xref: /openbmc/linux/drivers/dma/mxs-dma.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Copyright 2011 Freescale Semiconductor, Inc. All Rights Reserved.
4 //
5 // Refer to drivers/dma/imx-sdma.c
6 
7 #include <linux/init.h>
8 #include <linux/types.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/clk.h>
12 #include <linux/wait.h>
13 #include <linux/sched.h>
14 #include <linux/semaphore.h>
15 #include <linux/device.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/slab.h>
18 #include <linux/platform_device.h>
19 #include <linux/dmaengine.h>
20 #include <linux/delay.h>
21 #include <linux/module.h>
22 #include <linux/stmp_device.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_dma.h>
26 #include <linux/list.h>
27 
28 #include <asm/irq.h>
29 
30 #include "dmaengine.h"
31 
32 /*
33  * NOTE: The term "PIO" throughout the mxs-dma implementation means
34  * PIO mode of mxs apbh-dma and apbx-dma.  With this working mode,
35  * dma can program the controller registers of peripheral devices.
36  */
37 
38 #define dma_is_apbh(mxs_dma)	((mxs_dma)->type == MXS_DMA_APBH)
39 #define apbh_is_old(mxs_dma)	((mxs_dma)->dev_id == IMX23_DMA)
40 
41 #define HW_APBHX_CTRL0				0x000
42 #define BM_APBH_CTRL0_APB_BURST8_EN		(1 << 29)
43 #define BM_APBH_CTRL0_APB_BURST_EN		(1 << 28)
44 #define BP_APBH_CTRL0_RESET_CHANNEL		16
45 #define HW_APBHX_CTRL1				0x010
46 #define HW_APBHX_CTRL2				0x020
47 #define HW_APBHX_CHANNEL_CTRL			0x030
48 #define BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL	16
49 /*
50  * The offset of NXTCMDAR register is different per both dma type and version,
51  * while stride for each channel is all the same 0x70.
52  */
53 #define HW_APBHX_CHn_NXTCMDAR(d, n) \
54 	(((dma_is_apbh(d) && apbh_is_old(d)) ? 0x050 : 0x110) + (n) * 0x70)
55 #define HW_APBHX_CHn_SEMA(d, n) \
56 	(((dma_is_apbh(d) && apbh_is_old(d)) ? 0x080 : 0x140) + (n) * 0x70)
57 #define HW_APBHX_CHn_BAR(d, n) \
58 	(((dma_is_apbh(d) && apbh_is_old(d)) ? 0x070 : 0x130) + (n) * 0x70)
59 #define HW_APBX_CHn_DEBUG1(d, n) (0x150 + (n) * 0x70)
60 
61 /*
62  * ccw bits definitions
63  *
64  * COMMAND:		0..1	(2)
65  * CHAIN:		2	(1)
66  * IRQ:			3	(1)
67  * NAND_LOCK:		4	(1) - not implemented
68  * NAND_WAIT4READY:	5	(1) - not implemented
69  * DEC_SEM:		6	(1)
70  * WAIT4END:		7	(1)
71  * HALT_ON_TERMINATE:	8	(1)
72  * TERMINATE_FLUSH:	9	(1)
73  * RESERVED:		10..11	(2)
74  * PIO_NUM:		12..15	(4)
75  */
76 #define BP_CCW_COMMAND		0
77 #define BM_CCW_COMMAND		(3 << 0)
78 #define CCW_CHAIN		(1 << 2)
79 #define CCW_IRQ			(1 << 3)
80 #define CCW_DEC_SEM		(1 << 6)
81 #define CCW_WAIT4END		(1 << 7)
82 #define CCW_HALT_ON_TERM	(1 << 8)
83 #define CCW_TERM_FLUSH		(1 << 9)
84 #define BP_CCW_PIO_NUM		12
85 #define BM_CCW_PIO_NUM		(0xf << 12)
86 
87 #define BF_CCW(value, field)	(((value) << BP_CCW_##field) & BM_CCW_##field)
88 
89 #define MXS_DMA_CMD_NO_XFER	0
90 #define MXS_DMA_CMD_WRITE	1
91 #define MXS_DMA_CMD_READ	2
92 #define MXS_DMA_CMD_DMA_SENSE	3	/* not implemented */
93 
94 struct mxs_dma_ccw {
95 	u32		next;
96 	u16		bits;
97 	u16		xfer_bytes;
98 #define MAX_XFER_BYTES	0xff00
99 	u32		bufaddr;
100 #define MXS_PIO_WORDS	16
101 	u32		pio_words[MXS_PIO_WORDS];
102 };
103 
104 #define CCW_BLOCK_SIZE	(4 * PAGE_SIZE)
105 #define NUM_CCW	(int)(CCW_BLOCK_SIZE / sizeof(struct mxs_dma_ccw))
106 
107 struct mxs_dma_chan {
108 	struct mxs_dma_engine		*mxs_dma;
109 	struct dma_chan			chan;
110 	struct dma_async_tx_descriptor	desc;
111 	struct tasklet_struct		tasklet;
112 	unsigned int			chan_irq;
113 	struct mxs_dma_ccw		*ccw;
114 	dma_addr_t			ccw_phys;
115 	int				desc_count;
116 	enum dma_status			status;
117 	unsigned int			flags;
118 	bool				reset;
119 #define MXS_DMA_SG_LOOP			(1 << 0)
120 #define MXS_DMA_USE_SEMAPHORE		(1 << 1)
121 };
122 
123 #define MXS_DMA_CHANNELS		16
124 #define MXS_DMA_CHANNELS_MASK		0xffff
125 
126 enum mxs_dma_devtype {
127 	MXS_DMA_APBH,
128 	MXS_DMA_APBX,
129 };
130 
131 enum mxs_dma_id {
132 	IMX23_DMA,
133 	IMX28_DMA,
134 };
135 
136 struct mxs_dma_engine {
137 	enum mxs_dma_id			dev_id;
138 	enum mxs_dma_devtype		type;
139 	void __iomem			*base;
140 	struct clk			*clk;
141 	struct dma_device		dma_device;
142 	struct device_dma_parameters	dma_parms;
143 	struct mxs_dma_chan		mxs_chans[MXS_DMA_CHANNELS];
144 	struct platform_device		*pdev;
145 	unsigned int			nr_channels;
146 };
147 
148 struct mxs_dma_type {
149 	enum mxs_dma_id id;
150 	enum mxs_dma_devtype type;
151 };
152 
153 static struct mxs_dma_type mxs_dma_types[] = {
154 	{
155 		.id = IMX23_DMA,
156 		.type = MXS_DMA_APBH,
157 	}, {
158 		.id = IMX23_DMA,
159 		.type = MXS_DMA_APBX,
160 	}, {
161 		.id = IMX28_DMA,
162 		.type = MXS_DMA_APBH,
163 	}, {
164 		.id = IMX28_DMA,
165 		.type = MXS_DMA_APBX,
166 	}
167 };
168 
169 static const struct platform_device_id mxs_dma_ids[] = {
170 	{
171 		.name = "imx23-dma-apbh",
172 		.driver_data = (kernel_ulong_t) &mxs_dma_types[0],
173 	}, {
174 		.name = "imx23-dma-apbx",
175 		.driver_data = (kernel_ulong_t) &mxs_dma_types[1],
176 	}, {
177 		.name = "imx28-dma-apbh",
178 		.driver_data = (kernel_ulong_t) &mxs_dma_types[2],
179 	}, {
180 		.name = "imx28-dma-apbx",
181 		.driver_data = (kernel_ulong_t) &mxs_dma_types[3],
182 	}, {
183 		/* end of list */
184 	}
185 };
186 
187 static const struct of_device_id mxs_dma_dt_ids[] = {
188 	{ .compatible = "fsl,imx23-dma-apbh", .data = &mxs_dma_ids[0], },
189 	{ .compatible = "fsl,imx23-dma-apbx", .data = &mxs_dma_ids[1], },
190 	{ .compatible = "fsl,imx28-dma-apbh", .data = &mxs_dma_ids[2], },
191 	{ .compatible = "fsl,imx28-dma-apbx", .data = &mxs_dma_ids[3], },
192 	{ /* sentinel */ }
193 };
194 MODULE_DEVICE_TABLE(of, mxs_dma_dt_ids);
195 
196 static struct mxs_dma_chan *to_mxs_dma_chan(struct dma_chan *chan)
197 {
198 	return container_of(chan, struct mxs_dma_chan, chan);
199 }
200 
201 static void mxs_dma_reset_chan(struct dma_chan *chan)
202 {
203 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
204 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
205 	int chan_id = mxs_chan->chan.chan_id;
206 
207 	/*
208 	 * mxs dma channel resets can cause a channel stall. To recover from a
209 	 * channel stall, we have to reset the whole DMA engine. To avoid this,
210 	 * we use cyclic DMA with semaphores, that are enhanced in
211 	 * mxs_dma_int_handler. To reset the channel, we can simply stop writing
212 	 * into the semaphore counter.
213 	 */
214 	if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE &&
215 			mxs_chan->flags & MXS_DMA_SG_LOOP) {
216 		mxs_chan->reset = true;
217 	} else if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma)) {
218 		writel(1 << (chan_id + BP_APBH_CTRL0_RESET_CHANNEL),
219 			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
220 	} else {
221 		unsigned long elapsed = 0;
222 		const unsigned long max_wait = 50000; /* 50ms */
223 		void __iomem *reg_dbg1 = mxs_dma->base +
224 				HW_APBX_CHn_DEBUG1(mxs_dma, chan_id);
225 
226 		/*
227 		 * On i.MX28 APBX, the DMA channel can stop working if we reset
228 		 * the channel while it is in READ_FLUSH (0x08) state.
229 		 * We wait here until we leave the state. Then we trigger the
230 		 * reset. Waiting a maximum of 50ms, the kernel shouldn't crash
231 		 * because of this.
232 		 */
233 		while ((readl(reg_dbg1) & 0xf) == 0x8 && elapsed < max_wait) {
234 			udelay(100);
235 			elapsed += 100;
236 		}
237 
238 		if (elapsed >= max_wait)
239 			dev_err(&mxs_chan->mxs_dma->pdev->dev,
240 					"Failed waiting for the DMA channel %d to leave state READ_FLUSH, trying to reset channel in READ_FLUSH state now\n",
241 					chan_id);
242 
243 		writel(1 << (chan_id + BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL),
244 			mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET);
245 	}
246 
247 	mxs_chan->status = DMA_COMPLETE;
248 }
249 
250 static void mxs_dma_enable_chan(struct dma_chan *chan)
251 {
252 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
253 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
254 	int chan_id = mxs_chan->chan.chan_id;
255 
256 	/* set cmd_addr up */
257 	writel(mxs_chan->ccw_phys,
258 		mxs_dma->base + HW_APBHX_CHn_NXTCMDAR(mxs_dma, chan_id));
259 
260 	/* write 1 to SEMA to kick off the channel */
261 	if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE &&
262 			mxs_chan->flags & MXS_DMA_SG_LOOP) {
263 		/* A cyclic DMA consists of at least 2 segments, so initialize
264 		 * the semaphore with 2 so we have enough time to add 1 to the
265 		 * semaphore if we need to */
266 		writel(2, mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id));
267 	} else {
268 		writel(1, mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id));
269 	}
270 	mxs_chan->reset = false;
271 }
272 
273 static void mxs_dma_disable_chan(struct dma_chan *chan)
274 {
275 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
276 
277 	mxs_chan->status = DMA_COMPLETE;
278 }
279 
280 static int mxs_dma_pause_chan(struct dma_chan *chan)
281 {
282 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
283 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
284 	int chan_id = mxs_chan->chan.chan_id;
285 
286 	/* freeze the channel */
287 	if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma))
288 		writel(1 << chan_id,
289 			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
290 	else
291 		writel(1 << chan_id,
292 			mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET);
293 
294 	mxs_chan->status = DMA_PAUSED;
295 	return 0;
296 }
297 
298 static int mxs_dma_resume_chan(struct dma_chan *chan)
299 {
300 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
301 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
302 	int chan_id = mxs_chan->chan.chan_id;
303 
304 	/* unfreeze the channel */
305 	if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma))
306 		writel(1 << chan_id,
307 			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_CLR);
308 	else
309 		writel(1 << chan_id,
310 			mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_CLR);
311 
312 	mxs_chan->status = DMA_IN_PROGRESS;
313 	return 0;
314 }
315 
316 static dma_cookie_t mxs_dma_tx_submit(struct dma_async_tx_descriptor *tx)
317 {
318 	return dma_cookie_assign(tx);
319 }
320 
321 static void mxs_dma_tasklet(unsigned long data)
322 {
323 	struct mxs_dma_chan *mxs_chan = (struct mxs_dma_chan *) data;
324 
325 	dmaengine_desc_get_callback_invoke(&mxs_chan->desc, NULL);
326 }
327 
328 static int mxs_dma_irq_to_chan(struct mxs_dma_engine *mxs_dma, int irq)
329 {
330 	int i;
331 
332 	for (i = 0; i != mxs_dma->nr_channels; ++i)
333 		if (mxs_dma->mxs_chans[i].chan_irq == irq)
334 			return i;
335 
336 	return -EINVAL;
337 }
338 
339 static irqreturn_t mxs_dma_int_handler(int irq, void *dev_id)
340 {
341 	struct mxs_dma_engine *mxs_dma = dev_id;
342 	struct mxs_dma_chan *mxs_chan;
343 	u32 completed;
344 	u32 err;
345 	int chan = mxs_dma_irq_to_chan(mxs_dma, irq);
346 
347 	if (chan < 0)
348 		return IRQ_NONE;
349 
350 	/* completion status */
351 	completed = readl(mxs_dma->base + HW_APBHX_CTRL1);
352 	completed = (completed >> chan) & 0x1;
353 
354 	/* Clear interrupt */
355 	writel((1 << chan),
356 			mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_CLR);
357 
358 	/* error status */
359 	err = readl(mxs_dma->base + HW_APBHX_CTRL2);
360 	err &= (1 << (MXS_DMA_CHANNELS + chan)) | (1 << chan);
361 
362 	/*
363 	 * error status bit is in the upper 16 bits, error irq bit in the lower
364 	 * 16 bits. We transform it into a simpler error code:
365 	 * err: 0x00 = no error, 0x01 = TERMINATION, 0x02 = BUS_ERROR
366 	 */
367 	err = (err >> (MXS_DMA_CHANNELS + chan)) + (err >> chan);
368 
369 	/* Clear error irq */
370 	writel((1 << chan),
371 			mxs_dma->base + HW_APBHX_CTRL2 + STMP_OFFSET_REG_CLR);
372 
373 	/*
374 	 * When both completion and error of termination bits set at the
375 	 * same time, we do not take it as an error.  IOW, it only becomes
376 	 * an error we need to handle here in case of either it's a bus
377 	 * error or a termination error with no completion. 0x01 is termination
378 	 * error, so we can subtract err & completed to get the real error case.
379 	 */
380 	err -= err & completed;
381 
382 	mxs_chan = &mxs_dma->mxs_chans[chan];
383 
384 	if (err) {
385 		dev_dbg(mxs_dma->dma_device.dev,
386 			"%s: error in channel %d\n", __func__,
387 			chan);
388 		mxs_chan->status = DMA_ERROR;
389 		mxs_dma_reset_chan(&mxs_chan->chan);
390 	} else if (mxs_chan->status != DMA_COMPLETE) {
391 		if (mxs_chan->flags & MXS_DMA_SG_LOOP) {
392 			mxs_chan->status = DMA_IN_PROGRESS;
393 			if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE)
394 				writel(1, mxs_dma->base +
395 					HW_APBHX_CHn_SEMA(mxs_dma, chan));
396 		} else {
397 			mxs_chan->status = DMA_COMPLETE;
398 		}
399 	}
400 
401 	if (mxs_chan->status == DMA_COMPLETE) {
402 		if (mxs_chan->reset)
403 			return IRQ_HANDLED;
404 		dma_cookie_complete(&mxs_chan->desc);
405 	}
406 
407 	/* schedule tasklet on this channel */
408 	tasklet_schedule(&mxs_chan->tasklet);
409 
410 	return IRQ_HANDLED;
411 }
412 
413 static int mxs_dma_alloc_chan_resources(struct dma_chan *chan)
414 {
415 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
416 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
417 	int ret;
418 
419 	mxs_chan->ccw = dma_alloc_coherent(mxs_dma->dma_device.dev,
420 					   CCW_BLOCK_SIZE,
421 					   &mxs_chan->ccw_phys, GFP_KERNEL);
422 	if (!mxs_chan->ccw) {
423 		ret = -ENOMEM;
424 		goto err_alloc;
425 	}
426 
427 	ret = request_irq(mxs_chan->chan_irq, mxs_dma_int_handler,
428 			  0, "mxs-dma", mxs_dma);
429 	if (ret)
430 		goto err_irq;
431 
432 	ret = clk_prepare_enable(mxs_dma->clk);
433 	if (ret)
434 		goto err_clk;
435 
436 	mxs_dma_reset_chan(chan);
437 
438 	dma_async_tx_descriptor_init(&mxs_chan->desc, chan);
439 	mxs_chan->desc.tx_submit = mxs_dma_tx_submit;
440 
441 	/* the descriptor is ready */
442 	async_tx_ack(&mxs_chan->desc);
443 
444 	return 0;
445 
446 err_clk:
447 	free_irq(mxs_chan->chan_irq, mxs_dma);
448 err_irq:
449 	dma_free_coherent(mxs_dma->dma_device.dev, CCW_BLOCK_SIZE,
450 			mxs_chan->ccw, mxs_chan->ccw_phys);
451 err_alloc:
452 	return ret;
453 }
454 
455 static void mxs_dma_free_chan_resources(struct dma_chan *chan)
456 {
457 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
458 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
459 
460 	mxs_dma_disable_chan(chan);
461 
462 	free_irq(mxs_chan->chan_irq, mxs_dma);
463 
464 	dma_free_coherent(mxs_dma->dma_device.dev, CCW_BLOCK_SIZE,
465 			mxs_chan->ccw, mxs_chan->ccw_phys);
466 
467 	clk_disable_unprepare(mxs_dma->clk);
468 }
469 
470 /*
471  * How to use the flags for ->device_prep_slave_sg() :
472  *    [1] If there is only one DMA command in the DMA chain, the code should be:
473  *            ......
474  *            ->device_prep_slave_sg(DMA_CTRL_ACK);
475  *            ......
476  *    [2] If there are two DMA commands in the DMA chain, the code should be
477  *            ......
478  *            ->device_prep_slave_sg(0);
479  *            ......
480  *            ->device_prep_slave_sg(DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
481  *            ......
482  *    [3] If there are more than two DMA commands in the DMA chain, the code
483  *        should be:
484  *            ......
485  *            ->device_prep_slave_sg(0);                                // First
486  *            ......
487  *            ->device_prep_slave_sg(DMA_PREP_INTERRUPT [| DMA_CTRL_ACK]);
488  *            ......
489  *            ->device_prep_slave_sg(DMA_PREP_INTERRUPT | DMA_CTRL_ACK); // Last
490  *            ......
491  */
492 static struct dma_async_tx_descriptor *mxs_dma_prep_slave_sg(
493 		struct dma_chan *chan, struct scatterlist *sgl,
494 		unsigned int sg_len, enum dma_transfer_direction direction,
495 		unsigned long flags, void *context)
496 {
497 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
498 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
499 	struct mxs_dma_ccw *ccw;
500 	struct scatterlist *sg;
501 	u32 i, j;
502 	u32 *pio;
503 	bool append = flags & DMA_PREP_INTERRUPT;
504 	int idx = append ? mxs_chan->desc_count : 0;
505 
506 	if (mxs_chan->status == DMA_IN_PROGRESS && !append)
507 		return NULL;
508 
509 	if (sg_len + (append ? idx : 0) > NUM_CCW) {
510 		dev_err(mxs_dma->dma_device.dev,
511 				"maximum number of sg exceeded: %d > %d\n",
512 				sg_len, NUM_CCW);
513 		goto err_out;
514 	}
515 
516 	mxs_chan->status = DMA_IN_PROGRESS;
517 	mxs_chan->flags = 0;
518 
519 	/*
520 	 * If the sg is prepared with append flag set, the sg
521 	 * will be appended to the last prepared sg.
522 	 */
523 	if (append) {
524 		BUG_ON(idx < 1);
525 		ccw = &mxs_chan->ccw[idx - 1];
526 		ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx;
527 		ccw->bits |= CCW_CHAIN;
528 		ccw->bits &= ~CCW_IRQ;
529 		ccw->bits &= ~CCW_DEC_SEM;
530 	} else {
531 		idx = 0;
532 	}
533 
534 	if (direction == DMA_TRANS_NONE) {
535 		ccw = &mxs_chan->ccw[idx++];
536 		pio = (u32 *) sgl;
537 
538 		for (j = 0; j < sg_len;)
539 			ccw->pio_words[j++] = *pio++;
540 
541 		ccw->bits = 0;
542 		ccw->bits |= CCW_IRQ;
543 		ccw->bits |= CCW_DEC_SEM;
544 		if (flags & DMA_CTRL_ACK)
545 			ccw->bits |= CCW_WAIT4END;
546 		ccw->bits |= CCW_HALT_ON_TERM;
547 		ccw->bits |= CCW_TERM_FLUSH;
548 		ccw->bits |= BF_CCW(sg_len, PIO_NUM);
549 		ccw->bits |= BF_CCW(MXS_DMA_CMD_NO_XFER, COMMAND);
550 	} else {
551 		for_each_sg(sgl, sg, sg_len, i) {
552 			if (sg_dma_len(sg) > MAX_XFER_BYTES) {
553 				dev_err(mxs_dma->dma_device.dev, "maximum bytes for sg entry exceeded: %d > %d\n",
554 						sg_dma_len(sg), MAX_XFER_BYTES);
555 				goto err_out;
556 			}
557 
558 			ccw = &mxs_chan->ccw[idx++];
559 
560 			ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx;
561 			ccw->bufaddr = sg->dma_address;
562 			ccw->xfer_bytes = sg_dma_len(sg);
563 
564 			ccw->bits = 0;
565 			ccw->bits |= CCW_CHAIN;
566 			ccw->bits |= CCW_HALT_ON_TERM;
567 			ccw->bits |= CCW_TERM_FLUSH;
568 			ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ?
569 					MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ,
570 					COMMAND);
571 
572 			if (i + 1 == sg_len) {
573 				ccw->bits &= ~CCW_CHAIN;
574 				ccw->bits |= CCW_IRQ;
575 				ccw->bits |= CCW_DEC_SEM;
576 				if (flags & DMA_CTRL_ACK)
577 					ccw->bits |= CCW_WAIT4END;
578 			}
579 		}
580 	}
581 	mxs_chan->desc_count = idx;
582 
583 	return &mxs_chan->desc;
584 
585 err_out:
586 	mxs_chan->status = DMA_ERROR;
587 	return NULL;
588 }
589 
590 static struct dma_async_tx_descriptor *mxs_dma_prep_dma_cyclic(
591 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
592 		size_t period_len, enum dma_transfer_direction direction,
593 		unsigned long flags)
594 {
595 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
596 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
597 	u32 num_periods = buf_len / period_len;
598 	u32 i = 0, buf = 0;
599 
600 	if (mxs_chan->status == DMA_IN_PROGRESS)
601 		return NULL;
602 
603 	mxs_chan->status = DMA_IN_PROGRESS;
604 	mxs_chan->flags |= MXS_DMA_SG_LOOP;
605 	mxs_chan->flags |= MXS_DMA_USE_SEMAPHORE;
606 
607 	if (num_periods > NUM_CCW) {
608 		dev_err(mxs_dma->dma_device.dev,
609 				"maximum number of sg exceeded: %d > %d\n",
610 				num_periods, NUM_CCW);
611 		goto err_out;
612 	}
613 
614 	if (period_len > MAX_XFER_BYTES) {
615 		dev_err(mxs_dma->dma_device.dev,
616 				"maximum period size exceeded: %zu > %d\n",
617 				period_len, MAX_XFER_BYTES);
618 		goto err_out;
619 	}
620 
621 	while (buf < buf_len) {
622 		struct mxs_dma_ccw *ccw = &mxs_chan->ccw[i];
623 
624 		if (i + 1 == num_periods)
625 			ccw->next = mxs_chan->ccw_phys;
626 		else
627 			ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * (i + 1);
628 
629 		ccw->bufaddr = dma_addr;
630 		ccw->xfer_bytes = period_len;
631 
632 		ccw->bits = 0;
633 		ccw->bits |= CCW_CHAIN;
634 		ccw->bits |= CCW_IRQ;
635 		ccw->bits |= CCW_HALT_ON_TERM;
636 		ccw->bits |= CCW_TERM_FLUSH;
637 		ccw->bits |= CCW_DEC_SEM;
638 		ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ?
639 				MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ, COMMAND);
640 
641 		dma_addr += period_len;
642 		buf += period_len;
643 
644 		i++;
645 	}
646 	mxs_chan->desc_count = i;
647 
648 	return &mxs_chan->desc;
649 
650 err_out:
651 	mxs_chan->status = DMA_ERROR;
652 	return NULL;
653 }
654 
655 static int mxs_dma_terminate_all(struct dma_chan *chan)
656 {
657 	mxs_dma_reset_chan(chan);
658 	mxs_dma_disable_chan(chan);
659 
660 	return 0;
661 }
662 
663 static enum dma_status mxs_dma_tx_status(struct dma_chan *chan,
664 			dma_cookie_t cookie, struct dma_tx_state *txstate)
665 {
666 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
667 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
668 	u32 residue = 0;
669 
670 	if (mxs_chan->status == DMA_IN_PROGRESS &&
671 			mxs_chan->flags & MXS_DMA_SG_LOOP) {
672 		struct mxs_dma_ccw *last_ccw;
673 		u32 bar;
674 
675 		last_ccw = &mxs_chan->ccw[mxs_chan->desc_count - 1];
676 		residue = last_ccw->xfer_bytes + last_ccw->bufaddr;
677 
678 		bar = readl(mxs_dma->base +
679 				HW_APBHX_CHn_BAR(mxs_dma, chan->chan_id));
680 		residue -= bar;
681 	}
682 
683 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
684 			residue);
685 
686 	return mxs_chan->status;
687 }
688 
689 static int __init mxs_dma_init(struct mxs_dma_engine *mxs_dma)
690 {
691 	int ret;
692 
693 	ret = clk_prepare_enable(mxs_dma->clk);
694 	if (ret)
695 		return ret;
696 
697 	ret = stmp_reset_block(mxs_dma->base);
698 	if (ret)
699 		goto err_out;
700 
701 	/* enable apbh burst */
702 	if (dma_is_apbh(mxs_dma)) {
703 		writel(BM_APBH_CTRL0_APB_BURST_EN,
704 			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
705 		writel(BM_APBH_CTRL0_APB_BURST8_EN,
706 			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
707 	}
708 
709 	/* enable irq for all the channels */
710 	writel(MXS_DMA_CHANNELS_MASK << MXS_DMA_CHANNELS,
711 		mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_SET);
712 
713 err_out:
714 	clk_disable_unprepare(mxs_dma->clk);
715 	return ret;
716 }
717 
718 struct mxs_dma_filter_param {
719 	struct device_node *of_node;
720 	unsigned int chan_id;
721 };
722 
723 static bool mxs_dma_filter_fn(struct dma_chan *chan, void *fn_param)
724 {
725 	struct mxs_dma_filter_param *param = fn_param;
726 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
727 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
728 	int chan_irq;
729 
730 	if (mxs_dma->dma_device.dev->of_node != param->of_node)
731 		return false;
732 
733 	if (chan->chan_id != param->chan_id)
734 		return false;
735 
736 	chan_irq = platform_get_irq(mxs_dma->pdev, param->chan_id);
737 	if (chan_irq < 0)
738 		return false;
739 
740 	mxs_chan->chan_irq = chan_irq;
741 
742 	return true;
743 }
744 
745 static struct dma_chan *mxs_dma_xlate(struct of_phandle_args *dma_spec,
746 			       struct of_dma *ofdma)
747 {
748 	struct mxs_dma_engine *mxs_dma = ofdma->of_dma_data;
749 	dma_cap_mask_t mask = mxs_dma->dma_device.cap_mask;
750 	struct mxs_dma_filter_param param;
751 
752 	if (dma_spec->args_count != 1)
753 		return NULL;
754 
755 	param.of_node = ofdma->of_node;
756 	param.chan_id = dma_spec->args[0];
757 
758 	if (param.chan_id >= mxs_dma->nr_channels)
759 		return NULL;
760 
761 	return dma_request_channel(mask, mxs_dma_filter_fn, &param);
762 }
763 
764 static int __init mxs_dma_probe(struct platform_device *pdev)
765 {
766 	struct device_node *np = pdev->dev.of_node;
767 	const struct platform_device_id *id_entry;
768 	const struct of_device_id *of_id;
769 	const struct mxs_dma_type *dma_type;
770 	struct mxs_dma_engine *mxs_dma;
771 	struct resource *iores;
772 	int ret, i;
773 
774 	mxs_dma = devm_kzalloc(&pdev->dev, sizeof(*mxs_dma), GFP_KERNEL);
775 	if (!mxs_dma)
776 		return -ENOMEM;
777 
778 	ret = of_property_read_u32(np, "dma-channels", &mxs_dma->nr_channels);
779 	if (ret) {
780 		dev_err(&pdev->dev, "failed to read dma-channels\n");
781 		return ret;
782 	}
783 
784 	of_id = of_match_device(mxs_dma_dt_ids, &pdev->dev);
785 	if (of_id)
786 		id_entry = of_id->data;
787 	else
788 		id_entry = platform_get_device_id(pdev);
789 
790 	dma_type = (struct mxs_dma_type *)id_entry->driver_data;
791 	mxs_dma->type = dma_type->type;
792 	mxs_dma->dev_id = dma_type->id;
793 
794 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
795 	mxs_dma->base = devm_ioremap_resource(&pdev->dev, iores);
796 	if (IS_ERR(mxs_dma->base))
797 		return PTR_ERR(mxs_dma->base);
798 
799 	mxs_dma->clk = devm_clk_get(&pdev->dev, NULL);
800 	if (IS_ERR(mxs_dma->clk))
801 		return PTR_ERR(mxs_dma->clk);
802 
803 	dma_cap_set(DMA_SLAVE, mxs_dma->dma_device.cap_mask);
804 	dma_cap_set(DMA_CYCLIC, mxs_dma->dma_device.cap_mask);
805 
806 	INIT_LIST_HEAD(&mxs_dma->dma_device.channels);
807 
808 	/* Initialize channel parameters */
809 	for (i = 0; i < MXS_DMA_CHANNELS; i++) {
810 		struct mxs_dma_chan *mxs_chan = &mxs_dma->mxs_chans[i];
811 
812 		mxs_chan->mxs_dma = mxs_dma;
813 		mxs_chan->chan.device = &mxs_dma->dma_device;
814 		dma_cookie_init(&mxs_chan->chan);
815 
816 		tasklet_init(&mxs_chan->tasklet, mxs_dma_tasklet,
817 			     (unsigned long) mxs_chan);
818 
819 
820 		/* Add the channel to mxs_chan list */
821 		list_add_tail(&mxs_chan->chan.device_node,
822 			&mxs_dma->dma_device.channels);
823 	}
824 
825 	ret = mxs_dma_init(mxs_dma);
826 	if (ret)
827 		return ret;
828 
829 	mxs_dma->pdev = pdev;
830 	mxs_dma->dma_device.dev = &pdev->dev;
831 
832 	/* mxs_dma gets 65535 bytes maximum sg size */
833 	mxs_dma->dma_device.dev->dma_parms = &mxs_dma->dma_parms;
834 	dma_set_max_seg_size(mxs_dma->dma_device.dev, MAX_XFER_BYTES);
835 
836 	mxs_dma->dma_device.device_alloc_chan_resources = mxs_dma_alloc_chan_resources;
837 	mxs_dma->dma_device.device_free_chan_resources = mxs_dma_free_chan_resources;
838 	mxs_dma->dma_device.device_tx_status = mxs_dma_tx_status;
839 	mxs_dma->dma_device.device_prep_slave_sg = mxs_dma_prep_slave_sg;
840 	mxs_dma->dma_device.device_prep_dma_cyclic = mxs_dma_prep_dma_cyclic;
841 	mxs_dma->dma_device.device_pause = mxs_dma_pause_chan;
842 	mxs_dma->dma_device.device_resume = mxs_dma_resume_chan;
843 	mxs_dma->dma_device.device_terminate_all = mxs_dma_terminate_all;
844 	mxs_dma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
845 	mxs_dma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
846 	mxs_dma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
847 	mxs_dma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
848 	mxs_dma->dma_device.device_issue_pending = mxs_dma_enable_chan;
849 
850 	ret = dmaenginem_async_device_register(&mxs_dma->dma_device);
851 	if (ret) {
852 		dev_err(mxs_dma->dma_device.dev, "unable to register\n");
853 		return ret;
854 	}
855 
856 	ret = of_dma_controller_register(np, mxs_dma_xlate, mxs_dma);
857 	if (ret) {
858 		dev_err(mxs_dma->dma_device.dev,
859 			"failed to register controller\n");
860 	}
861 
862 	dev_info(mxs_dma->dma_device.dev, "initialized\n");
863 
864 	return 0;
865 }
866 
867 static struct platform_driver mxs_dma_driver = {
868 	.driver		= {
869 		.name	= "mxs-dma",
870 		.of_match_table = mxs_dma_dt_ids,
871 	},
872 	.id_table	= mxs_dma_ids,
873 };
874 
875 static int __init mxs_dma_module_init(void)
876 {
877 	return platform_driver_probe(&mxs_dma_driver, mxs_dma_probe);
878 }
879 subsys_initcall(mxs_dma_module_init);
880