xref: /openbmc/linux/drivers/dma/nbpfaxi.c (revision f3a8b664)
1 /*
2  * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
3  * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  */
9 
10 #include <linux/bitmap.h>
11 #include <linux/bitops.h>
12 #include <linux/clk.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/log2.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_dma.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25 
26 #include <dt-bindings/dma/nbpfaxi.h>
27 
28 #include "dmaengine.h"
29 
30 #define NBPF_REG_CHAN_OFFSET	0
31 #define NBPF_REG_CHAN_SIZE	0x40
32 
33 /* Channel Current Transaction Byte register */
34 #define NBPF_CHAN_CUR_TR_BYTE	0x20
35 
36 /* Channel Status register */
37 #define NBPF_CHAN_STAT	0x24
38 #define NBPF_CHAN_STAT_EN	1
39 #define NBPF_CHAN_STAT_TACT	4
40 #define NBPF_CHAN_STAT_ERR	0x10
41 #define NBPF_CHAN_STAT_END	0x20
42 #define NBPF_CHAN_STAT_TC	0x40
43 #define NBPF_CHAN_STAT_DER	0x400
44 
45 /* Channel Control register */
46 #define NBPF_CHAN_CTRL	0x28
47 #define NBPF_CHAN_CTRL_SETEN	1
48 #define NBPF_CHAN_CTRL_CLREN	2
49 #define NBPF_CHAN_CTRL_STG	4
50 #define NBPF_CHAN_CTRL_SWRST	8
51 #define NBPF_CHAN_CTRL_CLRRQ	0x10
52 #define NBPF_CHAN_CTRL_CLREND	0x20
53 #define NBPF_CHAN_CTRL_CLRTC	0x40
54 #define NBPF_CHAN_CTRL_SETSUS	0x100
55 #define NBPF_CHAN_CTRL_CLRSUS	0x200
56 
57 /* Channel Configuration register */
58 #define NBPF_CHAN_CFG	0x2c
59 #define NBPF_CHAN_CFG_SEL	7		/* terminal SELect: 0..7 */
60 #define NBPF_CHAN_CFG_REQD	8		/* REQuest Direction: DMAREQ is 0: input, 1: output */
61 #define NBPF_CHAN_CFG_LOEN	0x10		/* LOw ENable: low DMA request line is: 0: inactive, 1: active */
62 #define NBPF_CHAN_CFG_HIEN	0x20		/* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
63 #define NBPF_CHAN_CFG_LVL	0x40		/* LeVeL: DMA request line is sensed as 0: edge, 1: level */
64 #define NBPF_CHAN_CFG_AM	0x700		/* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
65 #define NBPF_CHAN_CFG_SDS	0xf000		/* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
66 #define NBPF_CHAN_CFG_DDS	0xf0000		/* Destination Data Size: as above */
67 #define NBPF_CHAN_CFG_SAD	0x100000	/* Source ADdress counting: 0: increment, 1: fixed */
68 #define NBPF_CHAN_CFG_DAD	0x200000	/* Destination ADdress counting: 0: increment, 1: fixed */
69 #define NBPF_CHAN_CFG_TM	0x400000	/* Transfer Mode: 0: single, 1: block TM */
70 #define NBPF_CHAN_CFG_DEM	0x1000000	/* DMAEND interrupt Mask */
71 #define NBPF_CHAN_CFG_TCM	0x2000000	/* DMATCO interrupt Mask */
72 #define NBPF_CHAN_CFG_SBE	0x8000000	/* Sweep Buffer Enable */
73 #define NBPF_CHAN_CFG_RSEL	0x10000000	/* RM: Register Set sELect */
74 #define NBPF_CHAN_CFG_RSW	0x20000000	/* RM: Register Select sWitch */
75 #define NBPF_CHAN_CFG_REN	0x40000000	/* RM: Register Set Enable */
76 #define NBPF_CHAN_CFG_DMS	0x80000000	/* 0: register mode (RM), 1: link mode (LM) */
77 
78 #define NBPF_CHAN_NXLA	0x38
79 #define NBPF_CHAN_CRLA	0x3c
80 
81 /* Link Header field */
82 #define NBPF_HEADER_LV	1
83 #define NBPF_HEADER_LE	2
84 #define NBPF_HEADER_WBD	4
85 #define NBPF_HEADER_DIM	8
86 
87 #define NBPF_CTRL	0x300
88 #define NBPF_CTRL_PR	1		/* 0: fixed priority, 1: round robin */
89 #define NBPF_CTRL_LVINT	2		/* DMAEND and DMAERR signalling: 0: pulse, 1: level */
90 
91 #define NBPF_DSTAT_ER	0x314
92 #define NBPF_DSTAT_END	0x318
93 
94 #define NBPF_DMA_BUSWIDTHS \
95 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
96 	 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
97 	 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
98 	 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
99 	 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
100 
101 struct nbpf_config {
102 	int num_channels;
103 	int buffer_size;
104 };
105 
106 /*
107  * We've got 3 types of objects, used to describe DMA transfers:
108  * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
109  *	in it, used to communicate with the user
110  * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
111  *	queuing, these must be DMAable, using either the streaming DMA API or
112  *	allocated from coherent memory - one per SG segment
113  * 3. one per SG segment descriptors, used to manage HW link descriptors from
114  *	(2). They do not have to be DMAable. They can either be (a) allocated
115  *	together with link descriptors as mixed (DMA / CPU) objects, or (b)
116  *	separately. Even if allocated separately it would be best to link them
117  *	to link descriptors once during channel resource allocation and always
118  *	use them as a single object.
119  * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
120  * treated as a single SG segment descriptor.
121  */
122 
123 struct nbpf_link_reg {
124 	u32	header;
125 	u32	src_addr;
126 	u32	dst_addr;
127 	u32	transaction_size;
128 	u32	config;
129 	u32	interval;
130 	u32	extension;
131 	u32	next;
132 } __packed;
133 
134 struct nbpf_device;
135 struct nbpf_channel;
136 struct nbpf_desc;
137 
138 struct nbpf_link_desc {
139 	struct nbpf_link_reg *hwdesc;
140 	dma_addr_t hwdesc_dma_addr;
141 	struct nbpf_desc *desc;
142 	struct list_head node;
143 };
144 
145 /**
146  * struct nbpf_desc - DMA transfer descriptor
147  * @async_tx:	dmaengine object
148  * @user_wait:	waiting for a user ack
149  * @length:	total transfer length
150  * @sg:		list of hardware descriptors, represented by struct nbpf_link_desc
151  * @node:	member in channel descriptor lists
152  */
153 struct nbpf_desc {
154 	struct dma_async_tx_descriptor async_tx;
155 	bool user_wait;
156 	size_t length;
157 	struct nbpf_channel *chan;
158 	struct list_head sg;
159 	struct list_head node;
160 };
161 
162 /* Take a wild guess: allocate 4 segments per descriptor */
163 #define NBPF_SEGMENTS_PER_DESC 4
164 #define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) /	\
165 	(sizeof(struct nbpf_desc) +					\
166 	 NBPF_SEGMENTS_PER_DESC *					\
167 	 (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
168 #define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
169 
170 struct nbpf_desc_page {
171 	struct list_head node;
172 	struct nbpf_desc desc[NBPF_DESCS_PER_PAGE];
173 	struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE];
174 	struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE];
175 };
176 
177 /**
178  * struct nbpf_channel - one DMAC channel
179  * @dma_chan:	standard dmaengine channel object
180  * @base:	register address base
181  * @nbpf:	DMAC
182  * @name:	IRQ name
183  * @irq:	IRQ number
184  * @slave_addr:	address for slave DMA
185  * @slave_width:slave data size in bytes
186  * @slave_burst:maximum slave burst size in bytes
187  * @terminal:	DMA terminal, assigned to this channel
188  * @dmarq_cfg:	DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
189  * @flags:	configuration flags from DT
190  * @lock:	protect descriptor lists
191  * @free_links:	list of free link descriptors
192  * @free:	list of free descriptors
193  * @queued:	list of queued descriptors
194  * @active:	list of descriptors, scheduled for processing
195  * @done:	list of completed descriptors, waiting post-processing
196  * @desc_page:	list of additionally allocated descriptor pages - if any
197  */
198 struct nbpf_channel {
199 	struct dma_chan dma_chan;
200 	struct tasklet_struct tasklet;
201 	void __iomem *base;
202 	struct nbpf_device *nbpf;
203 	char name[16];
204 	int irq;
205 	dma_addr_t slave_src_addr;
206 	size_t slave_src_width;
207 	size_t slave_src_burst;
208 	dma_addr_t slave_dst_addr;
209 	size_t slave_dst_width;
210 	size_t slave_dst_burst;
211 	unsigned int terminal;
212 	u32 dmarq_cfg;
213 	unsigned long flags;
214 	spinlock_t lock;
215 	struct list_head free_links;
216 	struct list_head free;
217 	struct list_head queued;
218 	struct list_head active;
219 	struct list_head done;
220 	struct list_head desc_page;
221 	struct nbpf_desc *running;
222 	bool paused;
223 };
224 
225 struct nbpf_device {
226 	struct dma_device dma_dev;
227 	void __iomem *base;
228 	struct clk *clk;
229 	const struct nbpf_config *config;
230 	unsigned int eirq;
231 	struct nbpf_channel chan[];
232 };
233 
234 enum nbpf_model {
235 	NBPF1B4,
236 	NBPF1B8,
237 	NBPF1B16,
238 	NBPF4B4,
239 	NBPF4B8,
240 	NBPF4B16,
241 	NBPF8B4,
242 	NBPF8B8,
243 	NBPF8B16,
244 };
245 
246 static struct nbpf_config nbpf_cfg[] = {
247 	[NBPF1B4] = {
248 		.num_channels = 1,
249 		.buffer_size = 4,
250 	},
251 	[NBPF1B8] = {
252 		.num_channels = 1,
253 		.buffer_size = 8,
254 	},
255 	[NBPF1B16] = {
256 		.num_channels = 1,
257 		.buffer_size = 16,
258 	},
259 	[NBPF4B4] = {
260 		.num_channels = 4,
261 		.buffer_size = 4,
262 	},
263 	[NBPF4B8] = {
264 		.num_channels = 4,
265 		.buffer_size = 8,
266 	},
267 	[NBPF4B16] = {
268 		.num_channels = 4,
269 		.buffer_size = 16,
270 	},
271 	[NBPF8B4] = {
272 		.num_channels = 8,
273 		.buffer_size = 4,
274 	},
275 	[NBPF8B8] = {
276 		.num_channels = 8,
277 		.buffer_size = 8,
278 	},
279 	[NBPF8B16] = {
280 		.num_channels = 8,
281 		.buffer_size = 16,
282 	},
283 };
284 
285 #define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
286 
287 /*
288  * dmaengine drivers seem to have a lot in common and instead of sharing more
289  * code, they reimplement those common algorithms independently. In this driver
290  * we try to separate the hardware-specific part from the (largely) generic
291  * part. This improves code readability and makes it possible in the future to
292  * reuse the generic code in form of a helper library. That generic code should
293  * be suitable for various DMA controllers, using transfer descriptors in RAM
294  * and pushing one SG list at a time to the DMA controller.
295  */
296 
297 /*		Hardware-specific part		*/
298 
299 static inline u32 nbpf_chan_read(struct nbpf_channel *chan,
300 				 unsigned int offset)
301 {
302 	u32 data = ioread32(chan->base + offset);
303 	dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
304 		__func__, chan->base, offset, data);
305 	return data;
306 }
307 
308 static inline void nbpf_chan_write(struct nbpf_channel *chan,
309 				   unsigned int offset, u32 data)
310 {
311 	iowrite32(data, chan->base + offset);
312 	dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
313 		__func__, chan->base, offset, data);
314 }
315 
316 static inline u32 nbpf_read(struct nbpf_device *nbpf,
317 			    unsigned int offset)
318 {
319 	u32 data = ioread32(nbpf->base + offset);
320 	dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
321 		__func__, nbpf->base, offset, data);
322 	return data;
323 }
324 
325 static inline void nbpf_write(struct nbpf_device *nbpf,
326 			      unsigned int offset, u32 data)
327 {
328 	iowrite32(data, nbpf->base + offset);
329 	dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
330 		__func__, nbpf->base, offset, data);
331 }
332 
333 static void nbpf_chan_halt(struct nbpf_channel *chan)
334 {
335 	nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
336 }
337 
338 static bool nbpf_status_get(struct nbpf_channel *chan)
339 {
340 	u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END);
341 
342 	return status & BIT(chan - chan->nbpf->chan);
343 }
344 
345 static void nbpf_status_ack(struct nbpf_channel *chan)
346 {
347 	nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND);
348 }
349 
350 static u32 nbpf_error_get(struct nbpf_device *nbpf)
351 {
352 	return nbpf_read(nbpf, NBPF_DSTAT_ER);
353 }
354 
355 static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error)
356 {
357 	return nbpf->chan + __ffs(error);
358 }
359 
360 static void nbpf_error_clear(struct nbpf_channel *chan)
361 {
362 	u32 status;
363 	int i;
364 
365 	/* Stop the channel, make sure DMA has been aborted */
366 	nbpf_chan_halt(chan);
367 
368 	for (i = 1000; i; i--) {
369 		status = nbpf_chan_read(chan, NBPF_CHAN_STAT);
370 		if (!(status & NBPF_CHAN_STAT_TACT))
371 			break;
372 		cpu_relax();
373 	}
374 
375 	if (!i)
376 		dev_err(chan->dma_chan.device->dev,
377 			"%s(): abort timeout, channel status 0x%x\n", __func__, status);
378 
379 	nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST);
380 }
381 
382 static int nbpf_start(struct nbpf_desc *desc)
383 {
384 	struct nbpf_channel *chan = desc->chan;
385 	struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node);
386 
387 	nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr);
388 	nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS);
389 	chan->paused = false;
390 
391 	/* Software trigger MEMCPY - only MEMCPY uses the block mode */
392 	if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM)
393 		nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG);
394 
395 	dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__,
396 		nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA));
397 
398 	return 0;
399 }
400 
401 static void nbpf_chan_prepare(struct nbpf_channel *chan)
402 {
403 	chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) |
404 		(chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) |
405 		(chan->flags & NBPF_SLAVE_RQ_LEVEL ?
406 		 NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) |
407 		chan->terminal;
408 }
409 
410 static void nbpf_chan_prepare_default(struct nbpf_channel *chan)
411 {
412 	/* Don't output DMAACK */
413 	chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400;
414 	chan->terminal = 0;
415 	chan->flags = 0;
416 }
417 
418 static void nbpf_chan_configure(struct nbpf_channel *chan)
419 {
420 	/*
421 	 * We assume, that only the link mode and DMA request line configuration
422 	 * have to be set in the configuration register manually. Dynamic
423 	 * per-transfer configuration will be loaded from transfer descriptors.
424 	 */
425 	nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg);
426 }
427 
428 static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size)
429 {
430 	/* Maximum supported bursts depend on the buffer size */
431 	return min_t(int, __ffs(size), ilog2(nbpf->config->buffer_size * 8));
432 }
433 
434 static size_t nbpf_xfer_size(struct nbpf_device *nbpf,
435 			     enum dma_slave_buswidth width, u32 burst)
436 {
437 	size_t size;
438 
439 	if (!burst)
440 		burst = 1;
441 
442 	switch (width) {
443 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
444 		size = 8 * burst;
445 		break;
446 
447 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
448 		size = 4 * burst;
449 		break;
450 
451 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
452 		size = 2 * burst;
453 		break;
454 
455 	default:
456 		pr_warn("%s(): invalid bus width %u\n", __func__, width);
457 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
458 		size = burst;
459 	}
460 
461 	return nbpf_xfer_ds(nbpf, size);
462 }
463 
464 /*
465  * We need a way to recognise slaves, whose data is sent "raw" over the bus,
466  * i.e. it isn't known in advance how many bytes will be received. Therefore
467  * the slave driver has to provide a "large enough" buffer and either read the
468  * buffer, when it is full, or detect, that some data has arrived, then wait for
469  * a timeout, if no more data arrives - receive what's already there. We want to
470  * handle such slaves in a special way to allow an optimised mode for other
471  * users, for whom the amount of data is known in advance. So far there's no way
472  * to recognise such slaves. We use a data-width check to distinguish between
473  * the SD host and the PL011 UART.
474  */
475 
476 static int nbpf_prep_one(struct nbpf_link_desc *ldesc,
477 			 enum dma_transfer_direction direction,
478 			 dma_addr_t src, dma_addr_t dst, size_t size, bool last)
479 {
480 	struct nbpf_link_reg *hwdesc = ldesc->hwdesc;
481 	struct nbpf_desc *desc = ldesc->desc;
482 	struct nbpf_channel *chan = desc->chan;
483 	struct device *dev = chan->dma_chan.device->dev;
484 	size_t mem_xfer, slave_xfer;
485 	bool can_burst;
486 
487 	hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV |
488 		(last ? NBPF_HEADER_LE : 0);
489 
490 	hwdesc->src_addr = src;
491 	hwdesc->dst_addr = dst;
492 	hwdesc->transaction_size = size;
493 
494 	/*
495 	 * set config: SAD, DAD, DDS, SDS, etc.
496 	 * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
497 	 * but it is important to have transaction size a multiple of both
498 	 * receiver and transmitter transfer sizes. It is also possible to use
499 	 * different RAM and device transfer sizes, and it does work well with
500 	 * some devices, e.g. with V08R07S01E SD host controllers, which can use
501 	 * 128 byte transfers. But this doesn't work with other devices,
502 	 * especially when the transaction size is unknown. This is the case,
503 	 * e.g. with serial drivers like amba-pl011.c. For reception it sets up
504 	 * the transaction size of 4K and if fewer bytes are received, it
505 	 * pauses DMA and reads out data received via DMA as well as those left
506 	 * in the Rx FIFO. For this to work with the RAM side using burst
507 	 * transfers we enable the SBE bit and terminate the transfer in our
508 	 * .device_pause handler.
509 	 */
510 	mem_xfer = nbpf_xfer_ds(chan->nbpf, size);
511 
512 	switch (direction) {
513 	case DMA_DEV_TO_MEM:
514 		can_burst = chan->slave_src_width >= 3;
515 		slave_xfer = min(mem_xfer, can_burst ?
516 				 chan->slave_src_burst : chan->slave_src_width);
517 		/*
518 		 * Is the slave narrower than 64 bits, i.e. isn't using the full
519 		 * bus width and cannot use bursts?
520 		 */
521 		if (mem_xfer > chan->slave_src_burst && !can_burst)
522 			mem_xfer = chan->slave_src_burst;
523 		/* Device-to-RAM DMA is unreliable without REQD set */
524 		hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) |
525 			(NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD |
526 			NBPF_CHAN_CFG_SBE;
527 		break;
528 
529 	case DMA_MEM_TO_DEV:
530 		slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ?
531 				 chan->slave_dst_burst : chan->slave_dst_width);
532 		hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
533 			(NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD;
534 		break;
535 
536 	case DMA_MEM_TO_MEM:
537 		hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM |
538 			(NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
539 			(NBPF_CHAN_CFG_DDS & (mem_xfer << 16));
540 		break;
541 
542 	default:
543 		return -EINVAL;
544 	}
545 
546 	hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) |
547 		NBPF_CHAN_CFG_DMS;
548 
549 	dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
550 		__func__, &ldesc->hwdesc_dma_addr, hwdesc->header,
551 		hwdesc->config, size, &src, &dst);
552 
553 	dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc),
554 				   DMA_TO_DEVICE);
555 
556 	return 0;
557 }
558 
559 static size_t nbpf_bytes_left(struct nbpf_channel *chan)
560 {
561 	return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE);
562 }
563 
564 static void nbpf_configure(struct nbpf_device *nbpf)
565 {
566 	nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT);
567 }
568 
569 /*		Generic part			*/
570 
571 /* DMA ENGINE functions */
572 static void nbpf_issue_pending(struct dma_chan *dchan)
573 {
574 	struct nbpf_channel *chan = nbpf_to_chan(dchan);
575 	unsigned long flags;
576 
577 	dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
578 
579 	spin_lock_irqsave(&chan->lock, flags);
580 	if (list_empty(&chan->queued))
581 		goto unlock;
582 
583 	list_splice_tail_init(&chan->queued, &chan->active);
584 
585 	if (!chan->running) {
586 		struct nbpf_desc *desc = list_first_entry(&chan->active,
587 						struct nbpf_desc, node);
588 		if (!nbpf_start(desc))
589 			chan->running = desc;
590 	}
591 
592 unlock:
593 	spin_unlock_irqrestore(&chan->lock, flags);
594 }
595 
596 static enum dma_status nbpf_tx_status(struct dma_chan *dchan,
597 		dma_cookie_t cookie, struct dma_tx_state *state)
598 {
599 	struct nbpf_channel *chan = nbpf_to_chan(dchan);
600 	enum dma_status status = dma_cookie_status(dchan, cookie, state);
601 
602 	if (state) {
603 		dma_cookie_t running;
604 		unsigned long flags;
605 
606 		spin_lock_irqsave(&chan->lock, flags);
607 		running = chan->running ? chan->running->async_tx.cookie : -EINVAL;
608 
609 		if (cookie == running) {
610 			state->residue = nbpf_bytes_left(chan);
611 			dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__,
612 				state->residue);
613 		} else if (status == DMA_IN_PROGRESS) {
614 			struct nbpf_desc *desc;
615 			bool found = false;
616 
617 			list_for_each_entry(desc, &chan->active, node)
618 				if (desc->async_tx.cookie == cookie) {
619 					found = true;
620 					break;
621 				}
622 
623 			if (!found)
624 				list_for_each_entry(desc, &chan->queued, node)
625 					if (desc->async_tx.cookie == cookie) {
626 						found = true;
627 						break;
628 
629 					}
630 
631 			state->residue = found ? desc->length : 0;
632 		}
633 
634 		spin_unlock_irqrestore(&chan->lock, flags);
635 	}
636 
637 	if (chan->paused)
638 		status = DMA_PAUSED;
639 
640 	return status;
641 }
642 
643 static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx)
644 {
645 	struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx);
646 	struct nbpf_channel *chan = desc->chan;
647 	unsigned long flags;
648 	dma_cookie_t cookie;
649 
650 	spin_lock_irqsave(&chan->lock, flags);
651 	cookie = dma_cookie_assign(tx);
652 	list_add_tail(&desc->node, &chan->queued);
653 	spin_unlock_irqrestore(&chan->lock, flags);
654 
655 	dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie);
656 
657 	return cookie;
658 }
659 
660 static int nbpf_desc_page_alloc(struct nbpf_channel *chan)
661 {
662 	struct dma_chan *dchan = &chan->dma_chan;
663 	struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
664 	struct nbpf_link_desc *ldesc;
665 	struct nbpf_link_reg *hwdesc;
666 	struct nbpf_desc *desc;
667 	LIST_HEAD(head);
668 	LIST_HEAD(lhead);
669 	int i;
670 	struct device *dev = dchan->device->dev;
671 
672 	if (!dpage)
673 		return -ENOMEM;
674 
675 	dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
676 		__func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage));
677 
678 	for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc;
679 	     i < ARRAY_SIZE(dpage->ldesc);
680 	     i++, ldesc++, hwdesc++) {
681 		ldesc->hwdesc = hwdesc;
682 		list_add_tail(&ldesc->node, &lhead);
683 		ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev,
684 					hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE);
685 
686 		dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__,
687 			hwdesc, &ldesc->hwdesc_dma_addr);
688 	}
689 
690 	for (i = 0, desc = dpage->desc;
691 	     i < ARRAY_SIZE(dpage->desc);
692 	     i++, desc++) {
693 		dma_async_tx_descriptor_init(&desc->async_tx, dchan);
694 		desc->async_tx.tx_submit = nbpf_tx_submit;
695 		desc->chan = chan;
696 		INIT_LIST_HEAD(&desc->sg);
697 		list_add_tail(&desc->node, &head);
698 	}
699 
700 	/*
701 	 * This function cannot be called from interrupt context, so, no need to
702 	 * save flags
703 	 */
704 	spin_lock_irq(&chan->lock);
705 	list_splice_tail(&lhead, &chan->free_links);
706 	list_splice_tail(&head, &chan->free);
707 	list_add(&dpage->node, &chan->desc_page);
708 	spin_unlock_irq(&chan->lock);
709 
710 	return ARRAY_SIZE(dpage->desc);
711 }
712 
713 static void nbpf_desc_put(struct nbpf_desc *desc)
714 {
715 	struct nbpf_channel *chan = desc->chan;
716 	struct nbpf_link_desc *ldesc, *tmp;
717 	unsigned long flags;
718 
719 	spin_lock_irqsave(&chan->lock, flags);
720 	list_for_each_entry_safe(ldesc, tmp, &desc->sg, node)
721 		list_move(&ldesc->node, &chan->free_links);
722 
723 	list_add(&desc->node, &chan->free);
724 	spin_unlock_irqrestore(&chan->lock, flags);
725 }
726 
727 static void nbpf_scan_acked(struct nbpf_channel *chan)
728 {
729 	struct nbpf_desc *desc, *tmp;
730 	unsigned long flags;
731 	LIST_HEAD(head);
732 
733 	spin_lock_irqsave(&chan->lock, flags);
734 	list_for_each_entry_safe(desc, tmp, &chan->done, node)
735 		if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) {
736 			list_move(&desc->node, &head);
737 			desc->user_wait = false;
738 		}
739 	spin_unlock_irqrestore(&chan->lock, flags);
740 
741 	list_for_each_entry_safe(desc, tmp, &head, node) {
742 		list_del(&desc->node);
743 		nbpf_desc_put(desc);
744 	}
745 }
746 
747 /*
748  * We have to allocate descriptors with the channel lock dropped. This means,
749  * before we re-acquire the lock buffers can be taken already, so we have to
750  * re-check after re-acquiring the lock and possibly retry, if buffers are gone
751  * again.
752  */
753 static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len)
754 {
755 	struct nbpf_desc *desc = NULL;
756 	struct nbpf_link_desc *ldesc, *prev = NULL;
757 
758 	nbpf_scan_acked(chan);
759 
760 	spin_lock_irq(&chan->lock);
761 
762 	do {
763 		int i = 0, ret;
764 
765 		if (list_empty(&chan->free)) {
766 			/* No more free descriptors */
767 			spin_unlock_irq(&chan->lock);
768 			ret = nbpf_desc_page_alloc(chan);
769 			if (ret < 0)
770 				return NULL;
771 			spin_lock_irq(&chan->lock);
772 			continue;
773 		}
774 		desc = list_first_entry(&chan->free, struct nbpf_desc, node);
775 		list_del(&desc->node);
776 
777 		do {
778 			if (list_empty(&chan->free_links)) {
779 				/* No more free link descriptors */
780 				spin_unlock_irq(&chan->lock);
781 				ret = nbpf_desc_page_alloc(chan);
782 				if (ret < 0) {
783 					nbpf_desc_put(desc);
784 					return NULL;
785 				}
786 				spin_lock_irq(&chan->lock);
787 				continue;
788 			}
789 
790 			ldesc = list_first_entry(&chan->free_links,
791 						 struct nbpf_link_desc, node);
792 			ldesc->desc = desc;
793 			if (prev)
794 				prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr;
795 
796 			prev = ldesc;
797 			list_move_tail(&ldesc->node, &desc->sg);
798 
799 			i++;
800 		} while (i < len);
801 	} while (!desc);
802 
803 	prev->hwdesc->next = 0;
804 
805 	spin_unlock_irq(&chan->lock);
806 
807 	return desc;
808 }
809 
810 static void nbpf_chan_idle(struct nbpf_channel *chan)
811 {
812 	struct nbpf_desc *desc, *tmp;
813 	unsigned long flags;
814 	LIST_HEAD(head);
815 
816 	spin_lock_irqsave(&chan->lock, flags);
817 
818 	list_splice_init(&chan->done, &head);
819 	list_splice_init(&chan->active, &head);
820 	list_splice_init(&chan->queued, &head);
821 
822 	chan->running = NULL;
823 
824 	spin_unlock_irqrestore(&chan->lock, flags);
825 
826 	list_for_each_entry_safe(desc, tmp, &head, node) {
827 		dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n",
828 			__func__, desc, desc->async_tx.cookie);
829 		list_del(&desc->node);
830 		nbpf_desc_put(desc);
831 	}
832 }
833 
834 static int nbpf_pause(struct dma_chan *dchan)
835 {
836 	struct nbpf_channel *chan = nbpf_to_chan(dchan);
837 
838 	dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
839 
840 	chan->paused = true;
841 	nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS);
842 	/* See comment in nbpf_prep_one() */
843 	nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
844 
845 	return 0;
846 }
847 
848 static int nbpf_terminate_all(struct dma_chan *dchan)
849 {
850 	struct nbpf_channel *chan = nbpf_to_chan(dchan);
851 
852 	dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
853 	dev_dbg(dchan->device->dev, "Terminating\n");
854 
855 	nbpf_chan_halt(chan);
856 	nbpf_chan_idle(chan);
857 
858 	return 0;
859 }
860 
861 static int nbpf_config(struct dma_chan *dchan,
862 		       struct dma_slave_config *config)
863 {
864 	struct nbpf_channel *chan = nbpf_to_chan(dchan);
865 
866 	dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
867 
868 	/*
869 	 * We could check config->slave_id to match chan->terminal here,
870 	 * but with DT they would be coming from the same source, so
871 	 * such a check would be superflous
872 	 */
873 
874 	chan->slave_dst_addr = config->dst_addr;
875 	chan->slave_dst_width = nbpf_xfer_size(chan->nbpf,
876 					       config->dst_addr_width, 1);
877 	chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf,
878 					       config->dst_addr_width,
879 					       config->dst_maxburst);
880 	chan->slave_src_addr = config->src_addr;
881 	chan->slave_src_width = nbpf_xfer_size(chan->nbpf,
882 					       config->src_addr_width, 1);
883 	chan->slave_src_burst = nbpf_xfer_size(chan->nbpf,
884 					       config->src_addr_width,
885 					       config->src_maxburst);
886 
887 	return 0;
888 }
889 
890 static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan,
891 		struct scatterlist *src_sg, struct scatterlist *dst_sg,
892 		size_t len, enum dma_transfer_direction direction,
893 		unsigned long flags)
894 {
895 	struct nbpf_link_desc *ldesc;
896 	struct scatterlist *mem_sg;
897 	struct nbpf_desc *desc;
898 	bool inc_src, inc_dst;
899 	size_t data_len = 0;
900 	int i = 0;
901 
902 	switch (direction) {
903 	case DMA_DEV_TO_MEM:
904 		mem_sg = dst_sg;
905 		inc_src = false;
906 		inc_dst = true;
907 		break;
908 
909 	case DMA_MEM_TO_DEV:
910 		mem_sg = src_sg;
911 		inc_src = true;
912 		inc_dst = false;
913 		break;
914 
915 	default:
916 	case DMA_MEM_TO_MEM:
917 		mem_sg = src_sg;
918 		inc_src = true;
919 		inc_dst = true;
920 	}
921 
922 	desc = nbpf_desc_get(chan, len);
923 	if (!desc)
924 		return NULL;
925 
926 	desc->async_tx.flags = flags;
927 	desc->async_tx.cookie = -EBUSY;
928 	desc->user_wait = false;
929 
930 	/*
931 	 * This is a private descriptor list, and we own the descriptor. No need
932 	 * to lock.
933 	 */
934 	list_for_each_entry(ldesc, &desc->sg, node) {
935 		int ret = nbpf_prep_one(ldesc, direction,
936 					sg_dma_address(src_sg),
937 					sg_dma_address(dst_sg),
938 					sg_dma_len(mem_sg),
939 					i == len - 1);
940 		if (ret < 0) {
941 			nbpf_desc_put(desc);
942 			return NULL;
943 		}
944 		data_len += sg_dma_len(mem_sg);
945 		if (inc_src)
946 			src_sg = sg_next(src_sg);
947 		if (inc_dst)
948 			dst_sg = sg_next(dst_sg);
949 		mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg;
950 		i++;
951 	}
952 
953 	desc->length = data_len;
954 
955 	/* The user has to return the descriptor to us ASAP via .tx_submit() */
956 	return &desc->async_tx;
957 }
958 
959 static struct dma_async_tx_descriptor *nbpf_prep_memcpy(
960 	struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
961 	size_t len, unsigned long flags)
962 {
963 	struct nbpf_channel *chan = nbpf_to_chan(dchan);
964 	struct scatterlist dst_sg;
965 	struct scatterlist src_sg;
966 
967 	sg_init_table(&dst_sg, 1);
968 	sg_init_table(&src_sg, 1);
969 
970 	sg_dma_address(&dst_sg) = dst;
971 	sg_dma_address(&src_sg) = src;
972 
973 	sg_dma_len(&dst_sg) = len;
974 	sg_dma_len(&src_sg) = len;
975 
976 	dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n",
977 		__func__, len, &src, &dst);
978 
979 	return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1,
980 			    DMA_MEM_TO_MEM, flags);
981 }
982 
983 static struct dma_async_tx_descriptor *nbpf_prep_memcpy_sg(
984 	struct dma_chan *dchan,
985 	struct scatterlist *dst_sg, unsigned int dst_nents,
986 	struct scatterlist *src_sg, unsigned int src_nents,
987 	unsigned long flags)
988 {
989 	struct nbpf_channel *chan = nbpf_to_chan(dchan);
990 
991 	if (dst_nents != src_nents)
992 		return NULL;
993 
994 	return nbpf_prep_sg(chan, src_sg, dst_sg, src_nents,
995 			    DMA_MEM_TO_MEM, flags);
996 }
997 
998 static struct dma_async_tx_descriptor *nbpf_prep_slave_sg(
999 	struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
1000 	enum dma_transfer_direction direction, unsigned long flags, void *context)
1001 {
1002 	struct nbpf_channel *chan = nbpf_to_chan(dchan);
1003 	struct scatterlist slave_sg;
1004 
1005 	dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1006 
1007 	sg_init_table(&slave_sg, 1);
1008 
1009 	switch (direction) {
1010 	case DMA_MEM_TO_DEV:
1011 		sg_dma_address(&slave_sg) = chan->slave_dst_addr;
1012 		return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len,
1013 				    direction, flags);
1014 
1015 	case DMA_DEV_TO_MEM:
1016 		sg_dma_address(&slave_sg) = chan->slave_src_addr;
1017 		return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len,
1018 				    direction, flags);
1019 
1020 	default:
1021 		return NULL;
1022 	}
1023 }
1024 
1025 static int nbpf_alloc_chan_resources(struct dma_chan *dchan)
1026 {
1027 	struct nbpf_channel *chan = nbpf_to_chan(dchan);
1028 	int ret;
1029 
1030 	INIT_LIST_HEAD(&chan->free);
1031 	INIT_LIST_HEAD(&chan->free_links);
1032 	INIT_LIST_HEAD(&chan->queued);
1033 	INIT_LIST_HEAD(&chan->active);
1034 	INIT_LIST_HEAD(&chan->done);
1035 
1036 	ret = nbpf_desc_page_alloc(chan);
1037 	if (ret < 0)
1038 		return ret;
1039 
1040 	dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__,
1041 		chan->terminal);
1042 
1043 	nbpf_chan_configure(chan);
1044 
1045 	return ret;
1046 }
1047 
1048 static void nbpf_free_chan_resources(struct dma_chan *dchan)
1049 {
1050 	struct nbpf_channel *chan = nbpf_to_chan(dchan);
1051 	struct nbpf_desc_page *dpage, *tmp;
1052 
1053 	dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1054 
1055 	nbpf_chan_halt(chan);
1056 	nbpf_chan_idle(chan);
1057 	/* Clean up for if a channel is re-used for MEMCPY after slave DMA */
1058 	nbpf_chan_prepare_default(chan);
1059 
1060 	list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) {
1061 		struct nbpf_link_desc *ldesc;
1062 		int i;
1063 		list_del(&dpage->node);
1064 		for (i = 0, ldesc = dpage->ldesc;
1065 		     i < ARRAY_SIZE(dpage->ldesc);
1066 		     i++, ldesc++)
1067 			dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr,
1068 					 sizeof(*ldesc->hwdesc), DMA_TO_DEVICE);
1069 		free_page((unsigned long)dpage);
1070 	}
1071 }
1072 
1073 static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec,
1074 				      struct of_dma *ofdma)
1075 {
1076 	struct nbpf_device *nbpf = ofdma->of_dma_data;
1077 	struct dma_chan *dchan;
1078 	struct nbpf_channel *chan;
1079 
1080 	if (dma_spec->args_count != 2)
1081 		return NULL;
1082 
1083 	dchan = dma_get_any_slave_channel(&nbpf->dma_dev);
1084 	if (!dchan)
1085 		return NULL;
1086 
1087 	dev_dbg(dchan->device->dev, "Entry %s(%s)\n", __func__,
1088 		dma_spec->np->name);
1089 
1090 	chan = nbpf_to_chan(dchan);
1091 
1092 	chan->terminal = dma_spec->args[0];
1093 	chan->flags = dma_spec->args[1];
1094 
1095 	nbpf_chan_prepare(chan);
1096 	nbpf_chan_configure(chan);
1097 
1098 	return dchan;
1099 }
1100 
1101 static void nbpf_chan_tasklet(unsigned long data)
1102 {
1103 	struct nbpf_channel *chan = (struct nbpf_channel *)data;
1104 	struct nbpf_desc *desc, *tmp;
1105 	struct dmaengine_desc_callback cb;
1106 
1107 	while (!list_empty(&chan->done)) {
1108 		bool found = false, must_put, recycling = false;
1109 
1110 		spin_lock_irq(&chan->lock);
1111 
1112 		list_for_each_entry_safe(desc, tmp, &chan->done, node) {
1113 			if (!desc->user_wait) {
1114 				/* Newly completed descriptor, have to process */
1115 				found = true;
1116 				break;
1117 			} else if (async_tx_test_ack(&desc->async_tx)) {
1118 				/*
1119 				 * This descriptor was waiting for a user ACK,
1120 				 * it can be recycled now.
1121 				 */
1122 				list_del(&desc->node);
1123 				spin_unlock_irq(&chan->lock);
1124 				nbpf_desc_put(desc);
1125 				recycling = true;
1126 				break;
1127 			}
1128 		}
1129 
1130 		if (recycling)
1131 			continue;
1132 
1133 		if (!found) {
1134 			/* This can happen if TERMINATE_ALL has been called */
1135 			spin_unlock_irq(&chan->lock);
1136 			break;
1137 		}
1138 
1139 		dma_cookie_complete(&desc->async_tx);
1140 
1141 		/*
1142 		 * With released lock we cannot dereference desc, maybe it's
1143 		 * still on the "done" list
1144 		 */
1145 		if (async_tx_test_ack(&desc->async_tx)) {
1146 			list_del(&desc->node);
1147 			must_put = true;
1148 		} else {
1149 			desc->user_wait = true;
1150 			must_put = false;
1151 		}
1152 
1153 		dmaengine_desc_get_callback(&desc->async_tx, &cb);
1154 
1155 		/* ack and callback completed descriptor */
1156 		spin_unlock_irq(&chan->lock);
1157 
1158 		dmaengine_desc_callback_invoke(&cb, NULL);
1159 
1160 		if (must_put)
1161 			nbpf_desc_put(desc);
1162 	}
1163 }
1164 
1165 static irqreturn_t nbpf_chan_irq(int irq, void *dev)
1166 {
1167 	struct nbpf_channel *chan = dev;
1168 	bool done = nbpf_status_get(chan);
1169 	struct nbpf_desc *desc;
1170 	irqreturn_t ret;
1171 	bool bh = false;
1172 
1173 	if (!done)
1174 		return IRQ_NONE;
1175 
1176 	nbpf_status_ack(chan);
1177 
1178 	dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__);
1179 
1180 	spin_lock(&chan->lock);
1181 	desc = chan->running;
1182 	if (WARN_ON(!desc)) {
1183 		ret = IRQ_NONE;
1184 		goto unlock;
1185 	} else {
1186 		ret = IRQ_HANDLED;
1187 		bh = true;
1188 	}
1189 
1190 	list_move_tail(&desc->node, &chan->done);
1191 	chan->running = NULL;
1192 
1193 	if (!list_empty(&chan->active)) {
1194 		desc = list_first_entry(&chan->active,
1195 					struct nbpf_desc, node);
1196 		if (!nbpf_start(desc))
1197 			chan->running = desc;
1198 	}
1199 
1200 unlock:
1201 	spin_unlock(&chan->lock);
1202 
1203 	if (bh)
1204 		tasklet_schedule(&chan->tasklet);
1205 
1206 	return ret;
1207 }
1208 
1209 static irqreturn_t nbpf_err_irq(int irq, void *dev)
1210 {
1211 	struct nbpf_device *nbpf = dev;
1212 	u32 error = nbpf_error_get(nbpf);
1213 
1214 	dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq);
1215 
1216 	if (!error)
1217 		return IRQ_NONE;
1218 
1219 	do {
1220 		struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error);
1221 		/* On error: abort all queued transfers, no callback */
1222 		nbpf_error_clear(chan);
1223 		nbpf_chan_idle(chan);
1224 		error = nbpf_error_get(nbpf);
1225 	} while (error);
1226 
1227 	return IRQ_HANDLED;
1228 }
1229 
1230 static int nbpf_chan_probe(struct nbpf_device *nbpf, int n)
1231 {
1232 	struct dma_device *dma_dev = &nbpf->dma_dev;
1233 	struct nbpf_channel *chan = nbpf->chan + n;
1234 	int ret;
1235 
1236 	chan->nbpf = nbpf;
1237 	chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n;
1238 	INIT_LIST_HEAD(&chan->desc_page);
1239 	spin_lock_init(&chan->lock);
1240 	chan->dma_chan.device = dma_dev;
1241 	dma_cookie_init(&chan->dma_chan);
1242 	nbpf_chan_prepare_default(chan);
1243 
1244 	dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base);
1245 
1246 	snprintf(chan->name, sizeof(chan->name), "nbpf %d", n);
1247 
1248 	tasklet_init(&chan->tasklet, nbpf_chan_tasklet, (unsigned long)chan);
1249 	ret = devm_request_irq(dma_dev->dev, chan->irq,
1250 			nbpf_chan_irq, IRQF_SHARED,
1251 			chan->name, chan);
1252 	if (ret < 0)
1253 		return ret;
1254 
1255 	/* Add the channel to DMA device channel list */
1256 	list_add_tail(&chan->dma_chan.device_node,
1257 		      &dma_dev->channels);
1258 
1259 	return 0;
1260 }
1261 
1262 static const struct of_device_id nbpf_match[] = {
1263 	{.compatible = "renesas,nbpfaxi64dmac1b4",	.data = &nbpf_cfg[NBPF1B4]},
1264 	{.compatible = "renesas,nbpfaxi64dmac1b8",	.data = &nbpf_cfg[NBPF1B8]},
1265 	{.compatible = "renesas,nbpfaxi64dmac1b16",	.data = &nbpf_cfg[NBPF1B16]},
1266 	{.compatible = "renesas,nbpfaxi64dmac4b4",	.data = &nbpf_cfg[NBPF4B4]},
1267 	{.compatible = "renesas,nbpfaxi64dmac4b8",	.data = &nbpf_cfg[NBPF4B8]},
1268 	{.compatible = "renesas,nbpfaxi64dmac4b16",	.data = &nbpf_cfg[NBPF4B16]},
1269 	{.compatible = "renesas,nbpfaxi64dmac8b4",	.data = &nbpf_cfg[NBPF8B4]},
1270 	{.compatible = "renesas,nbpfaxi64dmac8b8",	.data = &nbpf_cfg[NBPF8B8]},
1271 	{.compatible = "renesas,nbpfaxi64dmac8b16",	.data = &nbpf_cfg[NBPF8B16]},
1272 	{}
1273 };
1274 MODULE_DEVICE_TABLE(of, nbpf_match);
1275 
1276 static int nbpf_probe(struct platform_device *pdev)
1277 {
1278 	struct device *dev = &pdev->dev;
1279 	const struct of_device_id *of_id = of_match_device(nbpf_match, dev);
1280 	struct device_node *np = dev->of_node;
1281 	struct nbpf_device *nbpf;
1282 	struct dma_device *dma_dev;
1283 	struct resource *iomem, *irq_res;
1284 	const struct nbpf_config *cfg;
1285 	int num_channels;
1286 	int ret, irq, eirq, i;
1287 	int irqbuf[9] /* maximum 8 channels + error IRQ */;
1288 	unsigned int irqs = 0;
1289 
1290 	BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE);
1291 
1292 	/* DT only */
1293 	if (!np || !of_id || !of_id->data)
1294 		return -ENODEV;
1295 
1296 	cfg = of_id->data;
1297 	num_channels = cfg->num_channels;
1298 
1299 	nbpf = devm_kzalloc(dev, sizeof(*nbpf) + num_channels *
1300 			    sizeof(nbpf->chan[0]), GFP_KERNEL);
1301 	if (!nbpf)
1302 		return -ENOMEM;
1303 
1304 	dma_dev = &nbpf->dma_dev;
1305 	dma_dev->dev = dev;
1306 
1307 	iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1308 	nbpf->base = devm_ioremap_resource(dev, iomem);
1309 	if (IS_ERR(nbpf->base))
1310 		return PTR_ERR(nbpf->base);
1311 
1312 	nbpf->clk = devm_clk_get(dev, NULL);
1313 	if (IS_ERR(nbpf->clk))
1314 		return PTR_ERR(nbpf->clk);
1315 
1316 	nbpf->config = cfg;
1317 
1318 	for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) {
1319 		irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1320 		if (!irq_res)
1321 			break;
1322 
1323 		for (irq = irq_res->start; irq <= irq_res->end;
1324 		     irq++, irqs++)
1325 			irqbuf[irqs] = irq;
1326 	}
1327 
1328 	/*
1329 	 * 3 IRQ resource schemes are supported:
1330 	 * 1. 1 shared IRQ for error and all channels
1331 	 * 2. 2 IRQs: one for error and one shared for all channels
1332 	 * 3. 1 IRQ for error and an own IRQ for each channel
1333 	 */
1334 	if (irqs != 1 && irqs != 2 && irqs != num_channels + 1)
1335 		return -ENXIO;
1336 
1337 	if (irqs == 1) {
1338 		eirq = irqbuf[0];
1339 
1340 		for (i = 0; i <= num_channels; i++)
1341 			nbpf->chan[i].irq = irqbuf[0];
1342 	} else {
1343 		eirq = platform_get_irq_byname(pdev, "error");
1344 		if (eirq < 0)
1345 			return eirq;
1346 
1347 		if (irqs == num_channels + 1) {
1348 			struct nbpf_channel *chan;
1349 
1350 			for (i = 0, chan = nbpf->chan; i <= num_channels;
1351 			     i++, chan++) {
1352 				/* Skip the error IRQ */
1353 				if (irqbuf[i] == eirq)
1354 					i++;
1355 				chan->irq = irqbuf[i];
1356 			}
1357 
1358 			if (chan != nbpf->chan + num_channels)
1359 				return -EINVAL;
1360 		} else {
1361 			/* 2 IRQs and more than one channel */
1362 			if (irqbuf[0] == eirq)
1363 				irq = irqbuf[1];
1364 			else
1365 				irq = irqbuf[0];
1366 
1367 			for (i = 0; i <= num_channels; i++)
1368 				nbpf->chan[i].irq = irq;
1369 		}
1370 	}
1371 
1372 	ret = devm_request_irq(dev, eirq, nbpf_err_irq,
1373 			       IRQF_SHARED, "dma error", nbpf);
1374 	if (ret < 0)
1375 		return ret;
1376 	nbpf->eirq = eirq;
1377 
1378 	INIT_LIST_HEAD(&dma_dev->channels);
1379 
1380 	/* Create DMA Channel */
1381 	for (i = 0; i < num_channels; i++) {
1382 		ret = nbpf_chan_probe(nbpf, i);
1383 		if (ret < 0)
1384 			return ret;
1385 	}
1386 
1387 	dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1388 	dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1389 	dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1390 	dma_cap_set(DMA_SG, dma_dev->cap_mask);
1391 
1392 	/* Common and MEMCPY operations */
1393 	dma_dev->device_alloc_chan_resources
1394 		= nbpf_alloc_chan_resources;
1395 	dma_dev->device_free_chan_resources = nbpf_free_chan_resources;
1396 	dma_dev->device_prep_dma_sg = nbpf_prep_memcpy_sg;
1397 	dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy;
1398 	dma_dev->device_tx_status = nbpf_tx_status;
1399 	dma_dev->device_issue_pending = nbpf_issue_pending;
1400 
1401 	/*
1402 	 * If we drop support for unaligned MEMCPY buffer addresses and / or
1403 	 * lengths by setting
1404 	 * dma_dev->copy_align = 4;
1405 	 * then we can set transfer length to 4 bytes in nbpf_prep_one() for
1406 	 * DMA_MEM_TO_MEM
1407 	 */
1408 
1409 	/* Compulsory for DMA_SLAVE fields */
1410 	dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg;
1411 	dma_dev->device_config = nbpf_config;
1412 	dma_dev->device_pause = nbpf_pause;
1413 	dma_dev->device_terminate_all = nbpf_terminate_all;
1414 
1415 	dma_dev->src_addr_widths = NBPF_DMA_BUSWIDTHS;
1416 	dma_dev->dst_addr_widths = NBPF_DMA_BUSWIDTHS;
1417 	dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1418 
1419 	platform_set_drvdata(pdev, nbpf);
1420 
1421 	ret = clk_prepare_enable(nbpf->clk);
1422 	if (ret < 0)
1423 		return ret;
1424 
1425 	nbpf_configure(nbpf);
1426 
1427 	ret = dma_async_device_register(dma_dev);
1428 	if (ret < 0)
1429 		goto e_clk_off;
1430 
1431 	ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf);
1432 	if (ret < 0)
1433 		goto e_dma_dev_unreg;
1434 
1435 	return 0;
1436 
1437 e_dma_dev_unreg:
1438 	dma_async_device_unregister(dma_dev);
1439 e_clk_off:
1440 	clk_disable_unprepare(nbpf->clk);
1441 
1442 	return ret;
1443 }
1444 
1445 static int nbpf_remove(struct platform_device *pdev)
1446 {
1447 	struct nbpf_device *nbpf = platform_get_drvdata(pdev);
1448 	int i;
1449 
1450 	devm_free_irq(&pdev->dev, nbpf->eirq, nbpf);
1451 
1452 	for (i = 0; i < nbpf->config->num_channels; i++) {
1453 		struct nbpf_channel *chan = nbpf->chan + i;
1454 
1455 		devm_free_irq(&pdev->dev, chan->irq, chan);
1456 
1457 		tasklet_kill(&chan->tasklet);
1458 	}
1459 
1460 	of_dma_controller_free(pdev->dev.of_node);
1461 	dma_async_device_unregister(&nbpf->dma_dev);
1462 	clk_disable_unprepare(nbpf->clk);
1463 
1464 	return 0;
1465 }
1466 
1467 static const struct platform_device_id nbpf_ids[] = {
1468 	{"nbpfaxi64dmac1b4",	(kernel_ulong_t)&nbpf_cfg[NBPF1B4]},
1469 	{"nbpfaxi64dmac1b8",	(kernel_ulong_t)&nbpf_cfg[NBPF1B8]},
1470 	{"nbpfaxi64dmac1b16",	(kernel_ulong_t)&nbpf_cfg[NBPF1B16]},
1471 	{"nbpfaxi64dmac4b4",	(kernel_ulong_t)&nbpf_cfg[NBPF4B4]},
1472 	{"nbpfaxi64dmac4b8",	(kernel_ulong_t)&nbpf_cfg[NBPF4B8]},
1473 	{"nbpfaxi64dmac4b16",	(kernel_ulong_t)&nbpf_cfg[NBPF4B16]},
1474 	{"nbpfaxi64dmac8b4",	(kernel_ulong_t)&nbpf_cfg[NBPF8B4]},
1475 	{"nbpfaxi64dmac8b8",	(kernel_ulong_t)&nbpf_cfg[NBPF8B8]},
1476 	{"nbpfaxi64dmac8b16",	(kernel_ulong_t)&nbpf_cfg[NBPF8B16]},
1477 	{},
1478 };
1479 MODULE_DEVICE_TABLE(platform, nbpf_ids);
1480 
1481 #ifdef CONFIG_PM
1482 static int nbpf_runtime_suspend(struct device *dev)
1483 {
1484 	struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1485 	clk_disable_unprepare(nbpf->clk);
1486 	return 0;
1487 }
1488 
1489 static int nbpf_runtime_resume(struct device *dev)
1490 {
1491 	struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1492 	return clk_prepare_enable(nbpf->clk);
1493 }
1494 #endif
1495 
1496 static const struct dev_pm_ops nbpf_pm_ops = {
1497 	SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL)
1498 };
1499 
1500 static struct platform_driver nbpf_driver = {
1501 	.driver = {
1502 		.name = "dma-nbpf",
1503 		.of_match_table = nbpf_match,
1504 		.pm = &nbpf_pm_ops,
1505 	},
1506 	.id_table = nbpf_ids,
1507 	.probe = nbpf_probe,
1508 	.remove = nbpf_remove,
1509 };
1510 
1511 module_platform_driver(nbpf_driver);
1512 
1513 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1514 MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
1515 MODULE_LICENSE("GPL v2");
1516