xref: /openbmc/linux/drivers/dma/mxs-dma.c (revision 3932b9ca)
1 /*
2  * Copyright 2011 Freescale Semiconductor, Inc. All Rights Reserved.
3  *
4  * Refer to drivers/dma/imx-sdma.c
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/mm.h>
14 #include <linux/interrupt.h>
15 #include <linux/clk.h>
16 #include <linux/wait.h>
17 #include <linux/sched.h>
18 #include <linux/semaphore.h>
19 #include <linux/device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/slab.h>
22 #include <linux/platform_device.h>
23 #include <linux/dmaengine.h>
24 #include <linux/delay.h>
25 #include <linux/module.h>
26 #include <linux/stmp_device.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/of_dma.h>
30 #include <linux/list.h>
31 
32 #include <asm/irq.h>
33 
34 #include "dmaengine.h"
35 
36 /*
37  * NOTE: The term "PIO" throughout the mxs-dma implementation means
38  * PIO mode of mxs apbh-dma and apbx-dma.  With this working mode,
39  * dma can program the controller registers of peripheral devices.
40  */
41 
42 #define dma_is_apbh(mxs_dma)	((mxs_dma)->type == MXS_DMA_APBH)
43 #define apbh_is_old(mxs_dma)	((mxs_dma)->dev_id == IMX23_DMA)
44 
45 #define HW_APBHX_CTRL0				0x000
46 #define BM_APBH_CTRL0_APB_BURST8_EN		(1 << 29)
47 #define BM_APBH_CTRL0_APB_BURST_EN		(1 << 28)
48 #define BP_APBH_CTRL0_RESET_CHANNEL		16
49 #define HW_APBHX_CTRL1				0x010
50 #define HW_APBHX_CTRL2				0x020
51 #define HW_APBHX_CHANNEL_CTRL			0x030
52 #define BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL	16
53 /*
54  * The offset of NXTCMDAR register is different per both dma type and version,
55  * while stride for each channel is all the same 0x70.
56  */
57 #define HW_APBHX_CHn_NXTCMDAR(d, n) \
58 	(((dma_is_apbh(d) && apbh_is_old(d)) ? 0x050 : 0x110) + (n) * 0x70)
59 #define HW_APBHX_CHn_SEMA(d, n) \
60 	(((dma_is_apbh(d) && apbh_is_old(d)) ? 0x080 : 0x140) + (n) * 0x70)
61 #define HW_APBHX_CHn_BAR(d, n) \
62 	(((dma_is_apbh(d) && apbh_is_old(d)) ? 0x070 : 0x130) + (n) * 0x70)
63 #define HW_APBX_CHn_DEBUG1(d, n) (0x150 + (n) * 0x70)
64 
65 /*
66  * ccw bits definitions
67  *
68  * COMMAND:		0..1	(2)
69  * CHAIN:		2	(1)
70  * IRQ:			3	(1)
71  * NAND_LOCK:		4	(1) - not implemented
72  * NAND_WAIT4READY:	5	(1) - not implemented
73  * DEC_SEM:		6	(1)
74  * WAIT4END:		7	(1)
75  * HALT_ON_TERMINATE:	8	(1)
76  * TERMINATE_FLUSH:	9	(1)
77  * RESERVED:		10..11	(2)
78  * PIO_NUM:		12..15	(4)
79  */
80 #define BP_CCW_COMMAND		0
81 #define BM_CCW_COMMAND		(3 << 0)
82 #define CCW_CHAIN		(1 << 2)
83 #define CCW_IRQ			(1 << 3)
84 #define CCW_DEC_SEM		(1 << 6)
85 #define CCW_WAIT4END		(1 << 7)
86 #define CCW_HALT_ON_TERM	(1 << 8)
87 #define CCW_TERM_FLUSH		(1 << 9)
88 #define BP_CCW_PIO_NUM		12
89 #define BM_CCW_PIO_NUM		(0xf << 12)
90 
91 #define BF_CCW(value, field)	(((value) << BP_CCW_##field) & BM_CCW_##field)
92 
93 #define MXS_DMA_CMD_NO_XFER	0
94 #define MXS_DMA_CMD_WRITE	1
95 #define MXS_DMA_CMD_READ	2
96 #define MXS_DMA_CMD_DMA_SENSE	3	/* not implemented */
97 
98 struct mxs_dma_ccw {
99 	u32		next;
100 	u16		bits;
101 	u16		xfer_bytes;
102 #define MAX_XFER_BYTES	0xff00
103 	u32		bufaddr;
104 #define MXS_PIO_WORDS	16
105 	u32		pio_words[MXS_PIO_WORDS];
106 };
107 
108 #define CCW_BLOCK_SIZE	(4 * PAGE_SIZE)
109 #define NUM_CCW	(int)(CCW_BLOCK_SIZE / sizeof(struct mxs_dma_ccw))
110 
111 struct mxs_dma_chan {
112 	struct mxs_dma_engine		*mxs_dma;
113 	struct dma_chan			chan;
114 	struct dma_async_tx_descriptor	desc;
115 	struct tasklet_struct		tasklet;
116 	unsigned int			chan_irq;
117 	struct mxs_dma_ccw		*ccw;
118 	dma_addr_t			ccw_phys;
119 	int				desc_count;
120 	enum dma_status			status;
121 	unsigned int			flags;
122 	bool				reset;
123 #define MXS_DMA_SG_LOOP			(1 << 0)
124 #define MXS_DMA_USE_SEMAPHORE		(1 << 1)
125 };
126 
127 #define MXS_DMA_CHANNELS		16
128 #define MXS_DMA_CHANNELS_MASK		0xffff
129 
130 enum mxs_dma_devtype {
131 	MXS_DMA_APBH,
132 	MXS_DMA_APBX,
133 };
134 
135 enum mxs_dma_id {
136 	IMX23_DMA,
137 	IMX28_DMA,
138 };
139 
140 struct mxs_dma_engine {
141 	enum mxs_dma_id			dev_id;
142 	enum mxs_dma_devtype		type;
143 	void __iomem			*base;
144 	struct clk			*clk;
145 	struct dma_device		dma_device;
146 	struct device_dma_parameters	dma_parms;
147 	struct mxs_dma_chan		mxs_chans[MXS_DMA_CHANNELS];
148 	struct platform_device		*pdev;
149 	unsigned int			nr_channels;
150 };
151 
152 struct mxs_dma_type {
153 	enum mxs_dma_id id;
154 	enum mxs_dma_devtype type;
155 };
156 
157 static struct mxs_dma_type mxs_dma_types[] = {
158 	{
159 		.id = IMX23_DMA,
160 		.type = MXS_DMA_APBH,
161 	}, {
162 		.id = IMX23_DMA,
163 		.type = MXS_DMA_APBX,
164 	}, {
165 		.id = IMX28_DMA,
166 		.type = MXS_DMA_APBH,
167 	}, {
168 		.id = IMX28_DMA,
169 		.type = MXS_DMA_APBX,
170 	}
171 };
172 
173 static struct platform_device_id mxs_dma_ids[] = {
174 	{
175 		.name = "imx23-dma-apbh",
176 		.driver_data = (kernel_ulong_t) &mxs_dma_types[0],
177 	}, {
178 		.name = "imx23-dma-apbx",
179 		.driver_data = (kernel_ulong_t) &mxs_dma_types[1],
180 	}, {
181 		.name = "imx28-dma-apbh",
182 		.driver_data = (kernel_ulong_t) &mxs_dma_types[2],
183 	}, {
184 		.name = "imx28-dma-apbx",
185 		.driver_data = (kernel_ulong_t) &mxs_dma_types[3],
186 	}, {
187 		/* end of list */
188 	}
189 };
190 
191 static const struct of_device_id mxs_dma_dt_ids[] = {
192 	{ .compatible = "fsl,imx23-dma-apbh", .data = &mxs_dma_ids[0], },
193 	{ .compatible = "fsl,imx23-dma-apbx", .data = &mxs_dma_ids[1], },
194 	{ .compatible = "fsl,imx28-dma-apbh", .data = &mxs_dma_ids[2], },
195 	{ .compatible = "fsl,imx28-dma-apbx", .data = &mxs_dma_ids[3], },
196 	{ /* sentinel */ }
197 };
198 MODULE_DEVICE_TABLE(of, mxs_dma_dt_ids);
199 
200 static struct mxs_dma_chan *to_mxs_dma_chan(struct dma_chan *chan)
201 {
202 	return container_of(chan, struct mxs_dma_chan, chan);
203 }
204 
205 static void mxs_dma_reset_chan(struct mxs_dma_chan *mxs_chan)
206 {
207 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
208 	int chan_id = mxs_chan->chan.chan_id;
209 
210 	/*
211 	 * mxs dma channel resets can cause a channel stall. To recover from a
212 	 * channel stall, we have to reset the whole DMA engine. To avoid this,
213 	 * we use cyclic DMA with semaphores, that are enhanced in
214 	 * mxs_dma_int_handler. To reset the channel, we can simply stop writing
215 	 * into the semaphore counter.
216 	 */
217 	if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE &&
218 			mxs_chan->flags & MXS_DMA_SG_LOOP) {
219 		mxs_chan->reset = true;
220 	} else if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma)) {
221 		writel(1 << (chan_id + BP_APBH_CTRL0_RESET_CHANNEL),
222 			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
223 	} else {
224 		unsigned long elapsed = 0;
225 		const unsigned long max_wait = 50000; /* 50ms */
226 		void __iomem *reg_dbg1 = mxs_dma->base +
227 				HW_APBX_CHn_DEBUG1(mxs_dma, chan_id);
228 
229 		/*
230 		 * On i.MX28 APBX, the DMA channel can stop working if we reset
231 		 * the channel while it is in READ_FLUSH (0x08) state.
232 		 * We wait here until we leave the state. Then we trigger the
233 		 * reset. Waiting a maximum of 50ms, the kernel shouldn't crash
234 		 * because of this.
235 		 */
236 		while ((readl(reg_dbg1) & 0xf) == 0x8 && elapsed < max_wait) {
237 			udelay(100);
238 			elapsed += 100;
239 		}
240 
241 		if (elapsed >= max_wait)
242 			dev_err(&mxs_chan->mxs_dma->pdev->dev,
243 					"Failed waiting for the DMA channel %d to leave state READ_FLUSH, trying to reset channel in READ_FLUSH state now\n",
244 					chan_id);
245 
246 		writel(1 << (chan_id + BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL),
247 			mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET);
248 	}
249 
250 	mxs_chan->status = DMA_COMPLETE;
251 }
252 
253 static void mxs_dma_enable_chan(struct mxs_dma_chan *mxs_chan)
254 {
255 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
256 	int chan_id = mxs_chan->chan.chan_id;
257 
258 	/* set cmd_addr up */
259 	writel(mxs_chan->ccw_phys,
260 		mxs_dma->base + HW_APBHX_CHn_NXTCMDAR(mxs_dma, chan_id));
261 
262 	/* write 1 to SEMA to kick off the channel */
263 	if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE &&
264 			mxs_chan->flags & MXS_DMA_SG_LOOP) {
265 		/* A cyclic DMA consists of at least 2 segments, so initialize
266 		 * the semaphore with 2 so we have enough time to add 1 to the
267 		 * semaphore if we need to */
268 		writel(2, mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id));
269 	} else {
270 		writel(1, mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id));
271 	}
272 	mxs_chan->reset = false;
273 }
274 
275 static void mxs_dma_disable_chan(struct mxs_dma_chan *mxs_chan)
276 {
277 	mxs_chan->status = DMA_COMPLETE;
278 }
279 
280 static void mxs_dma_pause_chan(struct mxs_dma_chan *mxs_chan)
281 {
282 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
283 	int chan_id = mxs_chan->chan.chan_id;
284 
285 	/* freeze the channel */
286 	if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma))
287 		writel(1 << chan_id,
288 			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
289 	else
290 		writel(1 << chan_id,
291 			mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET);
292 
293 	mxs_chan->status = DMA_PAUSED;
294 }
295 
296 static void mxs_dma_resume_chan(struct mxs_dma_chan *mxs_chan)
297 {
298 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
299 	int chan_id = mxs_chan->chan.chan_id;
300 
301 	/* unfreeze the channel */
302 	if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma))
303 		writel(1 << chan_id,
304 			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_CLR);
305 	else
306 		writel(1 << chan_id,
307 			mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_CLR);
308 
309 	mxs_chan->status = DMA_IN_PROGRESS;
310 }
311 
312 static dma_cookie_t mxs_dma_tx_submit(struct dma_async_tx_descriptor *tx)
313 {
314 	return dma_cookie_assign(tx);
315 }
316 
317 static void mxs_dma_tasklet(unsigned long data)
318 {
319 	struct mxs_dma_chan *mxs_chan = (struct mxs_dma_chan *) data;
320 
321 	if (mxs_chan->desc.callback)
322 		mxs_chan->desc.callback(mxs_chan->desc.callback_param);
323 }
324 
325 static int mxs_dma_irq_to_chan(struct mxs_dma_engine *mxs_dma, int irq)
326 {
327 	int i;
328 
329 	for (i = 0; i != mxs_dma->nr_channels; ++i)
330 		if (mxs_dma->mxs_chans[i].chan_irq == irq)
331 			return i;
332 
333 	return -EINVAL;
334 }
335 
336 static irqreturn_t mxs_dma_int_handler(int irq, void *dev_id)
337 {
338 	struct mxs_dma_engine *mxs_dma = dev_id;
339 	struct mxs_dma_chan *mxs_chan;
340 	u32 completed;
341 	u32 err;
342 	int chan = mxs_dma_irq_to_chan(mxs_dma, irq);
343 
344 	if (chan < 0)
345 		return IRQ_NONE;
346 
347 	/* completion status */
348 	completed = readl(mxs_dma->base + HW_APBHX_CTRL1);
349 	completed = (completed >> chan) & 0x1;
350 
351 	/* Clear interrupt */
352 	writel((1 << chan),
353 			mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_CLR);
354 
355 	/* error status */
356 	err = readl(mxs_dma->base + HW_APBHX_CTRL2);
357 	err &= (1 << (MXS_DMA_CHANNELS + chan)) | (1 << chan);
358 
359 	/*
360 	 * error status bit is in the upper 16 bits, error irq bit in the lower
361 	 * 16 bits. We transform it into a simpler error code:
362 	 * err: 0x00 = no error, 0x01 = TERMINATION, 0x02 = BUS_ERROR
363 	 */
364 	err = (err >> (MXS_DMA_CHANNELS + chan)) + (err >> chan);
365 
366 	/* Clear error irq */
367 	writel((1 << chan),
368 			mxs_dma->base + HW_APBHX_CTRL2 + STMP_OFFSET_REG_CLR);
369 
370 	/*
371 	 * When both completion and error of termination bits set at the
372 	 * same time, we do not take it as an error.  IOW, it only becomes
373 	 * an error we need to handle here in case of either it's a bus
374 	 * error or a termination error with no completion. 0x01 is termination
375 	 * error, so we can subtract err & completed to get the real error case.
376 	 */
377 	err -= err & completed;
378 
379 	mxs_chan = &mxs_dma->mxs_chans[chan];
380 
381 	if (err) {
382 		dev_dbg(mxs_dma->dma_device.dev,
383 			"%s: error in channel %d\n", __func__,
384 			chan);
385 		mxs_chan->status = DMA_ERROR;
386 		mxs_dma_reset_chan(mxs_chan);
387 	} else if (mxs_chan->status != DMA_COMPLETE) {
388 		if (mxs_chan->flags & MXS_DMA_SG_LOOP) {
389 			mxs_chan->status = DMA_IN_PROGRESS;
390 			if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE)
391 				writel(1, mxs_dma->base +
392 					HW_APBHX_CHn_SEMA(mxs_dma, chan));
393 		} else {
394 			mxs_chan->status = DMA_COMPLETE;
395 		}
396 	}
397 
398 	if (mxs_chan->status == DMA_COMPLETE) {
399 		if (mxs_chan->reset)
400 			return IRQ_HANDLED;
401 		dma_cookie_complete(&mxs_chan->desc);
402 	}
403 
404 	/* schedule tasklet on this channel */
405 	tasklet_schedule(&mxs_chan->tasklet);
406 
407 	return IRQ_HANDLED;
408 }
409 
410 static int mxs_dma_alloc_chan_resources(struct dma_chan *chan)
411 {
412 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
413 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
414 	int ret;
415 
416 	mxs_chan->ccw = dma_zalloc_coherent(mxs_dma->dma_device.dev,
417 					    CCW_BLOCK_SIZE,
418 					    &mxs_chan->ccw_phys, GFP_KERNEL);
419 	if (!mxs_chan->ccw) {
420 		ret = -ENOMEM;
421 		goto err_alloc;
422 	}
423 
424 	if (mxs_chan->chan_irq != NO_IRQ) {
425 		ret = request_irq(mxs_chan->chan_irq, mxs_dma_int_handler,
426 					0, "mxs-dma", mxs_dma);
427 		if (ret)
428 			goto err_irq;
429 	}
430 
431 	ret = clk_prepare_enable(mxs_dma->clk);
432 	if (ret)
433 		goto err_clk;
434 
435 	mxs_dma_reset_chan(mxs_chan);
436 
437 	dma_async_tx_descriptor_init(&mxs_chan->desc, chan);
438 	mxs_chan->desc.tx_submit = mxs_dma_tx_submit;
439 
440 	/* the descriptor is ready */
441 	async_tx_ack(&mxs_chan->desc);
442 
443 	return 0;
444 
445 err_clk:
446 	free_irq(mxs_chan->chan_irq, mxs_dma);
447 err_irq:
448 	dma_free_coherent(mxs_dma->dma_device.dev, CCW_BLOCK_SIZE,
449 			mxs_chan->ccw, mxs_chan->ccw_phys);
450 err_alloc:
451 	return ret;
452 }
453 
454 static void mxs_dma_free_chan_resources(struct dma_chan *chan)
455 {
456 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
457 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
458 
459 	mxs_dma_disable_chan(mxs_chan);
460 
461 	free_irq(mxs_chan->chan_irq, mxs_dma);
462 
463 	dma_free_coherent(mxs_dma->dma_device.dev, CCW_BLOCK_SIZE,
464 			mxs_chan->ccw, mxs_chan->ccw_phys);
465 
466 	clk_disable_unprepare(mxs_dma->clk);
467 }
468 
469 /*
470  * How to use the flags for ->device_prep_slave_sg() :
471  *    [1] If there is only one DMA command in the DMA chain, the code should be:
472  *            ......
473  *            ->device_prep_slave_sg(DMA_CTRL_ACK);
474  *            ......
475  *    [2] If there are two DMA commands in the DMA chain, the code should be
476  *            ......
477  *            ->device_prep_slave_sg(0);
478  *            ......
479  *            ->device_prep_slave_sg(DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
480  *            ......
481  *    [3] If there are more than two DMA commands in the DMA chain, the code
482  *        should be:
483  *            ......
484  *            ->device_prep_slave_sg(0);                                // First
485  *            ......
486  *            ->device_prep_slave_sg(DMA_PREP_INTERRUPT [| DMA_CTRL_ACK]);
487  *            ......
488  *            ->device_prep_slave_sg(DMA_PREP_INTERRUPT | DMA_CTRL_ACK); // Last
489  *            ......
490  */
491 static struct dma_async_tx_descriptor *mxs_dma_prep_slave_sg(
492 		struct dma_chan *chan, struct scatterlist *sgl,
493 		unsigned int sg_len, enum dma_transfer_direction direction,
494 		unsigned long flags, void *context)
495 {
496 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
497 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
498 	struct mxs_dma_ccw *ccw;
499 	struct scatterlist *sg;
500 	u32 i, j;
501 	u32 *pio;
502 	bool append = flags & DMA_PREP_INTERRUPT;
503 	int idx = append ? mxs_chan->desc_count : 0;
504 
505 	if (mxs_chan->status == DMA_IN_PROGRESS && !append)
506 		return NULL;
507 
508 	if (sg_len + (append ? idx : 0) > NUM_CCW) {
509 		dev_err(mxs_dma->dma_device.dev,
510 				"maximum number of sg exceeded: %d > %d\n",
511 				sg_len, NUM_CCW);
512 		goto err_out;
513 	}
514 
515 	mxs_chan->status = DMA_IN_PROGRESS;
516 	mxs_chan->flags = 0;
517 
518 	/*
519 	 * If the sg is prepared with append flag set, the sg
520 	 * will be appended to the last prepared sg.
521 	 */
522 	if (append) {
523 		BUG_ON(idx < 1);
524 		ccw = &mxs_chan->ccw[idx - 1];
525 		ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx;
526 		ccw->bits |= CCW_CHAIN;
527 		ccw->bits &= ~CCW_IRQ;
528 		ccw->bits &= ~CCW_DEC_SEM;
529 	} else {
530 		idx = 0;
531 	}
532 
533 	if (direction == DMA_TRANS_NONE) {
534 		ccw = &mxs_chan->ccw[idx++];
535 		pio = (u32 *) sgl;
536 
537 		for (j = 0; j < sg_len;)
538 			ccw->pio_words[j++] = *pio++;
539 
540 		ccw->bits = 0;
541 		ccw->bits |= CCW_IRQ;
542 		ccw->bits |= CCW_DEC_SEM;
543 		if (flags & DMA_CTRL_ACK)
544 			ccw->bits |= CCW_WAIT4END;
545 		ccw->bits |= CCW_HALT_ON_TERM;
546 		ccw->bits |= CCW_TERM_FLUSH;
547 		ccw->bits |= BF_CCW(sg_len, PIO_NUM);
548 		ccw->bits |= BF_CCW(MXS_DMA_CMD_NO_XFER, COMMAND);
549 	} else {
550 		for_each_sg(sgl, sg, sg_len, i) {
551 			if (sg_dma_len(sg) > MAX_XFER_BYTES) {
552 				dev_err(mxs_dma->dma_device.dev, "maximum bytes for sg entry exceeded: %d > %d\n",
553 						sg_dma_len(sg), MAX_XFER_BYTES);
554 				goto err_out;
555 			}
556 
557 			ccw = &mxs_chan->ccw[idx++];
558 
559 			ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx;
560 			ccw->bufaddr = sg->dma_address;
561 			ccw->xfer_bytes = sg_dma_len(sg);
562 
563 			ccw->bits = 0;
564 			ccw->bits |= CCW_CHAIN;
565 			ccw->bits |= CCW_HALT_ON_TERM;
566 			ccw->bits |= CCW_TERM_FLUSH;
567 			ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ?
568 					MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ,
569 					COMMAND);
570 
571 			if (i + 1 == sg_len) {
572 				ccw->bits &= ~CCW_CHAIN;
573 				ccw->bits |= CCW_IRQ;
574 				ccw->bits |= CCW_DEC_SEM;
575 				if (flags & DMA_CTRL_ACK)
576 					ccw->bits |= CCW_WAIT4END;
577 			}
578 		}
579 	}
580 	mxs_chan->desc_count = idx;
581 
582 	return &mxs_chan->desc;
583 
584 err_out:
585 	mxs_chan->status = DMA_ERROR;
586 	return NULL;
587 }
588 
589 static struct dma_async_tx_descriptor *mxs_dma_prep_dma_cyclic(
590 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
591 		size_t period_len, enum dma_transfer_direction direction,
592 		unsigned long flags)
593 {
594 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
595 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
596 	u32 num_periods = buf_len / period_len;
597 	u32 i = 0, buf = 0;
598 
599 	if (mxs_chan->status == DMA_IN_PROGRESS)
600 		return NULL;
601 
602 	mxs_chan->status = DMA_IN_PROGRESS;
603 	mxs_chan->flags |= MXS_DMA_SG_LOOP;
604 	mxs_chan->flags |= MXS_DMA_USE_SEMAPHORE;
605 
606 	if (num_periods > NUM_CCW) {
607 		dev_err(mxs_dma->dma_device.dev,
608 				"maximum number of sg exceeded: %d > %d\n",
609 				num_periods, NUM_CCW);
610 		goto err_out;
611 	}
612 
613 	if (period_len > MAX_XFER_BYTES) {
614 		dev_err(mxs_dma->dma_device.dev,
615 				"maximum period size exceeded: %d > %d\n",
616 				period_len, MAX_XFER_BYTES);
617 		goto err_out;
618 	}
619 
620 	while (buf < buf_len) {
621 		struct mxs_dma_ccw *ccw = &mxs_chan->ccw[i];
622 
623 		if (i + 1 == num_periods)
624 			ccw->next = mxs_chan->ccw_phys;
625 		else
626 			ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * (i + 1);
627 
628 		ccw->bufaddr = dma_addr;
629 		ccw->xfer_bytes = period_len;
630 
631 		ccw->bits = 0;
632 		ccw->bits |= CCW_CHAIN;
633 		ccw->bits |= CCW_IRQ;
634 		ccw->bits |= CCW_HALT_ON_TERM;
635 		ccw->bits |= CCW_TERM_FLUSH;
636 		ccw->bits |= CCW_DEC_SEM;
637 		ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ?
638 				MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ, COMMAND);
639 
640 		dma_addr += period_len;
641 		buf += period_len;
642 
643 		i++;
644 	}
645 	mxs_chan->desc_count = i;
646 
647 	return &mxs_chan->desc;
648 
649 err_out:
650 	mxs_chan->status = DMA_ERROR;
651 	return NULL;
652 }
653 
654 static int mxs_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
655 		unsigned long arg)
656 {
657 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
658 	int ret = 0;
659 
660 	switch (cmd) {
661 	case DMA_TERMINATE_ALL:
662 		mxs_dma_reset_chan(mxs_chan);
663 		mxs_dma_disable_chan(mxs_chan);
664 		break;
665 	case DMA_PAUSE:
666 		mxs_dma_pause_chan(mxs_chan);
667 		break;
668 	case DMA_RESUME:
669 		mxs_dma_resume_chan(mxs_chan);
670 		break;
671 	default:
672 		ret = -ENOSYS;
673 	}
674 
675 	return ret;
676 }
677 
678 static enum dma_status mxs_dma_tx_status(struct dma_chan *chan,
679 			dma_cookie_t cookie, struct dma_tx_state *txstate)
680 {
681 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
682 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
683 	u32 residue = 0;
684 
685 	if (mxs_chan->status == DMA_IN_PROGRESS &&
686 			mxs_chan->flags & MXS_DMA_SG_LOOP) {
687 		struct mxs_dma_ccw *last_ccw;
688 		u32 bar;
689 
690 		last_ccw = &mxs_chan->ccw[mxs_chan->desc_count - 1];
691 		residue = last_ccw->xfer_bytes + last_ccw->bufaddr;
692 
693 		bar = readl(mxs_dma->base +
694 				HW_APBHX_CHn_BAR(mxs_dma, chan->chan_id));
695 		residue -= bar;
696 	}
697 
698 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
699 			residue);
700 
701 	return mxs_chan->status;
702 }
703 
704 static void mxs_dma_issue_pending(struct dma_chan *chan)
705 {
706 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
707 
708 	mxs_dma_enable_chan(mxs_chan);
709 }
710 
711 static int __init mxs_dma_init(struct mxs_dma_engine *mxs_dma)
712 {
713 	int ret;
714 
715 	ret = clk_prepare_enable(mxs_dma->clk);
716 	if (ret)
717 		return ret;
718 
719 	ret = stmp_reset_block(mxs_dma->base);
720 	if (ret)
721 		goto err_out;
722 
723 	/* enable apbh burst */
724 	if (dma_is_apbh(mxs_dma)) {
725 		writel(BM_APBH_CTRL0_APB_BURST_EN,
726 			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
727 		writel(BM_APBH_CTRL0_APB_BURST8_EN,
728 			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
729 	}
730 
731 	/* enable irq for all the channels */
732 	writel(MXS_DMA_CHANNELS_MASK << MXS_DMA_CHANNELS,
733 		mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_SET);
734 
735 err_out:
736 	clk_disable_unprepare(mxs_dma->clk);
737 	return ret;
738 }
739 
740 struct mxs_dma_filter_param {
741 	struct device_node *of_node;
742 	unsigned int chan_id;
743 };
744 
745 static bool mxs_dma_filter_fn(struct dma_chan *chan, void *fn_param)
746 {
747 	struct mxs_dma_filter_param *param = fn_param;
748 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
749 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
750 	int chan_irq;
751 
752 	if (mxs_dma->dma_device.dev->of_node != param->of_node)
753 		return false;
754 
755 	if (chan->chan_id != param->chan_id)
756 		return false;
757 
758 	chan_irq = platform_get_irq(mxs_dma->pdev, param->chan_id);
759 	if (chan_irq < 0)
760 		return false;
761 
762 	mxs_chan->chan_irq = chan_irq;
763 
764 	return true;
765 }
766 
767 static struct dma_chan *mxs_dma_xlate(struct of_phandle_args *dma_spec,
768 			       struct of_dma *ofdma)
769 {
770 	struct mxs_dma_engine *mxs_dma = ofdma->of_dma_data;
771 	dma_cap_mask_t mask = mxs_dma->dma_device.cap_mask;
772 	struct mxs_dma_filter_param param;
773 
774 	if (dma_spec->args_count != 1)
775 		return NULL;
776 
777 	param.of_node = ofdma->of_node;
778 	param.chan_id = dma_spec->args[0];
779 
780 	if (param.chan_id >= mxs_dma->nr_channels)
781 		return NULL;
782 
783 	return dma_request_channel(mask, mxs_dma_filter_fn, &param);
784 }
785 
786 static int __init mxs_dma_probe(struct platform_device *pdev)
787 {
788 	struct device_node *np = pdev->dev.of_node;
789 	const struct platform_device_id *id_entry;
790 	const struct of_device_id *of_id;
791 	const struct mxs_dma_type *dma_type;
792 	struct mxs_dma_engine *mxs_dma;
793 	struct resource *iores;
794 	int ret, i;
795 
796 	mxs_dma = devm_kzalloc(&pdev->dev, sizeof(*mxs_dma), GFP_KERNEL);
797 	if (!mxs_dma)
798 		return -ENOMEM;
799 
800 	ret = of_property_read_u32(np, "dma-channels", &mxs_dma->nr_channels);
801 	if (ret) {
802 		dev_err(&pdev->dev, "failed to read dma-channels\n");
803 		return ret;
804 	}
805 
806 	of_id = of_match_device(mxs_dma_dt_ids, &pdev->dev);
807 	if (of_id)
808 		id_entry = of_id->data;
809 	else
810 		id_entry = platform_get_device_id(pdev);
811 
812 	dma_type = (struct mxs_dma_type *)id_entry->driver_data;
813 	mxs_dma->type = dma_type->type;
814 	mxs_dma->dev_id = dma_type->id;
815 
816 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
817 	mxs_dma->base = devm_ioremap_resource(&pdev->dev, iores);
818 	if (IS_ERR(mxs_dma->base))
819 		return PTR_ERR(mxs_dma->base);
820 
821 	mxs_dma->clk = devm_clk_get(&pdev->dev, NULL);
822 	if (IS_ERR(mxs_dma->clk))
823 		return PTR_ERR(mxs_dma->clk);
824 
825 	dma_cap_set(DMA_SLAVE, mxs_dma->dma_device.cap_mask);
826 	dma_cap_set(DMA_CYCLIC, mxs_dma->dma_device.cap_mask);
827 
828 	INIT_LIST_HEAD(&mxs_dma->dma_device.channels);
829 
830 	/* Initialize channel parameters */
831 	for (i = 0; i < MXS_DMA_CHANNELS; i++) {
832 		struct mxs_dma_chan *mxs_chan = &mxs_dma->mxs_chans[i];
833 
834 		mxs_chan->mxs_dma = mxs_dma;
835 		mxs_chan->chan.device = &mxs_dma->dma_device;
836 		dma_cookie_init(&mxs_chan->chan);
837 
838 		tasklet_init(&mxs_chan->tasklet, mxs_dma_tasklet,
839 			     (unsigned long) mxs_chan);
840 
841 
842 		/* Add the channel to mxs_chan list */
843 		list_add_tail(&mxs_chan->chan.device_node,
844 			&mxs_dma->dma_device.channels);
845 	}
846 
847 	ret = mxs_dma_init(mxs_dma);
848 	if (ret)
849 		return ret;
850 
851 	mxs_dma->pdev = pdev;
852 	mxs_dma->dma_device.dev = &pdev->dev;
853 
854 	/* mxs_dma gets 65535 bytes maximum sg size */
855 	mxs_dma->dma_device.dev->dma_parms = &mxs_dma->dma_parms;
856 	dma_set_max_seg_size(mxs_dma->dma_device.dev, MAX_XFER_BYTES);
857 
858 	mxs_dma->dma_device.device_alloc_chan_resources = mxs_dma_alloc_chan_resources;
859 	mxs_dma->dma_device.device_free_chan_resources = mxs_dma_free_chan_resources;
860 	mxs_dma->dma_device.device_tx_status = mxs_dma_tx_status;
861 	mxs_dma->dma_device.device_prep_slave_sg = mxs_dma_prep_slave_sg;
862 	mxs_dma->dma_device.device_prep_dma_cyclic = mxs_dma_prep_dma_cyclic;
863 	mxs_dma->dma_device.device_control = mxs_dma_control;
864 	mxs_dma->dma_device.device_issue_pending = mxs_dma_issue_pending;
865 
866 	ret = dma_async_device_register(&mxs_dma->dma_device);
867 	if (ret) {
868 		dev_err(mxs_dma->dma_device.dev, "unable to register\n");
869 		return ret;
870 	}
871 
872 	ret = of_dma_controller_register(np, mxs_dma_xlate, mxs_dma);
873 	if (ret) {
874 		dev_err(mxs_dma->dma_device.dev,
875 			"failed to register controller\n");
876 		dma_async_device_unregister(&mxs_dma->dma_device);
877 	}
878 
879 	dev_info(mxs_dma->dma_device.dev, "initialized\n");
880 
881 	return 0;
882 }
883 
884 static struct platform_driver mxs_dma_driver = {
885 	.driver		= {
886 		.name	= "mxs-dma",
887 		.of_match_table = mxs_dma_dt_ids,
888 	},
889 	.id_table	= mxs_dma_ids,
890 };
891 
892 static int __init mxs_dma_module_init(void)
893 {
894 	return platform_driver_probe(&mxs_dma_driver, mxs_dma_probe);
895 }
896 subsys_initcall(mxs_dma_module_init);
897