1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
4 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
5 */
6
7 #include <linux/bitmap.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmaengine.h>
12 #include <linux/err.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/of_dma.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21
22 #include <dt-bindings/dma/nbpfaxi.h>
23
24 #include "dmaengine.h"
25
26 #define NBPF_REG_CHAN_OFFSET 0
27 #define NBPF_REG_CHAN_SIZE 0x40
28
29 /* Channel Current Transaction Byte register */
30 #define NBPF_CHAN_CUR_TR_BYTE 0x20
31
32 /* Channel Status register */
33 #define NBPF_CHAN_STAT 0x24
34 #define NBPF_CHAN_STAT_EN 1
35 #define NBPF_CHAN_STAT_TACT 4
36 #define NBPF_CHAN_STAT_ERR 0x10
37 #define NBPF_CHAN_STAT_END 0x20
38 #define NBPF_CHAN_STAT_TC 0x40
39 #define NBPF_CHAN_STAT_DER 0x400
40
41 /* Channel Control register */
42 #define NBPF_CHAN_CTRL 0x28
43 #define NBPF_CHAN_CTRL_SETEN 1
44 #define NBPF_CHAN_CTRL_CLREN 2
45 #define NBPF_CHAN_CTRL_STG 4
46 #define NBPF_CHAN_CTRL_SWRST 8
47 #define NBPF_CHAN_CTRL_CLRRQ 0x10
48 #define NBPF_CHAN_CTRL_CLREND 0x20
49 #define NBPF_CHAN_CTRL_CLRTC 0x40
50 #define NBPF_CHAN_CTRL_SETSUS 0x100
51 #define NBPF_CHAN_CTRL_CLRSUS 0x200
52
53 /* Channel Configuration register */
54 #define NBPF_CHAN_CFG 0x2c
55 #define NBPF_CHAN_CFG_SEL 7 /* terminal SELect: 0..7 */
56 #define NBPF_CHAN_CFG_REQD 8 /* REQuest Direction: DMAREQ is 0: input, 1: output */
57 #define NBPF_CHAN_CFG_LOEN 0x10 /* LOw ENable: low DMA request line is: 0: inactive, 1: active */
58 #define NBPF_CHAN_CFG_HIEN 0x20 /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
59 #define NBPF_CHAN_CFG_LVL 0x40 /* LeVeL: DMA request line is sensed as 0: edge, 1: level */
60 #define NBPF_CHAN_CFG_AM 0x700 /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
61 #define NBPF_CHAN_CFG_SDS 0xf000 /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
62 #define NBPF_CHAN_CFG_DDS 0xf0000 /* Destination Data Size: as above */
63 #define NBPF_CHAN_CFG_SAD 0x100000 /* Source ADdress counting: 0: increment, 1: fixed */
64 #define NBPF_CHAN_CFG_DAD 0x200000 /* Destination ADdress counting: 0: increment, 1: fixed */
65 #define NBPF_CHAN_CFG_TM 0x400000 /* Transfer Mode: 0: single, 1: block TM */
66 #define NBPF_CHAN_CFG_DEM 0x1000000 /* DMAEND interrupt Mask */
67 #define NBPF_CHAN_CFG_TCM 0x2000000 /* DMATCO interrupt Mask */
68 #define NBPF_CHAN_CFG_SBE 0x8000000 /* Sweep Buffer Enable */
69 #define NBPF_CHAN_CFG_RSEL 0x10000000 /* RM: Register Set sELect */
70 #define NBPF_CHAN_CFG_RSW 0x20000000 /* RM: Register Select sWitch */
71 #define NBPF_CHAN_CFG_REN 0x40000000 /* RM: Register Set Enable */
72 #define NBPF_CHAN_CFG_DMS 0x80000000 /* 0: register mode (RM), 1: link mode (LM) */
73
74 #define NBPF_CHAN_NXLA 0x38
75 #define NBPF_CHAN_CRLA 0x3c
76
77 /* Link Header field */
78 #define NBPF_HEADER_LV 1
79 #define NBPF_HEADER_LE 2
80 #define NBPF_HEADER_WBD 4
81 #define NBPF_HEADER_DIM 8
82
83 #define NBPF_CTRL 0x300
84 #define NBPF_CTRL_PR 1 /* 0: fixed priority, 1: round robin */
85 #define NBPF_CTRL_LVINT 2 /* DMAEND and DMAERR signalling: 0: pulse, 1: level */
86
87 #define NBPF_DSTAT_ER 0x314
88 #define NBPF_DSTAT_END 0x318
89
90 #define NBPF_DMA_BUSWIDTHS \
91 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
92 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
93 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
94 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
95 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
96
97 struct nbpf_config {
98 int num_channels;
99 int buffer_size;
100 };
101
102 /*
103 * We've got 3 types of objects, used to describe DMA transfers:
104 * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
105 * in it, used to communicate with the user
106 * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
107 * queuing, these must be DMAable, using either the streaming DMA API or
108 * allocated from coherent memory - one per SG segment
109 * 3. one per SG segment descriptors, used to manage HW link descriptors from
110 * (2). They do not have to be DMAable. They can either be (a) allocated
111 * together with link descriptors as mixed (DMA / CPU) objects, or (b)
112 * separately. Even if allocated separately it would be best to link them
113 * to link descriptors once during channel resource allocation and always
114 * use them as a single object.
115 * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
116 * treated as a single SG segment descriptor.
117 */
118
119 struct nbpf_link_reg {
120 u32 header;
121 u32 src_addr;
122 u32 dst_addr;
123 u32 transaction_size;
124 u32 config;
125 u32 interval;
126 u32 extension;
127 u32 next;
128 } __packed;
129
130 struct nbpf_device;
131 struct nbpf_channel;
132 struct nbpf_desc;
133
134 struct nbpf_link_desc {
135 struct nbpf_link_reg *hwdesc;
136 dma_addr_t hwdesc_dma_addr;
137 struct nbpf_desc *desc;
138 struct list_head node;
139 };
140
141 /**
142 * struct nbpf_desc - DMA transfer descriptor
143 * @async_tx: dmaengine object
144 * @user_wait: waiting for a user ack
145 * @length: total transfer length
146 * @chan: associated DMAC channel
147 * @sg: list of hardware descriptors, represented by struct nbpf_link_desc
148 * @node: member in channel descriptor lists
149 */
150 struct nbpf_desc {
151 struct dma_async_tx_descriptor async_tx;
152 bool user_wait;
153 size_t length;
154 struct nbpf_channel *chan;
155 struct list_head sg;
156 struct list_head node;
157 };
158
159 /* Take a wild guess: allocate 4 segments per descriptor */
160 #define NBPF_SEGMENTS_PER_DESC 4
161 #define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) / \
162 (sizeof(struct nbpf_desc) + \
163 NBPF_SEGMENTS_PER_DESC * \
164 (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
165 #define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
166
167 struct nbpf_desc_page {
168 struct list_head node;
169 struct nbpf_desc desc[NBPF_DESCS_PER_PAGE];
170 struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE];
171 struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE];
172 };
173
174 /**
175 * struct nbpf_channel - one DMAC channel
176 * @dma_chan: standard dmaengine channel object
177 * @tasklet: channel specific tasklet used for callbacks
178 * @base: register address base
179 * @nbpf: DMAC
180 * @name: IRQ name
181 * @irq: IRQ number
182 * @slave_src_addr: source address for slave DMA
183 * @slave_src_width: source slave data size in bytes
184 * @slave_src_burst: maximum source slave burst size in bytes
185 * @slave_dst_addr: destination address for slave DMA
186 * @slave_dst_width: destination slave data size in bytes
187 * @slave_dst_burst: maximum destination slave burst size in bytes
188 * @terminal: DMA terminal, assigned to this channel
189 * @dmarq_cfg: DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
190 * @flags: configuration flags from DT
191 * @lock: protect descriptor lists
192 * @free_links: list of free link descriptors
193 * @free: list of free descriptors
194 * @queued: list of queued descriptors
195 * @active: list of descriptors, scheduled for processing
196 * @done: list of completed descriptors, waiting post-processing
197 * @desc_page: list of additionally allocated descriptor pages - if any
198 * @running: linked descriptor of running transaction
199 * @paused: are translations on this channel paused?
200 */
201 struct nbpf_channel {
202 struct dma_chan dma_chan;
203 struct tasklet_struct tasklet;
204 void __iomem *base;
205 struct nbpf_device *nbpf;
206 char name[16];
207 int irq;
208 dma_addr_t slave_src_addr;
209 size_t slave_src_width;
210 size_t slave_src_burst;
211 dma_addr_t slave_dst_addr;
212 size_t slave_dst_width;
213 size_t slave_dst_burst;
214 unsigned int terminal;
215 u32 dmarq_cfg;
216 unsigned long flags;
217 spinlock_t lock;
218 struct list_head free_links;
219 struct list_head free;
220 struct list_head queued;
221 struct list_head active;
222 struct list_head done;
223 struct list_head desc_page;
224 struct nbpf_desc *running;
225 bool paused;
226 };
227
228 struct nbpf_device {
229 struct dma_device dma_dev;
230 void __iomem *base;
231 u32 max_burst_mem_read;
232 u32 max_burst_mem_write;
233 struct clk *clk;
234 const struct nbpf_config *config;
235 unsigned int eirq;
236 struct nbpf_channel chan[];
237 };
238
239 enum nbpf_model {
240 NBPF1B4,
241 NBPF1B8,
242 NBPF1B16,
243 NBPF4B4,
244 NBPF4B8,
245 NBPF4B16,
246 NBPF8B4,
247 NBPF8B8,
248 NBPF8B16,
249 };
250
251 static struct nbpf_config nbpf_cfg[] = {
252 [NBPF1B4] = {
253 .num_channels = 1,
254 .buffer_size = 4,
255 },
256 [NBPF1B8] = {
257 .num_channels = 1,
258 .buffer_size = 8,
259 },
260 [NBPF1B16] = {
261 .num_channels = 1,
262 .buffer_size = 16,
263 },
264 [NBPF4B4] = {
265 .num_channels = 4,
266 .buffer_size = 4,
267 },
268 [NBPF4B8] = {
269 .num_channels = 4,
270 .buffer_size = 8,
271 },
272 [NBPF4B16] = {
273 .num_channels = 4,
274 .buffer_size = 16,
275 },
276 [NBPF8B4] = {
277 .num_channels = 8,
278 .buffer_size = 4,
279 },
280 [NBPF8B8] = {
281 .num_channels = 8,
282 .buffer_size = 8,
283 },
284 [NBPF8B16] = {
285 .num_channels = 8,
286 .buffer_size = 16,
287 },
288 };
289
290 #define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
291
292 /*
293 * dmaengine drivers seem to have a lot in common and instead of sharing more
294 * code, they reimplement those common algorithms independently. In this driver
295 * we try to separate the hardware-specific part from the (largely) generic
296 * part. This improves code readability and makes it possible in the future to
297 * reuse the generic code in form of a helper library. That generic code should
298 * be suitable for various DMA controllers, using transfer descriptors in RAM
299 * and pushing one SG list at a time to the DMA controller.
300 */
301
302 /* Hardware-specific part */
303
nbpf_chan_read(struct nbpf_channel * chan,unsigned int offset)304 static inline u32 nbpf_chan_read(struct nbpf_channel *chan,
305 unsigned int offset)
306 {
307 u32 data = ioread32(chan->base + offset);
308 dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
309 __func__, chan->base, offset, data);
310 return data;
311 }
312
nbpf_chan_write(struct nbpf_channel * chan,unsigned int offset,u32 data)313 static inline void nbpf_chan_write(struct nbpf_channel *chan,
314 unsigned int offset, u32 data)
315 {
316 iowrite32(data, chan->base + offset);
317 dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
318 __func__, chan->base, offset, data);
319 }
320
nbpf_read(struct nbpf_device * nbpf,unsigned int offset)321 static inline u32 nbpf_read(struct nbpf_device *nbpf,
322 unsigned int offset)
323 {
324 u32 data = ioread32(nbpf->base + offset);
325 dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
326 __func__, nbpf->base, offset, data);
327 return data;
328 }
329
nbpf_write(struct nbpf_device * nbpf,unsigned int offset,u32 data)330 static inline void nbpf_write(struct nbpf_device *nbpf,
331 unsigned int offset, u32 data)
332 {
333 iowrite32(data, nbpf->base + offset);
334 dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
335 __func__, nbpf->base, offset, data);
336 }
337
nbpf_chan_halt(struct nbpf_channel * chan)338 static void nbpf_chan_halt(struct nbpf_channel *chan)
339 {
340 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
341 }
342
nbpf_status_get(struct nbpf_channel * chan)343 static bool nbpf_status_get(struct nbpf_channel *chan)
344 {
345 u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END);
346
347 return status & BIT(chan - chan->nbpf->chan);
348 }
349
nbpf_status_ack(struct nbpf_channel * chan)350 static void nbpf_status_ack(struct nbpf_channel *chan)
351 {
352 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND);
353 }
354
nbpf_error_get(struct nbpf_device * nbpf)355 static u32 nbpf_error_get(struct nbpf_device *nbpf)
356 {
357 return nbpf_read(nbpf, NBPF_DSTAT_ER);
358 }
359
nbpf_error_get_channel(struct nbpf_device * nbpf,u32 error)360 static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error)
361 {
362 return nbpf->chan + __ffs(error);
363 }
364
nbpf_error_clear(struct nbpf_channel * chan)365 static void nbpf_error_clear(struct nbpf_channel *chan)
366 {
367 u32 status;
368 int i;
369
370 /* Stop the channel, make sure DMA has been aborted */
371 nbpf_chan_halt(chan);
372
373 for (i = 1000; i; i--) {
374 status = nbpf_chan_read(chan, NBPF_CHAN_STAT);
375 if (!(status & NBPF_CHAN_STAT_TACT))
376 break;
377 cpu_relax();
378 }
379
380 if (!i)
381 dev_err(chan->dma_chan.device->dev,
382 "%s(): abort timeout, channel status 0x%x\n", __func__, status);
383
384 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST);
385 }
386
nbpf_start(struct nbpf_desc * desc)387 static int nbpf_start(struct nbpf_desc *desc)
388 {
389 struct nbpf_channel *chan = desc->chan;
390 struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node);
391
392 nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr);
393 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS);
394 chan->paused = false;
395
396 /* Software trigger MEMCPY - only MEMCPY uses the block mode */
397 if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM)
398 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG);
399
400 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__,
401 nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA));
402
403 return 0;
404 }
405
nbpf_chan_prepare(struct nbpf_channel * chan)406 static void nbpf_chan_prepare(struct nbpf_channel *chan)
407 {
408 chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) |
409 (chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) |
410 (chan->flags & NBPF_SLAVE_RQ_LEVEL ?
411 NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) |
412 chan->terminal;
413 }
414
nbpf_chan_prepare_default(struct nbpf_channel * chan)415 static void nbpf_chan_prepare_default(struct nbpf_channel *chan)
416 {
417 /* Don't output DMAACK */
418 chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400;
419 chan->terminal = 0;
420 chan->flags = 0;
421 }
422
nbpf_chan_configure(struct nbpf_channel * chan)423 static void nbpf_chan_configure(struct nbpf_channel *chan)
424 {
425 /*
426 * We assume, that only the link mode and DMA request line configuration
427 * have to be set in the configuration register manually. Dynamic
428 * per-transfer configuration will be loaded from transfer descriptors.
429 */
430 nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg);
431 }
432
nbpf_xfer_ds(struct nbpf_device * nbpf,size_t size,enum dma_transfer_direction direction)433 static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size,
434 enum dma_transfer_direction direction)
435 {
436 int max_burst = nbpf->config->buffer_size * 8;
437
438 if (nbpf->max_burst_mem_read || nbpf->max_burst_mem_write) {
439 switch (direction) {
440 case DMA_MEM_TO_MEM:
441 max_burst = min_not_zero(nbpf->max_burst_mem_read,
442 nbpf->max_burst_mem_write);
443 break;
444 case DMA_MEM_TO_DEV:
445 if (nbpf->max_burst_mem_read)
446 max_burst = nbpf->max_burst_mem_read;
447 break;
448 case DMA_DEV_TO_MEM:
449 if (nbpf->max_burst_mem_write)
450 max_burst = nbpf->max_burst_mem_write;
451 break;
452 case DMA_DEV_TO_DEV:
453 default:
454 break;
455 }
456 }
457
458 /* Maximum supported bursts depend on the buffer size */
459 return min_t(int, __ffs(size), ilog2(max_burst));
460 }
461
nbpf_xfer_size(struct nbpf_device * nbpf,enum dma_slave_buswidth width,u32 burst)462 static size_t nbpf_xfer_size(struct nbpf_device *nbpf,
463 enum dma_slave_buswidth width, u32 burst)
464 {
465 size_t size;
466
467 if (!burst)
468 burst = 1;
469
470 switch (width) {
471 case DMA_SLAVE_BUSWIDTH_8_BYTES:
472 size = 8 * burst;
473 break;
474
475 case DMA_SLAVE_BUSWIDTH_4_BYTES:
476 size = 4 * burst;
477 break;
478
479 case DMA_SLAVE_BUSWIDTH_2_BYTES:
480 size = 2 * burst;
481 break;
482
483 default:
484 pr_warn("%s(): invalid bus width %u\n", __func__, width);
485 fallthrough;
486 case DMA_SLAVE_BUSWIDTH_1_BYTE:
487 size = burst;
488 }
489
490 return nbpf_xfer_ds(nbpf, size, DMA_TRANS_NONE);
491 }
492
493 /*
494 * We need a way to recognise slaves, whose data is sent "raw" over the bus,
495 * i.e. it isn't known in advance how many bytes will be received. Therefore
496 * the slave driver has to provide a "large enough" buffer and either read the
497 * buffer, when it is full, or detect, that some data has arrived, then wait for
498 * a timeout, if no more data arrives - receive what's already there. We want to
499 * handle such slaves in a special way to allow an optimised mode for other
500 * users, for whom the amount of data is known in advance. So far there's no way
501 * to recognise such slaves. We use a data-width check to distinguish between
502 * the SD host and the PL011 UART.
503 */
504
nbpf_prep_one(struct nbpf_link_desc * ldesc,enum dma_transfer_direction direction,dma_addr_t src,dma_addr_t dst,size_t size,bool last)505 static int nbpf_prep_one(struct nbpf_link_desc *ldesc,
506 enum dma_transfer_direction direction,
507 dma_addr_t src, dma_addr_t dst, size_t size, bool last)
508 {
509 struct nbpf_link_reg *hwdesc = ldesc->hwdesc;
510 struct nbpf_desc *desc = ldesc->desc;
511 struct nbpf_channel *chan = desc->chan;
512 struct device *dev = chan->dma_chan.device->dev;
513 size_t mem_xfer, slave_xfer;
514 bool can_burst;
515
516 hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV |
517 (last ? NBPF_HEADER_LE : 0);
518
519 hwdesc->src_addr = src;
520 hwdesc->dst_addr = dst;
521 hwdesc->transaction_size = size;
522
523 /*
524 * set config: SAD, DAD, DDS, SDS, etc.
525 * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
526 * but it is important to have transaction size a multiple of both
527 * receiver and transmitter transfer sizes. It is also possible to use
528 * different RAM and device transfer sizes, and it does work well with
529 * some devices, e.g. with V08R07S01E SD host controllers, which can use
530 * 128 byte transfers. But this doesn't work with other devices,
531 * especially when the transaction size is unknown. This is the case,
532 * e.g. with serial drivers like amba-pl011.c. For reception it sets up
533 * the transaction size of 4K and if fewer bytes are received, it
534 * pauses DMA and reads out data received via DMA as well as those left
535 * in the Rx FIFO. For this to work with the RAM side using burst
536 * transfers we enable the SBE bit and terminate the transfer in our
537 * .device_pause handler.
538 */
539 mem_xfer = nbpf_xfer_ds(chan->nbpf, size, direction);
540
541 switch (direction) {
542 case DMA_DEV_TO_MEM:
543 can_burst = chan->slave_src_width >= 3;
544 slave_xfer = min(mem_xfer, can_burst ?
545 chan->slave_src_burst : chan->slave_src_width);
546 /*
547 * Is the slave narrower than 64 bits, i.e. isn't using the full
548 * bus width and cannot use bursts?
549 */
550 if (mem_xfer > chan->slave_src_burst && !can_burst)
551 mem_xfer = chan->slave_src_burst;
552 /* Device-to-RAM DMA is unreliable without REQD set */
553 hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) |
554 (NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD |
555 NBPF_CHAN_CFG_SBE;
556 break;
557
558 case DMA_MEM_TO_DEV:
559 slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ?
560 chan->slave_dst_burst : chan->slave_dst_width);
561 hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
562 (NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD;
563 break;
564
565 case DMA_MEM_TO_MEM:
566 hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM |
567 (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
568 (NBPF_CHAN_CFG_DDS & (mem_xfer << 16));
569 break;
570
571 default:
572 return -EINVAL;
573 }
574
575 hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) |
576 NBPF_CHAN_CFG_DMS;
577
578 dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
579 __func__, &ldesc->hwdesc_dma_addr, hwdesc->header,
580 hwdesc->config, size, &src, &dst);
581
582 dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc),
583 DMA_TO_DEVICE);
584
585 return 0;
586 }
587
nbpf_bytes_left(struct nbpf_channel * chan)588 static size_t nbpf_bytes_left(struct nbpf_channel *chan)
589 {
590 return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE);
591 }
592
nbpf_configure(struct nbpf_device * nbpf)593 static void nbpf_configure(struct nbpf_device *nbpf)
594 {
595 nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT);
596 }
597
598 /* Generic part */
599
600 /* DMA ENGINE functions */
nbpf_issue_pending(struct dma_chan * dchan)601 static void nbpf_issue_pending(struct dma_chan *dchan)
602 {
603 struct nbpf_channel *chan = nbpf_to_chan(dchan);
604 unsigned long flags;
605
606 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
607
608 spin_lock_irqsave(&chan->lock, flags);
609 if (list_empty(&chan->queued))
610 goto unlock;
611
612 list_splice_tail_init(&chan->queued, &chan->active);
613
614 if (!chan->running) {
615 struct nbpf_desc *desc = list_first_entry(&chan->active,
616 struct nbpf_desc, node);
617 if (!nbpf_start(desc))
618 chan->running = desc;
619 }
620
621 unlock:
622 spin_unlock_irqrestore(&chan->lock, flags);
623 }
624
nbpf_tx_status(struct dma_chan * dchan,dma_cookie_t cookie,struct dma_tx_state * state)625 static enum dma_status nbpf_tx_status(struct dma_chan *dchan,
626 dma_cookie_t cookie, struct dma_tx_state *state)
627 {
628 struct nbpf_channel *chan = nbpf_to_chan(dchan);
629 enum dma_status status = dma_cookie_status(dchan, cookie, state);
630
631 if (state) {
632 dma_cookie_t running;
633 unsigned long flags;
634
635 spin_lock_irqsave(&chan->lock, flags);
636 running = chan->running ? chan->running->async_tx.cookie : -EINVAL;
637
638 if (cookie == running) {
639 state->residue = nbpf_bytes_left(chan);
640 dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__,
641 state->residue);
642 } else if (status == DMA_IN_PROGRESS) {
643 struct nbpf_desc *desc;
644 bool found = false;
645
646 list_for_each_entry(desc, &chan->active, node)
647 if (desc->async_tx.cookie == cookie) {
648 found = true;
649 break;
650 }
651
652 if (!found)
653 list_for_each_entry(desc, &chan->queued, node)
654 if (desc->async_tx.cookie == cookie) {
655 found = true;
656 break;
657
658 }
659
660 state->residue = found ? desc->length : 0;
661 }
662
663 spin_unlock_irqrestore(&chan->lock, flags);
664 }
665
666 if (chan->paused)
667 status = DMA_PAUSED;
668
669 return status;
670 }
671
nbpf_tx_submit(struct dma_async_tx_descriptor * tx)672 static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx)
673 {
674 struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx);
675 struct nbpf_channel *chan = desc->chan;
676 unsigned long flags;
677 dma_cookie_t cookie;
678
679 spin_lock_irqsave(&chan->lock, flags);
680 cookie = dma_cookie_assign(tx);
681 list_add_tail(&desc->node, &chan->queued);
682 spin_unlock_irqrestore(&chan->lock, flags);
683
684 dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie);
685
686 return cookie;
687 }
688
nbpf_desc_page_alloc(struct nbpf_channel * chan)689 static int nbpf_desc_page_alloc(struct nbpf_channel *chan)
690 {
691 struct dma_chan *dchan = &chan->dma_chan;
692 struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
693 struct nbpf_link_desc *ldesc;
694 struct nbpf_link_reg *hwdesc;
695 struct nbpf_desc *desc;
696 LIST_HEAD(head);
697 LIST_HEAD(lhead);
698 int i;
699 struct device *dev = dchan->device->dev;
700
701 if (!dpage)
702 return -ENOMEM;
703
704 dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
705 __func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage));
706
707 for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc;
708 i < ARRAY_SIZE(dpage->ldesc);
709 i++, ldesc++, hwdesc++) {
710 ldesc->hwdesc = hwdesc;
711 list_add_tail(&ldesc->node, &lhead);
712 ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev,
713 hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE);
714
715 dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__,
716 hwdesc, &ldesc->hwdesc_dma_addr);
717 }
718
719 for (i = 0, desc = dpage->desc;
720 i < ARRAY_SIZE(dpage->desc);
721 i++, desc++) {
722 dma_async_tx_descriptor_init(&desc->async_tx, dchan);
723 desc->async_tx.tx_submit = nbpf_tx_submit;
724 desc->chan = chan;
725 INIT_LIST_HEAD(&desc->sg);
726 list_add_tail(&desc->node, &head);
727 }
728
729 /*
730 * This function cannot be called from interrupt context, so, no need to
731 * save flags
732 */
733 spin_lock_irq(&chan->lock);
734 list_splice_tail(&lhead, &chan->free_links);
735 list_splice_tail(&head, &chan->free);
736 list_add(&dpage->node, &chan->desc_page);
737 spin_unlock_irq(&chan->lock);
738
739 return ARRAY_SIZE(dpage->desc);
740 }
741
nbpf_desc_put(struct nbpf_desc * desc)742 static void nbpf_desc_put(struct nbpf_desc *desc)
743 {
744 struct nbpf_channel *chan = desc->chan;
745 struct nbpf_link_desc *ldesc, *tmp;
746 unsigned long flags;
747
748 spin_lock_irqsave(&chan->lock, flags);
749 list_for_each_entry_safe(ldesc, tmp, &desc->sg, node)
750 list_move(&ldesc->node, &chan->free_links);
751
752 list_add(&desc->node, &chan->free);
753 spin_unlock_irqrestore(&chan->lock, flags);
754 }
755
nbpf_scan_acked(struct nbpf_channel * chan)756 static void nbpf_scan_acked(struct nbpf_channel *chan)
757 {
758 struct nbpf_desc *desc, *tmp;
759 unsigned long flags;
760 LIST_HEAD(head);
761
762 spin_lock_irqsave(&chan->lock, flags);
763 list_for_each_entry_safe(desc, tmp, &chan->done, node)
764 if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) {
765 list_move(&desc->node, &head);
766 desc->user_wait = false;
767 }
768 spin_unlock_irqrestore(&chan->lock, flags);
769
770 list_for_each_entry_safe(desc, tmp, &head, node) {
771 list_del(&desc->node);
772 nbpf_desc_put(desc);
773 }
774 }
775
776 /*
777 * We have to allocate descriptors with the channel lock dropped. This means,
778 * before we re-acquire the lock buffers can be taken already, so we have to
779 * re-check after re-acquiring the lock and possibly retry, if buffers are gone
780 * again.
781 */
nbpf_desc_get(struct nbpf_channel * chan,size_t len)782 static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len)
783 {
784 struct nbpf_desc *desc = NULL;
785 struct nbpf_link_desc *ldesc, *prev = NULL;
786
787 nbpf_scan_acked(chan);
788
789 spin_lock_irq(&chan->lock);
790
791 do {
792 int i = 0, ret;
793
794 if (list_empty(&chan->free)) {
795 /* No more free descriptors */
796 spin_unlock_irq(&chan->lock);
797 ret = nbpf_desc_page_alloc(chan);
798 if (ret < 0)
799 return NULL;
800 spin_lock_irq(&chan->lock);
801 continue;
802 }
803 desc = list_first_entry(&chan->free, struct nbpf_desc, node);
804 list_del(&desc->node);
805
806 do {
807 if (list_empty(&chan->free_links)) {
808 /* No more free link descriptors */
809 spin_unlock_irq(&chan->lock);
810 ret = nbpf_desc_page_alloc(chan);
811 if (ret < 0) {
812 nbpf_desc_put(desc);
813 return NULL;
814 }
815 spin_lock_irq(&chan->lock);
816 continue;
817 }
818
819 ldesc = list_first_entry(&chan->free_links,
820 struct nbpf_link_desc, node);
821 ldesc->desc = desc;
822 if (prev)
823 prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr;
824
825 prev = ldesc;
826 list_move_tail(&ldesc->node, &desc->sg);
827
828 i++;
829 } while (i < len);
830 } while (!desc);
831
832 prev->hwdesc->next = 0;
833
834 spin_unlock_irq(&chan->lock);
835
836 return desc;
837 }
838
nbpf_chan_idle(struct nbpf_channel * chan)839 static void nbpf_chan_idle(struct nbpf_channel *chan)
840 {
841 struct nbpf_desc *desc, *tmp;
842 unsigned long flags;
843 LIST_HEAD(head);
844
845 spin_lock_irqsave(&chan->lock, flags);
846
847 list_splice_init(&chan->done, &head);
848 list_splice_init(&chan->active, &head);
849 list_splice_init(&chan->queued, &head);
850
851 chan->running = NULL;
852
853 spin_unlock_irqrestore(&chan->lock, flags);
854
855 list_for_each_entry_safe(desc, tmp, &head, node) {
856 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n",
857 __func__, desc, desc->async_tx.cookie);
858 list_del(&desc->node);
859 nbpf_desc_put(desc);
860 }
861 }
862
nbpf_pause(struct dma_chan * dchan)863 static int nbpf_pause(struct dma_chan *dchan)
864 {
865 struct nbpf_channel *chan = nbpf_to_chan(dchan);
866
867 dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
868
869 chan->paused = true;
870 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS);
871 /* See comment in nbpf_prep_one() */
872 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
873
874 return 0;
875 }
876
nbpf_terminate_all(struct dma_chan * dchan)877 static int nbpf_terminate_all(struct dma_chan *dchan)
878 {
879 struct nbpf_channel *chan = nbpf_to_chan(dchan);
880
881 dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
882 dev_dbg(dchan->device->dev, "Terminating\n");
883
884 nbpf_chan_halt(chan);
885 nbpf_chan_idle(chan);
886
887 return 0;
888 }
889
nbpf_config(struct dma_chan * dchan,struct dma_slave_config * config)890 static int nbpf_config(struct dma_chan *dchan,
891 struct dma_slave_config *config)
892 {
893 struct nbpf_channel *chan = nbpf_to_chan(dchan);
894
895 dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
896
897 /*
898 * We could check config->slave_id to match chan->terminal here,
899 * but with DT they would be coming from the same source, so
900 * such a check would be superflous
901 */
902
903 chan->slave_dst_addr = config->dst_addr;
904 chan->slave_dst_width = nbpf_xfer_size(chan->nbpf,
905 config->dst_addr_width, 1);
906 chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf,
907 config->dst_addr_width,
908 config->dst_maxburst);
909 chan->slave_src_addr = config->src_addr;
910 chan->slave_src_width = nbpf_xfer_size(chan->nbpf,
911 config->src_addr_width, 1);
912 chan->slave_src_burst = nbpf_xfer_size(chan->nbpf,
913 config->src_addr_width,
914 config->src_maxburst);
915
916 return 0;
917 }
918
nbpf_prep_sg(struct nbpf_channel * chan,struct scatterlist * src_sg,struct scatterlist * dst_sg,size_t len,enum dma_transfer_direction direction,unsigned long flags)919 static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan,
920 struct scatterlist *src_sg, struct scatterlist *dst_sg,
921 size_t len, enum dma_transfer_direction direction,
922 unsigned long flags)
923 {
924 struct nbpf_link_desc *ldesc;
925 struct scatterlist *mem_sg;
926 struct nbpf_desc *desc;
927 bool inc_src, inc_dst;
928 size_t data_len = 0;
929 int i = 0;
930
931 switch (direction) {
932 case DMA_DEV_TO_MEM:
933 mem_sg = dst_sg;
934 inc_src = false;
935 inc_dst = true;
936 break;
937
938 case DMA_MEM_TO_DEV:
939 mem_sg = src_sg;
940 inc_src = true;
941 inc_dst = false;
942 break;
943
944 default:
945 case DMA_MEM_TO_MEM:
946 mem_sg = src_sg;
947 inc_src = true;
948 inc_dst = true;
949 }
950
951 desc = nbpf_desc_get(chan, len);
952 if (!desc)
953 return NULL;
954
955 desc->async_tx.flags = flags;
956 desc->async_tx.cookie = -EBUSY;
957 desc->user_wait = false;
958
959 /*
960 * This is a private descriptor list, and we own the descriptor. No need
961 * to lock.
962 */
963 list_for_each_entry(ldesc, &desc->sg, node) {
964 int ret = nbpf_prep_one(ldesc, direction,
965 sg_dma_address(src_sg),
966 sg_dma_address(dst_sg),
967 sg_dma_len(mem_sg),
968 i == len - 1);
969 if (ret < 0) {
970 nbpf_desc_put(desc);
971 return NULL;
972 }
973 data_len += sg_dma_len(mem_sg);
974 if (inc_src)
975 src_sg = sg_next(src_sg);
976 if (inc_dst)
977 dst_sg = sg_next(dst_sg);
978 mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg;
979 i++;
980 }
981
982 desc->length = data_len;
983
984 /* The user has to return the descriptor to us ASAP via .tx_submit() */
985 return &desc->async_tx;
986 }
987
nbpf_prep_memcpy(struct dma_chan * dchan,dma_addr_t dst,dma_addr_t src,size_t len,unsigned long flags)988 static struct dma_async_tx_descriptor *nbpf_prep_memcpy(
989 struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
990 size_t len, unsigned long flags)
991 {
992 struct nbpf_channel *chan = nbpf_to_chan(dchan);
993 struct scatterlist dst_sg;
994 struct scatterlist src_sg;
995
996 sg_init_table(&dst_sg, 1);
997 sg_init_table(&src_sg, 1);
998
999 sg_dma_address(&dst_sg) = dst;
1000 sg_dma_address(&src_sg) = src;
1001
1002 sg_dma_len(&dst_sg) = len;
1003 sg_dma_len(&src_sg) = len;
1004
1005 dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n",
1006 __func__, len, &src, &dst);
1007
1008 return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1,
1009 DMA_MEM_TO_MEM, flags);
1010 }
1011
nbpf_prep_slave_sg(struct dma_chan * dchan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)1012 static struct dma_async_tx_descriptor *nbpf_prep_slave_sg(
1013 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
1014 enum dma_transfer_direction direction, unsigned long flags, void *context)
1015 {
1016 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1017 struct scatterlist slave_sg;
1018
1019 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1020
1021 sg_init_table(&slave_sg, 1);
1022
1023 switch (direction) {
1024 case DMA_MEM_TO_DEV:
1025 sg_dma_address(&slave_sg) = chan->slave_dst_addr;
1026 return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len,
1027 direction, flags);
1028
1029 case DMA_DEV_TO_MEM:
1030 sg_dma_address(&slave_sg) = chan->slave_src_addr;
1031 return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len,
1032 direction, flags);
1033
1034 default:
1035 return NULL;
1036 }
1037 }
1038
nbpf_alloc_chan_resources(struct dma_chan * dchan)1039 static int nbpf_alloc_chan_resources(struct dma_chan *dchan)
1040 {
1041 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1042 int ret;
1043
1044 INIT_LIST_HEAD(&chan->free);
1045 INIT_LIST_HEAD(&chan->free_links);
1046 INIT_LIST_HEAD(&chan->queued);
1047 INIT_LIST_HEAD(&chan->active);
1048 INIT_LIST_HEAD(&chan->done);
1049
1050 ret = nbpf_desc_page_alloc(chan);
1051 if (ret < 0)
1052 return ret;
1053
1054 dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__,
1055 chan->terminal);
1056
1057 nbpf_chan_configure(chan);
1058
1059 return ret;
1060 }
1061
nbpf_free_chan_resources(struct dma_chan * dchan)1062 static void nbpf_free_chan_resources(struct dma_chan *dchan)
1063 {
1064 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1065 struct nbpf_desc_page *dpage, *tmp;
1066
1067 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1068
1069 nbpf_chan_halt(chan);
1070 nbpf_chan_idle(chan);
1071 /* Clean up for if a channel is re-used for MEMCPY after slave DMA */
1072 nbpf_chan_prepare_default(chan);
1073
1074 list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) {
1075 struct nbpf_link_desc *ldesc;
1076 int i;
1077 list_del(&dpage->node);
1078 for (i = 0, ldesc = dpage->ldesc;
1079 i < ARRAY_SIZE(dpage->ldesc);
1080 i++, ldesc++)
1081 dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr,
1082 sizeof(*ldesc->hwdesc), DMA_TO_DEVICE);
1083 free_page((unsigned long)dpage);
1084 }
1085 }
1086
nbpf_of_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)1087 static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec,
1088 struct of_dma *ofdma)
1089 {
1090 struct nbpf_device *nbpf = ofdma->of_dma_data;
1091 struct dma_chan *dchan;
1092 struct nbpf_channel *chan;
1093
1094 if (dma_spec->args_count != 2)
1095 return NULL;
1096
1097 dchan = dma_get_any_slave_channel(&nbpf->dma_dev);
1098 if (!dchan)
1099 return NULL;
1100
1101 dev_dbg(dchan->device->dev, "Entry %s(%pOFn)\n", __func__,
1102 dma_spec->np);
1103
1104 chan = nbpf_to_chan(dchan);
1105
1106 chan->terminal = dma_spec->args[0];
1107 chan->flags = dma_spec->args[1];
1108
1109 nbpf_chan_prepare(chan);
1110 nbpf_chan_configure(chan);
1111
1112 return dchan;
1113 }
1114
nbpf_chan_tasklet(struct tasklet_struct * t)1115 static void nbpf_chan_tasklet(struct tasklet_struct *t)
1116 {
1117 struct nbpf_channel *chan = from_tasklet(chan, t, tasklet);
1118 struct nbpf_desc *desc, *tmp;
1119 struct dmaengine_desc_callback cb;
1120
1121 while (!list_empty(&chan->done)) {
1122 bool found = false, must_put, recycling = false;
1123
1124 spin_lock_irq(&chan->lock);
1125
1126 list_for_each_entry_safe(desc, tmp, &chan->done, node) {
1127 if (!desc->user_wait) {
1128 /* Newly completed descriptor, have to process */
1129 found = true;
1130 break;
1131 } else if (async_tx_test_ack(&desc->async_tx)) {
1132 /*
1133 * This descriptor was waiting for a user ACK,
1134 * it can be recycled now.
1135 */
1136 list_del(&desc->node);
1137 spin_unlock_irq(&chan->lock);
1138 nbpf_desc_put(desc);
1139 recycling = true;
1140 break;
1141 }
1142 }
1143
1144 if (recycling)
1145 continue;
1146
1147 if (!found) {
1148 /* This can happen if TERMINATE_ALL has been called */
1149 spin_unlock_irq(&chan->lock);
1150 break;
1151 }
1152
1153 dma_cookie_complete(&desc->async_tx);
1154
1155 /*
1156 * With released lock we cannot dereference desc, maybe it's
1157 * still on the "done" list
1158 */
1159 if (async_tx_test_ack(&desc->async_tx)) {
1160 list_del(&desc->node);
1161 must_put = true;
1162 } else {
1163 desc->user_wait = true;
1164 must_put = false;
1165 }
1166
1167 dmaengine_desc_get_callback(&desc->async_tx, &cb);
1168
1169 /* ack and callback completed descriptor */
1170 spin_unlock_irq(&chan->lock);
1171
1172 dmaengine_desc_callback_invoke(&cb, NULL);
1173
1174 if (must_put)
1175 nbpf_desc_put(desc);
1176 }
1177 }
1178
nbpf_chan_irq(int irq,void * dev)1179 static irqreturn_t nbpf_chan_irq(int irq, void *dev)
1180 {
1181 struct nbpf_channel *chan = dev;
1182 bool done = nbpf_status_get(chan);
1183 struct nbpf_desc *desc;
1184 irqreturn_t ret;
1185 bool bh = false;
1186
1187 if (!done)
1188 return IRQ_NONE;
1189
1190 nbpf_status_ack(chan);
1191
1192 dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__);
1193
1194 spin_lock(&chan->lock);
1195 desc = chan->running;
1196 if (WARN_ON(!desc)) {
1197 ret = IRQ_NONE;
1198 goto unlock;
1199 } else {
1200 ret = IRQ_HANDLED;
1201 bh = true;
1202 }
1203
1204 list_move_tail(&desc->node, &chan->done);
1205 chan->running = NULL;
1206
1207 if (!list_empty(&chan->active)) {
1208 desc = list_first_entry(&chan->active,
1209 struct nbpf_desc, node);
1210 if (!nbpf_start(desc))
1211 chan->running = desc;
1212 }
1213
1214 unlock:
1215 spin_unlock(&chan->lock);
1216
1217 if (bh)
1218 tasklet_schedule(&chan->tasklet);
1219
1220 return ret;
1221 }
1222
nbpf_err_irq(int irq,void * dev)1223 static irqreturn_t nbpf_err_irq(int irq, void *dev)
1224 {
1225 struct nbpf_device *nbpf = dev;
1226 u32 error = nbpf_error_get(nbpf);
1227
1228 dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq);
1229
1230 if (!error)
1231 return IRQ_NONE;
1232
1233 do {
1234 struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error);
1235 /* On error: abort all queued transfers, no callback */
1236 nbpf_error_clear(chan);
1237 nbpf_chan_idle(chan);
1238 error = nbpf_error_get(nbpf);
1239 } while (error);
1240
1241 return IRQ_HANDLED;
1242 }
1243
nbpf_chan_probe(struct nbpf_device * nbpf,int n)1244 static int nbpf_chan_probe(struct nbpf_device *nbpf, int n)
1245 {
1246 struct dma_device *dma_dev = &nbpf->dma_dev;
1247 struct nbpf_channel *chan = nbpf->chan + n;
1248 int ret;
1249
1250 chan->nbpf = nbpf;
1251 chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n;
1252 INIT_LIST_HEAD(&chan->desc_page);
1253 spin_lock_init(&chan->lock);
1254 chan->dma_chan.device = dma_dev;
1255 dma_cookie_init(&chan->dma_chan);
1256 nbpf_chan_prepare_default(chan);
1257
1258 dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base);
1259
1260 snprintf(chan->name, sizeof(chan->name), "nbpf %d", n);
1261
1262 tasklet_setup(&chan->tasklet, nbpf_chan_tasklet);
1263 ret = devm_request_irq(dma_dev->dev, chan->irq,
1264 nbpf_chan_irq, IRQF_SHARED,
1265 chan->name, chan);
1266 if (ret < 0)
1267 return ret;
1268
1269 /* Add the channel to DMA device channel list */
1270 list_add_tail(&chan->dma_chan.device_node,
1271 &dma_dev->channels);
1272
1273 return 0;
1274 }
1275
1276 static const struct of_device_id nbpf_match[] = {
1277 {.compatible = "renesas,nbpfaxi64dmac1b4", .data = &nbpf_cfg[NBPF1B4]},
1278 {.compatible = "renesas,nbpfaxi64dmac1b8", .data = &nbpf_cfg[NBPF1B8]},
1279 {.compatible = "renesas,nbpfaxi64dmac1b16", .data = &nbpf_cfg[NBPF1B16]},
1280 {.compatible = "renesas,nbpfaxi64dmac4b4", .data = &nbpf_cfg[NBPF4B4]},
1281 {.compatible = "renesas,nbpfaxi64dmac4b8", .data = &nbpf_cfg[NBPF4B8]},
1282 {.compatible = "renesas,nbpfaxi64dmac4b16", .data = &nbpf_cfg[NBPF4B16]},
1283 {.compatible = "renesas,nbpfaxi64dmac8b4", .data = &nbpf_cfg[NBPF8B4]},
1284 {.compatible = "renesas,nbpfaxi64dmac8b8", .data = &nbpf_cfg[NBPF8B8]},
1285 {.compatible = "renesas,nbpfaxi64dmac8b16", .data = &nbpf_cfg[NBPF8B16]},
1286 {}
1287 };
1288 MODULE_DEVICE_TABLE(of, nbpf_match);
1289
nbpf_probe(struct platform_device * pdev)1290 static int nbpf_probe(struct platform_device *pdev)
1291 {
1292 struct device *dev = &pdev->dev;
1293 struct device_node *np = dev->of_node;
1294 struct nbpf_device *nbpf;
1295 struct dma_device *dma_dev;
1296 const struct nbpf_config *cfg;
1297 int num_channels;
1298 int ret, irq, eirq, i;
1299 int irqbuf[9] /* maximum 8 channels + error IRQ */;
1300 unsigned int irqs = 0;
1301
1302 BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE);
1303
1304 /* DT only */
1305 if (!np)
1306 return -ENODEV;
1307
1308 cfg = of_device_get_match_data(dev);
1309 num_channels = cfg->num_channels;
1310
1311 nbpf = devm_kzalloc(dev, struct_size(nbpf, chan, num_channels),
1312 GFP_KERNEL);
1313 if (!nbpf)
1314 return -ENOMEM;
1315
1316 dma_dev = &nbpf->dma_dev;
1317 dma_dev->dev = dev;
1318
1319 nbpf->base = devm_platform_ioremap_resource(pdev, 0);
1320 if (IS_ERR(nbpf->base))
1321 return PTR_ERR(nbpf->base);
1322
1323 nbpf->clk = devm_clk_get(dev, NULL);
1324 if (IS_ERR(nbpf->clk))
1325 return PTR_ERR(nbpf->clk);
1326
1327 of_property_read_u32(np, "max-burst-mem-read",
1328 &nbpf->max_burst_mem_read);
1329 of_property_read_u32(np, "max-burst-mem-write",
1330 &nbpf->max_burst_mem_write);
1331
1332 nbpf->config = cfg;
1333
1334 for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) {
1335 irq = platform_get_irq_optional(pdev, i);
1336 if (irq < 0 && irq != -ENXIO)
1337 return irq;
1338 if (irq > 0)
1339 irqbuf[irqs++] = irq;
1340 }
1341
1342 /*
1343 * 3 IRQ resource schemes are supported:
1344 * 1. 1 shared IRQ for error and all channels
1345 * 2. 2 IRQs: one for error and one shared for all channels
1346 * 3. 1 IRQ for error and an own IRQ for each channel
1347 */
1348 if (irqs != 1 && irqs != 2 && irqs != num_channels + 1)
1349 return -ENXIO;
1350
1351 if (irqs == 1) {
1352 eirq = irqbuf[0];
1353
1354 for (i = 0; i <= num_channels; i++)
1355 nbpf->chan[i].irq = irqbuf[0];
1356 } else {
1357 eirq = platform_get_irq_byname(pdev, "error");
1358 if (eirq < 0)
1359 return eirq;
1360
1361 if (irqs == num_channels + 1) {
1362 struct nbpf_channel *chan;
1363
1364 for (i = 0, chan = nbpf->chan; i <= num_channels;
1365 i++, chan++) {
1366 /* Skip the error IRQ */
1367 if (irqbuf[i] == eirq)
1368 i++;
1369 chan->irq = irqbuf[i];
1370 }
1371
1372 if (chan != nbpf->chan + num_channels)
1373 return -EINVAL;
1374 } else {
1375 /* 2 IRQs and more than one channel */
1376 if (irqbuf[0] == eirq)
1377 irq = irqbuf[1];
1378 else
1379 irq = irqbuf[0];
1380
1381 for (i = 0; i <= num_channels; i++)
1382 nbpf->chan[i].irq = irq;
1383 }
1384 }
1385
1386 ret = devm_request_irq(dev, eirq, nbpf_err_irq,
1387 IRQF_SHARED, "dma error", nbpf);
1388 if (ret < 0)
1389 return ret;
1390 nbpf->eirq = eirq;
1391
1392 INIT_LIST_HEAD(&dma_dev->channels);
1393
1394 /* Create DMA Channel */
1395 for (i = 0; i < num_channels; i++) {
1396 ret = nbpf_chan_probe(nbpf, i);
1397 if (ret < 0)
1398 return ret;
1399 }
1400
1401 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1402 dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1403 dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1404
1405 /* Common and MEMCPY operations */
1406 dma_dev->device_alloc_chan_resources
1407 = nbpf_alloc_chan_resources;
1408 dma_dev->device_free_chan_resources = nbpf_free_chan_resources;
1409 dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy;
1410 dma_dev->device_tx_status = nbpf_tx_status;
1411 dma_dev->device_issue_pending = nbpf_issue_pending;
1412
1413 /*
1414 * If we drop support for unaligned MEMCPY buffer addresses and / or
1415 * lengths by setting
1416 * dma_dev->copy_align = 4;
1417 * then we can set transfer length to 4 bytes in nbpf_prep_one() for
1418 * DMA_MEM_TO_MEM
1419 */
1420
1421 /* Compulsory for DMA_SLAVE fields */
1422 dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg;
1423 dma_dev->device_config = nbpf_config;
1424 dma_dev->device_pause = nbpf_pause;
1425 dma_dev->device_terminate_all = nbpf_terminate_all;
1426
1427 dma_dev->src_addr_widths = NBPF_DMA_BUSWIDTHS;
1428 dma_dev->dst_addr_widths = NBPF_DMA_BUSWIDTHS;
1429 dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1430
1431 platform_set_drvdata(pdev, nbpf);
1432
1433 ret = clk_prepare_enable(nbpf->clk);
1434 if (ret < 0)
1435 return ret;
1436
1437 nbpf_configure(nbpf);
1438
1439 ret = dma_async_device_register(dma_dev);
1440 if (ret < 0)
1441 goto e_clk_off;
1442
1443 ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf);
1444 if (ret < 0)
1445 goto e_dma_dev_unreg;
1446
1447 return 0;
1448
1449 e_dma_dev_unreg:
1450 dma_async_device_unregister(dma_dev);
1451 e_clk_off:
1452 clk_disable_unprepare(nbpf->clk);
1453
1454 return ret;
1455 }
1456
nbpf_remove(struct platform_device * pdev)1457 static int nbpf_remove(struct platform_device *pdev)
1458 {
1459 struct nbpf_device *nbpf = platform_get_drvdata(pdev);
1460 int i;
1461
1462 devm_free_irq(&pdev->dev, nbpf->eirq, nbpf);
1463
1464 for (i = 0; i < nbpf->config->num_channels; i++) {
1465 struct nbpf_channel *chan = nbpf->chan + i;
1466
1467 devm_free_irq(&pdev->dev, chan->irq, chan);
1468
1469 tasklet_kill(&chan->tasklet);
1470 }
1471
1472 of_dma_controller_free(pdev->dev.of_node);
1473 dma_async_device_unregister(&nbpf->dma_dev);
1474 clk_disable_unprepare(nbpf->clk);
1475
1476 return 0;
1477 }
1478
1479 static const struct platform_device_id nbpf_ids[] = {
1480 {"nbpfaxi64dmac1b4", (kernel_ulong_t)&nbpf_cfg[NBPF1B4]},
1481 {"nbpfaxi64dmac1b8", (kernel_ulong_t)&nbpf_cfg[NBPF1B8]},
1482 {"nbpfaxi64dmac1b16", (kernel_ulong_t)&nbpf_cfg[NBPF1B16]},
1483 {"nbpfaxi64dmac4b4", (kernel_ulong_t)&nbpf_cfg[NBPF4B4]},
1484 {"nbpfaxi64dmac4b8", (kernel_ulong_t)&nbpf_cfg[NBPF4B8]},
1485 {"nbpfaxi64dmac4b16", (kernel_ulong_t)&nbpf_cfg[NBPF4B16]},
1486 {"nbpfaxi64dmac8b4", (kernel_ulong_t)&nbpf_cfg[NBPF8B4]},
1487 {"nbpfaxi64dmac8b8", (kernel_ulong_t)&nbpf_cfg[NBPF8B8]},
1488 {"nbpfaxi64dmac8b16", (kernel_ulong_t)&nbpf_cfg[NBPF8B16]},
1489 {},
1490 };
1491 MODULE_DEVICE_TABLE(platform, nbpf_ids);
1492
1493 #ifdef CONFIG_PM
nbpf_runtime_suspend(struct device * dev)1494 static int nbpf_runtime_suspend(struct device *dev)
1495 {
1496 struct nbpf_device *nbpf = dev_get_drvdata(dev);
1497 clk_disable_unprepare(nbpf->clk);
1498 return 0;
1499 }
1500
nbpf_runtime_resume(struct device * dev)1501 static int nbpf_runtime_resume(struct device *dev)
1502 {
1503 struct nbpf_device *nbpf = dev_get_drvdata(dev);
1504 return clk_prepare_enable(nbpf->clk);
1505 }
1506 #endif
1507
1508 static const struct dev_pm_ops nbpf_pm_ops = {
1509 SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL)
1510 };
1511
1512 static struct platform_driver nbpf_driver = {
1513 .driver = {
1514 .name = "dma-nbpf",
1515 .of_match_table = nbpf_match,
1516 .pm = &nbpf_pm_ops,
1517 },
1518 .id_table = nbpf_ids,
1519 .probe = nbpf_probe,
1520 .remove = nbpf_remove,
1521 };
1522
1523 module_platform_driver(nbpf_driver);
1524
1525 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1526 MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
1527 MODULE_LICENSE("GPL v2");
1528