xref: /openbmc/linux/drivers/dma/mxs-dma.c (revision 0b26ca68)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Copyright 2011 Freescale Semiconductor, Inc. All Rights Reserved.
4 //
5 // Refer to drivers/dma/imx-sdma.c
6 
7 #include <linux/init.h>
8 #include <linux/types.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/clk.h>
12 #include <linux/wait.h>
13 #include <linux/sched.h>
14 #include <linux/semaphore.h>
15 #include <linux/device.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/slab.h>
18 #include <linux/platform_device.h>
19 #include <linux/dmaengine.h>
20 #include <linux/delay.h>
21 #include <linux/module.h>
22 #include <linux/stmp_device.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_dma.h>
26 #include <linux/list.h>
27 #include <linux/dma/mxs-dma.h>
28 
29 #include <asm/irq.h>
30 
31 #include "dmaengine.h"
32 
33 /*
34  * NOTE: The term "PIO" throughout the mxs-dma implementation means
35  * PIO mode of mxs apbh-dma and apbx-dma.  With this working mode,
36  * dma can program the controller registers of peripheral devices.
37  */
38 
39 #define dma_is_apbh(mxs_dma)	((mxs_dma)->type == MXS_DMA_APBH)
40 #define apbh_is_old(mxs_dma)	((mxs_dma)->dev_id == IMX23_DMA)
41 
42 #define HW_APBHX_CTRL0				0x000
43 #define BM_APBH_CTRL0_APB_BURST8_EN		(1 << 29)
44 #define BM_APBH_CTRL0_APB_BURST_EN		(1 << 28)
45 #define BP_APBH_CTRL0_RESET_CHANNEL		16
46 #define HW_APBHX_CTRL1				0x010
47 #define HW_APBHX_CTRL2				0x020
48 #define HW_APBHX_CHANNEL_CTRL			0x030
49 #define BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL	16
50 /*
51  * The offset of NXTCMDAR register is different per both dma type and version,
52  * while stride for each channel is all the same 0x70.
53  */
54 #define HW_APBHX_CHn_NXTCMDAR(d, n) \
55 	(((dma_is_apbh(d) && apbh_is_old(d)) ? 0x050 : 0x110) + (n) * 0x70)
56 #define HW_APBHX_CHn_SEMA(d, n) \
57 	(((dma_is_apbh(d) && apbh_is_old(d)) ? 0x080 : 0x140) + (n) * 0x70)
58 #define HW_APBHX_CHn_BAR(d, n) \
59 	(((dma_is_apbh(d) && apbh_is_old(d)) ? 0x070 : 0x130) + (n) * 0x70)
60 #define HW_APBX_CHn_DEBUG1(d, n) (0x150 + (n) * 0x70)
61 
62 /*
63  * ccw bits definitions
64  *
65  * COMMAND:		0..1	(2)
66  * CHAIN:		2	(1)
67  * IRQ:			3	(1)
68  * NAND_LOCK:		4	(1) - not implemented
69  * NAND_WAIT4READY:	5	(1) - not implemented
70  * DEC_SEM:		6	(1)
71  * WAIT4END:		7	(1)
72  * HALT_ON_TERMINATE:	8	(1)
73  * TERMINATE_FLUSH:	9	(1)
74  * RESERVED:		10..11	(2)
75  * PIO_NUM:		12..15	(4)
76  */
77 #define BP_CCW_COMMAND		0
78 #define BM_CCW_COMMAND		(3 << 0)
79 #define CCW_CHAIN		(1 << 2)
80 #define CCW_IRQ			(1 << 3)
81 #define CCW_WAIT4RDY		(1 << 5)
82 #define CCW_DEC_SEM		(1 << 6)
83 #define CCW_WAIT4END		(1 << 7)
84 #define CCW_HALT_ON_TERM	(1 << 8)
85 #define CCW_TERM_FLUSH		(1 << 9)
86 #define BP_CCW_PIO_NUM		12
87 #define BM_CCW_PIO_NUM		(0xf << 12)
88 
89 #define BF_CCW(value, field)	(((value) << BP_CCW_##field) & BM_CCW_##field)
90 
91 #define MXS_DMA_CMD_NO_XFER	0
92 #define MXS_DMA_CMD_WRITE	1
93 #define MXS_DMA_CMD_READ	2
94 #define MXS_DMA_CMD_DMA_SENSE	3	/* not implemented */
95 
96 struct mxs_dma_ccw {
97 	u32		next;
98 	u16		bits;
99 	u16		xfer_bytes;
100 #define MAX_XFER_BYTES	0xff00
101 	u32		bufaddr;
102 #define MXS_PIO_WORDS	16
103 	u32		pio_words[MXS_PIO_WORDS];
104 };
105 
106 #define CCW_BLOCK_SIZE	(4 * PAGE_SIZE)
107 #define NUM_CCW	(int)(CCW_BLOCK_SIZE / sizeof(struct mxs_dma_ccw))
108 
109 struct mxs_dma_chan {
110 	struct mxs_dma_engine		*mxs_dma;
111 	struct dma_chan			chan;
112 	struct dma_async_tx_descriptor	desc;
113 	struct tasklet_struct		tasklet;
114 	unsigned int			chan_irq;
115 	struct mxs_dma_ccw		*ccw;
116 	dma_addr_t			ccw_phys;
117 	int				desc_count;
118 	enum dma_status			status;
119 	unsigned int			flags;
120 	bool				reset;
121 #define MXS_DMA_SG_LOOP			(1 << 0)
122 #define MXS_DMA_USE_SEMAPHORE		(1 << 1)
123 };
124 
125 #define MXS_DMA_CHANNELS		16
126 #define MXS_DMA_CHANNELS_MASK		0xffff
127 
128 enum mxs_dma_devtype {
129 	MXS_DMA_APBH,
130 	MXS_DMA_APBX,
131 };
132 
133 enum mxs_dma_id {
134 	IMX23_DMA,
135 	IMX28_DMA,
136 };
137 
138 struct mxs_dma_engine {
139 	enum mxs_dma_id			dev_id;
140 	enum mxs_dma_devtype		type;
141 	void __iomem			*base;
142 	struct clk			*clk;
143 	struct dma_device		dma_device;
144 	struct mxs_dma_chan		mxs_chans[MXS_DMA_CHANNELS];
145 	struct platform_device		*pdev;
146 	unsigned int			nr_channels;
147 };
148 
149 struct mxs_dma_type {
150 	enum mxs_dma_id id;
151 	enum mxs_dma_devtype type;
152 };
153 
154 static struct mxs_dma_type mxs_dma_types[] = {
155 	{
156 		.id = IMX23_DMA,
157 		.type = MXS_DMA_APBH,
158 	}, {
159 		.id = IMX23_DMA,
160 		.type = MXS_DMA_APBX,
161 	}, {
162 		.id = IMX28_DMA,
163 		.type = MXS_DMA_APBH,
164 	}, {
165 		.id = IMX28_DMA,
166 		.type = MXS_DMA_APBX,
167 	}
168 };
169 
170 static const struct of_device_id mxs_dma_dt_ids[] = {
171 	{ .compatible = "fsl,imx23-dma-apbh", .data = &mxs_dma_types[0], },
172 	{ .compatible = "fsl,imx23-dma-apbx", .data = &mxs_dma_types[1], },
173 	{ .compatible = "fsl,imx28-dma-apbh", .data = &mxs_dma_types[2], },
174 	{ .compatible = "fsl,imx28-dma-apbx", .data = &mxs_dma_types[3], },
175 	{ /* sentinel */ }
176 };
177 MODULE_DEVICE_TABLE(of, mxs_dma_dt_ids);
178 
179 static struct mxs_dma_chan *to_mxs_dma_chan(struct dma_chan *chan)
180 {
181 	return container_of(chan, struct mxs_dma_chan, chan);
182 }
183 
184 static void mxs_dma_reset_chan(struct dma_chan *chan)
185 {
186 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
187 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
188 	int chan_id = mxs_chan->chan.chan_id;
189 
190 	/*
191 	 * mxs dma channel resets can cause a channel stall. To recover from a
192 	 * channel stall, we have to reset the whole DMA engine. To avoid this,
193 	 * we use cyclic DMA with semaphores, that are enhanced in
194 	 * mxs_dma_int_handler. To reset the channel, we can simply stop writing
195 	 * into the semaphore counter.
196 	 */
197 	if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE &&
198 			mxs_chan->flags & MXS_DMA_SG_LOOP) {
199 		mxs_chan->reset = true;
200 	} else if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma)) {
201 		writel(1 << (chan_id + BP_APBH_CTRL0_RESET_CHANNEL),
202 			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
203 	} else {
204 		unsigned long elapsed = 0;
205 		const unsigned long max_wait = 50000; /* 50ms */
206 		void __iomem *reg_dbg1 = mxs_dma->base +
207 				HW_APBX_CHn_DEBUG1(mxs_dma, chan_id);
208 
209 		/*
210 		 * On i.MX28 APBX, the DMA channel can stop working if we reset
211 		 * the channel while it is in READ_FLUSH (0x08) state.
212 		 * We wait here until we leave the state. Then we trigger the
213 		 * reset. Waiting a maximum of 50ms, the kernel shouldn't crash
214 		 * because of this.
215 		 */
216 		while ((readl(reg_dbg1) & 0xf) == 0x8 && elapsed < max_wait) {
217 			udelay(100);
218 			elapsed += 100;
219 		}
220 
221 		if (elapsed >= max_wait)
222 			dev_err(&mxs_chan->mxs_dma->pdev->dev,
223 					"Failed waiting for the DMA channel %d to leave state READ_FLUSH, trying to reset channel in READ_FLUSH state now\n",
224 					chan_id);
225 
226 		writel(1 << (chan_id + BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL),
227 			mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET);
228 	}
229 
230 	mxs_chan->status = DMA_COMPLETE;
231 }
232 
233 static void mxs_dma_enable_chan(struct dma_chan *chan)
234 {
235 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
236 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
237 	int chan_id = mxs_chan->chan.chan_id;
238 
239 	/* set cmd_addr up */
240 	writel(mxs_chan->ccw_phys,
241 		mxs_dma->base + HW_APBHX_CHn_NXTCMDAR(mxs_dma, chan_id));
242 
243 	/* write 1 to SEMA to kick off the channel */
244 	if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE &&
245 			mxs_chan->flags & MXS_DMA_SG_LOOP) {
246 		/* A cyclic DMA consists of at least 2 segments, so initialize
247 		 * the semaphore with 2 so we have enough time to add 1 to the
248 		 * semaphore if we need to */
249 		writel(2, mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id));
250 	} else {
251 		writel(1, mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id));
252 	}
253 	mxs_chan->reset = false;
254 }
255 
256 static void mxs_dma_disable_chan(struct dma_chan *chan)
257 {
258 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
259 
260 	mxs_chan->status = DMA_COMPLETE;
261 }
262 
263 static int mxs_dma_pause_chan(struct dma_chan *chan)
264 {
265 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
266 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
267 	int chan_id = mxs_chan->chan.chan_id;
268 
269 	/* freeze the channel */
270 	if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma))
271 		writel(1 << chan_id,
272 			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
273 	else
274 		writel(1 << chan_id,
275 			mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET);
276 
277 	mxs_chan->status = DMA_PAUSED;
278 	return 0;
279 }
280 
281 static int mxs_dma_resume_chan(struct dma_chan *chan)
282 {
283 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
284 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
285 	int chan_id = mxs_chan->chan.chan_id;
286 
287 	/* unfreeze the channel */
288 	if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma))
289 		writel(1 << chan_id,
290 			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_CLR);
291 	else
292 		writel(1 << chan_id,
293 			mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_CLR);
294 
295 	mxs_chan->status = DMA_IN_PROGRESS;
296 	return 0;
297 }
298 
299 static dma_cookie_t mxs_dma_tx_submit(struct dma_async_tx_descriptor *tx)
300 {
301 	return dma_cookie_assign(tx);
302 }
303 
304 static void mxs_dma_tasklet(struct tasklet_struct *t)
305 {
306 	struct mxs_dma_chan *mxs_chan = from_tasklet(mxs_chan, t, tasklet);
307 
308 	dmaengine_desc_get_callback_invoke(&mxs_chan->desc, NULL);
309 }
310 
311 static int mxs_dma_irq_to_chan(struct mxs_dma_engine *mxs_dma, int irq)
312 {
313 	int i;
314 
315 	for (i = 0; i != mxs_dma->nr_channels; ++i)
316 		if (mxs_dma->mxs_chans[i].chan_irq == irq)
317 			return i;
318 
319 	return -EINVAL;
320 }
321 
322 static irqreturn_t mxs_dma_int_handler(int irq, void *dev_id)
323 {
324 	struct mxs_dma_engine *mxs_dma = dev_id;
325 	struct mxs_dma_chan *mxs_chan;
326 	u32 completed;
327 	u32 err;
328 	int chan = mxs_dma_irq_to_chan(mxs_dma, irq);
329 
330 	if (chan < 0)
331 		return IRQ_NONE;
332 
333 	/* completion status */
334 	completed = readl(mxs_dma->base + HW_APBHX_CTRL1);
335 	completed = (completed >> chan) & 0x1;
336 
337 	/* Clear interrupt */
338 	writel((1 << chan),
339 			mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_CLR);
340 
341 	/* error status */
342 	err = readl(mxs_dma->base + HW_APBHX_CTRL2);
343 	err &= (1 << (MXS_DMA_CHANNELS + chan)) | (1 << chan);
344 
345 	/*
346 	 * error status bit is in the upper 16 bits, error irq bit in the lower
347 	 * 16 bits. We transform it into a simpler error code:
348 	 * err: 0x00 = no error, 0x01 = TERMINATION, 0x02 = BUS_ERROR
349 	 */
350 	err = (err >> (MXS_DMA_CHANNELS + chan)) + (err >> chan);
351 
352 	/* Clear error irq */
353 	writel((1 << chan),
354 			mxs_dma->base + HW_APBHX_CTRL2 + STMP_OFFSET_REG_CLR);
355 
356 	/*
357 	 * When both completion and error of termination bits set at the
358 	 * same time, we do not take it as an error.  IOW, it only becomes
359 	 * an error we need to handle here in case of either it's a bus
360 	 * error or a termination error with no completion. 0x01 is termination
361 	 * error, so we can subtract err & completed to get the real error case.
362 	 */
363 	err -= err & completed;
364 
365 	mxs_chan = &mxs_dma->mxs_chans[chan];
366 
367 	if (err) {
368 		dev_dbg(mxs_dma->dma_device.dev,
369 			"%s: error in channel %d\n", __func__,
370 			chan);
371 		mxs_chan->status = DMA_ERROR;
372 		mxs_dma_reset_chan(&mxs_chan->chan);
373 	} else if (mxs_chan->status != DMA_COMPLETE) {
374 		if (mxs_chan->flags & MXS_DMA_SG_LOOP) {
375 			mxs_chan->status = DMA_IN_PROGRESS;
376 			if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE)
377 				writel(1, mxs_dma->base +
378 					HW_APBHX_CHn_SEMA(mxs_dma, chan));
379 		} else {
380 			mxs_chan->status = DMA_COMPLETE;
381 		}
382 	}
383 
384 	if (mxs_chan->status == DMA_COMPLETE) {
385 		if (mxs_chan->reset)
386 			return IRQ_HANDLED;
387 		dma_cookie_complete(&mxs_chan->desc);
388 	}
389 
390 	/* schedule tasklet on this channel */
391 	tasklet_schedule(&mxs_chan->tasklet);
392 
393 	return IRQ_HANDLED;
394 }
395 
396 static int mxs_dma_alloc_chan_resources(struct dma_chan *chan)
397 {
398 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
399 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
400 	int ret;
401 
402 	mxs_chan->ccw = dma_alloc_coherent(mxs_dma->dma_device.dev,
403 					   CCW_BLOCK_SIZE,
404 					   &mxs_chan->ccw_phys, GFP_KERNEL);
405 	if (!mxs_chan->ccw) {
406 		ret = -ENOMEM;
407 		goto err_alloc;
408 	}
409 
410 	ret = request_irq(mxs_chan->chan_irq, mxs_dma_int_handler,
411 			  0, "mxs-dma", mxs_dma);
412 	if (ret)
413 		goto err_irq;
414 
415 	ret = clk_prepare_enable(mxs_dma->clk);
416 	if (ret)
417 		goto err_clk;
418 
419 	mxs_dma_reset_chan(chan);
420 
421 	dma_async_tx_descriptor_init(&mxs_chan->desc, chan);
422 	mxs_chan->desc.tx_submit = mxs_dma_tx_submit;
423 
424 	/* the descriptor is ready */
425 	async_tx_ack(&mxs_chan->desc);
426 
427 	return 0;
428 
429 err_clk:
430 	free_irq(mxs_chan->chan_irq, mxs_dma);
431 err_irq:
432 	dma_free_coherent(mxs_dma->dma_device.dev, CCW_BLOCK_SIZE,
433 			mxs_chan->ccw, mxs_chan->ccw_phys);
434 err_alloc:
435 	return ret;
436 }
437 
438 static void mxs_dma_free_chan_resources(struct dma_chan *chan)
439 {
440 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
441 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
442 
443 	mxs_dma_disable_chan(chan);
444 
445 	free_irq(mxs_chan->chan_irq, mxs_dma);
446 
447 	dma_free_coherent(mxs_dma->dma_device.dev, CCW_BLOCK_SIZE,
448 			mxs_chan->ccw, mxs_chan->ccw_phys);
449 
450 	clk_disable_unprepare(mxs_dma->clk);
451 }
452 
453 /*
454  * How to use the flags for ->device_prep_slave_sg() :
455  *    [1] If there is only one DMA command in the DMA chain, the code should be:
456  *            ......
457  *            ->device_prep_slave_sg(DMA_CTRL_ACK);
458  *            ......
459  *    [2] If there are two DMA commands in the DMA chain, the code should be
460  *            ......
461  *            ->device_prep_slave_sg(0);
462  *            ......
463  *            ->device_prep_slave_sg(DMA_CTRL_ACK);
464  *            ......
465  *    [3] If there are more than two DMA commands in the DMA chain, the code
466  *        should be:
467  *            ......
468  *            ->device_prep_slave_sg(0);                                // First
469  *            ......
470  *            ->device_prep_slave_sg(DMA_CTRL_ACK]);
471  *            ......
472  *            ->device_prep_slave_sg(DMA_CTRL_ACK); // Last
473  *            ......
474  */
475 static struct dma_async_tx_descriptor *mxs_dma_prep_slave_sg(
476 		struct dma_chan *chan, struct scatterlist *sgl,
477 		unsigned int sg_len, enum dma_transfer_direction direction,
478 		unsigned long flags, void *context)
479 {
480 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
481 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
482 	struct mxs_dma_ccw *ccw;
483 	struct scatterlist *sg;
484 	u32 i, j;
485 	u32 *pio;
486 	int idx = 0;
487 
488 	if (mxs_chan->status == DMA_IN_PROGRESS)
489 		idx = mxs_chan->desc_count;
490 
491 	if (sg_len + idx > NUM_CCW) {
492 		dev_err(mxs_dma->dma_device.dev,
493 				"maximum number of sg exceeded: %d > %d\n",
494 				sg_len, NUM_CCW);
495 		goto err_out;
496 	}
497 
498 	mxs_chan->status = DMA_IN_PROGRESS;
499 	mxs_chan->flags = 0;
500 
501 	/*
502 	 * If the sg is prepared with append flag set, the sg
503 	 * will be appended to the last prepared sg.
504 	 */
505 	if (idx) {
506 		BUG_ON(idx < 1);
507 		ccw = &mxs_chan->ccw[idx - 1];
508 		ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx;
509 		ccw->bits |= CCW_CHAIN;
510 		ccw->bits &= ~CCW_IRQ;
511 		ccw->bits &= ~CCW_DEC_SEM;
512 	} else {
513 		idx = 0;
514 	}
515 
516 	if (direction == DMA_TRANS_NONE) {
517 		ccw = &mxs_chan->ccw[idx++];
518 		pio = (u32 *) sgl;
519 
520 		for (j = 0; j < sg_len;)
521 			ccw->pio_words[j++] = *pio++;
522 
523 		ccw->bits = 0;
524 		ccw->bits |= CCW_IRQ;
525 		ccw->bits |= CCW_DEC_SEM;
526 		if (flags & MXS_DMA_CTRL_WAIT4END)
527 			ccw->bits |= CCW_WAIT4END;
528 		ccw->bits |= CCW_HALT_ON_TERM;
529 		ccw->bits |= CCW_TERM_FLUSH;
530 		ccw->bits |= BF_CCW(sg_len, PIO_NUM);
531 		ccw->bits |= BF_CCW(MXS_DMA_CMD_NO_XFER, COMMAND);
532 		if (flags & MXS_DMA_CTRL_WAIT4RDY)
533 			ccw->bits |= CCW_WAIT4RDY;
534 	} else {
535 		for_each_sg(sgl, sg, sg_len, i) {
536 			if (sg_dma_len(sg) > MAX_XFER_BYTES) {
537 				dev_err(mxs_dma->dma_device.dev, "maximum bytes for sg entry exceeded: %d > %d\n",
538 						sg_dma_len(sg), MAX_XFER_BYTES);
539 				goto err_out;
540 			}
541 
542 			ccw = &mxs_chan->ccw[idx++];
543 
544 			ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx;
545 			ccw->bufaddr = sg->dma_address;
546 			ccw->xfer_bytes = sg_dma_len(sg);
547 
548 			ccw->bits = 0;
549 			ccw->bits |= CCW_CHAIN;
550 			ccw->bits |= CCW_HALT_ON_TERM;
551 			ccw->bits |= CCW_TERM_FLUSH;
552 			ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ?
553 					MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ,
554 					COMMAND);
555 
556 			if (i + 1 == sg_len) {
557 				ccw->bits &= ~CCW_CHAIN;
558 				ccw->bits |= CCW_IRQ;
559 				ccw->bits |= CCW_DEC_SEM;
560 				if (flags & MXS_DMA_CTRL_WAIT4END)
561 					ccw->bits |= CCW_WAIT4END;
562 			}
563 		}
564 	}
565 	mxs_chan->desc_count = idx;
566 
567 	return &mxs_chan->desc;
568 
569 err_out:
570 	mxs_chan->status = DMA_ERROR;
571 	return NULL;
572 }
573 
574 static struct dma_async_tx_descriptor *mxs_dma_prep_dma_cyclic(
575 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
576 		size_t period_len, enum dma_transfer_direction direction,
577 		unsigned long flags)
578 {
579 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
580 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
581 	u32 num_periods = buf_len / period_len;
582 	u32 i = 0, buf = 0;
583 
584 	if (mxs_chan->status == DMA_IN_PROGRESS)
585 		return NULL;
586 
587 	mxs_chan->status = DMA_IN_PROGRESS;
588 	mxs_chan->flags |= MXS_DMA_SG_LOOP;
589 	mxs_chan->flags |= MXS_DMA_USE_SEMAPHORE;
590 
591 	if (num_periods > NUM_CCW) {
592 		dev_err(mxs_dma->dma_device.dev,
593 				"maximum number of sg exceeded: %d > %d\n",
594 				num_periods, NUM_CCW);
595 		goto err_out;
596 	}
597 
598 	if (period_len > MAX_XFER_BYTES) {
599 		dev_err(mxs_dma->dma_device.dev,
600 				"maximum period size exceeded: %zu > %d\n",
601 				period_len, MAX_XFER_BYTES);
602 		goto err_out;
603 	}
604 
605 	while (buf < buf_len) {
606 		struct mxs_dma_ccw *ccw = &mxs_chan->ccw[i];
607 
608 		if (i + 1 == num_periods)
609 			ccw->next = mxs_chan->ccw_phys;
610 		else
611 			ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * (i + 1);
612 
613 		ccw->bufaddr = dma_addr;
614 		ccw->xfer_bytes = period_len;
615 
616 		ccw->bits = 0;
617 		ccw->bits |= CCW_CHAIN;
618 		ccw->bits |= CCW_IRQ;
619 		ccw->bits |= CCW_HALT_ON_TERM;
620 		ccw->bits |= CCW_TERM_FLUSH;
621 		ccw->bits |= CCW_DEC_SEM;
622 		ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ?
623 				MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ, COMMAND);
624 
625 		dma_addr += period_len;
626 		buf += period_len;
627 
628 		i++;
629 	}
630 	mxs_chan->desc_count = i;
631 
632 	return &mxs_chan->desc;
633 
634 err_out:
635 	mxs_chan->status = DMA_ERROR;
636 	return NULL;
637 }
638 
639 static int mxs_dma_terminate_all(struct dma_chan *chan)
640 {
641 	mxs_dma_reset_chan(chan);
642 	mxs_dma_disable_chan(chan);
643 
644 	return 0;
645 }
646 
647 static enum dma_status mxs_dma_tx_status(struct dma_chan *chan,
648 			dma_cookie_t cookie, struct dma_tx_state *txstate)
649 {
650 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
651 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
652 	u32 residue = 0;
653 
654 	if (mxs_chan->status == DMA_IN_PROGRESS &&
655 			mxs_chan->flags & MXS_DMA_SG_LOOP) {
656 		struct mxs_dma_ccw *last_ccw;
657 		u32 bar;
658 
659 		last_ccw = &mxs_chan->ccw[mxs_chan->desc_count - 1];
660 		residue = last_ccw->xfer_bytes + last_ccw->bufaddr;
661 
662 		bar = readl(mxs_dma->base +
663 				HW_APBHX_CHn_BAR(mxs_dma, chan->chan_id));
664 		residue -= bar;
665 	}
666 
667 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
668 			residue);
669 
670 	return mxs_chan->status;
671 }
672 
673 static int __init mxs_dma_init(struct mxs_dma_engine *mxs_dma)
674 {
675 	int ret;
676 
677 	ret = clk_prepare_enable(mxs_dma->clk);
678 	if (ret)
679 		return ret;
680 
681 	ret = stmp_reset_block(mxs_dma->base);
682 	if (ret)
683 		goto err_out;
684 
685 	/* enable apbh burst */
686 	if (dma_is_apbh(mxs_dma)) {
687 		writel(BM_APBH_CTRL0_APB_BURST_EN,
688 			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
689 		writel(BM_APBH_CTRL0_APB_BURST8_EN,
690 			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
691 	}
692 
693 	/* enable irq for all the channels */
694 	writel(MXS_DMA_CHANNELS_MASK << MXS_DMA_CHANNELS,
695 		mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_SET);
696 
697 err_out:
698 	clk_disable_unprepare(mxs_dma->clk);
699 	return ret;
700 }
701 
702 struct mxs_dma_filter_param {
703 	unsigned int chan_id;
704 };
705 
706 static bool mxs_dma_filter_fn(struct dma_chan *chan, void *fn_param)
707 {
708 	struct mxs_dma_filter_param *param = fn_param;
709 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
710 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
711 	int chan_irq;
712 
713 	if (chan->chan_id != param->chan_id)
714 		return false;
715 
716 	chan_irq = platform_get_irq(mxs_dma->pdev, param->chan_id);
717 	if (chan_irq < 0)
718 		return false;
719 
720 	mxs_chan->chan_irq = chan_irq;
721 
722 	return true;
723 }
724 
725 static struct dma_chan *mxs_dma_xlate(struct of_phandle_args *dma_spec,
726 			       struct of_dma *ofdma)
727 {
728 	struct mxs_dma_engine *mxs_dma = ofdma->of_dma_data;
729 	dma_cap_mask_t mask = mxs_dma->dma_device.cap_mask;
730 	struct mxs_dma_filter_param param;
731 
732 	if (dma_spec->args_count != 1)
733 		return NULL;
734 
735 	param.chan_id = dma_spec->args[0];
736 
737 	if (param.chan_id >= mxs_dma->nr_channels)
738 		return NULL;
739 
740 	return __dma_request_channel(&mask, mxs_dma_filter_fn, &param,
741 				     ofdma->of_node);
742 }
743 
744 static int __init mxs_dma_probe(struct platform_device *pdev)
745 {
746 	struct device_node *np = pdev->dev.of_node;
747 	const struct mxs_dma_type *dma_type;
748 	struct mxs_dma_engine *mxs_dma;
749 	struct resource *iores;
750 	int ret, i;
751 
752 	mxs_dma = devm_kzalloc(&pdev->dev, sizeof(*mxs_dma), GFP_KERNEL);
753 	if (!mxs_dma)
754 		return -ENOMEM;
755 
756 	ret = of_property_read_u32(np, "dma-channels", &mxs_dma->nr_channels);
757 	if (ret) {
758 		dev_err(&pdev->dev, "failed to read dma-channels\n");
759 		return ret;
760 	}
761 
762 	dma_type = (struct mxs_dma_type *)of_device_get_match_data(&pdev->dev);
763 	mxs_dma->type = dma_type->type;
764 	mxs_dma->dev_id = dma_type->id;
765 
766 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
767 	mxs_dma->base = devm_ioremap_resource(&pdev->dev, iores);
768 	if (IS_ERR(mxs_dma->base))
769 		return PTR_ERR(mxs_dma->base);
770 
771 	mxs_dma->clk = devm_clk_get(&pdev->dev, NULL);
772 	if (IS_ERR(mxs_dma->clk))
773 		return PTR_ERR(mxs_dma->clk);
774 
775 	dma_cap_set(DMA_SLAVE, mxs_dma->dma_device.cap_mask);
776 	dma_cap_set(DMA_CYCLIC, mxs_dma->dma_device.cap_mask);
777 
778 	INIT_LIST_HEAD(&mxs_dma->dma_device.channels);
779 
780 	/* Initialize channel parameters */
781 	for (i = 0; i < MXS_DMA_CHANNELS; i++) {
782 		struct mxs_dma_chan *mxs_chan = &mxs_dma->mxs_chans[i];
783 
784 		mxs_chan->mxs_dma = mxs_dma;
785 		mxs_chan->chan.device = &mxs_dma->dma_device;
786 		dma_cookie_init(&mxs_chan->chan);
787 
788 		tasklet_setup(&mxs_chan->tasklet, mxs_dma_tasklet);
789 
790 
791 		/* Add the channel to mxs_chan list */
792 		list_add_tail(&mxs_chan->chan.device_node,
793 			&mxs_dma->dma_device.channels);
794 	}
795 
796 	ret = mxs_dma_init(mxs_dma);
797 	if (ret)
798 		return ret;
799 
800 	mxs_dma->pdev = pdev;
801 	mxs_dma->dma_device.dev = &pdev->dev;
802 
803 	/* mxs_dma gets 65535 bytes maximum sg size */
804 	dma_set_max_seg_size(mxs_dma->dma_device.dev, MAX_XFER_BYTES);
805 
806 	mxs_dma->dma_device.device_alloc_chan_resources = mxs_dma_alloc_chan_resources;
807 	mxs_dma->dma_device.device_free_chan_resources = mxs_dma_free_chan_resources;
808 	mxs_dma->dma_device.device_tx_status = mxs_dma_tx_status;
809 	mxs_dma->dma_device.device_prep_slave_sg = mxs_dma_prep_slave_sg;
810 	mxs_dma->dma_device.device_prep_dma_cyclic = mxs_dma_prep_dma_cyclic;
811 	mxs_dma->dma_device.device_pause = mxs_dma_pause_chan;
812 	mxs_dma->dma_device.device_resume = mxs_dma_resume_chan;
813 	mxs_dma->dma_device.device_terminate_all = mxs_dma_terminate_all;
814 	mxs_dma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
815 	mxs_dma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
816 	mxs_dma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
817 	mxs_dma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
818 	mxs_dma->dma_device.device_issue_pending = mxs_dma_enable_chan;
819 
820 	ret = dmaenginem_async_device_register(&mxs_dma->dma_device);
821 	if (ret) {
822 		dev_err(mxs_dma->dma_device.dev, "unable to register\n");
823 		return ret;
824 	}
825 
826 	ret = of_dma_controller_register(np, mxs_dma_xlate, mxs_dma);
827 	if (ret) {
828 		dev_err(mxs_dma->dma_device.dev,
829 			"failed to register controller\n");
830 	}
831 
832 	dev_info(mxs_dma->dma_device.dev, "initialized\n");
833 
834 	return 0;
835 }
836 
837 static struct platform_driver mxs_dma_driver = {
838 	.driver		= {
839 		.name	= "mxs-dma",
840 		.of_match_table = mxs_dma_dt_ids,
841 	},
842 };
843 
844 static int __init mxs_dma_module_init(void)
845 {
846 	return platform_driver_probe(&mxs_dma_driver, mxs_dma_probe);
847 }
848 subsys_initcall(mxs_dma_module_init);
849