1 = dma_readl(pd, CTL1); 773 pd->regs.dma_ctl2 = dma_readl(pd, CTL2); 774 pd->regs.dma_ctl3 = dma_readl(pd, CTL3); 775 776 list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) { 777 pd_chan = to_pd_chan(chan); 778 779 pd->ch_regs[i].dev_addr = channel_readl(pd_chan, DEV_ADDR); 780 pd->ch_regs[i].mem_addr = channel_readl(pd_chan, MEM_ADDR); 781 pd->ch_regs[i].size = channel_readl(pd_chan, SIZE); 782 pd->ch_regs[i].next = channel_readl(pd_chan, NEXT); 783 784 i++; 785 } 786 } 787 788 static void pch_dma_restore_regs(struct pch_dma *pd) 789 { 790 struct pch_dma_chan *pd_chan; 791 struct dma_chan *chan, *_c; 792 int i = 0; 793 794 dma_writel(pd, CTL0, pd->regs.dma_ctl0); 795 dma_writel(pd, CTL1, pd->regs.dma_ctl1); 796 dma_writel(pd, CTL2, pd->regs.dma_ctl2); 797 dma_writel(pd, CTL3, pd->regs.dma_ctl3); 798 799 list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) { 800 pd_chan = to_pd_chan(chan); 801 802 channel_writel(pd_chan, DEV_ADDR, pd->ch_regs[i].dev_addr); 803 channel_writel(pd_chan, MEM_ADDR, pd->ch_regs[i].mem_addr); 804 channel_writel(pd_chan, SIZE, pd->ch_regs[i].size); 805 channel_writel(pd_chan, NEXT, pd->ch_regs[i].next); 806 807 i++; 808 } 809 } 810 811 static int pch_dma_suspend(struct pci_dev *pdev, pm_message_t state) 812 { 813 struct pch_dma *pd = pci_get_drvdata(pdev); 814 815 if (pd) 816 pch_dma_save_regs(pd); 817 818 pci_save_state(pdev); 819 pci_disable_device(pdev); 820 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 821 822 return 0; 823 } 824 825 static int pch_dma_resume(struct pci_dev *pdev) 826 { 827 struct pch_dma *pd = pci_get_drvdata(pdev); 828 int err; 829 830 pci_set_power_state(pdev, PCI_D0); 831 pci_restore_state(pdev); 832 833 err = pci_enable_device(pdev); 834 if (err) { 835 dev_dbg(&pdev->dev, "failed to enable device\n"); 836 return err; 837 } 838 839 if (pd) 840 pch_dma_restore_regs(pd); 841 842 return 0; 843 } 844 #endif 845 846 static int __devinit pch_dma_probe(struct pci_dev *pdev, 847 const struct pci_device_id *id) 848 { 849 struct pch_dma *pd; 850 struct pch_dma_regs *regs; 851 unsigned int nr_channels; 852 int err; 853 int i; 854 855 nr_channels = id->driver_data; 856 pd = kzalloc(sizeof(*pd), GFP_KERNEL); 857 if (!pd) 858 return -ENOMEM; 859 860 pci_set_drvdata(pdev, pd); 861 862 err = pci_enable_device(pdev); 863 if (err) { 864 dev_err(&pdev->dev, "Cannot enable PCI device\n"); 865 goto err_free_mem; 866 } 867 868 if (!(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { 869 dev_err(&pdev->dev, "Cannot find proper base address\n"); 870 goto err_disable_pdev; 871 } 872 873 err = pci_request_regions(pdev, DRV_NAME); 874 if (err) { 875 dev_err(&pdev->dev, "Cannot obtain PCI resources\n"); 876 goto err_disable_pdev; 877 } 878 879 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 880 if (err) { 881 dev_err(&pdev->dev, "Cannot set proper DMA config\n"); 882 goto err_free_res; 883 } 884 885 regs = pd->membase = pci_iomap(pdev, 1, 0); 886 if (!pd->membase) { 887 dev_err(&pdev->dev, "Cannot map MMIO registers\n"); 888 err = -ENOMEM; 889 goto err_free_res; 890 } 891 892 pci_set_master(pdev); 893 894 err = request_irq(pdev->irq, pd_irq, IRQF_SHARED, DRV_NAME, pd); 895 if (err) { 896 dev_err(&pdev->dev, "Failed to request IRQ\n"); 897 goto err_iounmap; 898 } 899 900 pd->pool = pci_pool_create("pch_dma_desc_pool", pdev, 901 sizeof(struct pch_dma_desc), 4, 0); 902 if (!pd->pool) { 903 dev_err(&pdev->dev, "Failed to alloc DMA descriptors\n"); 904 err = -ENOMEM; 905 goto err_free_irq; 906 } 907 908 pd->dma.dev = &pdev->dev; 909 910 INIT_LIST_HEAD(&pd->dma.channels); 911 912 for (i = 0; i < nr_channels; i++) { 913 struct pch_dma_chan *pd_chan = &pd->channels[i]; 914 915 pd_chan->chan.device = &pd->dma; 916 dma_cookie_init(&pd_chan->chan); 917 918 pd_chan->membase = ®s->desc[i]; 919 920 spin_lock_init(&pd_chan->lock); 921 922 INIT_LIST_HEAD(&pd_chan->active_list); 923 INIT_LIST_HEAD(&pd_chan->queue); 924 INIT_LIST_HEAD(&pd_chan->free_list); 925 926 tasklet_init(&pd_chan->tasklet, pdc_tasklet, 927 (unsigned long)pd_chan); 928 list_add_tail(&pd_chan->chan.device_node, &pd->dma.channels); 929 } 930 931 dma_cap_zero(pd->dma.cap_mask); 932 dma_cap_set(DMA_PRIVATE, pd->dma.cap_mask); 933 dma_cap_set(DMA_SLAVE, pd->dma.cap_mask); 934 935 pd->dma.device_alloc_chan_resources = pd_alloc_chan_resources; 936 pd->dma.device_free_chan_resources = pd_free_chan_resources; 937 pd->dma.device_tx_status = pd_tx_status; 938 pd->dma.device_issue_pending = pd_issue_pending; 939 pd->dma.device_prep_slave_sg = pd_prep_slave_sg; 940 pd->dma.device_control = pd_device_control; 941 942 err = dma_async_device_register(&pd->dma); 943 if (err) { 944 dev_err(&pdev->dev, "Failed to register DMA device\n"); 945 goto err_free_pool; 946 } 947 948 return 0; 949 950 err_free_pool: 951 pci_pool_destroy(pd->pool); 952 err_free_irq: 953 free_irq(pdev->irq, pd); 954 err_iounmap: 955 pci_iounmap(pdev, pd->membase); 956 err_free_res: 957 pci_release_regions(pdev); 958 err_disable_pdev: 959 pci_disable_device(pdev); 960 err_free_mem: 961 return err; 962 } 963 964 static void __devexit pch_dma_remove(struct pci_dev *pdev) 965 { 966 struct pch_dma *pd = pci_get_drvdata(pdev); 967 struct pch_dma_chan *pd_chan; 968 struct dma_chan *chan, *_c; 969 970 if (pd) { 971 dma_async_device_unregister(&pd->dma); 972 973 list_for_each_entry_safe(chan, _c, &pd->dma.channels, 974 device_node) { 975 pd_chan = to_pd_chan(chan); 976 977 tasklet_disable(&pd_chan->tasklet); 978 tasklet_kill(&pd_chan->tasklet); 979 } 980 981 pci_pool_destroy(pd->pool); 982 free_irq(pdev->irq, pd); 983 pci_iounmap(pdev, pd->membase); 984 pci_release_regions(pdev); 985 pci_disable_device(pdev); 986 kfree(pd); 987 } 988 } 989 990 /* PCI Device ID of DMA device */ 991 #define PCI_VENDOR_ID_ROHM 0x10DB 992 #define PCI_DEVICE_ID_EG20T_PCH_DMA_8CH 0x8810 993 #define PCI_DEVICE_ID_EG20T_PCH_DMA_4CH 0x8815 994 #define PCI_DEVICE_ID_ML7213_DMA1_8CH 0x8026 995 #define PCI_DEVICE_ID_ML7213_DMA2_8CH 0x802B 996 #define PCI_DEVICE_ID_ML7213_DMA3_4CH 0x8034 997 #define PCI_DEVICE_ID_ML7213_DMA4_12CH 0x8032 998 #define PCI_DEVICE_ID_ML7223_DMA1_4CH 0x800B 999 #define PCI_DEVICE_ID_ML7223_DMA2_4CH 0x800E 1000 #define PCI_DEVICE_ID_ML7223_DMA3_4CH 0x8017 1001 #define PCI_DEVICE_ID_ML7223_DMA4_4CH 0x803B 1002 #define PCI_DEVICE_ID_ML7831_DMA1_8CH 0x8810 1003 #define PCI_DEVICE_ID_ML7831_DMA2_4CH 0x8815 1004 1005 DEFINE_PCI_DEVICE_TABLE(pch_dma_id_table) = { 1006 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_EG20T_PCH_DMA_8CH), 8 }, 1007 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_EG20T_PCH_DMA_4CH), 4 }, 1008 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA1_8CH), 8}, /* UART Video */ 1009 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA2_8CH), 8}, /* PCMIF SPI */ 1010 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA3_4CH), 4}, /* FPGA */ 1011 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA4_12CH), 12}, /* I2S */ 1012 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA1_4CH), 4}, /* UART */ 1013 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA2_4CH), 4}, /* Video SPI */ 1014 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA3_4CH), 4}, /* Security */ 1015 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA4_4CH), 4}, /* FPGA */ 1016 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_DMA1_8CH), 8}, /* UART */ 1017 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_DMA2_4CH), 4}, /* SPI */ 1018 { 0, }, 1019 }; 1020 1021 static struct pci_driver pch_dma_driver = { 1022 .name = DRV_NAME, 1023 .id_table = pch_dma_id_table, 1024 .probe = pch_dma_probe, 1025 .remove = __devexit_p(pch_dma_remove), 1026 #ifdef CONFIG_PM 1027 .suspend = pch_dma_suspend, 1028 .resume = pch_dma_resume, 1029 #endif 1030 }; 1031 1032 static int __init pch_dma_init(void) 1033 { 1034 return pci_register_driver(&pch_dma_driver); 1035 } 1036 1037 static void __exit pch_dma_exit(void) 1038 { 1039 pci_unregister_driver(&pch_dma_driver); 1040 } 1041 1042 module_init(pch_dma_init); 1043 module_exit(pch_dma_exit); 1044 1045 MODULE_DESCRIPTION("Intel EG20T PCH / LAPIS Semicon ML7213/ML7223/ML7831 IOH " 1046 "DMA controller driver"); 1047 MODULE_AUTHOR("Yong Wang <yong.y.wang@intel.com>"); 1048 MODULE_LICENSE("GPL v2"); 1049