xref: /openbmc/linux/drivers/dma/mv_xor.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * offload engine driver for the Marvell XOR engine
3  * Copyright (C) 2007, 2008, Marvell International Ltd.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18 
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/delay.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/memory.h>
27 #include <plat/mv_xor.h>
28 #include "mv_xor.h"
29 
30 static void mv_xor_issue_pending(struct dma_chan *chan);
31 
32 #define to_mv_xor_chan(chan)		\
33 	container_of(chan, struct mv_xor_chan, common)
34 
35 #define to_mv_xor_device(dev)		\
36 	container_of(dev, struct mv_xor_device, common)
37 
38 #define to_mv_xor_slot(tx)		\
39 	container_of(tx, struct mv_xor_desc_slot, async_tx)
40 
41 static void mv_desc_init(struct mv_xor_desc_slot *desc, unsigned long flags)
42 {
43 	struct mv_xor_desc *hw_desc = desc->hw_desc;
44 
45 	hw_desc->status = (1 << 31);
46 	hw_desc->phy_next_desc = 0;
47 	hw_desc->desc_command = (1 << 31);
48 }
49 
50 static u32 mv_desc_get_dest_addr(struct mv_xor_desc_slot *desc)
51 {
52 	struct mv_xor_desc *hw_desc = desc->hw_desc;
53 	return hw_desc->phy_dest_addr;
54 }
55 
56 static u32 mv_desc_get_src_addr(struct mv_xor_desc_slot *desc,
57 				int src_idx)
58 {
59 	struct mv_xor_desc *hw_desc = desc->hw_desc;
60 	return hw_desc->phy_src_addr[src_idx];
61 }
62 
63 
64 static void mv_desc_set_byte_count(struct mv_xor_desc_slot *desc,
65 				   u32 byte_count)
66 {
67 	struct mv_xor_desc *hw_desc = desc->hw_desc;
68 	hw_desc->byte_count = byte_count;
69 }
70 
71 static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc,
72 				  u32 next_desc_addr)
73 {
74 	struct mv_xor_desc *hw_desc = desc->hw_desc;
75 	BUG_ON(hw_desc->phy_next_desc);
76 	hw_desc->phy_next_desc = next_desc_addr;
77 }
78 
79 static void mv_desc_clear_next_desc(struct mv_xor_desc_slot *desc)
80 {
81 	struct mv_xor_desc *hw_desc = desc->hw_desc;
82 	hw_desc->phy_next_desc = 0;
83 }
84 
85 static void mv_desc_set_block_fill_val(struct mv_xor_desc_slot *desc, u32 val)
86 {
87 	desc->value = val;
88 }
89 
90 static void mv_desc_set_dest_addr(struct mv_xor_desc_slot *desc,
91 				  dma_addr_t addr)
92 {
93 	struct mv_xor_desc *hw_desc = desc->hw_desc;
94 	hw_desc->phy_dest_addr = addr;
95 }
96 
97 static int mv_chan_memset_slot_count(size_t len)
98 {
99 	return 1;
100 }
101 
102 #define mv_chan_memcpy_slot_count(c) mv_chan_memset_slot_count(c)
103 
104 static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc,
105 				 int index, dma_addr_t addr)
106 {
107 	struct mv_xor_desc *hw_desc = desc->hw_desc;
108 	hw_desc->phy_src_addr[index] = addr;
109 	if (desc->type == DMA_XOR)
110 		hw_desc->desc_command |= (1 << index);
111 }
112 
113 static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan)
114 {
115 	return __raw_readl(XOR_CURR_DESC(chan));
116 }
117 
118 static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan,
119 					u32 next_desc_addr)
120 {
121 	__raw_writel(next_desc_addr, XOR_NEXT_DESC(chan));
122 }
123 
124 static void mv_chan_set_dest_pointer(struct mv_xor_chan *chan, u32 desc_addr)
125 {
126 	__raw_writel(desc_addr, XOR_DEST_POINTER(chan));
127 }
128 
129 static void mv_chan_set_block_size(struct mv_xor_chan *chan, u32 block_size)
130 {
131 	__raw_writel(block_size, XOR_BLOCK_SIZE(chan));
132 }
133 
134 static void mv_chan_set_value(struct mv_xor_chan *chan, u32 value)
135 {
136 	__raw_writel(value, XOR_INIT_VALUE_LOW(chan));
137 	__raw_writel(value, XOR_INIT_VALUE_HIGH(chan));
138 }
139 
140 static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan)
141 {
142 	u32 val = __raw_readl(XOR_INTR_MASK(chan));
143 	val |= XOR_INTR_MASK_VALUE << (chan->idx * 16);
144 	__raw_writel(val, XOR_INTR_MASK(chan));
145 }
146 
147 static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan)
148 {
149 	u32 intr_cause = __raw_readl(XOR_INTR_CAUSE(chan));
150 	intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF;
151 	return intr_cause;
152 }
153 
154 static int mv_is_err_intr(u32 intr_cause)
155 {
156 	if (intr_cause & ((1<<4)|(1<<5)|(1<<6)|(1<<7)|(1<<8)|(1<<9)))
157 		return 1;
158 
159 	return 0;
160 }
161 
162 static void mv_xor_device_clear_eoc_cause(struct mv_xor_chan *chan)
163 {
164 	u32 val = (1 << (1 + (chan->idx * 16)));
165 	dev_dbg(chan->device->common.dev, "%s, val 0x%08x\n", __func__, val);
166 	__raw_writel(val, XOR_INTR_CAUSE(chan));
167 }
168 
169 static void mv_xor_device_clear_err_status(struct mv_xor_chan *chan)
170 {
171 	u32 val = 0xFFFF0000 >> (chan->idx * 16);
172 	__raw_writel(val, XOR_INTR_CAUSE(chan));
173 }
174 
175 static int mv_can_chain(struct mv_xor_desc_slot *desc)
176 {
177 	struct mv_xor_desc_slot *chain_old_tail = list_entry(
178 		desc->chain_node.prev, struct mv_xor_desc_slot, chain_node);
179 
180 	if (chain_old_tail->type != desc->type)
181 		return 0;
182 	if (desc->type == DMA_MEMSET)
183 		return 0;
184 
185 	return 1;
186 }
187 
188 static void mv_set_mode(struct mv_xor_chan *chan,
189 			       enum dma_transaction_type type)
190 {
191 	u32 op_mode;
192 	u32 config = __raw_readl(XOR_CONFIG(chan));
193 
194 	switch (type) {
195 	case DMA_XOR:
196 		op_mode = XOR_OPERATION_MODE_XOR;
197 		break;
198 	case DMA_MEMCPY:
199 		op_mode = XOR_OPERATION_MODE_MEMCPY;
200 		break;
201 	case DMA_MEMSET:
202 		op_mode = XOR_OPERATION_MODE_MEMSET;
203 		break;
204 	default:
205 		dev_printk(KERN_ERR, chan->device->common.dev,
206 			   "error: unsupported operation %d.\n",
207 			   type);
208 		BUG();
209 		return;
210 	}
211 
212 	config &= ~0x7;
213 	config |= op_mode;
214 	__raw_writel(config, XOR_CONFIG(chan));
215 	chan->current_type = type;
216 }
217 
218 static void mv_chan_activate(struct mv_xor_chan *chan)
219 {
220 	u32 activation;
221 
222 	dev_dbg(chan->device->common.dev, " activate chan.\n");
223 	activation = __raw_readl(XOR_ACTIVATION(chan));
224 	activation |= 0x1;
225 	__raw_writel(activation, XOR_ACTIVATION(chan));
226 }
227 
228 static char mv_chan_is_busy(struct mv_xor_chan *chan)
229 {
230 	u32 state = __raw_readl(XOR_ACTIVATION(chan));
231 
232 	state = (state >> 4) & 0x3;
233 
234 	return (state == 1) ? 1 : 0;
235 }
236 
237 static int mv_chan_xor_slot_count(size_t len, int src_cnt)
238 {
239 	return 1;
240 }
241 
242 /**
243  * mv_xor_free_slots - flags descriptor slots for reuse
244  * @slot: Slot to free
245  * Caller must hold &mv_chan->lock while calling this function
246  */
247 static void mv_xor_free_slots(struct mv_xor_chan *mv_chan,
248 			      struct mv_xor_desc_slot *slot)
249 {
250 	dev_dbg(mv_chan->device->common.dev, "%s %d slot %p\n",
251 		__func__, __LINE__, slot);
252 
253 	slot->slots_per_op = 0;
254 
255 }
256 
257 /*
258  * mv_xor_start_new_chain - program the engine to operate on new chain headed by
259  * sw_desc
260  * Caller must hold &mv_chan->lock while calling this function
261  */
262 static void mv_xor_start_new_chain(struct mv_xor_chan *mv_chan,
263 				   struct mv_xor_desc_slot *sw_desc)
264 {
265 	dev_dbg(mv_chan->device->common.dev, "%s %d: sw_desc %p\n",
266 		__func__, __LINE__, sw_desc);
267 	if (sw_desc->type != mv_chan->current_type)
268 		mv_set_mode(mv_chan, sw_desc->type);
269 
270 	if (sw_desc->type == DMA_MEMSET) {
271 		/* for memset requests we need to program the engine, no
272 		 * descriptors used.
273 		 */
274 		struct mv_xor_desc *hw_desc = sw_desc->hw_desc;
275 		mv_chan_set_dest_pointer(mv_chan, hw_desc->phy_dest_addr);
276 		mv_chan_set_block_size(mv_chan, sw_desc->unmap_len);
277 		mv_chan_set_value(mv_chan, sw_desc->value);
278 	} else {
279 		/* set the hardware chain */
280 		mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys);
281 	}
282 	mv_chan->pending += sw_desc->slot_cnt;
283 	mv_xor_issue_pending(&mv_chan->common);
284 }
285 
286 static dma_cookie_t
287 mv_xor_run_tx_complete_actions(struct mv_xor_desc_slot *desc,
288 	struct mv_xor_chan *mv_chan, dma_cookie_t cookie)
289 {
290 	BUG_ON(desc->async_tx.cookie < 0);
291 
292 	if (desc->async_tx.cookie > 0) {
293 		cookie = desc->async_tx.cookie;
294 
295 		/* call the callback (must not sleep or submit new
296 		 * operations to this channel)
297 		 */
298 		if (desc->async_tx.callback)
299 			desc->async_tx.callback(
300 				desc->async_tx.callback_param);
301 
302 		/* unmap dma addresses
303 		 * (unmap_single vs unmap_page?)
304 		 */
305 		if (desc->group_head && desc->unmap_len) {
306 			struct mv_xor_desc_slot *unmap = desc->group_head;
307 			struct device *dev =
308 				&mv_chan->device->pdev->dev;
309 			u32 len = unmap->unmap_len;
310 			enum dma_ctrl_flags flags = desc->async_tx.flags;
311 			u32 src_cnt;
312 			dma_addr_t addr;
313 			dma_addr_t dest;
314 
315 			src_cnt = unmap->unmap_src_cnt;
316 			dest = mv_desc_get_dest_addr(unmap);
317 			if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
318 				enum dma_data_direction dir;
319 
320 				if (src_cnt > 1) /* is xor ? */
321 					dir = DMA_BIDIRECTIONAL;
322 				else
323 					dir = DMA_FROM_DEVICE;
324 				dma_unmap_page(dev, dest, len, dir);
325 			}
326 
327 			if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
328 				while (src_cnt--) {
329 					addr = mv_desc_get_src_addr(unmap,
330 								    src_cnt);
331 					if (addr == dest)
332 						continue;
333 					dma_unmap_page(dev, addr, len,
334 						       DMA_TO_DEVICE);
335 				}
336 			}
337 			desc->group_head = NULL;
338 		}
339 	}
340 
341 	/* run dependent operations */
342 	dma_run_dependencies(&desc->async_tx);
343 
344 	return cookie;
345 }
346 
347 static int
348 mv_xor_clean_completed_slots(struct mv_xor_chan *mv_chan)
349 {
350 	struct mv_xor_desc_slot *iter, *_iter;
351 
352 	dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
353 	list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
354 				 completed_node) {
355 
356 		if (async_tx_test_ack(&iter->async_tx)) {
357 			list_del(&iter->completed_node);
358 			mv_xor_free_slots(mv_chan, iter);
359 		}
360 	}
361 	return 0;
362 }
363 
364 static int
365 mv_xor_clean_slot(struct mv_xor_desc_slot *desc,
366 	struct mv_xor_chan *mv_chan)
367 {
368 	dev_dbg(mv_chan->device->common.dev, "%s %d: desc %p flags %d\n",
369 		__func__, __LINE__, desc, desc->async_tx.flags);
370 	list_del(&desc->chain_node);
371 	/* the client is allowed to attach dependent operations
372 	 * until 'ack' is set
373 	 */
374 	if (!async_tx_test_ack(&desc->async_tx)) {
375 		/* move this slot to the completed_slots */
376 		list_add_tail(&desc->completed_node, &mv_chan->completed_slots);
377 		return 0;
378 	}
379 
380 	mv_xor_free_slots(mv_chan, desc);
381 	return 0;
382 }
383 
384 static void __mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
385 {
386 	struct mv_xor_desc_slot *iter, *_iter;
387 	dma_cookie_t cookie = 0;
388 	int busy = mv_chan_is_busy(mv_chan);
389 	u32 current_desc = mv_chan_get_current_desc(mv_chan);
390 	int seen_current = 0;
391 
392 	dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
393 	dev_dbg(mv_chan->device->common.dev, "current_desc %x\n", current_desc);
394 	mv_xor_clean_completed_slots(mv_chan);
395 
396 	/* free completed slots from the chain starting with
397 	 * the oldest descriptor
398 	 */
399 
400 	list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
401 					chain_node) {
402 		prefetch(_iter);
403 		prefetch(&_iter->async_tx);
404 
405 		/* do not advance past the current descriptor loaded into the
406 		 * hardware channel, subsequent descriptors are either in
407 		 * process or have not been submitted
408 		 */
409 		if (seen_current)
410 			break;
411 
412 		/* stop the search if we reach the current descriptor and the
413 		 * channel is busy
414 		 */
415 		if (iter->async_tx.phys == current_desc) {
416 			seen_current = 1;
417 			if (busy)
418 				break;
419 		}
420 
421 		cookie = mv_xor_run_tx_complete_actions(iter, mv_chan, cookie);
422 
423 		if (mv_xor_clean_slot(iter, mv_chan))
424 			break;
425 	}
426 
427 	if ((busy == 0) && !list_empty(&mv_chan->chain)) {
428 		struct mv_xor_desc_slot *chain_head;
429 		chain_head = list_entry(mv_chan->chain.next,
430 					struct mv_xor_desc_slot,
431 					chain_node);
432 
433 		mv_xor_start_new_chain(mv_chan, chain_head);
434 	}
435 
436 	if (cookie > 0)
437 		mv_chan->completed_cookie = cookie;
438 }
439 
440 static void
441 mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
442 {
443 	spin_lock_bh(&mv_chan->lock);
444 	__mv_xor_slot_cleanup(mv_chan);
445 	spin_unlock_bh(&mv_chan->lock);
446 }
447 
448 static void mv_xor_tasklet(unsigned long data)
449 {
450 	struct mv_xor_chan *chan = (struct mv_xor_chan *) data;
451 	__mv_xor_slot_cleanup(chan);
452 }
453 
454 static struct mv_xor_desc_slot *
455 mv_xor_alloc_slots(struct mv_xor_chan *mv_chan, int num_slots,
456 		    int slots_per_op)
457 {
458 	struct mv_xor_desc_slot *iter, *_iter, *alloc_start = NULL;
459 	LIST_HEAD(chain);
460 	int slots_found, retry = 0;
461 
462 	/* start search from the last allocated descrtiptor
463 	 * if a contiguous allocation can not be found start searching
464 	 * from the beginning of the list
465 	 */
466 retry:
467 	slots_found = 0;
468 	if (retry == 0)
469 		iter = mv_chan->last_used;
470 	else
471 		iter = list_entry(&mv_chan->all_slots,
472 			struct mv_xor_desc_slot,
473 			slot_node);
474 
475 	list_for_each_entry_safe_continue(
476 		iter, _iter, &mv_chan->all_slots, slot_node) {
477 		prefetch(_iter);
478 		prefetch(&_iter->async_tx);
479 		if (iter->slots_per_op) {
480 			/* give up after finding the first busy slot
481 			 * on the second pass through the list
482 			 */
483 			if (retry)
484 				break;
485 
486 			slots_found = 0;
487 			continue;
488 		}
489 
490 		/* start the allocation if the slot is correctly aligned */
491 		if (!slots_found++)
492 			alloc_start = iter;
493 
494 		if (slots_found == num_slots) {
495 			struct mv_xor_desc_slot *alloc_tail = NULL;
496 			struct mv_xor_desc_slot *last_used = NULL;
497 			iter = alloc_start;
498 			while (num_slots) {
499 				int i;
500 
501 				/* pre-ack all but the last descriptor */
502 				async_tx_ack(&iter->async_tx);
503 
504 				list_add_tail(&iter->chain_node, &chain);
505 				alloc_tail = iter;
506 				iter->async_tx.cookie = 0;
507 				iter->slot_cnt = num_slots;
508 				iter->xor_check_result = NULL;
509 				for (i = 0; i < slots_per_op; i++) {
510 					iter->slots_per_op = slots_per_op - i;
511 					last_used = iter;
512 					iter = list_entry(iter->slot_node.next,
513 						struct mv_xor_desc_slot,
514 						slot_node);
515 				}
516 				num_slots -= slots_per_op;
517 			}
518 			alloc_tail->group_head = alloc_start;
519 			alloc_tail->async_tx.cookie = -EBUSY;
520 			list_splice(&chain, &alloc_tail->async_tx.tx_list);
521 			mv_chan->last_used = last_used;
522 			mv_desc_clear_next_desc(alloc_start);
523 			mv_desc_clear_next_desc(alloc_tail);
524 			return alloc_tail;
525 		}
526 	}
527 	if (!retry++)
528 		goto retry;
529 
530 	/* try to free some slots if the allocation fails */
531 	tasklet_schedule(&mv_chan->irq_tasklet);
532 
533 	return NULL;
534 }
535 
536 static dma_cookie_t
537 mv_desc_assign_cookie(struct mv_xor_chan *mv_chan,
538 		      struct mv_xor_desc_slot *desc)
539 {
540 	dma_cookie_t cookie = mv_chan->common.cookie;
541 
542 	if (++cookie < 0)
543 		cookie = 1;
544 	mv_chan->common.cookie = desc->async_tx.cookie = cookie;
545 	return cookie;
546 }
547 
548 /************************ DMA engine API functions ****************************/
549 static dma_cookie_t
550 mv_xor_tx_submit(struct dma_async_tx_descriptor *tx)
551 {
552 	struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx);
553 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan);
554 	struct mv_xor_desc_slot *grp_start, *old_chain_tail;
555 	dma_cookie_t cookie;
556 	int new_hw_chain = 1;
557 
558 	dev_dbg(mv_chan->device->common.dev,
559 		"%s sw_desc %p: async_tx %p\n",
560 		__func__, sw_desc, &sw_desc->async_tx);
561 
562 	grp_start = sw_desc->group_head;
563 
564 	spin_lock_bh(&mv_chan->lock);
565 	cookie = mv_desc_assign_cookie(mv_chan, sw_desc);
566 
567 	if (list_empty(&mv_chan->chain))
568 		list_splice_init(&sw_desc->async_tx.tx_list, &mv_chan->chain);
569 	else {
570 		new_hw_chain = 0;
571 
572 		old_chain_tail = list_entry(mv_chan->chain.prev,
573 					    struct mv_xor_desc_slot,
574 					    chain_node);
575 		list_splice_init(&grp_start->async_tx.tx_list,
576 				 &old_chain_tail->chain_node);
577 
578 		if (!mv_can_chain(grp_start))
579 			goto submit_done;
580 
581 		dev_dbg(mv_chan->device->common.dev, "Append to last desc %x\n",
582 			old_chain_tail->async_tx.phys);
583 
584 		/* fix up the hardware chain */
585 		mv_desc_set_next_desc(old_chain_tail, grp_start->async_tx.phys);
586 
587 		/* if the channel is not busy */
588 		if (!mv_chan_is_busy(mv_chan)) {
589 			u32 current_desc = mv_chan_get_current_desc(mv_chan);
590 			/*
591 			 * and the curren desc is the end of the chain before
592 			 * the append, then we need to start the channel
593 			 */
594 			if (current_desc == old_chain_tail->async_tx.phys)
595 				new_hw_chain = 1;
596 		}
597 	}
598 
599 	if (new_hw_chain)
600 		mv_xor_start_new_chain(mv_chan, grp_start);
601 
602 submit_done:
603 	spin_unlock_bh(&mv_chan->lock);
604 
605 	return cookie;
606 }
607 
608 /* returns the number of allocated descriptors */
609 static int mv_xor_alloc_chan_resources(struct dma_chan *chan)
610 {
611 	char *hw_desc;
612 	int idx;
613 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
614 	struct mv_xor_desc_slot *slot = NULL;
615 	struct mv_xor_platform_data *plat_data =
616 		mv_chan->device->pdev->dev.platform_data;
617 	int num_descs_in_pool = plat_data->pool_size/MV_XOR_SLOT_SIZE;
618 
619 	/* Allocate descriptor slots */
620 	idx = mv_chan->slots_allocated;
621 	while (idx < num_descs_in_pool) {
622 		slot = kzalloc(sizeof(*slot), GFP_KERNEL);
623 		if (!slot) {
624 			printk(KERN_INFO "MV XOR Channel only initialized"
625 				" %d descriptor slots", idx);
626 			break;
627 		}
628 		hw_desc = (char *) mv_chan->device->dma_desc_pool_virt;
629 		slot->hw_desc = (void *) &hw_desc[idx * MV_XOR_SLOT_SIZE];
630 
631 		dma_async_tx_descriptor_init(&slot->async_tx, chan);
632 		slot->async_tx.tx_submit = mv_xor_tx_submit;
633 		INIT_LIST_HEAD(&slot->chain_node);
634 		INIT_LIST_HEAD(&slot->slot_node);
635 		INIT_LIST_HEAD(&slot->async_tx.tx_list);
636 		hw_desc = (char *) mv_chan->device->dma_desc_pool;
637 		slot->async_tx.phys =
638 			(dma_addr_t) &hw_desc[idx * MV_XOR_SLOT_SIZE];
639 		slot->idx = idx++;
640 
641 		spin_lock_bh(&mv_chan->lock);
642 		mv_chan->slots_allocated = idx;
643 		list_add_tail(&slot->slot_node, &mv_chan->all_slots);
644 		spin_unlock_bh(&mv_chan->lock);
645 	}
646 
647 	if (mv_chan->slots_allocated && !mv_chan->last_used)
648 		mv_chan->last_used = list_entry(mv_chan->all_slots.next,
649 					struct mv_xor_desc_slot,
650 					slot_node);
651 
652 	dev_dbg(mv_chan->device->common.dev,
653 		"allocated %d descriptor slots last_used: %p\n",
654 		mv_chan->slots_allocated, mv_chan->last_used);
655 
656 	return mv_chan->slots_allocated ? : -ENOMEM;
657 }
658 
659 static struct dma_async_tx_descriptor *
660 mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
661 		size_t len, unsigned long flags)
662 {
663 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
664 	struct mv_xor_desc_slot *sw_desc, *grp_start;
665 	int slot_cnt;
666 
667 	dev_dbg(mv_chan->device->common.dev,
668 		"%s dest: %x src %x len: %u flags: %ld\n",
669 		__func__, dest, src, len, flags);
670 	if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
671 		return NULL;
672 
673 	BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
674 
675 	spin_lock_bh(&mv_chan->lock);
676 	slot_cnt = mv_chan_memcpy_slot_count(len);
677 	sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
678 	if (sw_desc) {
679 		sw_desc->type = DMA_MEMCPY;
680 		sw_desc->async_tx.flags = flags;
681 		grp_start = sw_desc->group_head;
682 		mv_desc_init(grp_start, flags);
683 		mv_desc_set_byte_count(grp_start, len);
684 		mv_desc_set_dest_addr(sw_desc->group_head, dest);
685 		mv_desc_set_src_addr(grp_start, 0, src);
686 		sw_desc->unmap_src_cnt = 1;
687 		sw_desc->unmap_len = len;
688 	}
689 	spin_unlock_bh(&mv_chan->lock);
690 
691 	dev_dbg(mv_chan->device->common.dev,
692 		"%s sw_desc %p async_tx %p\n",
693 		__func__, sw_desc, sw_desc ? &sw_desc->async_tx : 0);
694 
695 	return sw_desc ? &sw_desc->async_tx : NULL;
696 }
697 
698 static struct dma_async_tx_descriptor *
699 mv_xor_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
700 		       size_t len, unsigned long flags)
701 {
702 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
703 	struct mv_xor_desc_slot *sw_desc, *grp_start;
704 	int slot_cnt;
705 
706 	dev_dbg(mv_chan->device->common.dev,
707 		"%s dest: %x len: %u flags: %ld\n",
708 		__func__, dest, len, flags);
709 	if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
710 		return NULL;
711 
712 	BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
713 
714 	spin_lock_bh(&mv_chan->lock);
715 	slot_cnt = mv_chan_memset_slot_count(len);
716 	sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
717 	if (sw_desc) {
718 		sw_desc->type = DMA_MEMSET;
719 		sw_desc->async_tx.flags = flags;
720 		grp_start = sw_desc->group_head;
721 		mv_desc_init(grp_start, flags);
722 		mv_desc_set_byte_count(grp_start, len);
723 		mv_desc_set_dest_addr(sw_desc->group_head, dest);
724 		mv_desc_set_block_fill_val(grp_start, value);
725 		sw_desc->unmap_src_cnt = 1;
726 		sw_desc->unmap_len = len;
727 	}
728 	spin_unlock_bh(&mv_chan->lock);
729 	dev_dbg(mv_chan->device->common.dev,
730 		"%s sw_desc %p async_tx %p \n",
731 		__func__, sw_desc, &sw_desc->async_tx);
732 	return sw_desc ? &sw_desc->async_tx : NULL;
733 }
734 
735 static struct dma_async_tx_descriptor *
736 mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
737 		    unsigned int src_cnt, size_t len, unsigned long flags)
738 {
739 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
740 	struct mv_xor_desc_slot *sw_desc, *grp_start;
741 	int slot_cnt;
742 
743 	if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
744 		return NULL;
745 
746 	BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
747 
748 	dev_dbg(mv_chan->device->common.dev,
749 		"%s src_cnt: %d len: dest %x %u flags: %ld\n",
750 		__func__, src_cnt, len, dest, flags);
751 
752 	spin_lock_bh(&mv_chan->lock);
753 	slot_cnt = mv_chan_xor_slot_count(len, src_cnt);
754 	sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
755 	if (sw_desc) {
756 		sw_desc->type = DMA_XOR;
757 		sw_desc->async_tx.flags = flags;
758 		grp_start = sw_desc->group_head;
759 		mv_desc_init(grp_start, flags);
760 		/* the byte count field is the same as in memcpy desc*/
761 		mv_desc_set_byte_count(grp_start, len);
762 		mv_desc_set_dest_addr(sw_desc->group_head, dest);
763 		sw_desc->unmap_src_cnt = src_cnt;
764 		sw_desc->unmap_len = len;
765 		while (src_cnt--)
766 			mv_desc_set_src_addr(grp_start, src_cnt, src[src_cnt]);
767 	}
768 	spin_unlock_bh(&mv_chan->lock);
769 	dev_dbg(mv_chan->device->common.dev,
770 		"%s sw_desc %p async_tx %p \n",
771 		__func__, sw_desc, &sw_desc->async_tx);
772 	return sw_desc ? &sw_desc->async_tx : NULL;
773 }
774 
775 static void mv_xor_free_chan_resources(struct dma_chan *chan)
776 {
777 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
778 	struct mv_xor_desc_slot *iter, *_iter;
779 	int in_use_descs = 0;
780 
781 	mv_xor_slot_cleanup(mv_chan);
782 
783 	spin_lock_bh(&mv_chan->lock);
784 	list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
785 					chain_node) {
786 		in_use_descs++;
787 		list_del(&iter->chain_node);
788 	}
789 	list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
790 				 completed_node) {
791 		in_use_descs++;
792 		list_del(&iter->completed_node);
793 	}
794 	list_for_each_entry_safe_reverse(
795 		iter, _iter, &mv_chan->all_slots, slot_node) {
796 		list_del(&iter->slot_node);
797 		kfree(iter);
798 		mv_chan->slots_allocated--;
799 	}
800 	mv_chan->last_used = NULL;
801 
802 	dev_dbg(mv_chan->device->common.dev, "%s slots_allocated %d\n",
803 		__func__, mv_chan->slots_allocated);
804 	spin_unlock_bh(&mv_chan->lock);
805 
806 	if (in_use_descs)
807 		dev_err(mv_chan->device->common.dev,
808 			"freeing %d in use descriptors!\n", in_use_descs);
809 }
810 
811 /**
812  * mv_xor_is_complete - poll the status of an XOR transaction
813  * @chan: XOR channel handle
814  * @cookie: XOR transaction identifier
815  */
816 static enum dma_status mv_xor_is_complete(struct dma_chan *chan,
817 					  dma_cookie_t cookie,
818 					  dma_cookie_t *done,
819 					  dma_cookie_t *used)
820 {
821 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
822 	dma_cookie_t last_used;
823 	dma_cookie_t last_complete;
824 	enum dma_status ret;
825 
826 	last_used = chan->cookie;
827 	last_complete = mv_chan->completed_cookie;
828 	mv_chan->is_complete_cookie = cookie;
829 	if (done)
830 		*done = last_complete;
831 	if (used)
832 		*used = last_used;
833 
834 	ret = dma_async_is_complete(cookie, last_complete, last_used);
835 	if (ret == DMA_SUCCESS) {
836 		mv_xor_clean_completed_slots(mv_chan);
837 		return ret;
838 	}
839 	mv_xor_slot_cleanup(mv_chan);
840 
841 	last_used = chan->cookie;
842 	last_complete = mv_chan->completed_cookie;
843 
844 	if (done)
845 		*done = last_complete;
846 	if (used)
847 		*used = last_used;
848 
849 	return dma_async_is_complete(cookie, last_complete, last_used);
850 }
851 
852 static void mv_dump_xor_regs(struct mv_xor_chan *chan)
853 {
854 	u32 val;
855 
856 	val = __raw_readl(XOR_CONFIG(chan));
857 	dev_printk(KERN_ERR, chan->device->common.dev,
858 		   "config       0x%08x.\n", val);
859 
860 	val = __raw_readl(XOR_ACTIVATION(chan));
861 	dev_printk(KERN_ERR, chan->device->common.dev,
862 		   "activation   0x%08x.\n", val);
863 
864 	val = __raw_readl(XOR_INTR_CAUSE(chan));
865 	dev_printk(KERN_ERR, chan->device->common.dev,
866 		   "intr cause   0x%08x.\n", val);
867 
868 	val = __raw_readl(XOR_INTR_MASK(chan));
869 	dev_printk(KERN_ERR, chan->device->common.dev,
870 		   "intr mask    0x%08x.\n", val);
871 
872 	val = __raw_readl(XOR_ERROR_CAUSE(chan));
873 	dev_printk(KERN_ERR, chan->device->common.dev,
874 		   "error cause  0x%08x.\n", val);
875 
876 	val = __raw_readl(XOR_ERROR_ADDR(chan));
877 	dev_printk(KERN_ERR, chan->device->common.dev,
878 		   "error addr   0x%08x.\n", val);
879 }
880 
881 static void mv_xor_err_interrupt_handler(struct mv_xor_chan *chan,
882 					 u32 intr_cause)
883 {
884 	if (intr_cause & (1 << 4)) {
885 	     dev_dbg(chan->device->common.dev,
886 		     "ignore this error\n");
887 	     return;
888 	}
889 
890 	dev_printk(KERN_ERR, chan->device->common.dev,
891 		   "error on chan %d. intr cause 0x%08x.\n",
892 		   chan->idx, intr_cause);
893 
894 	mv_dump_xor_regs(chan);
895 	BUG();
896 }
897 
898 static irqreturn_t mv_xor_interrupt_handler(int irq, void *data)
899 {
900 	struct mv_xor_chan *chan = data;
901 	u32 intr_cause = mv_chan_get_intr_cause(chan);
902 
903 	dev_dbg(chan->device->common.dev, "intr cause %x\n", intr_cause);
904 
905 	if (mv_is_err_intr(intr_cause))
906 		mv_xor_err_interrupt_handler(chan, intr_cause);
907 
908 	tasklet_schedule(&chan->irq_tasklet);
909 
910 	mv_xor_device_clear_eoc_cause(chan);
911 
912 	return IRQ_HANDLED;
913 }
914 
915 static void mv_xor_issue_pending(struct dma_chan *chan)
916 {
917 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
918 
919 	if (mv_chan->pending >= MV_XOR_THRESHOLD) {
920 		mv_chan->pending = 0;
921 		mv_chan_activate(mv_chan);
922 	}
923 }
924 
925 /*
926  * Perform a transaction to verify the HW works.
927  */
928 #define MV_XOR_TEST_SIZE 2000
929 
930 static int __devinit mv_xor_memcpy_self_test(struct mv_xor_device *device)
931 {
932 	int i;
933 	void *src, *dest;
934 	dma_addr_t src_dma, dest_dma;
935 	struct dma_chan *dma_chan;
936 	dma_cookie_t cookie;
937 	struct dma_async_tx_descriptor *tx;
938 	int err = 0;
939 	struct mv_xor_chan *mv_chan;
940 
941 	src = kmalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
942 	if (!src)
943 		return -ENOMEM;
944 
945 	dest = kzalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
946 	if (!dest) {
947 		kfree(src);
948 		return -ENOMEM;
949 	}
950 
951 	/* Fill in src buffer */
952 	for (i = 0; i < MV_XOR_TEST_SIZE; i++)
953 		((u8 *) src)[i] = (u8)i;
954 
955 	/* Start copy, using first DMA channel */
956 	dma_chan = container_of(device->common.channels.next,
957 				struct dma_chan,
958 				device_node);
959 	if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
960 		err = -ENODEV;
961 		goto out;
962 	}
963 
964 	dest_dma = dma_map_single(dma_chan->device->dev, dest,
965 				  MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
966 
967 	src_dma = dma_map_single(dma_chan->device->dev, src,
968 				 MV_XOR_TEST_SIZE, DMA_TO_DEVICE);
969 
970 	tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
971 				    MV_XOR_TEST_SIZE, 0);
972 	cookie = mv_xor_tx_submit(tx);
973 	mv_xor_issue_pending(dma_chan);
974 	async_tx_ack(tx);
975 	msleep(1);
976 
977 	if (mv_xor_is_complete(dma_chan, cookie, NULL, NULL) !=
978 	    DMA_SUCCESS) {
979 		dev_printk(KERN_ERR, dma_chan->device->dev,
980 			   "Self-test copy timed out, disabling\n");
981 		err = -ENODEV;
982 		goto free_resources;
983 	}
984 
985 	mv_chan = to_mv_xor_chan(dma_chan);
986 	dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
987 				MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
988 	if (memcmp(src, dest, MV_XOR_TEST_SIZE)) {
989 		dev_printk(KERN_ERR, dma_chan->device->dev,
990 			   "Self-test copy failed compare, disabling\n");
991 		err = -ENODEV;
992 		goto free_resources;
993 	}
994 
995 free_resources:
996 	mv_xor_free_chan_resources(dma_chan);
997 out:
998 	kfree(src);
999 	kfree(dest);
1000 	return err;
1001 }
1002 
1003 #define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */
1004 static int __devinit
1005 mv_xor_xor_self_test(struct mv_xor_device *device)
1006 {
1007 	int i, src_idx;
1008 	struct page *dest;
1009 	struct page *xor_srcs[MV_XOR_NUM_SRC_TEST];
1010 	dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST];
1011 	dma_addr_t dest_dma;
1012 	struct dma_async_tx_descriptor *tx;
1013 	struct dma_chan *dma_chan;
1014 	dma_cookie_t cookie;
1015 	u8 cmp_byte = 0;
1016 	u32 cmp_word;
1017 	int err = 0;
1018 	struct mv_xor_chan *mv_chan;
1019 
1020 	for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
1021 		xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
1022 		if (!xor_srcs[src_idx]) {
1023 			while (src_idx--)
1024 				__free_page(xor_srcs[src_idx]);
1025 			return -ENOMEM;
1026 		}
1027 	}
1028 
1029 	dest = alloc_page(GFP_KERNEL);
1030 	if (!dest) {
1031 		while (src_idx--)
1032 			__free_page(xor_srcs[src_idx]);
1033 		return -ENOMEM;
1034 	}
1035 
1036 	/* Fill in src buffers */
1037 	for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
1038 		u8 *ptr = page_address(xor_srcs[src_idx]);
1039 		for (i = 0; i < PAGE_SIZE; i++)
1040 			ptr[i] = (1 << src_idx);
1041 	}
1042 
1043 	for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++)
1044 		cmp_byte ^= (u8) (1 << src_idx);
1045 
1046 	cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
1047 		(cmp_byte << 8) | cmp_byte;
1048 
1049 	memset(page_address(dest), 0, PAGE_SIZE);
1050 
1051 	dma_chan = container_of(device->common.channels.next,
1052 				struct dma_chan,
1053 				device_node);
1054 	if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
1055 		err = -ENODEV;
1056 		goto out;
1057 	}
1058 
1059 	/* test xor */
1060 	dest_dma = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE,
1061 				DMA_FROM_DEVICE);
1062 
1063 	for (i = 0; i < MV_XOR_NUM_SRC_TEST; i++)
1064 		dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
1065 					   0, PAGE_SIZE, DMA_TO_DEVICE);
1066 
1067 	tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
1068 				 MV_XOR_NUM_SRC_TEST, PAGE_SIZE, 0);
1069 
1070 	cookie = mv_xor_tx_submit(tx);
1071 	mv_xor_issue_pending(dma_chan);
1072 	async_tx_ack(tx);
1073 	msleep(8);
1074 
1075 	if (mv_xor_is_complete(dma_chan, cookie, NULL, NULL) !=
1076 	    DMA_SUCCESS) {
1077 		dev_printk(KERN_ERR, dma_chan->device->dev,
1078 			   "Self-test xor timed out, disabling\n");
1079 		err = -ENODEV;
1080 		goto free_resources;
1081 	}
1082 
1083 	mv_chan = to_mv_xor_chan(dma_chan);
1084 	dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
1085 				PAGE_SIZE, DMA_FROM_DEVICE);
1086 	for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
1087 		u32 *ptr = page_address(dest);
1088 		if (ptr[i] != cmp_word) {
1089 			dev_printk(KERN_ERR, dma_chan->device->dev,
1090 				   "Self-test xor failed compare, disabling."
1091 				   " index %d, data %x, expected %x\n", i,
1092 				   ptr[i], cmp_word);
1093 			err = -ENODEV;
1094 			goto free_resources;
1095 		}
1096 	}
1097 
1098 free_resources:
1099 	mv_xor_free_chan_resources(dma_chan);
1100 out:
1101 	src_idx = MV_XOR_NUM_SRC_TEST;
1102 	while (src_idx--)
1103 		__free_page(xor_srcs[src_idx]);
1104 	__free_page(dest);
1105 	return err;
1106 }
1107 
1108 static int __devexit mv_xor_remove(struct platform_device *dev)
1109 {
1110 	struct mv_xor_device *device = platform_get_drvdata(dev);
1111 	struct dma_chan *chan, *_chan;
1112 	struct mv_xor_chan *mv_chan;
1113 	struct mv_xor_platform_data *plat_data = dev->dev.platform_data;
1114 
1115 	dma_async_device_unregister(&device->common);
1116 
1117 	dma_free_coherent(&dev->dev, plat_data->pool_size,
1118 			device->dma_desc_pool_virt, device->dma_desc_pool);
1119 
1120 	list_for_each_entry_safe(chan, _chan, &device->common.channels,
1121 				device_node) {
1122 		mv_chan = to_mv_xor_chan(chan);
1123 		list_del(&chan->device_node);
1124 	}
1125 
1126 	return 0;
1127 }
1128 
1129 static int __devinit mv_xor_probe(struct platform_device *pdev)
1130 {
1131 	int ret = 0;
1132 	int irq;
1133 	struct mv_xor_device *adev;
1134 	struct mv_xor_chan *mv_chan;
1135 	struct dma_device *dma_dev;
1136 	struct mv_xor_platform_data *plat_data = pdev->dev.platform_data;
1137 
1138 
1139 	adev = devm_kzalloc(&pdev->dev, sizeof(*adev), GFP_KERNEL);
1140 	if (!adev)
1141 		return -ENOMEM;
1142 
1143 	dma_dev = &adev->common;
1144 
1145 	/* allocate coherent memory for hardware descriptors
1146 	 * note: writecombine gives slightly better performance, but
1147 	 * requires that we explicitly flush the writes
1148 	 */
1149 	adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev,
1150 							  plat_data->pool_size,
1151 							  &adev->dma_desc_pool,
1152 							  GFP_KERNEL);
1153 	if (!adev->dma_desc_pool_virt)
1154 		return -ENOMEM;
1155 
1156 	adev->id = plat_data->hw_id;
1157 
1158 	/* discover transaction capabilites from the platform data */
1159 	dma_dev->cap_mask = plat_data->cap_mask;
1160 	adev->pdev = pdev;
1161 	platform_set_drvdata(pdev, adev);
1162 
1163 	adev->shared = platform_get_drvdata(plat_data->shared);
1164 
1165 	INIT_LIST_HEAD(&dma_dev->channels);
1166 
1167 	/* set base routines */
1168 	dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources;
1169 	dma_dev->device_free_chan_resources = mv_xor_free_chan_resources;
1170 	dma_dev->device_is_tx_complete = mv_xor_is_complete;
1171 	dma_dev->device_issue_pending = mv_xor_issue_pending;
1172 	dma_dev->dev = &pdev->dev;
1173 
1174 	/* set prep routines based on capability */
1175 	if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
1176 		dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy;
1177 	if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask))
1178 		dma_dev->device_prep_dma_memset = mv_xor_prep_dma_memset;
1179 	if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1180 		dma_dev->max_xor = 8;                  ;
1181 		dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor;
1182 	}
1183 
1184 	mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL);
1185 	if (!mv_chan) {
1186 		ret = -ENOMEM;
1187 		goto err_free_dma;
1188 	}
1189 	mv_chan->device = adev;
1190 	mv_chan->idx = plat_data->hw_id;
1191 	mv_chan->mmr_base = adev->shared->xor_base;
1192 
1193 	if (!mv_chan->mmr_base) {
1194 		ret = -ENOMEM;
1195 		goto err_free_dma;
1196 	}
1197 	tasklet_init(&mv_chan->irq_tasklet, mv_xor_tasklet, (unsigned long)
1198 		     mv_chan);
1199 
1200 	/* clear errors before enabling interrupts */
1201 	mv_xor_device_clear_err_status(mv_chan);
1202 
1203 	irq = platform_get_irq(pdev, 0);
1204 	if (irq < 0) {
1205 		ret = irq;
1206 		goto err_free_dma;
1207 	}
1208 	ret = devm_request_irq(&pdev->dev, irq,
1209 			       mv_xor_interrupt_handler,
1210 			       0, dev_name(&pdev->dev), mv_chan);
1211 	if (ret)
1212 		goto err_free_dma;
1213 
1214 	mv_chan_unmask_interrupts(mv_chan);
1215 
1216 	mv_set_mode(mv_chan, DMA_MEMCPY);
1217 
1218 	spin_lock_init(&mv_chan->lock);
1219 	INIT_LIST_HEAD(&mv_chan->chain);
1220 	INIT_LIST_HEAD(&mv_chan->completed_slots);
1221 	INIT_LIST_HEAD(&mv_chan->all_slots);
1222 	mv_chan->common.device = dma_dev;
1223 
1224 	list_add_tail(&mv_chan->common.device_node, &dma_dev->channels);
1225 
1226 	if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
1227 		ret = mv_xor_memcpy_self_test(adev);
1228 		dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
1229 		if (ret)
1230 			goto err_free_dma;
1231 	}
1232 
1233 	if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1234 		ret = mv_xor_xor_self_test(adev);
1235 		dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
1236 		if (ret)
1237 			goto err_free_dma;
1238 	}
1239 
1240 	dev_printk(KERN_INFO, &pdev->dev, "Marvell XOR: "
1241 	  "( %s%s%s%s)\n",
1242 	  dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
1243 	  dma_has_cap(DMA_MEMSET, dma_dev->cap_mask)  ? "fill " : "",
1244 	  dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
1245 	  dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
1246 
1247 	dma_async_device_register(dma_dev);
1248 	goto out;
1249 
1250  err_free_dma:
1251 	dma_free_coherent(&adev->pdev->dev, plat_data->pool_size,
1252 			adev->dma_desc_pool_virt, adev->dma_desc_pool);
1253  out:
1254 	return ret;
1255 }
1256 
1257 static void
1258 mv_xor_conf_mbus_windows(struct mv_xor_shared_private *msp,
1259 			 struct mbus_dram_target_info *dram)
1260 {
1261 	void __iomem *base = msp->xor_base;
1262 	u32 win_enable = 0;
1263 	int i;
1264 
1265 	for (i = 0; i < 8; i++) {
1266 		writel(0, base + WINDOW_BASE(i));
1267 		writel(0, base + WINDOW_SIZE(i));
1268 		if (i < 4)
1269 			writel(0, base + WINDOW_REMAP_HIGH(i));
1270 	}
1271 
1272 	for (i = 0; i < dram->num_cs; i++) {
1273 		struct mbus_dram_window *cs = dram->cs + i;
1274 
1275 		writel((cs->base & 0xffff0000) |
1276 		       (cs->mbus_attr << 8) |
1277 		       dram->mbus_dram_target_id, base + WINDOW_BASE(i));
1278 		writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));
1279 
1280 		win_enable |= (1 << i);
1281 		win_enable |= 3 << (16 + (2 * i));
1282 	}
1283 
1284 	writel(win_enable, base + WINDOW_BAR_ENABLE(0));
1285 	writel(win_enable, base + WINDOW_BAR_ENABLE(1));
1286 }
1287 
1288 static struct platform_driver mv_xor_driver = {
1289 	.probe		= mv_xor_probe,
1290 	.remove		= __devexit_p(mv_xor_remove),
1291 	.driver		= {
1292 		.owner	= THIS_MODULE,
1293 		.name	= MV_XOR_NAME,
1294 	},
1295 };
1296 
1297 static int mv_xor_shared_probe(struct platform_device *pdev)
1298 {
1299 	struct mv_xor_platform_shared_data *msd = pdev->dev.platform_data;
1300 	struct mv_xor_shared_private *msp;
1301 	struct resource *res;
1302 
1303 	dev_printk(KERN_NOTICE, &pdev->dev, "Marvell shared XOR driver\n");
1304 
1305 	msp = devm_kzalloc(&pdev->dev, sizeof(*msp), GFP_KERNEL);
1306 	if (!msp)
1307 		return -ENOMEM;
1308 
1309 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1310 	if (!res)
1311 		return -ENODEV;
1312 
1313 	msp->xor_base = devm_ioremap(&pdev->dev, res->start,
1314 				     res->end - res->start + 1);
1315 	if (!msp->xor_base)
1316 		return -EBUSY;
1317 
1318 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1319 	if (!res)
1320 		return -ENODEV;
1321 
1322 	msp->xor_high_base = devm_ioremap(&pdev->dev, res->start,
1323 					  res->end - res->start + 1);
1324 	if (!msp->xor_high_base)
1325 		return -EBUSY;
1326 
1327 	platform_set_drvdata(pdev, msp);
1328 
1329 	/*
1330 	 * (Re-)program MBUS remapping windows if we are asked to.
1331 	 */
1332 	if (msd != NULL && msd->dram != NULL)
1333 		mv_xor_conf_mbus_windows(msp, msd->dram);
1334 
1335 	return 0;
1336 }
1337 
1338 static int mv_xor_shared_remove(struct platform_device *pdev)
1339 {
1340 	return 0;
1341 }
1342 
1343 static struct platform_driver mv_xor_shared_driver = {
1344 	.probe		= mv_xor_shared_probe,
1345 	.remove		= mv_xor_shared_remove,
1346 	.driver		= {
1347 		.owner	= THIS_MODULE,
1348 		.name	= MV_XOR_SHARED_NAME,
1349 	},
1350 };
1351 
1352 
1353 static int __init mv_xor_init(void)
1354 {
1355 	int rc;
1356 
1357 	rc = platform_driver_register(&mv_xor_shared_driver);
1358 	if (!rc) {
1359 		rc = platform_driver_register(&mv_xor_driver);
1360 		if (rc)
1361 			platform_driver_unregister(&mv_xor_shared_driver);
1362 	}
1363 	return rc;
1364 }
1365 module_init(mv_xor_init);
1366 
1367 /* it's currently unsafe to unload this module */
1368 #if 0
1369 static void __exit mv_xor_exit(void)
1370 {
1371 	platform_driver_unregister(&mv_xor_driver);
1372 	platform_driver_unregister(&mv_xor_shared_driver);
1373 	return;
1374 }
1375 
1376 module_exit(mv_xor_exit);
1377 #endif
1378 
1379 MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
1380 MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine");
1381 MODULE_LICENSE("GPL");
1382