1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Copyright 2011 Freescale Semiconductor, Inc. All Rights Reserved. 4 // 5 // Refer to drivers/dma/imx-sdma.c 6 7 #include <linux/init.h> 8 #include <linux/types.h> 9 #include <linux/mm.h> 10 #include <linux/interrupt.h> 11 #include <linux/clk.h> 12 #include <linux/wait.h> 13 #include <linux/sched.h> 14 #include <linux/semaphore.h> 15 #include <linux/device.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/slab.h> 18 #include <linux/platform_device.h> 19 #include <linux/dmaengine.h> 20 #include <linux/delay.h> 21 #include <linux/module.h> 22 #include <linux/stmp_device.h> 23 #include <linux/of.h> 24 #include <linux/of_device.h> 25 #include <linux/of_dma.h> 26 #include <linux/list.h> 27 28 #include <asm/irq.h> 29 30 #include "dmaengine.h" 31 32 /* 33 * NOTE: The term "PIO" throughout the mxs-dma implementation means 34 * PIO mode of mxs apbh-dma and apbx-dma. With this working mode, 35 * dma can program the controller registers of peripheral devices. 36 */ 37 38 #define dma_is_apbh(mxs_dma) ((mxs_dma)->type == MXS_DMA_APBH) 39 #define apbh_is_old(mxs_dma) ((mxs_dma)->dev_id == IMX23_DMA) 40 41 #define HW_APBHX_CTRL0 0x000 42 #define BM_APBH_CTRL0_APB_BURST8_EN (1 << 29) 43 #define BM_APBH_CTRL0_APB_BURST_EN (1 << 28) 44 #define BP_APBH_CTRL0_RESET_CHANNEL 16 45 #define HW_APBHX_CTRL1 0x010 46 #define HW_APBHX_CTRL2 0x020 47 #define HW_APBHX_CHANNEL_CTRL 0x030 48 #define BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL 16 49 /* 50 * The offset of NXTCMDAR register is different per both dma type and version, 51 * while stride for each channel is all the same 0x70. 52 */ 53 #define HW_APBHX_CHn_NXTCMDAR(d, n) \ 54 (((dma_is_apbh(d) && apbh_is_old(d)) ? 0x050 : 0x110) + (n) * 0x70) 55 #define HW_APBHX_CHn_SEMA(d, n) \ 56 (((dma_is_apbh(d) && apbh_is_old(d)) ? 0x080 : 0x140) + (n) * 0x70) 57 #define HW_APBHX_CHn_BAR(d, n) \ 58 (((dma_is_apbh(d) && apbh_is_old(d)) ? 0x070 : 0x130) + (n) * 0x70) 59 #define HW_APBX_CHn_DEBUG1(d, n) (0x150 + (n) * 0x70) 60 61 /* 62 * ccw bits definitions 63 * 64 * COMMAND: 0..1 (2) 65 * CHAIN: 2 (1) 66 * IRQ: 3 (1) 67 * NAND_LOCK: 4 (1) - not implemented 68 * NAND_WAIT4READY: 5 (1) - not implemented 69 * DEC_SEM: 6 (1) 70 * WAIT4END: 7 (1) 71 * HALT_ON_TERMINATE: 8 (1) 72 * TERMINATE_FLUSH: 9 (1) 73 * RESERVED: 10..11 (2) 74 * PIO_NUM: 12..15 (4) 75 */ 76 #define BP_CCW_COMMAND 0 77 #define BM_CCW_COMMAND (3 << 0) 78 #define CCW_CHAIN (1 << 2) 79 #define CCW_IRQ (1 << 3) 80 #define CCW_DEC_SEM (1 << 6) 81 #define CCW_WAIT4END (1 << 7) 82 #define CCW_HALT_ON_TERM (1 << 8) 83 #define CCW_TERM_FLUSH (1 << 9) 84 #define BP_CCW_PIO_NUM 12 85 #define BM_CCW_PIO_NUM (0xf << 12) 86 87 #define BF_CCW(value, field) (((value) << BP_CCW_##field) & BM_CCW_##field) 88 89 #define MXS_DMA_CMD_NO_XFER 0 90 #define MXS_DMA_CMD_WRITE 1 91 #define MXS_DMA_CMD_READ 2 92 #define MXS_DMA_CMD_DMA_SENSE 3 /* not implemented */ 93 94 struct mxs_dma_ccw { 95 u32 next; 96 u16 bits; 97 u16 xfer_bytes; 98 #define MAX_XFER_BYTES 0xff00 99 u32 bufaddr; 100 #define MXS_PIO_WORDS 16 101 u32 pio_words[MXS_PIO_WORDS]; 102 }; 103 104 #define CCW_BLOCK_SIZE (4 * PAGE_SIZE) 105 #define NUM_CCW (int)(CCW_BLOCK_SIZE / sizeof(struct mxs_dma_ccw)) 106 107 struct mxs_dma_chan { 108 struct mxs_dma_engine *mxs_dma; 109 struct dma_chan chan; 110 struct dma_async_tx_descriptor desc; 111 struct tasklet_struct tasklet; 112 unsigned int chan_irq; 113 struct mxs_dma_ccw *ccw; 114 dma_addr_t ccw_phys; 115 int desc_count; 116 enum dma_status status; 117 unsigned int flags; 118 bool reset; 119 #define MXS_DMA_SG_LOOP (1 << 0) 120 #define MXS_DMA_USE_SEMAPHORE (1 << 1) 121 }; 122 123 #define MXS_DMA_CHANNELS 16 124 #define MXS_DMA_CHANNELS_MASK 0xffff 125 126 enum mxs_dma_devtype { 127 MXS_DMA_APBH, 128 MXS_DMA_APBX, 129 }; 130 131 enum mxs_dma_id { 132 IMX23_DMA, 133 IMX28_DMA, 134 }; 135 136 struct mxs_dma_engine { 137 enum mxs_dma_id dev_id; 138 enum mxs_dma_devtype type; 139 void __iomem *base; 140 struct clk *clk; 141 struct dma_device dma_device; 142 struct device_dma_parameters dma_parms; 143 struct mxs_dma_chan mxs_chans[MXS_DMA_CHANNELS]; 144 struct platform_device *pdev; 145 unsigned int nr_channels; 146 }; 147 148 struct mxs_dma_type { 149 enum mxs_dma_id id; 150 enum mxs_dma_devtype type; 151 }; 152 153 static struct mxs_dma_type mxs_dma_types[] = { 154 { 155 .id = IMX23_DMA, 156 .type = MXS_DMA_APBH, 157 }, { 158 .id = IMX23_DMA, 159 .type = MXS_DMA_APBX, 160 }, { 161 .id = IMX28_DMA, 162 .type = MXS_DMA_APBH, 163 }, { 164 .id = IMX28_DMA, 165 .type = MXS_DMA_APBX, 166 } 167 }; 168 169 static const struct platform_device_id mxs_dma_ids[] = { 170 { 171 .name = "imx23-dma-apbh", 172 .driver_data = (kernel_ulong_t) &mxs_dma_types[0], 173 }, { 174 .name = "imx23-dma-apbx", 175 .driver_data = (kernel_ulong_t) &mxs_dma_types[1], 176 }, { 177 .name = "imx28-dma-apbh", 178 .driver_data = (kernel_ulong_t) &mxs_dma_types[2], 179 }, { 180 .name = "imx28-dma-apbx", 181 .driver_data = (kernel_ulong_t) &mxs_dma_types[3], 182 }, { 183 /* end of list */ 184 } 185 }; 186 187 static const struct of_device_id mxs_dma_dt_ids[] = { 188 { .compatible = "fsl,imx23-dma-apbh", .data = &mxs_dma_ids[0], }, 189 { .compatible = "fsl,imx23-dma-apbx", .data = &mxs_dma_ids[1], }, 190 { .compatible = "fsl,imx28-dma-apbh", .data = &mxs_dma_ids[2], }, 191 { .compatible = "fsl,imx28-dma-apbx", .data = &mxs_dma_ids[3], }, 192 { /* sentinel */ } 193 }; 194 MODULE_DEVICE_TABLE(of, mxs_dma_dt_ids); 195 196 static struct mxs_dma_chan *to_mxs_dma_chan(struct dma_chan *chan) 197 { 198 return container_of(chan, struct mxs_dma_chan, chan); 199 } 200 201 static void mxs_dma_reset_chan(struct dma_chan *chan) 202 { 203 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); 204 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; 205 int chan_id = mxs_chan->chan.chan_id; 206 207 /* 208 * mxs dma channel resets can cause a channel stall. To recover from a 209 * channel stall, we have to reset the whole DMA engine. To avoid this, 210 * we use cyclic DMA with semaphores, that are enhanced in 211 * mxs_dma_int_handler. To reset the channel, we can simply stop writing 212 * into the semaphore counter. 213 */ 214 if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE && 215 mxs_chan->flags & MXS_DMA_SG_LOOP) { 216 mxs_chan->reset = true; 217 } else if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma)) { 218 writel(1 << (chan_id + BP_APBH_CTRL0_RESET_CHANNEL), 219 mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET); 220 } else { 221 unsigned long elapsed = 0; 222 const unsigned long max_wait = 50000; /* 50ms */ 223 void __iomem *reg_dbg1 = mxs_dma->base + 224 HW_APBX_CHn_DEBUG1(mxs_dma, chan_id); 225 226 /* 227 * On i.MX28 APBX, the DMA channel can stop working if we reset 228 * the channel while it is in READ_FLUSH (0x08) state. 229 * We wait here until we leave the state. Then we trigger the 230 * reset. Waiting a maximum of 50ms, the kernel shouldn't crash 231 * because of this. 232 */ 233 while ((readl(reg_dbg1) & 0xf) == 0x8 && elapsed < max_wait) { 234 udelay(100); 235 elapsed += 100; 236 } 237 238 if (elapsed >= max_wait) 239 dev_err(&mxs_chan->mxs_dma->pdev->dev, 240 "Failed waiting for the DMA channel %d to leave state READ_FLUSH, trying to reset channel in READ_FLUSH state now\n", 241 chan_id); 242 243 writel(1 << (chan_id + BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL), 244 mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET); 245 } 246 247 mxs_chan->status = DMA_COMPLETE; 248 } 249 250 static void mxs_dma_enable_chan(struct dma_chan *chan) 251 { 252 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); 253 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; 254 int chan_id = mxs_chan->chan.chan_id; 255 256 /* set cmd_addr up */ 257 writel(mxs_chan->ccw_phys, 258 mxs_dma->base + HW_APBHX_CHn_NXTCMDAR(mxs_dma, chan_id)); 259 260 /* write 1 to SEMA to kick off the channel */ 261 if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE && 262 mxs_chan->flags & MXS_DMA_SG_LOOP) { 263 /* A cyclic DMA consists of at least 2 segments, so initialize 264 * the semaphore with 2 so we have enough time to add 1 to the 265 * semaphore if we need to */ 266 writel(2, mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id)); 267 } else { 268 writel(1, mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id)); 269 } 270 mxs_chan->reset = false; 271 } 272 273 static void mxs_dma_disable_chan(struct dma_chan *chan) 274 { 275 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); 276 277 mxs_chan->status = DMA_COMPLETE; 278 } 279 280 static int mxs_dma_pause_chan(struct dma_chan *chan) 281 { 282 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); 283 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; 284 int chan_id = mxs_chan->chan.chan_id; 285 286 /* freeze the channel */ 287 if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma)) 288 writel(1 << chan_id, 289 mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET); 290 else 291 writel(1 << chan_id, 292 mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET); 293 294 mxs_chan->status = DMA_PAUSED; 295 return 0; 296 } 297 298 static int mxs_dma_resume_chan(struct dma_chan *chan) 299 { 300 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); 301 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; 302 int chan_id = mxs_chan->chan.chan_id; 303 304 /* unfreeze the channel */ 305 if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma)) 306 writel(1 << chan_id, 307 mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_CLR); 308 else 309 writel(1 << chan_id, 310 mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_CLR); 311 312 mxs_chan->status = DMA_IN_PROGRESS; 313 return 0; 314 } 315 316 static dma_cookie_t mxs_dma_tx_submit(struct dma_async_tx_descriptor *tx) 317 { 318 return dma_cookie_assign(tx); 319 } 320 321 static void mxs_dma_tasklet(unsigned long data) 322 { 323 struct mxs_dma_chan *mxs_chan = (struct mxs_dma_chan *) data; 324 325 dmaengine_desc_get_callback_invoke(&mxs_chan->desc, NULL); 326 } 327 328 static int mxs_dma_irq_to_chan(struct mxs_dma_engine *mxs_dma, int irq) 329 { 330 int i; 331 332 for (i = 0; i != mxs_dma->nr_channels; ++i) 333 if (mxs_dma->mxs_chans[i].chan_irq == irq) 334 return i; 335 336 return -EINVAL; 337 } 338 339 static irqreturn_t mxs_dma_int_handler(int irq, void *dev_id) 340 { 341 struct mxs_dma_engine *mxs_dma = dev_id; 342 struct mxs_dma_chan *mxs_chan; 343 u32 completed; 344 u32 err; 345 int chan = mxs_dma_irq_to_chan(mxs_dma, irq); 346 347 if (chan < 0) 348 return IRQ_NONE; 349 350 /* completion status */ 351 completed = readl(mxs_dma->base + HW_APBHX_CTRL1); 352 completed = (completed >> chan) & 0x1; 353 354 /* Clear interrupt */ 355 writel((1 << chan), 356 mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_CLR); 357 358 /* error status */ 359 err = readl(mxs_dma->base + HW_APBHX_CTRL2); 360 err &= (1 << (MXS_DMA_CHANNELS + chan)) | (1 << chan); 361 362 /* 363 * error status bit is in the upper 16 bits, error irq bit in the lower 364 * 16 bits. We transform it into a simpler error code: 365 * err: 0x00 = no error, 0x01 = TERMINATION, 0x02 = BUS_ERROR 366 */ 367 err = (err >> (MXS_DMA_CHANNELS + chan)) + (err >> chan); 368 369 /* Clear error irq */ 370 writel((1 << chan), 371 mxs_dma->base + HW_APBHX_CTRL2 + STMP_OFFSET_REG_CLR); 372 373 /* 374 * When both completion and error of termination bits set at the 375 * same time, we do not take it as an error. IOW, it only becomes 376 * an error we need to handle here in case of either it's a bus 377 * error or a termination error with no completion. 0x01 is termination 378 * error, so we can subtract err & completed to get the real error case. 379 */ 380 err -= err & completed; 381 382 mxs_chan = &mxs_dma->mxs_chans[chan]; 383 384 if (err) { 385 dev_dbg(mxs_dma->dma_device.dev, 386 "%s: error in channel %d\n", __func__, 387 chan); 388 mxs_chan->status = DMA_ERROR; 389 mxs_dma_reset_chan(&mxs_chan->chan); 390 } else if (mxs_chan->status != DMA_COMPLETE) { 391 if (mxs_chan->flags & MXS_DMA_SG_LOOP) { 392 mxs_chan->status = DMA_IN_PROGRESS; 393 if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE) 394 writel(1, mxs_dma->base + 395 HW_APBHX_CHn_SEMA(mxs_dma, chan)); 396 } else { 397 mxs_chan->status = DMA_COMPLETE; 398 } 399 } 400 401 if (mxs_chan->status == DMA_COMPLETE) { 402 if (mxs_chan->reset) 403 return IRQ_HANDLED; 404 dma_cookie_complete(&mxs_chan->desc); 405 } 406 407 /* schedule tasklet on this channel */ 408 tasklet_schedule(&mxs_chan->tasklet); 409 410 return IRQ_HANDLED; 411 } 412 413 static int mxs_dma_alloc_chan_resources(struct dma_chan *chan) 414 { 415 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); 416 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; 417 int ret; 418 419 mxs_chan->ccw = dma_zalloc_coherent(mxs_dma->dma_device.dev, 420 CCW_BLOCK_SIZE, 421 &mxs_chan->ccw_phys, GFP_KERNEL); 422 if (!mxs_chan->ccw) { 423 ret = -ENOMEM; 424 goto err_alloc; 425 } 426 427 ret = request_irq(mxs_chan->chan_irq, mxs_dma_int_handler, 428 0, "mxs-dma", mxs_dma); 429 if (ret) 430 goto err_irq; 431 432 ret = clk_prepare_enable(mxs_dma->clk); 433 if (ret) 434 goto err_clk; 435 436 mxs_dma_reset_chan(chan); 437 438 dma_async_tx_descriptor_init(&mxs_chan->desc, chan); 439 mxs_chan->desc.tx_submit = mxs_dma_tx_submit; 440 441 /* the descriptor is ready */ 442 async_tx_ack(&mxs_chan->desc); 443 444 return 0; 445 446 err_clk: 447 free_irq(mxs_chan->chan_irq, mxs_dma); 448 err_irq: 449 dma_free_coherent(mxs_dma->dma_device.dev, CCW_BLOCK_SIZE, 450 mxs_chan->ccw, mxs_chan->ccw_phys); 451 err_alloc: 452 return ret; 453 } 454 455 static void mxs_dma_free_chan_resources(struct dma_chan *chan) 456 { 457 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); 458 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; 459 460 mxs_dma_disable_chan(chan); 461 462 free_irq(mxs_chan->chan_irq, mxs_dma); 463 464 dma_free_coherent(mxs_dma->dma_device.dev, CCW_BLOCK_SIZE, 465 mxs_chan->ccw, mxs_chan->ccw_phys); 466 467 clk_disable_unprepare(mxs_dma->clk); 468 } 469 470 /* 471 * How to use the flags for ->device_prep_slave_sg() : 472 * [1] If there is only one DMA command in the DMA chain, the code should be: 473 * ...... 474 * ->device_prep_slave_sg(DMA_CTRL_ACK); 475 * ...... 476 * [2] If there are two DMA commands in the DMA chain, the code should be 477 * ...... 478 * ->device_prep_slave_sg(0); 479 * ...... 480 * ->device_prep_slave_sg(DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 481 * ...... 482 * [3] If there are more than two DMA commands in the DMA chain, the code 483 * should be: 484 * ...... 485 * ->device_prep_slave_sg(0); // First 486 * ...... 487 * ->device_prep_slave_sg(DMA_PREP_INTERRUPT [| DMA_CTRL_ACK]); 488 * ...... 489 * ->device_prep_slave_sg(DMA_PREP_INTERRUPT | DMA_CTRL_ACK); // Last 490 * ...... 491 */ 492 static struct dma_async_tx_descriptor *mxs_dma_prep_slave_sg( 493 struct dma_chan *chan, struct scatterlist *sgl, 494 unsigned int sg_len, enum dma_transfer_direction direction, 495 unsigned long flags, void *context) 496 { 497 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); 498 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; 499 struct mxs_dma_ccw *ccw; 500 struct scatterlist *sg; 501 u32 i, j; 502 u32 *pio; 503 bool append = flags & DMA_PREP_INTERRUPT; 504 int idx = append ? mxs_chan->desc_count : 0; 505 506 if (mxs_chan->status == DMA_IN_PROGRESS && !append) 507 return NULL; 508 509 if (sg_len + (append ? idx : 0) > NUM_CCW) { 510 dev_err(mxs_dma->dma_device.dev, 511 "maximum number of sg exceeded: %d > %d\n", 512 sg_len, NUM_CCW); 513 goto err_out; 514 } 515 516 mxs_chan->status = DMA_IN_PROGRESS; 517 mxs_chan->flags = 0; 518 519 /* 520 * If the sg is prepared with append flag set, the sg 521 * will be appended to the last prepared sg. 522 */ 523 if (append) { 524 BUG_ON(idx < 1); 525 ccw = &mxs_chan->ccw[idx - 1]; 526 ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx; 527 ccw->bits |= CCW_CHAIN; 528 ccw->bits &= ~CCW_IRQ; 529 ccw->bits &= ~CCW_DEC_SEM; 530 } else { 531 idx = 0; 532 } 533 534 if (direction == DMA_TRANS_NONE) { 535 ccw = &mxs_chan->ccw[idx++]; 536 pio = (u32 *) sgl; 537 538 for (j = 0; j < sg_len;) 539 ccw->pio_words[j++] = *pio++; 540 541 ccw->bits = 0; 542 ccw->bits |= CCW_IRQ; 543 ccw->bits |= CCW_DEC_SEM; 544 if (flags & DMA_CTRL_ACK) 545 ccw->bits |= CCW_WAIT4END; 546 ccw->bits |= CCW_HALT_ON_TERM; 547 ccw->bits |= CCW_TERM_FLUSH; 548 ccw->bits |= BF_CCW(sg_len, PIO_NUM); 549 ccw->bits |= BF_CCW(MXS_DMA_CMD_NO_XFER, COMMAND); 550 } else { 551 for_each_sg(sgl, sg, sg_len, i) { 552 if (sg_dma_len(sg) > MAX_XFER_BYTES) { 553 dev_err(mxs_dma->dma_device.dev, "maximum bytes for sg entry exceeded: %d > %d\n", 554 sg_dma_len(sg), MAX_XFER_BYTES); 555 goto err_out; 556 } 557 558 ccw = &mxs_chan->ccw[idx++]; 559 560 ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx; 561 ccw->bufaddr = sg->dma_address; 562 ccw->xfer_bytes = sg_dma_len(sg); 563 564 ccw->bits = 0; 565 ccw->bits |= CCW_CHAIN; 566 ccw->bits |= CCW_HALT_ON_TERM; 567 ccw->bits |= CCW_TERM_FLUSH; 568 ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ? 569 MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ, 570 COMMAND); 571 572 if (i + 1 == sg_len) { 573 ccw->bits &= ~CCW_CHAIN; 574 ccw->bits |= CCW_IRQ; 575 ccw->bits |= CCW_DEC_SEM; 576 if (flags & DMA_CTRL_ACK) 577 ccw->bits |= CCW_WAIT4END; 578 } 579 } 580 } 581 mxs_chan->desc_count = idx; 582 583 return &mxs_chan->desc; 584 585 err_out: 586 mxs_chan->status = DMA_ERROR; 587 return NULL; 588 } 589 590 static struct dma_async_tx_descriptor *mxs_dma_prep_dma_cyclic( 591 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len, 592 size_t period_len, enum dma_transfer_direction direction, 593 unsigned long flags) 594 { 595 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); 596 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; 597 u32 num_periods = buf_len / period_len; 598 u32 i = 0, buf = 0; 599 600 if (mxs_chan->status == DMA_IN_PROGRESS) 601 return NULL; 602 603 mxs_chan->status = DMA_IN_PROGRESS; 604 mxs_chan->flags |= MXS_DMA_SG_LOOP; 605 mxs_chan->flags |= MXS_DMA_USE_SEMAPHORE; 606 607 if (num_periods > NUM_CCW) { 608 dev_err(mxs_dma->dma_device.dev, 609 "maximum number of sg exceeded: %d > %d\n", 610 num_periods, NUM_CCW); 611 goto err_out; 612 } 613 614 if (period_len > MAX_XFER_BYTES) { 615 dev_err(mxs_dma->dma_device.dev, 616 "maximum period size exceeded: %zu > %d\n", 617 period_len, MAX_XFER_BYTES); 618 goto err_out; 619 } 620 621 while (buf < buf_len) { 622 struct mxs_dma_ccw *ccw = &mxs_chan->ccw[i]; 623 624 if (i + 1 == num_periods) 625 ccw->next = mxs_chan->ccw_phys; 626 else 627 ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * (i + 1); 628 629 ccw->bufaddr = dma_addr; 630 ccw->xfer_bytes = period_len; 631 632 ccw->bits = 0; 633 ccw->bits |= CCW_CHAIN; 634 ccw->bits |= CCW_IRQ; 635 ccw->bits |= CCW_HALT_ON_TERM; 636 ccw->bits |= CCW_TERM_FLUSH; 637 ccw->bits |= CCW_DEC_SEM; 638 ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ? 639 MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ, COMMAND); 640 641 dma_addr += period_len; 642 buf += period_len; 643 644 i++; 645 } 646 mxs_chan->desc_count = i; 647 648 return &mxs_chan->desc; 649 650 err_out: 651 mxs_chan->status = DMA_ERROR; 652 return NULL; 653 } 654 655 static int mxs_dma_terminate_all(struct dma_chan *chan) 656 { 657 mxs_dma_reset_chan(chan); 658 mxs_dma_disable_chan(chan); 659 660 return 0; 661 } 662 663 static enum dma_status mxs_dma_tx_status(struct dma_chan *chan, 664 dma_cookie_t cookie, struct dma_tx_state *txstate) 665 { 666 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); 667 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; 668 u32 residue = 0; 669 670 if (mxs_chan->status == DMA_IN_PROGRESS && 671 mxs_chan->flags & MXS_DMA_SG_LOOP) { 672 struct mxs_dma_ccw *last_ccw; 673 u32 bar; 674 675 last_ccw = &mxs_chan->ccw[mxs_chan->desc_count - 1]; 676 residue = last_ccw->xfer_bytes + last_ccw->bufaddr; 677 678 bar = readl(mxs_dma->base + 679 HW_APBHX_CHn_BAR(mxs_dma, chan->chan_id)); 680 residue -= bar; 681 } 682 683 dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie, 684 residue); 685 686 return mxs_chan->status; 687 } 688 689 static int __init mxs_dma_init(struct mxs_dma_engine *mxs_dma) 690 { 691 int ret; 692 693 ret = clk_prepare_enable(mxs_dma->clk); 694 if (ret) 695 return ret; 696 697 ret = stmp_reset_block(mxs_dma->base); 698 if (ret) 699 goto err_out; 700 701 /* enable apbh burst */ 702 if (dma_is_apbh(mxs_dma)) { 703 writel(BM_APBH_CTRL0_APB_BURST_EN, 704 mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET); 705 writel(BM_APBH_CTRL0_APB_BURST8_EN, 706 mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET); 707 } 708 709 /* enable irq for all the channels */ 710 writel(MXS_DMA_CHANNELS_MASK << MXS_DMA_CHANNELS, 711 mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_SET); 712 713 err_out: 714 clk_disable_unprepare(mxs_dma->clk); 715 return ret; 716 } 717 718 struct mxs_dma_filter_param { 719 struct device_node *of_node; 720 unsigned int chan_id; 721 }; 722 723 static bool mxs_dma_filter_fn(struct dma_chan *chan, void *fn_param) 724 { 725 struct mxs_dma_filter_param *param = fn_param; 726 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); 727 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; 728 int chan_irq; 729 730 if (mxs_dma->dma_device.dev->of_node != param->of_node) 731 return false; 732 733 if (chan->chan_id != param->chan_id) 734 return false; 735 736 chan_irq = platform_get_irq(mxs_dma->pdev, param->chan_id); 737 if (chan_irq < 0) 738 return false; 739 740 mxs_chan->chan_irq = chan_irq; 741 742 return true; 743 } 744 745 static struct dma_chan *mxs_dma_xlate(struct of_phandle_args *dma_spec, 746 struct of_dma *ofdma) 747 { 748 struct mxs_dma_engine *mxs_dma = ofdma->of_dma_data; 749 dma_cap_mask_t mask = mxs_dma->dma_device.cap_mask; 750 struct mxs_dma_filter_param param; 751 752 if (dma_spec->args_count != 1) 753 return NULL; 754 755 param.of_node = ofdma->of_node; 756 param.chan_id = dma_spec->args[0]; 757 758 if (param.chan_id >= mxs_dma->nr_channels) 759 return NULL; 760 761 return dma_request_channel(mask, mxs_dma_filter_fn, ¶m); 762 } 763 764 static int __init mxs_dma_probe(struct platform_device *pdev) 765 { 766 struct device_node *np = pdev->dev.of_node; 767 const struct platform_device_id *id_entry; 768 const struct of_device_id *of_id; 769 const struct mxs_dma_type *dma_type; 770 struct mxs_dma_engine *mxs_dma; 771 struct resource *iores; 772 int ret, i; 773 774 mxs_dma = devm_kzalloc(&pdev->dev, sizeof(*mxs_dma), GFP_KERNEL); 775 if (!mxs_dma) 776 return -ENOMEM; 777 778 ret = of_property_read_u32(np, "dma-channels", &mxs_dma->nr_channels); 779 if (ret) { 780 dev_err(&pdev->dev, "failed to read dma-channels\n"); 781 return ret; 782 } 783 784 of_id = of_match_device(mxs_dma_dt_ids, &pdev->dev); 785 if (of_id) 786 id_entry = of_id->data; 787 else 788 id_entry = platform_get_device_id(pdev); 789 790 dma_type = (struct mxs_dma_type *)id_entry->driver_data; 791 mxs_dma->type = dma_type->type; 792 mxs_dma->dev_id = dma_type->id; 793 794 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0); 795 mxs_dma->base = devm_ioremap_resource(&pdev->dev, iores); 796 if (IS_ERR(mxs_dma->base)) 797 return PTR_ERR(mxs_dma->base); 798 799 mxs_dma->clk = devm_clk_get(&pdev->dev, NULL); 800 if (IS_ERR(mxs_dma->clk)) 801 return PTR_ERR(mxs_dma->clk); 802 803 dma_cap_set(DMA_SLAVE, mxs_dma->dma_device.cap_mask); 804 dma_cap_set(DMA_CYCLIC, mxs_dma->dma_device.cap_mask); 805 806 INIT_LIST_HEAD(&mxs_dma->dma_device.channels); 807 808 /* Initialize channel parameters */ 809 for (i = 0; i < MXS_DMA_CHANNELS; i++) { 810 struct mxs_dma_chan *mxs_chan = &mxs_dma->mxs_chans[i]; 811 812 mxs_chan->mxs_dma = mxs_dma; 813 mxs_chan->chan.device = &mxs_dma->dma_device; 814 dma_cookie_init(&mxs_chan->chan); 815 816 tasklet_init(&mxs_chan->tasklet, mxs_dma_tasklet, 817 (unsigned long) mxs_chan); 818 819 820 /* Add the channel to mxs_chan list */ 821 list_add_tail(&mxs_chan->chan.device_node, 822 &mxs_dma->dma_device.channels); 823 } 824 825 ret = mxs_dma_init(mxs_dma); 826 if (ret) 827 return ret; 828 829 mxs_dma->pdev = pdev; 830 mxs_dma->dma_device.dev = &pdev->dev; 831 832 /* mxs_dma gets 65535 bytes maximum sg size */ 833 mxs_dma->dma_device.dev->dma_parms = &mxs_dma->dma_parms; 834 dma_set_max_seg_size(mxs_dma->dma_device.dev, MAX_XFER_BYTES); 835 836 mxs_dma->dma_device.device_alloc_chan_resources = mxs_dma_alloc_chan_resources; 837 mxs_dma->dma_device.device_free_chan_resources = mxs_dma_free_chan_resources; 838 mxs_dma->dma_device.device_tx_status = mxs_dma_tx_status; 839 mxs_dma->dma_device.device_prep_slave_sg = mxs_dma_prep_slave_sg; 840 mxs_dma->dma_device.device_prep_dma_cyclic = mxs_dma_prep_dma_cyclic; 841 mxs_dma->dma_device.device_pause = mxs_dma_pause_chan; 842 mxs_dma->dma_device.device_resume = mxs_dma_resume_chan; 843 mxs_dma->dma_device.device_terminate_all = mxs_dma_terminate_all; 844 mxs_dma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); 845 mxs_dma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); 846 mxs_dma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 847 mxs_dma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 848 mxs_dma->dma_device.device_issue_pending = mxs_dma_enable_chan; 849 850 ret = dma_async_device_register(&mxs_dma->dma_device); 851 if (ret) { 852 dev_err(mxs_dma->dma_device.dev, "unable to register\n"); 853 return ret; 854 } 855 856 ret = of_dma_controller_register(np, mxs_dma_xlate, mxs_dma); 857 if (ret) { 858 dev_err(mxs_dma->dma_device.dev, 859 "failed to register controller\n"); 860 dma_async_device_unregister(&mxs_dma->dma_device); 861 } 862 863 dev_info(mxs_dma->dma_device.dev, "initialized\n"); 864 865 return 0; 866 } 867 868 static struct platform_driver mxs_dma_driver = { 869 .driver = { 870 .name = "mxs-dma", 871 .of_match_table = mxs_dma_dt_ids, 872 }, 873 .id_table = mxs_dma_ids, 874 }; 875 876 static int __init mxs_dma_module_init(void) 877 { 878 return platform_driver_probe(&mxs_dma_driver, mxs_dma_probe); 879 } 880 subsys_initcall(mxs_dma_module_init); 881