1 /* 2 * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd. 3 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of version 2 of the GNU General Public License as 7 * published by the Free Software Foundation. 8 */ 9 10 #include <linux/bitmap.h> 11 #include <linux/bitops.h> 12 #include <linux/clk.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/dmaengine.h> 15 #include <linux/err.h> 16 #include <linux/interrupt.h> 17 #include <linux/io.h> 18 #include <linux/log2.h> 19 #include <linux/module.h> 20 #include <linux/of.h> 21 #include <linux/of_device.h> 22 #include <linux/of_dma.h> 23 #include <linux/platform_device.h> 24 #include <linux/slab.h> 25 26 #include <dt-bindings/dma/nbpfaxi.h> 27 28 #include "dmaengine.h" 29 30 #define NBPF_REG_CHAN_OFFSET 0 31 #define NBPF_REG_CHAN_SIZE 0x40 32 33 /* Channel Current Transaction Byte register */ 34 #define NBPF_CHAN_CUR_TR_BYTE 0x20 35 36 /* Channel Status register */ 37 #define NBPF_CHAN_STAT 0x24 38 #define NBPF_CHAN_STAT_EN 1 39 #define NBPF_CHAN_STAT_TACT 4 40 #define NBPF_CHAN_STAT_ERR 0x10 41 #define NBPF_CHAN_STAT_END 0x20 42 #define NBPF_CHAN_STAT_TC 0x40 43 #define NBPF_CHAN_STAT_DER 0x400 44 45 /* Channel Control register */ 46 #define NBPF_CHAN_CTRL 0x28 47 #define NBPF_CHAN_CTRL_SETEN 1 48 #define NBPF_CHAN_CTRL_CLREN 2 49 #define NBPF_CHAN_CTRL_STG 4 50 #define NBPF_CHAN_CTRL_SWRST 8 51 #define NBPF_CHAN_CTRL_CLRRQ 0x10 52 #define NBPF_CHAN_CTRL_CLREND 0x20 53 #define NBPF_CHAN_CTRL_CLRTC 0x40 54 #define NBPF_CHAN_CTRL_SETSUS 0x100 55 #define NBPF_CHAN_CTRL_CLRSUS 0x200 56 57 /* Channel Configuration register */ 58 #define NBPF_CHAN_CFG 0x2c 59 #define NBPF_CHAN_CFG_SEL 7 /* terminal SELect: 0..7 */ 60 #define NBPF_CHAN_CFG_REQD 8 /* REQuest Direction: DMAREQ is 0: input, 1: output */ 61 #define NBPF_CHAN_CFG_LOEN 0x10 /* LOw ENable: low DMA request line is: 0: inactive, 1: active */ 62 #define NBPF_CHAN_CFG_HIEN 0x20 /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */ 63 #define NBPF_CHAN_CFG_LVL 0x40 /* LeVeL: DMA request line is sensed as 0: edge, 1: level */ 64 #define NBPF_CHAN_CFG_AM 0x700 /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */ 65 #define NBPF_CHAN_CFG_SDS 0xf000 /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */ 66 #define NBPF_CHAN_CFG_DDS 0xf0000 /* Destination Data Size: as above */ 67 #define NBPF_CHAN_CFG_SAD 0x100000 /* Source ADdress counting: 0: increment, 1: fixed */ 68 #define NBPF_CHAN_CFG_DAD 0x200000 /* Destination ADdress counting: 0: increment, 1: fixed */ 69 #define NBPF_CHAN_CFG_TM 0x400000 /* Transfer Mode: 0: single, 1: block TM */ 70 #define NBPF_CHAN_CFG_DEM 0x1000000 /* DMAEND interrupt Mask */ 71 #define NBPF_CHAN_CFG_TCM 0x2000000 /* DMATCO interrupt Mask */ 72 #define NBPF_CHAN_CFG_SBE 0x8000000 /* Sweep Buffer Enable */ 73 #define NBPF_CHAN_CFG_RSEL 0x10000000 /* RM: Register Set sELect */ 74 #define NBPF_CHAN_CFG_RSW 0x20000000 /* RM: Register Select sWitch */ 75 #define NBPF_CHAN_CFG_REN 0x40000000 /* RM: Register Set Enable */ 76 #define NBPF_CHAN_CFG_DMS 0x80000000 /* 0: register mode (RM), 1: link mode (LM) */ 77 78 #define NBPF_CHAN_NXLA 0x38 79 #define NBPF_CHAN_CRLA 0x3c 80 81 /* Link Header field */ 82 #define NBPF_HEADER_LV 1 83 #define NBPF_HEADER_LE 2 84 #define NBPF_HEADER_WBD 4 85 #define NBPF_HEADER_DIM 8 86 87 #define NBPF_CTRL 0x300 88 #define NBPF_CTRL_PR 1 /* 0: fixed priority, 1: round robin */ 89 #define NBPF_CTRL_LVINT 2 /* DMAEND and DMAERR signalling: 0: pulse, 1: level */ 90 91 #define NBPF_DSTAT_ER 0x314 92 #define NBPF_DSTAT_END 0x318 93 94 #define NBPF_DMA_BUSWIDTHS \ 95 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ 96 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 97 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 98 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ 99 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)) 100 101 struct nbpf_config { 102 int num_channels; 103 int buffer_size; 104 }; 105 106 /* 107 * We've got 3 types of objects, used to describe DMA transfers: 108 * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object 109 * in it, used to communicate with the user 110 * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer 111 * queuing, these must be DMAable, using either the streaming DMA API or 112 * allocated from coherent memory - one per SG segment 113 * 3. one per SG segment descriptors, used to manage HW link descriptors from 114 * (2). They do not have to be DMAable. They can either be (a) allocated 115 * together with link descriptors as mixed (DMA / CPU) objects, or (b) 116 * separately. Even if allocated separately it would be best to link them 117 * to link descriptors once during channel resource allocation and always 118 * use them as a single object. 119 * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be 120 * treated as a single SG segment descriptor. 121 */ 122 123 struct nbpf_link_reg { 124 u32 header; 125 u32 src_addr; 126 u32 dst_addr; 127 u32 transaction_size; 128 u32 config; 129 u32 interval; 130 u32 extension; 131 u32 next; 132 } __packed; 133 134 struct nbpf_device; 135 struct nbpf_channel; 136 struct nbpf_desc; 137 138 struct nbpf_link_desc { 139 struct nbpf_link_reg *hwdesc; 140 dma_addr_t hwdesc_dma_addr; 141 struct nbpf_desc *desc; 142 struct list_head node; 143 }; 144 145 /** 146 * struct nbpf_desc - DMA transfer descriptor 147 * @async_tx: dmaengine object 148 * @user_wait: waiting for a user ack 149 * @length: total transfer length 150 * @sg: list of hardware descriptors, represented by struct nbpf_link_desc 151 * @node: member in channel descriptor lists 152 */ 153 struct nbpf_desc { 154 struct dma_async_tx_descriptor async_tx; 155 bool user_wait; 156 size_t length; 157 struct nbpf_channel *chan; 158 struct list_head sg; 159 struct list_head node; 160 }; 161 162 /* Take a wild guess: allocate 4 segments per descriptor */ 163 #define NBPF_SEGMENTS_PER_DESC 4 164 #define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) / \ 165 (sizeof(struct nbpf_desc) + \ 166 NBPF_SEGMENTS_PER_DESC * \ 167 (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg)))) 168 #define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE) 169 170 struct nbpf_desc_page { 171 struct list_head node; 172 struct nbpf_desc desc[NBPF_DESCS_PER_PAGE]; 173 struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE]; 174 struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE]; 175 }; 176 177 /** 178 * struct nbpf_channel - one DMAC channel 179 * @dma_chan: standard dmaengine channel object 180 * @base: register address base 181 * @nbpf: DMAC 182 * @name: IRQ name 183 * @irq: IRQ number 184 * @slave_addr: address for slave DMA 185 * @slave_width:slave data size in bytes 186 * @slave_burst:maximum slave burst size in bytes 187 * @terminal: DMA terminal, assigned to this channel 188 * @dmarq_cfg: DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG 189 * @flags: configuration flags from DT 190 * @lock: protect descriptor lists 191 * @free_links: list of free link descriptors 192 * @free: list of free descriptors 193 * @queued: list of queued descriptors 194 * @active: list of descriptors, scheduled for processing 195 * @done: list of completed descriptors, waiting post-processing 196 * @desc_page: list of additionally allocated descriptor pages - if any 197 */ 198 struct nbpf_channel { 199 struct dma_chan dma_chan; 200 struct tasklet_struct tasklet; 201 void __iomem *base; 202 struct nbpf_device *nbpf; 203 char name[16]; 204 int irq; 205 dma_addr_t slave_src_addr; 206 size_t slave_src_width; 207 size_t slave_src_burst; 208 dma_addr_t slave_dst_addr; 209 size_t slave_dst_width; 210 size_t slave_dst_burst; 211 unsigned int terminal; 212 u32 dmarq_cfg; 213 unsigned long flags; 214 spinlock_t lock; 215 struct list_head free_links; 216 struct list_head free; 217 struct list_head queued; 218 struct list_head active; 219 struct list_head done; 220 struct list_head desc_page; 221 struct nbpf_desc *running; 222 bool paused; 223 }; 224 225 struct nbpf_device { 226 struct dma_device dma_dev; 227 void __iomem *base; 228 u32 max_burst_mem_read; 229 u32 max_burst_mem_write; 230 struct clk *clk; 231 const struct nbpf_config *config; 232 unsigned int eirq; 233 struct nbpf_channel chan[]; 234 }; 235 236 enum nbpf_model { 237 NBPF1B4, 238 NBPF1B8, 239 NBPF1B16, 240 NBPF4B4, 241 NBPF4B8, 242 NBPF4B16, 243 NBPF8B4, 244 NBPF8B8, 245 NBPF8B16, 246 }; 247 248 static struct nbpf_config nbpf_cfg[] = { 249 [NBPF1B4] = { 250 .num_channels = 1, 251 .buffer_size = 4, 252 }, 253 [NBPF1B8] = { 254 .num_channels = 1, 255 .buffer_size = 8, 256 }, 257 [NBPF1B16] = { 258 .num_channels = 1, 259 .buffer_size = 16, 260 }, 261 [NBPF4B4] = { 262 .num_channels = 4, 263 .buffer_size = 4, 264 }, 265 [NBPF4B8] = { 266 .num_channels = 4, 267 .buffer_size = 8, 268 }, 269 [NBPF4B16] = { 270 .num_channels = 4, 271 .buffer_size = 16, 272 }, 273 [NBPF8B4] = { 274 .num_channels = 8, 275 .buffer_size = 4, 276 }, 277 [NBPF8B8] = { 278 .num_channels = 8, 279 .buffer_size = 8, 280 }, 281 [NBPF8B16] = { 282 .num_channels = 8, 283 .buffer_size = 16, 284 }, 285 }; 286 287 #define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan) 288 289 /* 290 * dmaengine drivers seem to have a lot in common and instead of sharing more 291 * code, they reimplement those common algorithms independently. In this driver 292 * we try to separate the hardware-specific part from the (largely) generic 293 * part. This improves code readability and makes it possible in the future to 294 * reuse the generic code in form of a helper library. That generic code should 295 * be suitable for various DMA controllers, using transfer descriptors in RAM 296 * and pushing one SG list at a time to the DMA controller. 297 */ 298 299 /* Hardware-specific part */ 300 301 static inline u32 nbpf_chan_read(struct nbpf_channel *chan, 302 unsigned int offset) 303 { 304 u32 data = ioread32(chan->base + offset); 305 dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n", 306 __func__, chan->base, offset, data); 307 return data; 308 } 309 310 static inline void nbpf_chan_write(struct nbpf_channel *chan, 311 unsigned int offset, u32 data) 312 { 313 iowrite32(data, chan->base + offset); 314 dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n", 315 __func__, chan->base, offset, data); 316 } 317 318 static inline u32 nbpf_read(struct nbpf_device *nbpf, 319 unsigned int offset) 320 { 321 u32 data = ioread32(nbpf->base + offset); 322 dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n", 323 __func__, nbpf->base, offset, data); 324 return data; 325 } 326 327 static inline void nbpf_write(struct nbpf_device *nbpf, 328 unsigned int offset, u32 data) 329 { 330 iowrite32(data, nbpf->base + offset); 331 dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n", 332 __func__, nbpf->base, offset, data); 333 } 334 335 static void nbpf_chan_halt(struct nbpf_channel *chan) 336 { 337 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN); 338 } 339 340 static bool nbpf_status_get(struct nbpf_channel *chan) 341 { 342 u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END); 343 344 return status & BIT(chan - chan->nbpf->chan); 345 } 346 347 static void nbpf_status_ack(struct nbpf_channel *chan) 348 { 349 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND); 350 } 351 352 static u32 nbpf_error_get(struct nbpf_device *nbpf) 353 { 354 return nbpf_read(nbpf, NBPF_DSTAT_ER); 355 } 356 357 static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error) 358 { 359 return nbpf->chan + __ffs(error); 360 } 361 362 static void nbpf_error_clear(struct nbpf_channel *chan) 363 { 364 u32 status; 365 int i; 366 367 /* Stop the channel, make sure DMA has been aborted */ 368 nbpf_chan_halt(chan); 369 370 for (i = 1000; i; i--) { 371 status = nbpf_chan_read(chan, NBPF_CHAN_STAT); 372 if (!(status & NBPF_CHAN_STAT_TACT)) 373 break; 374 cpu_relax(); 375 } 376 377 if (!i) 378 dev_err(chan->dma_chan.device->dev, 379 "%s(): abort timeout, channel status 0x%x\n", __func__, status); 380 381 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST); 382 } 383 384 static int nbpf_start(struct nbpf_desc *desc) 385 { 386 struct nbpf_channel *chan = desc->chan; 387 struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node); 388 389 nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr); 390 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS); 391 chan->paused = false; 392 393 /* Software trigger MEMCPY - only MEMCPY uses the block mode */ 394 if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM) 395 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG); 396 397 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__, 398 nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA)); 399 400 return 0; 401 } 402 403 static void nbpf_chan_prepare(struct nbpf_channel *chan) 404 { 405 chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) | 406 (chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) | 407 (chan->flags & NBPF_SLAVE_RQ_LEVEL ? 408 NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) | 409 chan->terminal; 410 } 411 412 static void nbpf_chan_prepare_default(struct nbpf_channel *chan) 413 { 414 /* Don't output DMAACK */ 415 chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400; 416 chan->terminal = 0; 417 chan->flags = 0; 418 } 419 420 static void nbpf_chan_configure(struct nbpf_channel *chan) 421 { 422 /* 423 * We assume, that only the link mode and DMA request line configuration 424 * have to be set in the configuration register manually. Dynamic 425 * per-transfer configuration will be loaded from transfer descriptors. 426 */ 427 nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg); 428 } 429 430 static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size, 431 enum dma_transfer_direction direction) 432 { 433 int max_burst = nbpf->config->buffer_size * 8; 434 435 if (nbpf->max_burst_mem_read || nbpf->max_burst_mem_write) { 436 switch (direction) { 437 case DMA_MEM_TO_MEM: 438 max_burst = min_not_zero(nbpf->max_burst_mem_read, 439 nbpf->max_burst_mem_write); 440 break; 441 case DMA_MEM_TO_DEV: 442 if (nbpf->max_burst_mem_read) 443 max_burst = nbpf->max_burst_mem_read; 444 break; 445 case DMA_DEV_TO_MEM: 446 if (nbpf->max_burst_mem_write) 447 max_burst = nbpf->max_burst_mem_write; 448 break; 449 case DMA_DEV_TO_DEV: 450 default: 451 break; 452 } 453 } 454 455 /* Maximum supported bursts depend on the buffer size */ 456 return min_t(int, __ffs(size), ilog2(max_burst)); 457 } 458 459 static size_t nbpf_xfer_size(struct nbpf_device *nbpf, 460 enum dma_slave_buswidth width, u32 burst) 461 { 462 size_t size; 463 464 if (!burst) 465 burst = 1; 466 467 switch (width) { 468 case DMA_SLAVE_BUSWIDTH_8_BYTES: 469 size = 8 * burst; 470 break; 471 472 case DMA_SLAVE_BUSWIDTH_4_BYTES: 473 size = 4 * burst; 474 break; 475 476 case DMA_SLAVE_BUSWIDTH_2_BYTES: 477 size = 2 * burst; 478 break; 479 480 default: 481 pr_warn("%s(): invalid bus width %u\n", __func__, width); 482 /* fall through */ 483 case DMA_SLAVE_BUSWIDTH_1_BYTE: 484 size = burst; 485 } 486 487 return nbpf_xfer_ds(nbpf, size, DMA_TRANS_NONE); 488 } 489 490 /* 491 * We need a way to recognise slaves, whose data is sent "raw" over the bus, 492 * i.e. it isn't known in advance how many bytes will be received. Therefore 493 * the slave driver has to provide a "large enough" buffer and either read the 494 * buffer, when it is full, or detect, that some data has arrived, then wait for 495 * a timeout, if no more data arrives - receive what's already there. We want to 496 * handle such slaves in a special way to allow an optimised mode for other 497 * users, for whom the amount of data is known in advance. So far there's no way 498 * to recognise such slaves. We use a data-width check to distinguish between 499 * the SD host and the PL011 UART. 500 */ 501 502 static int nbpf_prep_one(struct nbpf_link_desc *ldesc, 503 enum dma_transfer_direction direction, 504 dma_addr_t src, dma_addr_t dst, size_t size, bool last) 505 { 506 struct nbpf_link_reg *hwdesc = ldesc->hwdesc; 507 struct nbpf_desc *desc = ldesc->desc; 508 struct nbpf_channel *chan = desc->chan; 509 struct device *dev = chan->dma_chan.device->dev; 510 size_t mem_xfer, slave_xfer; 511 bool can_burst; 512 513 hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV | 514 (last ? NBPF_HEADER_LE : 0); 515 516 hwdesc->src_addr = src; 517 hwdesc->dst_addr = dst; 518 hwdesc->transaction_size = size; 519 520 /* 521 * set config: SAD, DAD, DDS, SDS, etc. 522 * Note on transfer sizes: the DMAC can perform unaligned DMA transfers, 523 * but it is important to have transaction size a multiple of both 524 * receiver and transmitter transfer sizes. It is also possible to use 525 * different RAM and device transfer sizes, and it does work well with 526 * some devices, e.g. with V08R07S01E SD host controllers, which can use 527 * 128 byte transfers. But this doesn't work with other devices, 528 * especially when the transaction size is unknown. This is the case, 529 * e.g. with serial drivers like amba-pl011.c. For reception it sets up 530 * the transaction size of 4K and if fewer bytes are received, it 531 * pauses DMA and reads out data received via DMA as well as those left 532 * in the Rx FIFO. For this to work with the RAM side using burst 533 * transfers we enable the SBE bit and terminate the transfer in our 534 * .device_pause handler. 535 */ 536 mem_xfer = nbpf_xfer_ds(chan->nbpf, size, direction); 537 538 switch (direction) { 539 case DMA_DEV_TO_MEM: 540 can_burst = chan->slave_src_width >= 3; 541 slave_xfer = min(mem_xfer, can_burst ? 542 chan->slave_src_burst : chan->slave_src_width); 543 /* 544 * Is the slave narrower than 64 bits, i.e. isn't using the full 545 * bus width and cannot use bursts? 546 */ 547 if (mem_xfer > chan->slave_src_burst && !can_burst) 548 mem_xfer = chan->slave_src_burst; 549 /* Device-to-RAM DMA is unreliable without REQD set */ 550 hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) | 551 (NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD | 552 NBPF_CHAN_CFG_SBE; 553 break; 554 555 case DMA_MEM_TO_DEV: 556 slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ? 557 chan->slave_dst_burst : chan->slave_dst_width); 558 hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) | 559 (NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD; 560 break; 561 562 case DMA_MEM_TO_MEM: 563 hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM | 564 (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) | 565 (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)); 566 break; 567 568 default: 569 return -EINVAL; 570 } 571 572 hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) | 573 NBPF_CHAN_CFG_DMS; 574 575 dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n", 576 __func__, &ldesc->hwdesc_dma_addr, hwdesc->header, 577 hwdesc->config, size, &src, &dst); 578 579 dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc), 580 DMA_TO_DEVICE); 581 582 return 0; 583 } 584 585 static size_t nbpf_bytes_left(struct nbpf_channel *chan) 586 { 587 return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE); 588 } 589 590 static void nbpf_configure(struct nbpf_device *nbpf) 591 { 592 nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT); 593 } 594 595 /* Generic part */ 596 597 /* DMA ENGINE functions */ 598 static void nbpf_issue_pending(struct dma_chan *dchan) 599 { 600 struct nbpf_channel *chan = nbpf_to_chan(dchan); 601 unsigned long flags; 602 603 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__); 604 605 spin_lock_irqsave(&chan->lock, flags); 606 if (list_empty(&chan->queued)) 607 goto unlock; 608 609 list_splice_tail_init(&chan->queued, &chan->active); 610 611 if (!chan->running) { 612 struct nbpf_desc *desc = list_first_entry(&chan->active, 613 struct nbpf_desc, node); 614 if (!nbpf_start(desc)) 615 chan->running = desc; 616 } 617 618 unlock: 619 spin_unlock_irqrestore(&chan->lock, flags); 620 } 621 622 static enum dma_status nbpf_tx_status(struct dma_chan *dchan, 623 dma_cookie_t cookie, struct dma_tx_state *state) 624 { 625 struct nbpf_channel *chan = nbpf_to_chan(dchan); 626 enum dma_status status = dma_cookie_status(dchan, cookie, state); 627 628 if (state) { 629 dma_cookie_t running; 630 unsigned long flags; 631 632 spin_lock_irqsave(&chan->lock, flags); 633 running = chan->running ? chan->running->async_tx.cookie : -EINVAL; 634 635 if (cookie == running) { 636 state->residue = nbpf_bytes_left(chan); 637 dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__, 638 state->residue); 639 } else if (status == DMA_IN_PROGRESS) { 640 struct nbpf_desc *desc; 641 bool found = false; 642 643 list_for_each_entry(desc, &chan->active, node) 644 if (desc->async_tx.cookie == cookie) { 645 found = true; 646 break; 647 } 648 649 if (!found) 650 list_for_each_entry(desc, &chan->queued, node) 651 if (desc->async_tx.cookie == cookie) { 652 found = true; 653 break; 654 655 } 656 657 state->residue = found ? desc->length : 0; 658 } 659 660 spin_unlock_irqrestore(&chan->lock, flags); 661 } 662 663 if (chan->paused) 664 status = DMA_PAUSED; 665 666 return status; 667 } 668 669 static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx) 670 { 671 struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx); 672 struct nbpf_channel *chan = desc->chan; 673 unsigned long flags; 674 dma_cookie_t cookie; 675 676 spin_lock_irqsave(&chan->lock, flags); 677 cookie = dma_cookie_assign(tx); 678 list_add_tail(&desc->node, &chan->queued); 679 spin_unlock_irqrestore(&chan->lock, flags); 680 681 dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie); 682 683 return cookie; 684 } 685 686 static int nbpf_desc_page_alloc(struct nbpf_channel *chan) 687 { 688 struct dma_chan *dchan = &chan->dma_chan; 689 struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA); 690 struct nbpf_link_desc *ldesc; 691 struct nbpf_link_reg *hwdesc; 692 struct nbpf_desc *desc; 693 LIST_HEAD(head); 694 LIST_HEAD(lhead); 695 int i; 696 struct device *dev = dchan->device->dev; 697 698 if (!dpage) 699 return -ENOMEM; 700 701 dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n", 702 __func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage)); 703 704 for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc; 705 i < ARRAY_SIZE(dpage->ldesc); 706 i++, ldesc++, hwdesc++) { 707 ldesc->hwdesc = hwdesc; 708 list_add_tail(&ldesc->node, &lhead); 709 ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev, 710 hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE); 711 712 dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__, 713 hwdesc, &ldesc->hwdesc_dma_addr); 714 } 715 716 for (i = 0, desc = dpage->desc; 717 i < ARRAY_SIZE(dpage->desc); 718 i++, desc++) { 719 dma_async_tx_descriptor_init(&desc->async_tx, dchan); 720 desc->async_tx.tx_submit = nbpf_tx_submit; 721 desc->chan = chan; 722 INIT_LIST_HEAD(&desc->sg); 723 list_add_tail(&desc->node, &head); 724 } 725 726 /* 727 * This function cannot be called from interrupt context, so, no need to 728 * save flags 729 */ 730 spin_lock_irq(&chan->lock); 731 list_splice_tail(&lhead, &chan->free_links); 732 list_splice_tail(&head, &chan->free); 733 list_add(&dpage->node, &chan->desc_page); 734 spin_unlock_irq(&chan->lock); 735 736 return ARRAY_SIZE(dpage->desc); 737 } 738 739 static void nbpf_desc_put(struct nbpf_desc *desc) 740 { 741 struct nbpf_channel *chan = desc->chan; 742 struct nbpf_link_desc *ldesc, *tmp; 743 unsigned long flags; 744 745 spin_lock_irqsave(&chan->lock, flags); 746 list_for_each_entry_safe(ldesc, tmp, &desc->sg, node) 747 list_move(&ldesc->node, &chan->free_links); 748 749 list_add(&desc->node, &chan->free); 750 spin_unlock_irqrestore(&chan->lock, flags); 751 } 752 753 static void nbpf_scan_acked(struct nbpf_channel *chan) 754 { 755 struct nbpf_desc *desc, *tmp; 756 unsigned long flags; 757 LIST_HEAD(head); 758 759 spin_lock_irqsave(&chan->lock, flags); 760 list_for_each_entry_safe(desc, tmp, &chan->done, node) 761 if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) { 762 list_move(&desc->node, &head); 763 desc->user_wait = false; 764 } 765 spin_unlock_irqrestore(&chan->lock, flags); 766 767 list_for_each_entry_safe(desc, tmp, &head, node) { 768 list_del(&desc->node); 769 nbpf_desc_put(desc); 770 } 771 } 772 773 /* 774 * We have to allocate descriptors with the channel lock dropped. This means, 775 * before we re-acquire the lock buffers can be taken already, so we have to 776 * re-check after re-acquiring the lock and possibly retry, if buffers are gone 777 * again. 778 */ 779 static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len) 780 { 781 struct nbpf_desc *desc = NULL; 782 struct nbpf_link_desc *ldesc, *prev = NULL; 783 784 nbpf_scan_acked(chan); 785 786 spin_lock_irq(&chan->lock); 787 788 do { 789 int i = 0, ret; 790 791 if (list_empty(&chan->free)) { 792 /* No more free descriptors */ 793 spin_unlock_irq(&chan->lock); 794 ret = nbpf_desc_page_alloc(chan); 795 if (ret < 0) 796 return NULL; 797 spin_lock_irq(&chan->lock); 798 continue; 799 } 800 desc = list_first_entry(&chan->free, struct nbpf_desc, node); 801 list_del(&desc->node); 802 803 do { 804 if (list_empty(&chan->free_links)) { 805 /* No more free link descriptors */ 806 spin_unlock_irq(&chan->lock); 807 ret = nbpf_desc_page_alloc(chan); 808 if (ret < 0) { 809 nbpf_desc_put(desc); 810 return NULL; 811 } 812 spin_lock_irq(&chan->lock); 813 continue; 814 } 815 816 ldesc = list_first_entry(&chan->free_links, 817 struct nbpf_link_desc, node); 818 ldesc->desc = desc; 819 if (prev) 820 prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr; 821 822 prev = ldesc; 823 list_move_tail(&ldesc->node, &desc->sg); 824 825 i++; 826 } while (i < len); 827 } while (!desc); 828 829 prev->hwdesc->next = 0; 830 831 spin_unlock_irq(&chan->lock); 832 833 return desc; 834 } 835 836 static void nbpf_chan_idle(struct nbpf_channel *chan) 837 { 838 struct nbpf_desc *desc, *tmp; 839 unsigned long flags; 840 LIST_HEAD(head); 841 842 spin_lock_irqsave(&chan->lock, flags); 843 844 list_splice_init(&chan->done, &head); 845 list_splice_init(&chan->active, &head); 846 list_splice_init(&chan->queued, &head); 847 848 chan->running = NULL; 849 850 spin_unlock_irqrestore(&chan->lock, flags); 851 852 list_for_each_entry_safe(desc, tmp, &head, node) { 853 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n", 854 __func__, desc, desc->async_tx.cookie); 855 list_del(&desc->node); 856 nbpf_desc_put(desc); 857 } 858 } 859 860 static int nbpf_pause(struct dma_chan *dchan) 861 { 862 struct nbpf_channel *chan = nbpf_to_chan(dchan); 863 864 dev_dbg(dchan->device->dev, "Entry %s\n", __func__); 865 866 chan->paused = true; 867 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS); 868 /* See comment in nbpf_prep_one() */ 869 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN); 870 871 return 0; 872 } 873 874 static int nbpf_terminate_all(struct dma_chan *dchan) 875 { 876 struct nbpf_channel *chan = nbpf_to_chan(dchan); 877 878 dev_dbg(dchan->device->dev, "Entry %s\n", __func__); 879 dev_dbg(dchan->device->dev, "Terminating\n"); 880 881 nbpf_chan_halt(chan); 882 nbpf_chan_idle(chan); 883 884 return 0; 885 } 886 887 static int nbpf_config(struct dma_chan *dchan, 888 struct dma_slave_config *config) 889 { 890 struct nbpf_channel *chan = nbpf_to_chan(dchan); 891 892 dev_dbg(dchan->device->dev, "Entry %s\n", __func__); 893 894 /* 895 * We could check config->slave_id to match chan->terminal here, 896 * but with DT they would be coming from the same source, so 897 * such a check would be superflous 898 */ 899 900 chan->slave_dst_addr = config->dst_addr; 901 chan->slave_dst_width = nbpf_xfer_size(chan->nbpf, 902 config->dst_addr_width, 1); 903 chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf, 904 config->dst_addr_width, 905 config->dst_maxburst); 906 chan->slave_src_addr = config->src_addr; 907 chan->slave_src_width = nbpf_xfer_size(chan->nbpf, 908 config->src_addr_width, 1); 909 chan->slave_src_burst = nbpf_xfer_size(chan->nbpf, 910 config->src_addr_width, 911 config->src_maxburst); 912 913 return 0; 914 } 915 916 static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan, 917 struct scatterlist *src_sg, struct scatterlist *dst_sg, 918 size_t len, enum dma_transfer_direction direction, 919 unsigned long flags) 920 { 921 struct nbpf_link_desc *ldesc; 922 struct scatterlist *mem_sg; 923 struct nbpf_desc *desc; 924 bool inc_src, inc_dst; 925 size_t data_len = 0; 926 int i = 0; 927 928 switch (direction) { 929 case DMA_DEV_TO_MEM: 930 mem_sg = dst_sg; 931 inc_src = false; 932 inc_dst = true; 933 break; 934 935 case DMA_MEM_TO_DEV: 936 mem_sg = src_sg; 937 inc_src = true; 938 inc_dst = false; 939 break; 940 941 default: 942 case DMA_MEM_TO_MEM: 943 mem_sg = src_sg; 944 inc_src = true; 945 inc_dst = true; 946 } 947 948 desc = nbpf_desc_get(chan, len); 949 if (!desc) 950 return NULL; 951 952 desc->async_tx.flags = flags; 953 desc->async_tx.cookie = -EBUSY; 954 desc->user_wait = false; 955 956 /* 957 * This is a private descriptor list, and we own the descriptor. No need 958 * to lock. 959 */ 960 list_for_each_entry(ldesc, &desc->sg, node) { 961 int ret = nbpf_prep_one(ldesc, direction, 962 sg_dma_address(src_sg), 963 sg_dma_address(dst_sg), 964 sg_dma_len(mem_sg), 965 i == len - 1); 966 if (ret < 0) { 967 nbpf_desc_put(desc); 968 return NULL; 969 } 970 data_len += sg_dma_len(mem_sg); 971 if (inc_src) 972 src_sg = sg_next(src_sg); 973 if (inc_dst) 974 dst_sg = sg_next(dst_sg); 975 mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg; 976 i++; 977 } 978 979 desc->length = data_len; 980 981 /* The user has to return the descriptor to us ASAP via .tx_submit() */ 982 return &desc->async_tx; 983 } 984 985 static struct dma_async_tx_descriptor *nbpf_prep_memcpy( 986 struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src, 987 size_t len, unsigned long flags) 988 { 989 struct nbpf_channel *chan = nbpf_to_chan(dchan); 990 struct scatterlist dst_sg; 991 struct scatterlist src_sg; 992 993 sg_init_table(&dst_sg, 1); 994 sg_init_table(&src_sg, 1); 995 996 sg_dma_address(&dst_sg) = dst; 997 sg_dma_address(&src_sg) = src; 998 999 sg_dma_len(&dst_sg) = len; 1000 sg_dma_len(&src_sg) = len; 1001 1002 dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n", 1003 __func__, len, &src, &dst); 1004 1005 return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1, 1006 DMA_MEM_TO_MEM, flags); 1007 } 1008 1009 static struct dma_async_tx_descriptor *nbpf_prep_slave_sg( 1010 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len, 1011 enum dma_transfer_direction direction, unsigned long flags, void *context) 1012 { 1013 struct nbpf_channel *chan = nbpf_to_chan(dchan); 1014 struct scatterlist slave_sg; 1015 1016 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__); 1017 1018 sg_init_table(&slave_sg, 1); 1019 1020 switch (direction) { 1021 case DMA_MEM_TO_DEV: 1022 sg_dma_address(&slave_sg) = chan->slave_dst_addr; 1023 return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len, 1024 direction, flags); 1025 1026 case DMA_DEV_TO_MEM: 1027 sg_dma_address(&slave_sg) = chan->slave_src_addr; 1028 return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len, 1029 direction, flags); 1030 1031 default: 1032 return NULL; 1033 } 1034 } 1035 1036 static int nbpf_alloc_chan_resources(struct dma_chan *dchan) 1037 { 1038 struct nbpf_channel *chan = nbpf_to_chan(dchan); 1039 int ret; 1040 1041 INIT_LIST_HEAD(&chan->free); 1042 INIT_LIST_HEAD(&chan->free_links); 1043 INIT_LIST_HEAD(&chan->queued); 1044 INIT_LIST_HEAD(&chan->active); 1045 INIT_LIST_HEAD(&chan->done); 1046 1047 ret = nbpf_desc_page_alloc(chan); 1048 if (ret < 0) 1049 return ret; 1050 1051 dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__, 1052 chan->terminal); 1053 1054 nbpf_chan_configure(chan); 1055 1056 return ret; 1057 } 1058 1059 static void nbpf_free_chan_resources(struct dma_chan *dchan) 1060 { 1061 struct nbpf_channel *chan = nbpf_to_chan(dchan); 1062 struct nbpf_desc_page *dpage, *tmp; 1063 1064 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__); 1065 1066 nbpf_chan_halt(chan); 1067 nbpf_chan_idle(chan); 1068 /* Clean up for if a channel is re-used for MEMCPY after slave DMA */ 1069 nbpf_chan_prepare_default(chan); 1070 1071 list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) { 1072 struct nbpf_link_desc *ldesc; 1073 int i; 1074 list_del(&dpage->node); 1075 for (i = 0, ldesc = dpage->ldesc; 1076 i < ARRAY_SIZE(dpage->ldesc); 1077 i++, ldesc++) 1078 dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr, 1079 sizeof(*ldesc->hwdesc), DMA_TO_DEVICE); 1080 free_page((unsigned long)dpage); 1081 } 1082 } 1083 1084 static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec, 1085 struct of_dma *ofdma) 1086 { 1087 struct nbpf_device *nbpf = ofdma->of_dma_data; 1088 struct dma_chan *dchan; 1089 struct nbpf_channel *chan; 1090 1091 if (dma_spec->args_count != 2) 1092 return NULL; 1093 1094 dchan = dma_get_any_slave_channel(&nbpf->dma_dev); 1095 if (!dchan) 1096 return NULL; 1097 1098 dev_dbg(dchan->device->dev, "Entry %s(%s)\n", __func__, 1099 dma_spec->np->name); 1100 1101 chan = nbpf_to_chan(dchan); 1102 1103 chan->terminal = dma_spec->args[0]; 1104 chan->flags = dma_spec->args[1]; 1105 1106 nbpf_chan_prepare(chan); 1107 nbpf_chan_configure(chan); 1108 1109 return dchan; 1110 } 1111 1112 static void nbpf_chan_tasklet(unsigned long data) 1113 { 1114 struct nbpf_channel *chan = (struct nbpf_channel *)data; 1115 struct nbpf_desc *desc, *tmp; 1116 struct dmaengine_desc_callback cb; 1117 1118 while (!list_empty(&chan->done)) { 1119 bool found = false, must_put, recycling = false; 1120 1121 spin_lock_irq(&chan->lock); 1122 1123 list_for_each_entry_safe(desc, tmp, &chan->done, node) { 1124 if (!desc->user_wait) { 1125 /* Newly completed descriptor, have to process */ 1126 found = true; 1127 break; 1128 } else if (async_tx_test_ack(&desc->async_tx)) { 1129 /* 1130 * This descriptor was waiting for a user ACK, 1131 * it can be recycled now. 1132 */ 1133 list_del(&desc->node); 1134 spin_unlock_irq(&chan->lock); 1135 nbpf_desc_put(desc); 1136 recycling = true; 1137 break; 1138 } 1139 } 1140 1141 if (recycling) 1142 continue; 1143 1144 if (!found) { 1145 /* This can happen if TERMINATE_ALL has been called */ 1146 spin_unlock_irq(&chan->lock); 1147 break; 1148 } 1149 1150 dma_cookie_complete(&desc->async_tx); 1151 1152 /* 1153 * With released lock we cannot dereference desc, maybe it's 1154 * still on the "done" list 1155 */ 1156 if (async_tx_test_ack(&desc->async_tx)) { 1157 list_del(&desc->node); 1158 must_put = true; 1159 } else { 1160 desc->user_wait = true; 1161 must_put = false; 1162 } 1163 1164 dmaengine_desc_get_callback(&desc->async_tx, &cb); 1165 1166 /* ack and callback completed descriptor */ 1167 spin_unlock_irq(&chan->lock); 1168 1169 dmaengine_desc_callback_invoke(&cb, NULL); 1170 1171 if (must_put) 1172 nbpf_desc_put(desc); 1173 } 1174 } 1175 1176 static irqreturn_t nbpf_chan_irq(int irq, void *dev) 1177 { 1178 struct nbpf_channel *chan = dev; 1179 bool done = nbpf_status_get(chan); 1180 struct nbpf_desc *desc; 1181 irqreturn_t ret; 1182 bool bh = false; 1183 1184 if (!done) 1185 return IRQ_NONE; 1186 1187 nbpf_status_ack(chan); 1188 1189 dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__); 1190 1191 spin_lock(&chan->lock); 1192 desc = chan->running; 1193 if (WARN_ON(!desc)) { 1194 ret = IRQ_NONE; 1195 goto unlock; 1196 } else { 1197 ret = IRQ_HANDLED; 1198 bh = true; 1199 } 1200 1201 list_move_tail(&desc->node, &chan->done); 1202 chan->running = NULL; 1203 1204 if (!list_empty(&chan->active)) { 1205 desc = list_first_entry(&chan->active, 1206 struct nbpf_desc, node); 1207 if (!nbpf_start(desc)) 1208 chan->running = desc; 1209 } 1210 1211 unlock: 1212 spin_unlock(&chan->lock); 1213 1214 if (bh) 1215 tasklet_schedule(&chan->tasklet); 1216 1217 return ret; 1218 } 1219 1220 static irqreturn_t nbpf_err_irq(int irq, void *dev) 1221 { 1222 struct nbpf_device *nbpf = dev; 1223 u32 error = nbpf_error_get(nbpf); 1224 1225 dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq); 1226 1227 if (!error) 1228 return IRQ_NONE; 1229 1230 do { 1231 struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error); 1232 /* On error: abort all queued transfers, no callback */ 1233 nbpf_error_clear(chan); 1234 nbpf_chan_idle(chan); 1235 error = nbpf_error_get(nbpf); 1236 } while (error); 1237 1238 return IRQ_HANDLED; 1239 } 1240 1241 static int nbpf_chan_probe(struct nbpf_device *nbpf, int n) 1242 { 1243 struct dma_device *dma_dev = &nbpf->dma_dev; 1244 struct nbpf_channel *chan = nbpf->chan + n; 1245 int ret; 1246 1247 chan->nbpf = nbpf; 1248 chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n; 1249 INIT_LIST_HEAD(&chan->desc_page); 1250 spin_lock_init(&chan->lock); 1251 chan->dma_chan.device = dma_dev; 1252 dma_cookie_init(&chan->dma_chan); 1253 nbpf_chan_prepare_default(chan); 1254 1255 dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base); 1256 1257 snprintf(chan->name, sizeof(chan->name), "nbpf %d", n); 1258 1259 tasklet_init(&chan->tasklet, nbpf_chan_tasklet, (unsigned long)chan); 1260 ret = devm_request_irq(dma_dev->dev, chan->irq, 1261 nbpf_chan_irq, IRQF_SHARED, 1262 chan->name, chan); 1263 if (ret < 0) 1264 return ret; 1265 1266 /* Add the channel to DMA device channel list */ 1267 list_add_tail(&chan->dma_chan.device_node, 1268 &dma_dev->channels); 1269 1270 return 0; 1271 } 1272 1273 static const struct of_device_id nbpf_match[] = { 1274 {.compatible = "renesas,nbpfaxi64dmac1b4", .data = &nbpf_cfg[NBPF1B4]}, 1275 {.compatible = "renesas,nbpfaxi64dmac1b8", .data = &nbpf_cfg[NBPF1B8]}, 1276 {.compatible = "renesas,nbpfaxi64dmac1b16", .data = &nbpf_cfg[NBPF1B16]}, 1277 {.compatible = "renesas,nbpfaxi64dmac4b4", .data = &nbpf_cfg[NBPF4B4]}, 1278 {.compatible = "renesas,nbpfaxi64dmac4b8", .data = &nbpf_cfg[NBPF4B8]}, 1279 {.compatible = "renesas,nbpfaxi64dmac4b16", .data = &nbpf_cfg[NBPF4B16]}, 1280 {.compatible = "renesas,nbpfaxi64dmac8b4", .data = &nbpf_cfg[NBPF8B4]}, 1281 {.compatible = "renesas,nbpfaxi64dmac8b8", .data = &nbpf_cfg[NBPF8B8]}, 1282 {.compatible = "renesas,nbpfaxi64dmac8b16", .data = &nbpf_cfg[NBPF8B16]}, 1283 {} 1284 }; 1285 MODULE_DEVICE_TABLE(of, nbpf_match); 1286 1287 static int nbpf_probe(struct platform_device *pdev) 1288 { 1289 struct device *dev = &pdev->dev; 1290 struct device_node *np = dev->of_node; 1291 struct nbpf_device *nbpf; 1292 struct dma_device *dma_dev; 1293 struct resource *iomem, *irq_res; 1294 const struct nbpf_config *cfg; 1295 int num_channels; 1296 int ret, irq, eirq, i; 1297 int irqbuf[9] /* maximum 8 channels + error IRQ */; 1298 unsigned int irqs = 0; 1299 1300 BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE); 1301 1302 /* DT only */ 1303 if (!np) 1304 return -ENODEV; 1305 1306 cfg = of_device_get_match_data(dev); 1307 num_channels = cfg->num_channels; 1308 1309 nbpf = devm_kzalloc(dev, struct_size(nbpf, chan, num_channels), 1310 GFP_KERNEL); 1311 if (!nbpf) 1312 return -ENOMEM; 1313 1314 dma_dev = &nbpf->dma_dev; 1315 dma_dev->dev = dev; 1316 1317 iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1318 nbpf->base = devm_ioremap_resource(dev, iomem); 1319 if (IS_ERR(nbpf->base)) 1320 return PTR_ERR(nbpf->base); 1321 1322 nbpf->clk = devm_clk_get(dev, NULL); 1323 if (IS_ERR(nbpf->clk)) 1324 return PTR_ERR(nbpf->clk); 1325 1326 of_property_read_u32(np, "max-burst-mem-read", 1327 &nbpf->max_burst_mem_read); 1328 of_property_read_u32(np, "max-burst-mem-write", 1329 &nbpf->max_burst_mem_write); 1330 1331 nbpf->config = cfg; 1332 1333 for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) { 1334 irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, i); 1335 if (!irq_res) 1336 break; 1337 1338 for (irq = irq_res->start; irq <= irq_res->end; 1339 irq++, irqs++) 1340 irqbuf[irqs] = irq; 1341 } 1342 1343 /* 1344 * 3 IRQ resource schemes are supported: 1345 * 1. 1 shared IRQ for error and all channels 1346 * 2. 2 IRQs: one for error and one shared for all channels 1347 * 3. 1 IRQ for error and an own IRQ for each channel 1348 */ 1349 if (irqs != 1 && irqs != 2 && irqs != num_channels + 1) 1350 return -ENXIO; 1351 1352 if (irqs == 1) { 1353 eirq = irqbuf[0]; 1354 1355 for (i = 0; i <= num_channels; i++) 1356 nbpf->chan[i].irq = irqbuf[0]; 1357 } else { 1358 eirq = platform_get_irq_byname(pdev, "error"); 1359 if (eirq < 0) 1360 return eirq; 1361 1362 if (irqs == num_channels + 1) { 1363 struct nbpf_channel *chan; 1364 1365 for (i = 0, chan = nbpf->chan; i <= num_channels; 1366 i++, chan++) { 1367 /* Skip the error IRQ */ 1368 if (irqbuf[i] == eirq) 1369 i++; 1370 chan->irq = irqbuf[i]; 1371 } 1372 1373 if (chan != nbpf->chan + num_channels) 1374 return -EINVAL; 1375 } else { 1376 /* 2 IRQs and more than one channel */ 1377 if (irqbuf[0] == eirq) 1378 irq = irqbuf[1]; 1379 else 1380 irq = irqbuf[0]; 1381 1382 for (i = 0; i <= num_channels; i++) 1383 nbpf->chan[i].irq = irq; 1384 } 1385 } 1386 1387 ret = devm_request_irq(dev, eirq, nbpf_err_irq, 1388 IRQF_SHARED, "dma error", nbpf); 1389 if (ret < 0) 1390 return ret; 1391 nbpf->eirq = eirq; 1392 1393 INIT_LIST_HEAD(&dma_dev->channels); 1394 1395 /* Create DMA Channel */ 1396 for (i = 0; i < num_channels; i++) { 1397 ret = nbpf_chan_probe(nbpf, i); 1398 if (ret < 0) 1399 return ret; 1400 } 1401 1402 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask); 1403 dma_cap_set(DMA_SLAVE, dma_dev->cap_mask); 1404 dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask); 1405 1406 /* Common and MEMCPY operations */ 1407 dma_dev->device_alloc_chan_resources 1408 = nbpf_alloc_chan_resources; 1409 dma_dev->device_free_chan_resources = nbpf_free_chan_resources; 1410 dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy; 1411 dma_dev->device_tx_status = nbpf_tx_status; 1412 dma_dev->device_issue_pending = nbpf_issue_pending; 1413 1414 /* 1415 * If we drop support for unaligned MEMCPY buffer addresses and / or 1416 * lengths by setting 1417 * dma_dev->copy_align = 4; 1418 * then we can set transfer length to 4 bytes in nbpf_prep_one() for 1419 * DMA_MEM_TO_MEM 1420 */ 1421 1422 /* Compulsory for DMA_SLAVE fields */ 1423 dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg; 1424 dma_dev->device_config = nbpf_config; 1425 dma_dev->device_pause = nbpf_pause; 1426 dma_dev->device_terminate_all = nbpf_terminate_all; 1427 1428 dma_dev->src_addr_widths = NBPF_DMA_BUSWIDTHS; 1429 dma_dev->dst_addr_widths = NBPF_DMA_BUSWIDTHS; 1430 dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1431 1432 platform_set_drvdata(pdev, nbpf); 1433 1434 ret = clk_prepare_enable(nbpf->clk); 1435 if (ret < 0) 1436 return ret; 1437 1438 nbpf_configure(nbpf); 1439 1440 ret = dma_async_device_register(dma_dev); 1441 if (ret < 0) 1442 goto e_clk_off; 1443 1444 ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf); 1445 if (ret < 0) 1446 goto e_dma_dev_unreg; 1447 1448 return 0; 1449 1450 e_dma_dev_unreg: 1451 dma_async_device_unregister(dma_dev); 1452 e_clk_off: 1453 clk_disable_unprepare(nbpf->clk); 1454 1455 return ret; 1456 } 1457 1458 static int nbpf_remove(struct platform_device *pdev) 1459 { 1460 struct nbpf_device *nbpf = platform_get_drvdata(pdev); 1461 int i; 1462 1463 devm_free_irq(&pdev->dev, nbpf->eirq, nbpf); 1464 1465 for (i = 0; i < nbpf->config->num_channels; i++) { 1466 struct nbpf_channel *chan = nbpf->chan + i; 1467 1468 devm_free_irq(&pdev->dev, chan->irq, chan); 1469 1470 tasklet_kill(&chan->tasklet); 1471 } 1472 1473 of_dma_controller_free(pdev->dev.of_node); 1474 dma_async_device_unregister(&nbpf->dma_dev); 1475 clk_disable_unprepare(nbpf->clk); 1476 1477 return 0; 1478 } 1479 1480 static const struct platform_device_id nbpf_ids[] = { 1481 {"nbpfaxi64dmac1b4", (kernel_ulong_t)&nbpf_cfg[NBPF1B4]}, 1482 {"nbpfaxi64dmac1b8", (kernel_ulong_t)&nbpf_cfg[NBPF1B8]}, 1483 {"nbpfaxi64dmac1b16", (kernel_ulong_t)&nbpf_cfg[NBPF1B16]}, 1484 {"nbpfaxi64dmac4b4", (kernel_ulong_t)&nbpf_cfg[NBPF4B4]}, 1485 {"nbpfaxi64dmac4b8", (kernel_ulong_t)&nbpf_cfg[NBPF4B8]}, 1486 {"nbpfaxi64dmac4b16", (kernel_ulong_t)&nbpf_cfg[NBPF4B16]}, 1487 {"nbpfaxi64dmac8b4", (kernel_ulong_t)&nbpf_cfg[NBPF8B4]}, 1488 {"nbpfaxi64dmac8b8", (kernel_ulong_t)&nbpf_cfg[NBPF8B8]}, 1489 {"nbpfaxi64dmac8b16", (kernel_ulong_t)&nbpf_cfg[NBPF8B16]}, 1490 {}, 1491 }; 1492 MODULE_DEVICE_TABLE(platform, nbpf_ids); 1493 1494 #ifdef CONFIG_PM 1495 static int nbpf_runtime_suspend(struct device *dev) 1496 { 1497 struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev)); 1498 clk_disable_unprepare(nbpf->clk); 1499 return 0; 1500 } 1501 1502 static int nbpf_runtime_resume(struct device *dev) 1503 { 1504 struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev)); 1505 return clk_prepare_enable(nbpf->clk); 1506 } 1507 #endif 1508 1509 static const struct dev_pm_ops nbpf_pm_ops = { 1510 SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL) 1511 }; 1512 1513 static struct platform_driver nbpf_driver = { 1514 .driver = { 1515 .name = "dma-nbpf", 1516 .of_match_table = nbpf_match, 1517 .pm = &nbpf_pm_ops, 1518 }, 1519 .id_table = nbpf_ids, 1520 .probe = nbpf_probe, 1521 .remove = nbpf_remove, 1522 }; 1523 1524 module_platform_driver(nbpf_driver); 1525 1526 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>"); 1527 MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs"); 1528 MODULE_LICENSE("GPL v2"); 1529