1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd. 4 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de> 5 */ 6 7 #include <linux/bitmap.h> 8 #include <linux/bitops.h> 9 #include <linux/clk.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/dmaengine.h> 12 #include <linux/err.h> 13 #include <linux/interrupt.h> 14 #include <linux/io.h> 15 #include <linux/log2.h> 16 #include <linux/module.h> 17 #include <linux/of.h> 18 #include <linux/of_device.h> 19 #include <linux/of_dma.h> 20 #include <linux/platform_device.h> 21 #include <linux/slab.h> 22 23 #include <dt-bindings/dma/nbpfaxi.h> 24 25 #include "dmaengine.h" 26 27 #define NBPF_REG_CHAN_OFFSET 0 28 #define NBPF_REG_CHAN_SIZE 0x40 29 30 /* Channel Current Transaction Byte register */ 31 #define NBPF_CHAN_CUR_TR_BYTE 0x20 32 33 /* Channel Status register */ 34 #define NBPF_CHAN_STAT 0x24 35 #define NBPF_CHAN_STAT_EN 1 36 #define NBPF_CHAN_STAT_TACT 4 37 #define NBPF_CHAN_STAT_ERR 0x10 38 #define NBPF_CHAN_STAT_END 0x20 39 #define NBPF_CHAN_STAT_TC 0x40 40 #define NBPF_CHAN_STAT_DER 0x400 41 42 /* Channel Control register */ 43 #define NBPF_CHAN_CTRL 0x28 44 #define NBPF_CHAN_CTRL_SETEN 1 45 #define NBPF_CHAN_CTRL_CLREN 2 46 #define NBPF_CHAN_CTRL_STG 4 47 #define NBPF_CHAN_CTRL_SWRST 8 48 #define NBPF_CHAN_CTRL_CLRRQ 0x10 49 #define NBPF_CHAN_CTRL_CLREND 0x20 50 #define NBPF_CHAN_CTRL_CLRTC 0x40 51 #define NBPF_CHAN_CTRL_SETSUS 0x100 52 #define NBPF_CHAN_CTRL_CLRSUS 0x200 53 54 /* Channel Configuration register */ 55 #define NBPF_CHAN_CFG 0x2c 56 #define NBPF_CHAN_CFG_SEL 7 /* terminal SELect: 0..7 */ 57 #define NBPF_CHAN_CFG_REQD 8 /* REQuest Direction: DMAREQ is 0: input, 1: output */ 58 #define NBPF_CHAN_CFG_LOEN 0x10 /* LOw ENable: low DMA request line is: 0: inactive, 1: active */ 59 #define NBPF_CHAN_CFG_HIEN 0x20 /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */ 60 #define NBPF_CHAN_CFG_LVL 0x40 /* LeVeL: DMA request line is sensed as 0: edge, 1: level */ 61 #define NBPF_CHAN_CFG_AM 0x700 /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */ 62 #define NBPF_CHAN_CFG_SDS 0xf000 /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */ 63 #define NBPF_CHAN_CFG_DDS 0xf0000 /* Destination Data Size: as above */ 64 #define NBPF_CHAN_CFG_SAD 0x100000 /* Source ADdress counting: 0: increment, 1: fixed */ 65 #define NBPF_CHAN_CFG_DAD 0x200000 /* Destination ADdress counting: 0: increment, 1: fixed */ 66 #define NBPF_CHAN_CFG_TM 0x400000 /* Transfer Mode: 0: single, 1: block TM */ 67 #define NBPF_CHAN_CFG_DEM 0x1000000 /* DMAEND interrupt Mask */ 68 #define NBPF_CHAN_CFG_TCM 0x2000000 /* DMATCO interrupt Mask */ 69 #define NBPF_CHAN_CFG_SBE 0x8000000 /* Sweep Buffer Enable */ 70 #define NBPF_CHAN_CFG_RSEL 0x10000000 /* RM: Register Set sELect */ 71 #define NBPF_CHAN_CFG_RSW 0x20000000 /* RM: Register Select sWitch */ 72 #define NBPF_CHAN_CFG_REN 0x40000000 /* RM: Register Set Enable */ 73 #define NBPF_CHAN_CFG_DMS 0x80000000 /* 0: register mode (RM), 1: link mode (LM) */ 74 75 #define NBPF_CHAN_NXLA 0x38 76 #define NBPF_CHAN_CRLA 0x3c 77 78 /* Link Header field */ 79 #define NBPF_HEADER_LV 1 80 #define NBPF_HEADER_LE 2 81 #define NBPF_HEADER_WBD 4 82 #define NBPF_HEADER_DIM 8 83 84 #define NBPF_CTRL 0x300 85 #define NBPF_CTRL_PR 1 /* 0: fixed priority, 1: round robin */ 86 #define NBPF_CTRL_LVINT 2 /* DMAEND and DMAERR signalling: 0: pulse, 1: level */ 87 88 #define NBPF_DSTAT_ER 0x314 89 #define NBPF_DSTAT_END 0x318 90 91 #define NBPF_DMA_BUSWIDTHS \ 92 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ 93 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 94 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 95 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ 96 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)) 97 98 struct nbpf_config { 99 int num_channels; 100 int buffer_size; 101 }; 102 103 /* 104 * We've got 3 types of objects, used to describe DMA transfers: 105 * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object 106 * in it, used to communicate with the user 107 * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer 108 * queuing, these must be DMAable, using either the streaming DMA API or 109 * allocated from coherent memory - one per SG segment 110 * 3. one per SG segment descriptors, used to manage HW link descriptors from 111 * (2). They do not have to be DMAable. They can either be (a) allocated 112 * together with link descriptors as mixed (DMA / CPU) objects, or (b) 113 * separately. Even if allocated separately it would be best to link them 114 * to link descriptors once during channel resource allocation and always 115 * use them as a single object. 116 * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be 117 * treated as a single SG segment descriptor. 118 */ 119 120 struct nbpf_link_reg { 121 u32 header; 122 u32 src_addr; 123 u32 dst_addr; 124 u32 transaction_size; 125 u32 config; 126 u32 interval; 127 u32 extension; 128 u32 next; 129 } __packed; 130 131 struct nbpf_device; 132 struct nbpf_channel; 133 struct nbpf_desc; 134 135 struct nbpf_link_desc { 136 struct nbpf_link_reg *hwdesc; 137 dma_addr_t hwdesc_dma_addr; 138 struct nbpf_desc *desc; 139 struct list_head node; 140 }; 141 142 /** 143 * struct nbpf_desc - DMA transfer descriptor 144 * @async_tx: dmaengine object 145 * @user_wait: waiting for a user ack 146 * @length: total transfer length 147 * @chan: associated DMAC channel 148 * @sg: list of hardware descriptors, represented by struct nbpf_link_desc 149 * @node: member in channel descriptor lists 150 */ 151 struct nbpf_desc { 152 struct dma_async_tx_descriptor async_tx; 153 bool user_wait; 154 size_t length; 155 struct nbpf_channel *chan; 156 struct list_head sg; 157 struct list_head node; 158 }; 159 160 /* Take a wild guess: allocate 4 segments per descriptor */ 161 #define NBPF_SEGMENTS_PER_DESC 4 162 #define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) / \ 163 (sizeof(struct nbpf_desc) + \ 164 NBPF_SEGMENTS_PER_DESC * \ 165 (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg)))) 166 #define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE) 167 168 struct nbpf_desc_page { 169 struct list_head node; 170 struct nbpf_desc desc[NBPF_DESCS_PER_PAGE]; 171 struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE]; 172 struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE]; 173 }; 174 175 /** 176 * struct nbpf_channel - one DMAC channel 177 * @dma_chan: standard dmaengine channel object 178 * @tasklet: channel specific tasklet used for callbacks 179 * @base: register address base 180 * @nbpf: DMAC 181 * @name: IRQ name 182 * @irq: IRQ number 183 * @slave_src_addr: source address for slave DMA 184 * @slave_src_width: source slave data size in bytes 185 * @slave_src_burst: maximum source slave burst size in bytes 186 * @slave_dst_addr: destination address for slave DMA 187 * @slave_dst_width: destination slave data size in bytes 188 * @slave_dst_burst: maximum destination slave burst size in bytes 189 * @terminal: DMA terminal, assigned to this channel 190 * @dmarq_cfg: DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG 191 * @flags: configuration flags from DT 192 * @lock: protect descriptor lists 193 * @free_links: list of free link descriptors 194 * @free: list of free descriptors 195 * @queued: list of queued descriptors 196 * @active: list of descriptors, scheduled for processing 197 * @done: list of completed descriptors, waiting post-processing 198 * @desc_page: list of additionally allocated descriptor pages - if any 199 * @running: linked descriptor of running transaction 200 * @paused: are translations on this channel paused? 201 */ 202 struct nbpf_channel { 203 struct dma_chan dma_chan; 204 struct tasklet_struct tasklet; 205 void __iomem *base; 206 struct nbpf_device *nbpf; 207 char name[16]; 208 int irq; 209 dma_addr_t slave_src_addr; 210 size_t slave_src_width; 211 size_t slave_src_burst; 212 dma_addr_t slave_dst_addr; 213 size_t slave_dst_width; 214 size_t slave_dst_burst; 215 unsigned int terminal; 216 u32 dmarq_cfg; 217 unsigned long flags; 218 spinlock_t lock; 219 struct list_head free_links; 220 struct list_head free; 221 struct list_head queued; 222 struct list_head active; 223 struct list_head done; 224 struct list_head desc_page; 225 struct nbpf_desc *running; 226 bool paused; 227 }; 228 229 struct nbpf_device { 230 struct dma_device dma_dev; 231 void __iomem *base; 232 u32 max_burst_mem_read; 233 u32 max_burst_mem_write; 234 struct clk *clk; 235 const struct nbpf_config *config; 236 unsigned int eirq; 237 struct nbpf_channel chan[]; 238 }; 239 240 enum nbpf_model { 241 NBPF1B4, 242 NBPF1B8, 243 NBPF1B16, 244 NBPF4B4, 245 NBPF4B8, 246 NBPF4B16, 247 NBPF8B4, 248 NBPF8B8, 249 NBPF8B16, 250 }; 251 252 static struct nbpf_config nbpf_cfg[] = { 253 [NBPF1B4] = { 254 .num_channels = 1, 255 .buffer_size = 4, 256 }, 257 [NBPF1B8] = { 258 .num_channels = 1, 259 .buffer_size = 8, 260 }, 261 [NBPF1B16] = { 262 .num_channels = 1, 263 .buffer_size = 16, 264 }, 265 [NBPF4B4] = { 266 .num_channels = 4, 267 .buffer_size = 4, 268 }, 269 [NBPF4B8] = { 270 .num_channels = 4, 271 .buffer_size = 8, 272 }, 273 [NBPF4B16] = { 274 .num_channels = 4, 275 .buffer_size = 16, 276 }, 277 [NBPF8B4] = { 278 .num_channels = 8, 279 .buffer_size = 4, 280 }, 281 [NBPF8B8] = { 282 .num_channels = 8, 283 .buffer_size = 8, 284 }, 285 [NBPF8B16] = { 286 .num_channels = 8, 287 .buffer_size = 16, 288 }, 289 }; 290 291 #define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan) 292 293 /* 294 * dmaengine drivers seem to have a lot in common and instead of sharing more 295 * code, they reimplement those common algorithms independently. In this driver 296 * we try to separate the hardware-specific part from the (largely) generic 297 * part. This improves code readability and makes it possible in the future to 298 * reuse the generic code in form of a helper library. That generic code should 299 * be suitable for various DMA controllers, using transfer descriptors in RAM 300 * and pushing one SG list at a time to the DMA controller. 301 */ 302 303 /* Hardware-specific part */ 304 305 static inline u32 nbpf_chan_read(struct nbpf_channel *chan, 306 unsigned int offset) 307 { 308 u32 data = ioread32(chan->base + offset); 309 dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n", 310 __func__, chan->base, offset, data); 311 return data; 312 } 313 314 static inline void nbpf_chan_write(struct nbpf_channel *chan, 315 unsigned int offset, u32 data) 316 { 317 iowrite32(data, chan->base + offset); 318 dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n", 319 __func__, chan->base, offset, data); 320 } 321 322 static inline u32 nbpf_read(struct nbpf_device *nbpf, 323 unsigned int offset) 324 { 325 u32 data = ioread32(nbpf->base + offset); 326 dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n", 327 __func__, nbpf->base, offset, data); 328 return data; 329 } 330 331 static inline void nbpf_write(struct nbpf_device *nbpf, 332 unsigned int offset, u32 data) 333 { 334 iowrite32(data, nbpf->base + offset); 335 dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n", 336 __func__, nbpf->base, offset, data); 337 } 338 339 static void nbpf_chan_halt(struct nbpf_channel *chan) 340 { 341 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN); 342 } 343 344 static bool nbpf_status_get(struct nbpf_channel *chan) 345 { 346 u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END); 347 348 return status & BIT(chan - chan->nbpf->chan); 349 } 350 351 static void nbpf_status_ack(struct nbpf_channel *chan) 352 { 353 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND); 354 } 355 356 static u32 nbpf_error_get(struct nbpf_device *nbpf) 357 { 358 return nbpf_read(nbpf, NBPF_DSTAT_ER); 359 } 360 361 static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error) 362 { 363 return nbpf->chan + __ffs(error); 364 } 365 366 static void nbpf_error_clear(struct nbpf_channel *chan) 367 { 368 u32 status; 369 int i; 370 371 /* Stop the channel, make sure DMA has been aborted */ 372 nbpf_chan_halt(chan); 373 374 for (i = 1000; i; i--) { 375 status = nbpf_chan_read(chan, NBPF_CHAN_STAT); 376 if (!(status & NBPF_CHAN_STAT_TACT)) 377 break; 378 cpu_relax(); 379 } 380 381 if (!i) 382 dev_err(chan->dma_chan.device->dev, 383 "%s(): abort timeout, channel status 0x%x\n", __func__, status); 384 385 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST); 386 } 387 388 static int nbpf_start(struct nbpf_desc *desc) 389 { 390 struct nbpf_channel *chan = desc->chan; 391 struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node); 392 393 nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr); 394 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS); 395 chan->paused = false; 396 397 /* Software trigger MEMCPY - only MEMCPY uses the block mode */ 398 if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM) 399 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG); 400 401 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__, 402 nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA)); 403 404 return 0; 405 } 406 407 static void nbpf_chan_prepare(struct nbpf_channel *chan) 408 { 409 chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) | 410 (chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) | 411 (chan->flags & NBPF_SLAVE_RQ_LEVEL ? 412 NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) | 413 chan->terminal; 414 } 415 416 static void nbpf_chan_prepare_default(struct nbpf_channel *chan) 417 { 418 /* Don't output DMAACK */ 419 chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400; 420 chan->terminal = 0; 421 chan->flags = 0; 422 } 423 424 static void nbpf_chan_configure(struct nbpf_channel *chan) 425 { 426 /* 427 * We assume, that only the link mode and DMA request line configuration 428 * have to be set in the configuration register manually. Dynamic 429 * per-transfer configuration will be loaded from transfer descriptors. 430 */ 431 nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg); 432 } 433 434 static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size, 435 enum dma_transfer_direction direction) 436 { 437 int max_burst = nbpf->config->buffer_size * 8; 438 439 if (nbpf->max_burst_mem_read || nbpf->max_burst_mem_write) { 440 switch (direction) { 441 case DMA_MEM_TO_MEM: 442 max_burst = min_not_zero(nbpf->max_burst_mem_read, 443 nbpf->max_burst_mem_write); 444 break; 445 case DMA_MEM_TO_DEV: 446 if (nbpf->max_burst_mem_read) 447 max_burst = nbpf->max_burst_mem_read; 448 break; 449 case DMA_DEV_TO_MEM: 450 if (nbpf->max_burst_mem_write) 451 max_burst = nbpf->max_burst_mem_write; 452 break; 453 case DMA_DEV_TO_DEV: 454 default: 455 break; 456 } 457 } 458 459 /* Maximum supported bursts depend on the buffer size */ 460 return min_t(int, __ffs(size), ilog2(max_burst)); 461 } 462 463 static size_t nbpf_xfer_size(struct nbpf_device *nbpf, 464 enum dma_slave_buswidth width, u32 burst) 465 { 466 size_t size; 467 468 if (!burst) 469 burst = 1; 470 471 switch (width) { 472 case DMA_SLAVE_BUSWIDTH_8_BYTES: 473 size = 8 * burst; 474 break; 475 476 case DMA_SLAVE_BUSWIDTH_4_BYTES: 477 size = 4 * burst; 478 break; 479 480 case DMA_SLAVE_BUSWIDTH_2_BYTES: 481 size = 2 * burst; 482 break; 483 484 default: 485 pr_warn("%s(): invalid bus width %u\n", __func__, width); 486 /* fall through */ 487 case DMA_SLAVE_BUSWIDTH_1_BYTE: 488 size = burst; 489 } 490 491 return nbpf_xfer_ds(nbpf, size, DMA_TRANS_NONE); 492 } 493 494 /* 495 * We need a way to recognise slaves, whose data is sent "raw" over the bus, 496 * i.e. it isn't known in advance how many bytes will be received. Therefore 497 * the slave driver has to provide a "large enough" buffer and either read the 498 * buffer, when it is full, or detect, that some data has arrived, then wait for 499 * a timeout, if no more data arrives - receive what's already there. We want to 500 * handle such slaves in a special way to allow an optimised mode for other 501 * users, for whom the amount of data is known in advance. So far there's no way 502 * to recognise such slaves. We use a data-width check to distinguish between 503 * the SD host and the PL011 UART. 504 */ 505 506 static int nbpf_prep_one(struct nbpf_link_desc *ldesc, 507 enum dma_transfer_direction direction, 508 dma_addr_t src, dma_addr_t dst, size_t size, bool last) 509 { 510 struct nbpf_link_reg *hwdesc = ldesc->hwdesc; 511 struct nbpf_desc *desc = ldesc->desc; 512 struct nbpf_channel *chan = desc->chan; 513 struct device *dev = chan->dma_chan.device->dev; 514 size_t mem_xfer, slave_xfer; 515 bool can_burst; 516 517 hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV | 518 (last ? NBPF_HEADER_LE : 0); 519 520 hwdesc->src_addr = src; 521 hwdesc->dst_addr = dst; 522 hwdesc->transaction_size = size; 523 524 /* 525 * set config: SAD, DAD, DDS, SDS, etc. 526 * Note on transfer sizes: the DMAC can perform unaligned DMA transfers, 527 * but it is important to have transaction size a multiple of both 528 * receiver and transmitter transfer sizes. It is also possible to use 529 * different RAM and device transfer sizes, and it does work well with 530 * some devices, e.g. with V08R07S01E SD host controllers, which can use 531 * 128 byte transfers. But this doesn't work with other devices, 532 * especially when the transaction size is unknown. This is the case, 533 * e.g. with serial drivers like amba-pl011.c. For reception it sets up 534 * the transaction size of 4K and if fewer bytes are received, it 535 * pauses DMA and reads out data received via DMA as well as those left 536 * in the Rx FIFO. For this to work with the RAM side using burst 537 * transfers we enable the SBE bit and terminate the transfer in our 538 * .device_pause handler. 539 */ 540 mem_xfer = nbpf_xfer_ds(chan->nbpf, size, direction); 541 542 switch (direction) { 543 case DMA_DEV_TO_MEM: 544 can_burst = chan->slave_src_width >= 3; 545 slave_xfer = min(mem_xfer, can_burst ? 546 chan->slave_src_burst : chan->slave_src_width); 547 /* 548 * Is the slave narrower than 64 bits, i.e. isn't using the full 549 * bus width and cannot use bursts? 550 */ 551 if (mem_xfer > chan->slave_src_burst && !can_burst) 552 mem_xfer = chan->slave_src_burst; 553 /* Device-to-RAM DMA is unreliable without REQD set */ 554 hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) | 555 (NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD | 556 NBPF_CHAN_CFG_SBE; 557 break; 558 559 case DMA_MEM_TO_DEV: 560 slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ? 561 chan->slave_dst_burst : chan->slave_dst_width); 562 hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) | 563 (NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD; 564 break; 565 566 case DMA_MEM_TO_MEM: 567 hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM | 568 (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) | 569 (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)); 570 break; 571 572 default: 573 return -EINVAL; 574 } 575 576 hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) | 577 NBPF_CHAN_CFG_DMS; 578 579 dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n", 580 __func__, &ldesc->hwdesc_dma_addr, hwdesc->header, 581 hwdesc->config, size, &src, &dst); 582 583 dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc), 584 DMA_TO_DEVICE); 585 586 return 0; 587 } 588 589 static size_t nbpf_bytes_left(struct nbpf_channel *chan) 590 { 591 return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE); 592 } 593 594 static void nbpf_configure(struct nbpf_device *nbpf) 595 { 596 nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT); 597 } 598 599 /* Generic part */ 600 601 /* DMA ENGINE functions */ 602 static void nbpf_issue_pending(struct dma_chan *dchan) 603 { 604 struct nbpf_channel *chan = nbpf_to_chan(dchan); 605 unsigned long flags; 606 607 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__); 608 609 spin_lock_irqsave(&chan->lock, flags); 610 if (list_empty(&chan->queued)) 611 goto unlock; 612 613 list_splice_tail_init(&chan->queued, &chan->active); 614 615 if (!chan->running) { 616 struct nbpf_desc *desc = list_first_entry(&chan->active, 617 struct nbpf_desc, node); 618 if (!nbpf_start(desc)) 619 chan->running = desc; 620 } 621 622 unlock: 623 spin_unlock_irqrestore(&chan->lock, flags); 624 } 625 626 static enum dma_status nbpf_tx_status(struct dma_chan *dchan, 627 dma_cookie_t cookie, struct dma_tx_state *state) 628 { 629 struct nbpf_channel *chan = nbpf_to_chan(dchan); 630 enum dma_status status = dma_cookie_status(dchan, cookie, state); 631 632 if (state) { 633 dma_cookie_t running; 634 unsigned long flags; 635 636 spin_lock_irqsave(&chan->lock, flags); 637 running = chan->running ? chan->running->async_tx.cookie : -EINVAL; 638 639 if (cookie == running) { 640 state->residue = nbpf_bytes_left(chan); 641 dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__, 642 state->residue); 643 } else if (status == DMA_IN_PROGRESS) { 644 struct nbpf_desc *desc; 645 bool found = false; 646 647 list_for_each_entry(desc, &chan->active, node) 648 if (desc->async_tx.cookie == cookie) { 649 found = true; 650 break; 651 } 652 653 if (!found) 654 list_for_each_entry(desc, &chan->queued, node) 655 if (desc->async_tx.cookie == cookie) { 656 found = true; 657 break; 658 659 } 660 661 state->residue = found ? desc->length : 0; 662 } 663 664 spin_unlock_irqrestore(&chan->lock, flags); 665 } 666 667 if (chan->paused) 668 status = DMA_PAUSED; 669 670 return status; 671 } 672 673 static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx) 674 { 675 struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx); 676 struct nbpf_channel *chan = desc->chan; 677 unsigned long flags; 678 dma_cookie_t cookie; 679 680 spin_lock_irqsave(&chan->lock, flags); 681 cookie = dma_cookie_assign(tx); 682 list_add_tail(&desc->node, &chan->queued); 683 spin_unlock_irqrestore(&chan->lock, flags); 684 685 dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie); 686 687 return cookie; 688 } 689 690 static int nbpf_desc_page_alloc(struct nbpf_channel *chan) 691 { 692 struct dma_chan *dchan = &chan->dma_chan; 693 struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA); 694 struct nbpf_link_desc *ldesc; 695 struct nbpf_link_reg *hwdesc; 696 struct nbpf_desc *desc; 697 LIST_HEAD(head); 698 LIST_HEAD(lhead); 699 int i; 700 struct device *dev = dchan->device->dev; 701 702 if (!dpage) 703 return -ENOMEM; 704 705 dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n", 706 __func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage)); 707 708 for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc; 709 i < ARRAY_SIZE(dpage->ldesc); 710 i++, ldesc++, hwdesc++) { 711 ldesc->hwdesc = hwdesc; 712 list_add_tail(&ldesc->node, &lhead); 713 ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev, 714 hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE); 715 716 dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__, 717 hwdesc, &ldesc->hwdesc_dma_addr); 718 } 719 720 for (i = 0, desc = dpage->desc; 721 i < ARRAY_SIZE(dpage->desc); 722 i++, desc++) { 723 dma_async_tx_descriptor_init(&desc->async_tx, dchan); 724 desc->async_tx.tx_submit = nbpf_tx_submit; 725 desc->chan = chan; 726 INIT_LIST_HEAD(&desc->sg); 727 list_add_tail(&desc->node, &head); 728 } 729 730 /* 731 * This function cannot be called from interrupt context, so, no need to 732 * save flags 733 */ 734 spin_lock_irq(&chan->lock); 735 list_splice_tail(&lhead, &chan->free_links); 736 list_splice_tail(&head, &chan->free); 737 list_add(&dpage->node, &chan->desc_page); 738 spin_unlock_irq(&chan->lock); 739 740 return ARRAY_SIZE(dpage->desc); 741 } 742 743 static void nbpf_desc_put(struct nbpf_desc *desc) 744 { 745 struct nbpf_channel *chan = desc->chan; 746 struct nbpf_link_desc *ldesc, *tmp; 747 unsigned long flags; 748 749 spin_lock_irqsave(&chan->lock, flags); 750 list_for_each_entry_safe(ldesc, tmp, &desc->sg, node) 751 list_move(&ldesc->node, &chan->free_links); 752 753 list_add(&desc->node, &chan->free); 754 spin_unlock_irqrestore(&chan->lock, flags); 755 } 756 757 static void nbpf_scan_acked(struct nbpf_channel *chan) 758 { 759 struct nbpf_desc *desc, *tmp; 760 unsigned long flags; 761 LIST_HEAD(head); 762 763 spin_lock_irqsave(&chan->lock, flags); 764 list_for_each_entry_safe(desc, tmp, &chan->done, node) 765 if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) { 766 list_move(&desc->node, &head); 767 desc->user_wait = false; 768 } 769 spin_unlock_irqrestore(&chan->lock, flags); 770 771 list_for_each_entry_safe(desc, tmp, &head, node) { 772 list_del(&desc->node); 773 nbpf_desc_put(desc); 774 } 775 } 776 777 /* 778 * We have to allocate descriptors with the channel lock dropped. This means, 779 * before we re-acquire the lock buffers can be taken already, so we have to 780 * re-check after re-acquiring the lock and possibly retry, if buffers are gone 781 * again. 782 */ 783 static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len) 784 { 785 struct nbpf_desc *desc = NULL; 786 struct nbpf_link_desc *ldesc, *prev = NULL; 787 788 nbpf_scan_acked(chan); 789 790 spin_lock_irq(&chan->lock); 791 792 do { 793 int i = 0, ret; 794 795 if (list_empty(&chan->free)) { 796 /* No more free descriptors */ 797 spin_unlock_irq(&chan->lock); 798 ret = nbpf_desc_page_alloc(chan); 799 if (ret < 0) 800 return NULL; 801 spin_lock_irq(&chan->lock); 802 continue; 803 } 804 desc = list_first_entry(&chan->free, struct nbpf_desc, node); 805 list_del(&desc->node); 806 807 do { 808 if (list_empty(&chan->free_links)) { 809 /* No more free link descriptors */ 810 spin_unlock_irq(&chan->lock); 811 ret = nbpf_desc_page_alloc(chan); 812 if (ret < 0) { 813 nbpf_desc_put(desc); 814 return NULL; 815 } 816 spin_lock_irq(&chan->lock); 817 continue; 818 } 819 820 ldesc = list_first_entry(&chan->free_links, 821 struct nbpf_link_desc, node); 822 ldesc->desc = desc; 823 if (prev) 824 prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr; 825 826 prev = ldesc; 827 list_move_tail(&ldesc->node, &desc->sg); 828 829 i++; 830 } while (i < len); 831 } while (!desc); 832 833 prev->hwdesc->next = 0; 834 835 spin_unlock_irq(&chan->lock); 836 837 return desc; 838 } 839 840 static void nbpf_chan_idle(struct nbpf_channel *chan) 841 { 842 struct nbpf_desc *desc, *tmp; 843 unsigned long flags; 844 LIST_HEAD(head); 845 846 spin_lock_irqsave(&chan->lock, flags); 847 848 list_splice_init(&chan->done, &head); 849 list_splice_init(&chan->active, &head); 850 list_splice_init(&chan->queued, &head); 851 852 chan->running = NULL; 853 854 spin_unlock_irqrestore(&chan->lock, flags); 855 856 list_for_each_entry_safe(desc, tmp, &head, node) { 857 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n", 858 __func__, desc, desc->async_tx.cookie); 859 list_del(&desc->node); 860 nbpf_desc_put(desc); 861 } 862 } 863 864 static int nbpf_pause(struct dma_chan *dchan) 865 { 866 struct nbpf_channel *chan = nbpf_to_chan(dchan); 867 868 dev_dbg(dchan->device->dev, "Entry %s\n", __func__); 869 870 chan->paused = true; 871 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS); 872 /* See comment in nbpf_prep_one() */ 873 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN); 874 875 return 0; 876 } 877 878 static int nbpf_terminate_all(struct dma_chan *dchan) 879 { 880 struct nbpf_channel *chan = nbpf_to_chan(dchan); 881 882 dev_dbg(dchan->device->dev, "Entry %s\n", __func__); 883 dev_dbg(dchan->device->dev, "Terminating\n"); 884 885 nbpf_chan_halt(chan); 886 nbpf_chan_idle(chan); 887 888 return 0; 889 } 890 891 static int nbpf_config(struct dma_chan *dchan, 892 struct dma_slave_config *config) 893 { 894 struct nbpf_channel *chan = nbpf_to_chan(dchan); 895 896 dev_dbg(dchan->device->dev, "Entry %s\n", __func__); 897 898 /* 899 * We could check config->slave_id to match chan->terminal here, 900 * but with DT they would be coming from the same source, so 901 * such a check would be superflous 902 */ 903 904 chan->slave_dst_addr = config->dst_addr; 905 chan->slave_dst_width = nbpf_xfer_size(chan->nbpf, 906 config->dst_addr_width, 1); 907 chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf, 908 config->dst_addr_width, 909 config->dst_maxburst); 910 chan->slave_src_addr = config->src_addr; 911 chan->slave_src_width = nbpf_xfer_size(chan->nbpf, 912 config->src_addr_width, 1); 913 chan->slave_src_burst = nbpf_xfer_size(chan->nbpf, 914 config->src_addr_width, 915 config->src_maxburst); 916 917 return 0; 918 } 919 920 static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan, 921 struct scatterlist *src_sg, struct scatterlist *dst_sg, 922 size_t len, enum dma_transfer_direction direction, 923 unsigned long flags) 924 { 925 struct nbpf_link_desc *ldesc; 926 struct scatterlist *mem_sg; 927 struct nbpf_desc *desc; 928 bool inc_src, inc_dst; 929 size_t data_len = 0; 930 int i = 0; 931 932 switch (direction) { 933 case DMA_DEV_TO_MEM: 934 mem_sg = dst_sg; 935 inc_src = false; 936 inc_dst = true; 937 break; 938 939 case DMA_MEM_TO_DEV: 940 mem_sg = src_sg; 941 inc_src = true; 942 inc_dst = false; 943 break; 944 945 default: 946 case DMA_MEM_TO_MEM: 947 mem_sg = src_sg; 948 inc_src = true; 949 inc_dst = true; 950 } 951 952 desc = nbpf_desc_get(chan, len); 953 if (!desc) 954 return NULL; 955 956 desc->async_tx.flags = flags; 957 desc->async_tx.cookie = -EBUSY; 958 desc->user_wait = false; 959 960 /* 961 * This is a private descriptor list, and we own the descriptor. No need 962 * to lock. 963 */ 964 list_for_each_entry(ldesc, &desc->sg, node) { 965 int ret = nbpf_prep_one(ldesc, direction, 966 sg_dma_address(src_sg), 967 sg_dma_address(dst_sg), 968 sg_dma_len(mem_sg), 969 i == len - 1); 970 if (ret < 0) { 971 nbpf_desc_put(desc); 972 return NULL; 973 } 974 data_len += sg_dma_len(mem_sg); 975 if (inc_src) 976 src_sg = sg_next(src_sg); 977 if (inc_dst) 978 dst_sg = sg_next(dst_sg); 979 mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg; 980 i++; 981 } 982 983 desc->length = data_len; 984 985 /* The user has to return the descriptor to us ASAP via .tx_submit() */ 986 return &desc->async_tx; 987 } 988 989 static struct dma_async_tx_descriptor *nbpf_prep_memcpy( 990 struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src, 991 size_t len, unsigned long flags) 992 { 993 struct nbpf_channel *chan = nbpf_to_chan(dchan); 994 struct scatterlist dst_sg; 995 struct scatterlist src_sg; 996 997 sg_init_table(&dst_sg, 1); 998 sg_init_table(&src_sg, 1); 999 1000 sg_dma_address(&dst_sg) = dst; 1001 sg_dma_address(&src_sg) = src; 1002 1003 sg_dma_len(&dst_sg) = len; 1004 sg_dma_len(&src_sg) = len; 1005 1006 dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n", 1007 __func__, len, &src, &dst); 1008 1009 return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1, 1010 DMA_MEM_TO_MEM, flags); 1011 } 1012 1013 static struct dma_async_tx_descriptor *nbpf_prep_slave_sg( 1014 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len, 1015 enum dma_transfer_direction direction, unsigned long flags, void *context) 1016 { 1017 struct nbpf_channel *chan = nbpf_to_chan(dchan); 1018 struct scatterlist slave_sg; 1019 1020 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__); 1021 1022 sg_init_table(&slave_sg, 1); 1023 1024 switch (direction) { 1025 case DMA_MEM_TO_DEV: 1026 sg_dma_address(&slave_sg) = chan->slave_dst_addr; 1027 return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len, 1028 direction, flags); 1029 1030 case DMA_DEV_TO_MEM: 1031 sg_dma_address(&slave_sg) = chan->slave_src_addr; 1032 return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len, 1033 direction, flags); 1034 1035 default: 1036 return NULL; 1037 } 1038 } 1039 1040 static int nbpf_alloc_chan_resources(struct dma_chan *dchan) 1041 { 1042 struct nbpf_channel *chan = nbpf_to_chan(dchan); 1043 int ret; 1044 1045 INIT_LIST_HEAD(&chan->free); 1046 INIT_LIST_HEAD(&chan->free_links); 1047 INIT_LIST_HEAD(&chan->queued); 1048 INIT_LIST_HEAD(&chan->active); 1049 INIT_LIST_HEAD(&chan->done); 1050 1051 ret = nbpf_desc_page_alloc(chan); 1052 if (ret < 0) 1053 return ret; 1054 1055 dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__, 1056 chan->terminal); 1057 1058 nbpf_chan_configure(chan); 1059 1060 return ret; 1061 } 1062 1063 static void nbpf_free_chan_resources(struct dma_chan *dchan) 1064 { 1065 struct nbpf_channel *chan = nbpf_to_chan(dchan); 1066 struct nbpf_desc_page *dpage, *tmp; 1067 1068 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__); 1069 1070 nbpf_chan_halt(chan); 1071 nbpf_chan_idle(chan); 1072 /* Clean up for if a channel is re-used for MEMCPY after slave DMA */ 1073 nbpf_chan_prepare_default(chan); 1074 1075 list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) { 1076 struct nbpf_link_desc *ldesc; 1077 int i; 1078 list_del(&dpage->node); 1079 for (i = 0, ldesc = dpage->ldesc; 1080 i < ARRAY_SIZE(dpage->ldesc); 1081 i++, ldesc++) 1082 dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr, 1083 sizeof(*ldesc->hwdesc), DMA_TO_DEVICE); 1084 free_page((unsigned long)dpage); 1085 } 1086 } 1087 1088 static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec, 1089 struct of_dma *ofdma) 1090 { 1091 struct nbpf_device *nbpf = ofdma->of_dma_data; 1092 struct dma_chan *dchan; 1093 struct nbpf_channel *chan; 1094 1095 if (dma_spec->args_count != 2) 1096 return NULL; 1097 1098 dchan = dma_get_any_slave_channel(&nbpf->dma_dev); 1099 if (!dchan) 1100 return NULL; 1101 1102 dev_dbg(dchan->device->dev, "Entry %s(%pOFn)\n", __func__, 1103 dma_spec->np); 1104 1105 chan = nbpf_to_chan(dchan); 1106 1107 chan->terminal = dma_spec->args[0]; 1108 chan->flags = dma_spec->args[1]; 1109 1110 nbpf_chan_prepare(chan); 1111 nbpf_chan_configure(chan); 1112 1113 return dchan; 1114 } 1115 1116 static void nbpf_chan_tasklet(unsigned long data) 1117 { 1118 struct nbpf_channel *chan = (struct nbpf_channel *)data; 1119 struct nbpf_desc *desc, *tmp; 1120 struct dmaengine_desc_callback cb; 1121 1122 while (!list_empty(&chan->done)) { 1123 bool found = false, must_put, recycling = false; 1124 1125 spin_lock_irq(&chan->lock); 1126 1127 list_for_each_entry_safe(desc, tmp, &chan->done, node) { 1128 if (!desc->user_wait) { 1129 /* Newly completed descriptor, have to process */ 1130 found = true; 1131 break; 1132 } else if (async_tx_test_ack(&desc->async_tx)) { 1133 /* 1134 * This descriptor was waiting for a user ACK, 1135 * it can be recycled now. 1136 */ 1137 list_del(&desc->node); 1138 spin_unlock_irq(&chan->lock); 1139 nbpf_desc_put(desc); 1140 recycling = true; 1141 break; 1142 } 1143 } 1144 1145 if (recycling) 1146 continue; 1147 1148 if (!found) { 1149 /* This can happen if TERMINATE_ALL has been called */ 1150 spin_unlock_irq(&chan->lock); 1151 break; 1152 } 1153 1154 dma_cookie_complete(&desc->async_tx); 1155 1156 /* 1157 * With released lock we cannot dereference desc, maybe it's 1158 * still on the "done" list 1159 */ 1160 if (async_tx_test_ack(&desc->async_tx)) { 1161 list_del(&desc->node); 1162 must_put = true; 1163 } else { 1164 desc->user_wait = true; 1165 must_put = false; 1166 } 1167 1168 dmaengine_desc_get_callback(&desc->async_tx, &cb); 1169 1170 /* ack and callback completed descriptor */ 1171 spin_unlock_irq(&chan->lock); 1172 1173 dmaengine_desc_callback_invoke(&cb, NULL); 1174 1175 if (must_put) 1176 nbpf_desc_put(desc); 1177 } 1178 } 1179 1180 static irqreturn_t nbpf_chan_irq(int irq, void *dev) 1181 { 1182 struct nbpf_channel *chan = dev; 1183 bool done = nbpf_status_get(chan); 1184 struct nbpf_desc *desc; 1185 irqreturn_t ret; 1186 bool bh = false; 1187 1188 if (!done) 1189 return IRQ_NONE; 1190 1191 nbpf_status_ack(chan); 1192 1193 dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__); 1194 1195 spin_lock(&chan->lock); 1196 desc = chan->running; 1197 if (WARN_ON(!desc)) { 1198 ret = IRQ_NONE; 1199 goto unlock; 1200 } else { 1201 ret = IRQ_HANDLED; 1202 bh = true; 1203 } 1204 1205 list_move_tail(&desc->node, &chan->done); 1206 chan->running = NULL; 1207 1208 if (!list_empty(&chan->active)) { 1209 desc = list_first_entry(&chan->active, 1210 struct nbpf_desc, node); 1211 if (!nbpf_start(desc)) 1212 chan->running = desc; 1213 } 1214 1215 unlock: 1216 spin_unlock(&chan->lock); 1217 1218 if (bh) 1219 tasklet_schedule(&chan->tasklet); 1220 1221 return ret; 1222 } 1223 1224 static irqreturn_t nbpf_err_irq(int irq, void *dev) 1225 { 1226 struct nbpf_device *nbpf = dev; 1227 u32 error = nbpf_error_get(nbpf); 1228 1229 dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq); 1230 1231 if (!error) 1232 return IRQ_NONE; 1233 1234 do { 1235 struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error); 1236 /* On error: abort all queued transfers, no callback */ 1237 nbpf_error_clear(chan); 1238 nbpf_chan_idle(chan); 1239 error = nbpf_error_get(nbpf); 1240 } while (error); 1241 1242 return IRQ_HANDLED; 1243 } 1244 1245 static int nbpf_chan_probe(struct nbpf_device *nbpf, int n) 1246 { 1247 struct dma_device *dma_dev = &nbpf->dma_dev; 1248 struct nbpf_channel *chan = nbpf->chan + n; 1249 int ret; 1250 1251 chan->nbpf = nbpf; 1252 chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n; 1253 INIT_LIST_HEAD(&chan->desc_page); 1254 spin_lock_init(&chan->lock); 1255 chan->dma_chan.device = dma_dev; 1256 dma_cookie_init(&chan->dma_chan); 1257 nbpf_chan_prepare_default(chan); 1258 1259 dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base); 1260 1261 snprintf(chan->name, sizeof(chan->name), "nbpf %d", n); 1262 1263 tasklet_init(&chan->tasklet, nbpf_chan_tasklet, (unsigned long)chan); 1264 ret = devm_request_irq(dma_dev->dev, chan->irq, 1265 nbpf_chan_irq, IRQF_SHARED, 1266 chan->name, chan); 1267 if (ret < 0) 1268 return ret; 1269 1270 /* Add the channel to DMA device channel list */ 1271 list_add_tail(&chan->dma_chan.device_node, 1272 &dma_dev->channels); 1273 1274 return 0; 1275 } 1276 1277 static const struct of_device_id nbpf_match[] = { 1278 {.compatible = "renesas,nbpfaxi64dmac1b4", .data = &nbpf_cfg[NBPF1B4]}, 1279 {.compatible = "renesas,nbpfaxi64dmac1b8", .data = &nbpf_cfg[NBPF1B8]}, 1280 {.compatible = "renesas,nbpfaxi64dmac1b16", .data = &nbpf_cfg[NBPF1B16]}, 1281 {.compatible = "renesas,nbpfaxi64dmac4b4", .data = &nbpf_cfg[NBPF4B4]}, 1282 {.compatible = "renesas,nbpfaxi64dmac4b8", .data = &nbpf_cfg[NBPF4B8]}, 1283 {.compatible = "renesas,nbpfaxi64dmac4b16", .data = &nbpf_cfg[NBPF4B16]}, 1284 {.compatible = "renesas,nbpfaxi64dmac8b4", .data = &nbpf_cfg[NBPF8B4]}, 1285 {.compatible = "renesas,nbpfaxi64dmac8b8", .data = &nbpf_cfg[NBPF8B8]}, 1286 {.compatible = "renesas,nbpfaxi64dmac8b16", .data = &nbpf_cfg[NBPF8B16]}, 1287 {} 1288 }; 1289 MODULE_DEVICE_TABLE(of, nbpf_match); 1290 1291 static int nbpf_probe(struct platform_device *pdev) 1292 { 1293 struct device *dev = &pdev->dev; 1294 struct device_node *np = dev->of_node; 1295 struct nbpf_device *nbpf; 1296 struct dma_device *dma_dev; 1297 struct resource *iomem, *irq_res; 1298 const struct nbpf_config *cfg; 1299 int num_channels; 1300 int ret, irq, eirq, i; 1301 int irqbuf[9] /* maximum 8 channels + error IRQ */; 1302 unsigned int irqs = 0; 1303 1304 BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE); 1305 1306 /* DT only */ 1307 if (!np) 1308 return -ENODEV; 1309 1310 cfg = of_device_get_match_data(dev); 1311 num_channels = cfg->num_channels; 1312 1313 nbpf = devm_kzalloc(dev, struct_size(nbpf, chan, num_channels), 1314 GFP_KERNEL); 1315 if (!nbpf) 1316 return -ENOMEM; 1317 1318 dma_dev = &nbpf->dma_dev; 1319 dma_dev->dev = dev; 1320 1321 iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1322 nbpf->base = devm_ioremap_resource(dev, iomem); 1323 if (IS_ERR(nbpf->base)) 1324 return PTR_ERR(nbpf->base); 1325 1326 nbpf->clk = devm_clk_get(dev, NULL); 1327 if (IS_ERR(nbpf->clk)) 1328 return PTR_ERR(nbpf->clk); 1329 1330 of_property_read_u32(np, "max-burst-mem-read", 1331 &nbpf->max_burst_mem_read); 1332 of_property_read_u32(np, "max-burst-mem-write", 1333 &nbpf->max_burst_mem_write); 1334 1335 nbpf->config = cfg; 1336 1337 for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) { 1338 irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, i); 1339 if (!irq_res) 1340 break; 1341 1342 for (irq = irq_res->start; irq <= irq_res->end; 1343 irq++, irqs++) 1344 irqbuf[irqs] = irq; 1345 } 1346 1347 /* 1348 * 3 IRQ resource schemes are supported: 1349 * 1. 1 shared IRQ for error and all channels 1350 * 2. 2 IRQs: one for error and one shared for all channels 1351 * 3. 1 IRQ for error and an own IRQ for each channel 1352 */ 1353 if (irqs != 1 && irqs != 2 && irqs != num_channels + 1) 1354 return -ENXIO; 1355 1356 if (irqs == 1) { 1357 eirq = irqbuf[0]; 1358 1359 for (i = 0; i <= num_channels; i++) 1360 nbpf->chan[i].irq = irqbuf[0]; 1361 } else { 1362 eirq = platform_get_irq_byname(pdev, "error"); 1363 if (eirq < 0) 1364 return eirq; 1365 1366 if (irqs == num_channels + 1) { 1367 struct nbpf_channel *chan; 1368 1369 for (i = 0, chan = nbpf->chan; i <= num_channels; 1370 i++, chan++) { 1371 /* Skip the error IRQ */ 1372 if (irqbuf[i] == eirq) 1373 i++; 1374 chan->irq = irqbuf[i]; 1375 } 1376 1377 if (chan != nbpf->chan + num_channels) 1378 return -EINVAL; 1379 } else { 1380 /* 2 IRQs and more than one channel */ 1381 if (irqbuf[0] == eirq) 1382 irq = irqbuf[1]; 1383 else 1384 irq = irqbuf[0]; 1385 1386 for (i = 0; i <= num_channels; i++) 1387 nbpf->chan[i].irq = irq; 1388 } 1389 } 1390 1391 ret = devm_request_irq(dev, eirq, nbpf_err_irq, 1392 IRQF_SHARED, "dma error", nbpf); 1393 if (ret < 0) 1394 return ret; 1395 nbpf->eirq = eirq; 1396 1397 INIT_LIST_HEAD(&dma_dev->channels); 1398 1399 /* Create DMA Channel */ 1400 for (i = 0; i < num_channels; i++) { 1401 ret = nbpf_chan_probe(nbpf, i); 1402 if (ret < 0) 1403 return ret; 1404 } 1405 1406 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask); 1407 dma_cap_set(DMA_SLAVE, dma_dev->cap_mask); 1408 dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask); 1409 1410 /* Common and MEMCPY operations */ 1411 dma_dev->device_alloc_chan_resources 1412 = nbpf_alloc_chan_resources; 1413 dma_dev->device_free_chan_resources = nbpf_free_chan_resources; 1414 dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy; 1415 dma_dev->device_tx_status = nbpf_tx_status; 1416 dma_dev->device_issue_pending = nbpf_issue_pending; 1417 1418 /* 1419 * If we drop support for unaligned MEMCPY buffer addresses and / or 1420 * lengths by setting 1421 * dma_dev->copy_align = 4; 1422 * then we can set transfer length to 4 bytes in nbpf_prep_one() for 1423 * DMA_MEM_TO_MEM 1424 */ 1425 1426 /* Compulsory for DMA_SLAVE fields */ 1427 dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg; 1428 dma_dev->device_config = nbpf_config; 1429 dma_dev->device_pause = nbpf_pause; 1430 dma_dev->device_terminate_all = nbpf_terminate_all; 1431 1432 dma_dev->src_addr_widths = NBPF_DMA_BUSWIDTHS; 1433 dma_dev->dst_addr_widths = NBPF_DMA_BUSWIDTHS; 1434 dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1435 1436 platform_set_drvdata(pdev, nbpf); 1437 1438 ret = clk_prepare_enable(nbpf->clk); 1439 if (ret < 0) 1440 return ret; 1441 1442 nbpf_configure(nbpf); 1443 1444 ret = dma_async_device_register(dma_dev); 1445 if (ret < 0) 1446 goto e_clk_off; 1447 1448 ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf); 1449 if (ret < 0) 1450 goto e_dma_dev_unreg; 1451 1452 return 0; 1453 1454 e_dma_dev_unreg: 1455 dma_async_device_unregister(dma_dev); 1456 e_clk_off: 1457 clk_disable_unprepare(nbpf->clk); 1458 1459 return ret; 1460 } 1461 1462 static int nbpf_remove(struct platform_device *pdev) 1463 { 1464 struct nbpf_device *nbpf = platform_get_drvdata(pdev); 1465 int i; 1466 1467 devm_free_irq(&pdev->dev, nbpf->eirq, nbpf); 1468 1469 for (i = 0; i < nbpf->config->num_channels; i++) { 1470 struct nbpf_channel *chan = nbpf->chan + i; 1471 1472 devm_free_irq(&pdev->dev, chan->irq, chan); 1473 1474 tasklet_kill(&chan->tasklet); 1475 } 1476 1477 of_dma_controller_free(pdev->dev.of_node); 1478 dma_async_device_unregister(&nbpf->dma_dev); 1479 clk_disable_unprepare(nbpf->clk); 1480 1481 return 0; 1482 } 1483 1484 static const struct platform_device_id nbpf_ids[] = { 1485 {"nbpfaxi64dmac1b4", (kernel_ulong_t)&nbpf_cfg[NBPF1B4]}, 1486 {"nbpfaxi64dmac1b8", (kernel_ulong_t)&nbpf_cfg[NBPF1B8]}, 1487 {"nbpfaxi64dmac1b16", (kernel_ulong_t)&nbpf_cfg[NBPF1B16]}, 1488 {"nbpfaxi64dmac4b4", (kernel_ulong_t)&nbpf_cfg[NBPF4B4]}, 1489 {"nbpfaxi64dmac4b8", (kernel_ulong_t)&nbpf_cfg[NBPF4B8]}, 1490 {"nbpfaxi64dmac4b16", (kernel_ulong_t)&nbpf_cfg[NBPF4B16]}, 1491 {"nbpfaxi64dmac8b4", (kernel_ulong_t)&nbpf_cfg[NBPF8B4]}, 1492 {"nbpfaxi64dmac8b8", (kernel_ulong_t)&nbpf_cfg[NBPF8B8]}, 1493 {"nbpfaxi64dmac8b16", (kernel_ulong_t)&nbpf_cfg[NBPF8B16]}, 1494 {}, 1495 }; 1496 MODULE_DEVICE_TABLE(platform, nbpf_ids); 1497 1498 #ifdef CONFIG_PM 1499 static int nbpf_runtime_suspend(struct device *dev) 1500 { 1501 struct nbpf_device *nbpf = dev_get_drvdata(dev); 1502 clk_disable_unprepare(nbpf->clk); 1503 return 0; 1504 } 1505 1506 static int nbpf_runtime_resume(struct device *dev) 1507 { 1508 struct nbpf_device *nbpf = dev_get_drvdata(dev); 1509 return clk_prepare_enable(nbpf->clk); 1510 } 1511 #endif 1512 1513 static const struct dev_pm_ops nbpf_pm_ops = { 1514 SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL) 1515 }; 1516 1517 static struct platform_driver nbpf_driver = { 1518 .driver = { 1519 .name = "dma-nbpf", 1520 .of_match_table = nbpf_match, 1521 .pm = &nbpf_pm_ops, 1522 }, 1523 .id_table = nbpf_ids, 1524 .probe = nbpf_probe, 1525 .remove = nbpf_remove, 1526 }; 1527 1528 module_platform_driver(nbpf_driver); 1529 1530 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>"); 1531 MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs"); 1532 MODULE_LICENSE("GPL v2"); 1533