1 /* 2 * offload engine driver for the Marvell XOR engine 3 * Copyright (C) 2007, 2008, Marvell International Ltd. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 17 */ 18 19 #include <linux/init.h> 20 #include <linux/module.h> 21 #include <linux/delay.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/spinlock.h> 24 #include <linux/interrupt.h> 25 #include <linux/platform_device.h> 26 #include <linux/memory.h> 27 #include <plat/mv_xor.h> 28 #include "mv_xor.h" 29 30 static void mv_xor_issue_pending(struct dma_chan *chan); 31 32 #define to_mv_xor_chan(chan) \ 33 container_of(chan, struct mv_xor_chan, common) 34 35 #define to_mv_xor_device(dev) \ 36 container_of(dev, struct mv_xor_device, common) 37 38 #define to_mv_xor_slot(tx) \ 39 container_of(tx, struct mv_xor_desc_slot, async_tx) 40 41 static void mv_desc_init(struct mv_xor_desc_slot *desc, unsigned long flags) 42 { 43 struct mv_xor_desc *hw_desc = desc->hw_desc; 44 45 hw_desc->status = (1 << 31); 46 hw_desc->phy_next_desc = 0; 47 hw_desc->desc_command = (1 << 31); 48 } 49 50 static u32 mv_desc_get_dest_addr(struct mv_xor_desc_slot *desc) 51 { 52 struct mv_xor_desc *hw_desc = desc->hw_desc; 53 return hw_desc->phy_dest_addr; 54 } 55 56 static u32 mv_desc_get_src_addr(struct mv_xor_desc_slot *desc, 57 int src_idx) 58 { 59 struct mv_xor_desc *hw_desc = desc->hw_desc; 60 return hw_desc->phy_src_addr[src_idx]; 61 } 62 63 64 static void mv_desc_set_byte_count(struct mv_xor_desc_slot *desc, 65 u32 byte_count) 66 { 67 struct mv_xor_desc *hw_desc = desc->hw_desc; 68 hw_desc->byte_count = byte_count; 69 } 70 71 static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc, 72 u32 next_desc_addr) 73 { 74 struct mv_xor_desc *hw_desc = desc->hw_desc; 75 BUG_ON(hw_desc->phy_next_desc); 76 hw_desc->phy_next_desc = next_desc_addr; 77 } 78 79 static void mv_desc_clear_next_desc(struct mv_xor_desc_slot *desc) 80 { 81 struct mv_xor_desc *hw_desc = desc->hw_desc; 82 hw_desc->phy_next_desc = 0; 83 } 84 85 static void mv_desc_set_block_fill_val(struct mv_xor_desc_slot *desc, u32 val) 86 { 87 desc->value = val; 88 } 89 90 static void mv_desc_set_dest_addr(struct mv_xor_desc_slot *desc, 91 dma_addr_t addr) 92 { 93 struct mv_xor_desc *hw_desc = desc->hw_desc; 94 hw_desc->phy_dest_addr = addr; 95 } 96 97 static int mv_chan_memset_slot_count(size_t len) 98 { 99 return 1; 100 } 101 102 #define mv_chan_memcpy_slot_count(c) mv_chan_memset_slot_count(c) 103 104 static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc, 105 int index, dma_addr_t addr) 106 { 107 struct mv_xor_desc *hw_desc = desc->hw_desc; 108 hw_desc->phy_src_addr[index] = addr; 109 if (desc->type == DMA_XOR) 110 hw_desc->desc_command |= (1 << index); 111 } 112 113 static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan) 114 { 115 return __raw_readl(XOR_CURR_DESC(chan)); 116 } 117 118 static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan, 119 u32 next_desc_addr) 120 { 121 __raw_writel(next_desc_addr, XOR_NEXT_DESC(chan)); 122 } 123 124 static void mv_chan_set_dest_pointer(struct mv_xor_chan *chan, u32 desc_addr) 125 { 126 __raw_writel(desc_addr, XOR_DEST_POINTER(chan)); 127 } 128 129 static void mv_chan_set_block_size(struct mv_xor_chan *chan, u32 block_size) 130 { 131 __raw_writel(block_size, XOR_BLOCK_SIZE(chan)); 132 } 133 134 static void mv_chan_set_value(struct mv_xor_chan *chan, u32 value) 135 { 136 __raw_writel(value, XOR_INIT_VALUE_LOW(chan)); 137 __raw_writel(value, XOR_INIT_VALUE_HIGH(chan)); 138 } 139 140 static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan) 141 { 142 u32 val = __raw_readl(XOR_INTR_MASK(chan)); 143 val |= XOR_INTR_MASK_VALUE << (chan->idx * 16); 144 __raw_writel(val, XOR_INTR_MASK(chan)); 145 } 146 147 static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan) 148 { 149 u32 intr_cause = __raw_readl(XOR_INTR_CAUSE(chan)); 150 intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF; 151 return intr_cause; 152 } 153 154 static int mv_is_err_intr(u32 intr_cause) 155 { 156 if (intr_cause & ((1<<4)|(1<<5)|(1<<6)|(1<<7)|(1<<8)|(1<<9))) 157 return 1; 158 159 return 0; 160 } 161 162 static void mv_xor_device_clear_eoc_cause(struct mv_xor_chan *chan) 163 { 164 u32 val = (1 << (1 + (chan->idx * 16))); 165 dev_dbg(chan->device->common.dev, "%s, val 0x%08x\n", __func__, val); 166 __raw_writel(val, XOR_INTR_CAUSE(chan)); 167 } 168 169 static void mv_xor_device_clear_err_status(struct mv_xor_chan *chan) 170 { 171 u32 val = 0xFFFF0000 >> (chan->idx * 16); 172 __raw_writel(val, XOR_INTR_CAUSE(chan)); 173 } 174 175 static int mv_can_chain(struct mv_xor_desc_slot *desc) 176 { 177 struct mv_xor_desc_slot *chain_old_tail = list_entry( 178 desc->chain_node.prev, struct mv_xor_desc_slot, chain_node); 179 180 if (chain_old_tail->type != desc->type) 181 return 0; 182 if (desc->type == DMA_MEMSET) 183 return 0; 184 185 return 1; 186 } 187 188 static void mv_set_mode(struct mv_xor_chan *chan, 189 enum dma_transaction_type type) 190 { 191 u32 op_mode; 192 u32 config = __raw_readl(XOR_CONFIG(chan)); 193 194 switch (type) { 195 case DMA_XOR: 196 op_mode = XOR_OPERATION_MODE_XOR; 197 break; 198 case DMA_MEMCPY: 199 op_mode = XOR_OPERATION_MODE_MEMCPY; 200 break; 201 case DMA_MEMSET: 202 op_mode = XOR_OPERATION_MODE_MEMSET; 203 break; 204 default: 205 dev_printk(KERN_ERR, chan->device->common.dev, 206 "error: unsupported operation %d.\n", 207 type); 208 BUG(); 209 return; 210 } 211 212 config &= ~0x7; 213 config |= op_mode; 214 __raw_writel(config, XOR_CONFIG(chan)); 215 chan->current_type = type; 216 } 217 218 static void mv_chan_activate(struct mv_xor_chan *chan) 219 { 220 u32 activation; 221 222 dev_dbg(chan->device->common.dev, " activate chan.\n"); 223 activation = __raw_readl(XOR_ACTIVATION(chan)); 224 activation |= 0x1; 225 __raw_writel(activation, XOR_ACTIVATION(chan)); 226 } 227 228 static char mv_chan_is_busy(struct mv_xor_chan *chan) 229 { 230 u32 state = __raw_readl(XOR_ACTIVATION(chan)); 231 232 state = (state >> 4) & 0x3; 233 234 return (state == 1) ? 1 : 0; 235 } 236 237 static int mv_chan_xor_slot_count(size_t len, int src_cnt) 238 { 239 return 1; 240 } 241 242 /** 243 * mv_xor_free_slots - flags descriptor slots for reuse 244 * @slot: Slot to free 245 * Caller must hold &mv_chan->lock while calling this function 246 */ 247 static void mv_xor_free_slots(struct mv_xor_chan *mv_chan, 248 struct mv_xor_desc_slot *slot) 249 { 250 dev_dbg(mv_chan->device->common.dev, "%s %d slot %p\n", 251 __func__, __LINE__, slot); 252 253 slot->slots_per_op = 0; 254 255 } 256 257 /* 258 * mv_xor_start_new_chain - program the engine to operate on new chain headed by 259 * sw_desc 260 * Caller must hold &mv_chan->lock while calling this function 261 */ 262 static void mv_xor_start_new_chain(struct mv_xor_chan *mv_chan, 263 struct mv_xor_desc_slot *sw_desc) 264 { 265 dev_dbg(mv_chan->device->common.dev, "%s %d: sw_desc %p\n", 266 __func__, __LINE__, sw_desc); 267 if (sw_desc->type != mv_chan->current_type) 268 mv_set_mode(mv_chan, sw_desc->type); 269 270 if (sw_desc->type == DMA_MEMSET) { 271 /* for memset requests we need to program the engine, no 272 * descriptors used. 273 */ 274 struct mv_xor_desc *hw_desc = sw_desc->hw_desc; 275 mv_chan_set_dest_pointer(mv_chan, hw_desc->phy_dest_addr); 276 mv_chan_set_block_size(mv_chan, sw_desc->unmap_len); 277 mv_chan_set_value(mv_chan, sw_desc->value); 278 } else { 279 /* set the hardware chain */ 280 mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys); 281 } 282 mv_chan->pending += sw_desc->slot_cnt; 283 mv_xor_issue_pending(&mv_chan->common); 284 } 285 286 static dma_cookie_t 287 mv_xor_run_tx_complete_actions(struct mv_xor_desc_slot *desc, 288 struct mv_xor_chan *mv_chan, dma_cookie_t cookie) 289 { 290 BUG_ON(desc->async_tx.cookie < 0); 291 292 if (desc->async_tx.cookie > 0) { 293 cookie = desc->async_tx.cookie; 294 295 /* call the callback (must not sleep or submit new 296 * operations to this channel) 297 */ 298 if (desc->async_tx.callback) 299 desc->async_tx.callback( 300 desc->async_tx.callback_param); 301 302 /* unmap dma addresses 303 * (unmap_single vs unmap_page?) 304 */ 305 if (desc->group_head && desc->unmap_len) { 306 struct mv_xor_desc_slot *unmap = desc->group_head; 307 struct device *dev = 308 &mv_chan->device->pdev->dev; 309 u32 len = unmap->unmap_len; 310 enum dma_ctrl_flags flags = desc->async_tx.flags; 311 u32 src_cnt; 312 dma_addr_t addr; 313 dma_addr_t dest; 314 315 src_cnt = unmap->unmap_src_cnt; 316 dest = mv_desc_get_dest_addr(unmap); 317 if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) { 318 enum dma_data_direction dir; 319 320 if (src_cnt > 1) /* is xor ? */ 321 dir = DMA_BIDIRECTIONAL; 322 else 323 dir = DMA_FROM_DEVICE; 324 dma_unmap_page(dev, dest, len, dir); 325 } 326 327 if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) { 328 while (src_cnt--) { 329 addr = mv_desc_get_src_addr(unmap, 330 src_cnt); 331 if (addr == dest) 332 continue; 333 dma_unmap_page(dev, addr, len, 334 DMA_TO_DEVICE); 335 } 336 } 337 desc->group_head = NULL; 338 } 339 } 340 341 /* run dependent operations */ 342 dma_run_dependencies(&desc->async_tx); 343 344 return cookie; 345 } 346 347 static int 348 mv_xor_clean_completed_slots(struct mv_xor_chan *mv_chan) 349 { 350 struct mv_xor_desc_slot *iter, *_iter; 351 352 dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__); 353 list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots, 354 completed_node) { 355 356 if (async_tx_test_ack(&iter->async_tx)) { 357 list_del(&iter->completed_node); 358 mv_xor_free_slots(mv_chan, iter); 359 } 360 } 361 return 0; 362 } 363 364 static int 365 mv_xor_clean_slot(struct mv_xor_desc_slot *desc, 366 struct mv_xor_chan *mv_chan) 367 { 368 dev_dbg(mv_chan->device->common.dev, "%s %d: desc %p flags %d\n", 369 __func__, __LINE__, desc, desc->async_tx.flags); 370 list_del(&desc->chain_node); 371 /* the client is allowed to attach dependent operations 372 * until 'ack' is set 373 */ 374 if (!async_tx_test_ack(&desc->async_tx)) { 375 /* move this slot to the completed_slots */ 376 list_add_tail(&desc->completed_node, &mv_chan->completed_slots); 377 return 0; 378 } 379 380 mv_xor_free_slots(mv_chan, desc); 381 return 0; 382 } 383 384 static void __mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan) 385 { 386 struct mv_xor_desc_slot *iter, *_iter; 387 dma_cookie_t cookie = 0; 388 int busy = mv_chan_is_busy(mv_chan); 389 u32 current_desc = mv_chan_get_current_desc(mv_chan); 390 int seen_current = 0; 391 392 dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__); 393 dev_dbg(mv_chan->device->common.dev, "current_desc %x\n", current_desc); 394 mv_xor_clean_completed_slots(mv_chan); 395 396 /* free completed slots from the chain starting with 397 * the oldest descriptor 398 */ 399 400 list_for_each_entry_safe(iter, _iter, &mv_chan->chain, 401 chain_node) { 402 prefetch(_iter); 403 prefetch(&_iter->async_tx); 404 405 /* do not advance past the current descriptor loaded into the 406 * hardware channel, subsequent descriptors are either in 407 * process or have not been submitted 408 */ 409 if (seen_current) 410 break; 411 412 /* stop the search if we reach the current descriptor and the 413 * channel is busy 414 */ 415 if (iter->async_tx.phys == current_desc) { 416 seen_current = 1; 417 if (busy) 418 break; 419 } 420 421 cookie = mv_xor_run_tx_complete_actions(iter, mv_chan, cookie); 422 423 if (mv_xor_clean_slot(iter, mv_chan)) 424 break; 425 } 426 427 if ((busy == 0) && !list_empty(&mv_chan->chain)) { 428 struct mv_xor_desc_slot *chain_head; 429 chain_head = list_entry(mv_chan->chain.next, 430 struct mv_xor_desc_slot, 431 chain_node); 432 433 mv_xor_start_new_chain(mv_chan, chain_head); 434 } 435 436 if (cookie > 0) 437 mv_chan->completed_cookie = cookie; 438 } 439 440 static void 441 mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan) 442 { 443 spin_lock_bh(&mv_chan->lock); 444 __mv_xor_slot_cleanup(mv_chan); 445 spin_unlock_bh(&mv_chan->lock); 446 } 447 448 static void mv_xor_tasklet(unsigned long data) 449 { 450 struct mv_xor_chan *chan = (struct mv_xor_chan *) data; 451 __mv_xor_slot_cleanup(chan); 452 } 453 454 static struct mv_xor_desc_slot * 455 mv_xor_alloc_slots(struct mv_xor_chan *mv_chan, int num_slots, 456 int slots_per_op) 457 { 458 struct mv_xor_desc_slot *iter, *_iter, *alloc_start = NULL; 459 LIST_HEAD(chain); 460 int slots_found, retry = 0; 461 462 /* start search from the last allocated descrtiptor 463 * if a contiguous allocation can not be found start searching 464 * from the beginning of the list 465 */ 466 retry: 467 slots_found = 0; 468 if (retry == 0) 469 iter = mv_chan->last_used; 470 else 471 iter = list_entry(&mv_chan->all_slots, 472 struct mv_xor_desc_slot, 473 slot_node); 474 475 list_for_each_entry_safe_continue( 476 iter, _iter, &mv_chan->all_slots, slot_node) { 477 prefetch(_iter); 478 prefetch(&_iter->async_tx); 479 if (iter->slots_per_op) { 480 /* give up after finding the first busy slot 481 * on the second pass through the list 482 */ 483 if (retry) 484 break; 485 486 slots_found = 0; 487 continue; 488 } 489 490 /* start the allocation if the slot is correctly aligned */ 491 if (!slots_found++) 492 alloc_start = iter; 493 494 if (slots_found == num_slots) { 495 struct mv_xor_desc_slot *alloc_tail = NULL; 496 struct mv_xor_desc_slot *last_used = NULL; 497 iter = alloc_start; 498 while (num_slots) { 499 int i; 500 501 /* pre-ack all but the last descriptor */ 502 async_tx_ack(&iter->async_tx); 503 504 list_add_tail(&iter->chain_node, &chain); 505 alloc_tail = iter; 506 iter->async_tx.cookie = 0; 507 iter->slot_cnt = num_slots; 508 iter->xor_check_result = NULL; 509 for (i = 0; i < slots_per_op; i++) { 510 iter->slots_per_op = slots_per_op - i; 511 last_used = iter; 512 iter = list_entry(iter->slot_node.next, 513 struct mv_xor_desc_slot, 514 slot_node); 515 } 516 num_slots -= slots_per_op; 517 } 518 alloc_tail->group_head = alloc_start; 519 alloc_tail->async_tx.cookie = -EBUSY; 520 list_splice(&chain, &alloc_tail->async_tx.tx_list); 521 mv_chan->last_used = last_used; 522 mv_desc_clear_next_desc(alloc_start); 523 mv_desc_clear_next_desc(alloc_tail); 524 return alloc_tail; 525 } 526 } 527 if (!retry++) 528 goto retry; 529 530 /* try to free some slots if the allocation fails */ 531 tasklet_schedule(&mv_chan->irq_tasklet); 532 533 return NULL; 534 } 535 536 static dma_cookie_t 537 mv_desc_assign_cookie(struct mv_xor_chan *mv_chan, 538 struct mv_xor_desc_slot *desc) 539 { 540 dma_cookie_t cookie = mv_chan->common.cookie; 541 542 if (++cookie < 0) 543 cookie = 1; 544 mv_chan->common.cookie = desc->async_tx.cookie = cookie; 545 return cookie; 546 } 547 548 /************************ DMA engine API functions ****************************/ 549 static dma_cookie_t 550 mv_xor_tx_submit(struct dma_async_tx_descriptor *tx) 551 { 552 struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx); 553 struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan); 554 struct mv_xor_desc_slot *grp_start, *old_chain_tail; 555 dma_cookie_t cookie; 556 int new_hw_chain = 1; 557 558 dev_dbg(mv_chan->device->common.dev, 559 "%s sw_desc %p: async_tx %p\n", 560 __func__, sw_desc, &sw_desc->async_tx); 561 562 grp_start = sw_desc->group_head; 563 564 spin_lock_bh(&mv_chan->lock); 565 cookie = mv_desc_assign_cookie(mv_chan, sw_desc); 566 567 if (list_empty(&mv_chan->chain)) 568 list_splice_init(&sw_desc->async_tx.tx_list, &mv_chan->chain); 569 else { 570 new_hw_chain = 0; 571 572 old_chain_tail = list_entry(mv_chan->chain.prev, 573 struct mv_xor_desc_slot, 574 chain_node); 575 list_splice_init(&grp_start->async_tx.tx_list, 576 &old_chain_tail->chain_node); 577 578 if (!mv_can_chain(grp_start)) 579 goto submit_done; 580 581 dev_dbg(mv_chan->device->common.dev, "Append to last desc %x\n", 582 old_chain_tail->async_tx.phys); 583 584 /* fix up the hardware chain */ 585 mv_desc_set_next_desc(old_chain_tail, grp_start->async_tx.phys); 586 587 /* if the channel is not busy */ 588 if (!mv_chan_is_busy(mv_chan)) { 589 u32 current_desc = mv_chan_get_current_desc(mv_chan); 590 /* 591 * and the curren desc is the end of the chain before 592 * the append, then we need to start the channel 593 */ 594 if (current_desc == old_chain_tail->async_tx.phys) 595 new_hw_chain = 1; 596 } 597 } 598 599 if (new_hw_chain) 600 mv_xor_start_new_chain(mv_chan, grp_start); 601 602 submit_done: 603 spin_unlock_bh(&mv_chan->lock); 604 605 return cookie; 606 } 607 608 /* returns the number of allocated descriptors */ 609 static int mv_xor_alloc_chan_resources(struct dma_chan *chan) 610 { 611 char *hw_desc; 612 int idx; 613 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan); 614 struct mv_xor_desc_slot *slot = NULL; 615 struct mv_xor_platform_data *plat_data = 616 mv_chan->device->pdev->dev.platform_data; 617 int num_descs_in_pool = plat_data->pool_size/MV_XOR_SLOT_SIZE; 618 619 /* Allocate descriptor slots */ 620 idx = mv_chan->slots_allocated; 621 while (idx < num_descs_in_pool) { 622 slot = kzalloc(sizeof(*slot), GFP_KERNEL); 623 if (!slot) { 624 printk(KERN_INFO "MV XOR Channel only initialized" 625 " %d descriptor slots", idx); 626 break; 627 } 628 hw_desc = (char *) mv_chan->device->dma_desc_pool_virt; 629 slot->hw_desc = (void *) &hw_desc[idx * MV_XOR_SLOT_SIZE]; 630 631 dma_async_tx_descriptor_init(&slot->async_tx, chan); 632 slot->async_tx.tx_submit = mv_xor_tx_submit; 633 INIT_LIST_HEAD(&slot->chain_node); 634 INIT_LIST_HEAD(&slot->slot_node); 635 hw_desc = (char *) mv_chan->device->dma_desc_pool; 636 slot->async_tx.phys = 637 (dma_addr_t) &hw_desc[idx * MV_XOR_SLOT_SIZE]; 638 slot->idx = idx++; 639 640 spin_lock_bh(&mv_chan->lock); 641 mv_chan->slots_allocated = idx; 642 list_add_tail(&slot->slot_node, &mv_chan->all_slots); 643 spin_unlock_bh(&mv_chan->lock); 644 } 645 646 if (mv_chan->slots_allocated && !mv_chan->last_used) 647 mv_chan->last_used = list_entry(mv_chan->all_slots.next, 648 struct mv_xor_desc_slot, 649 slot_node); 650 651 dev_dbg(mv_chan->device->common.dev, 652 "allocated %d descriptor slots last_used: %p\n", 653 mv_chan->slots_allocated, mv_chan->last_used); 654 655 return mv_chan->slots_allocated ? : -ENOMEM; 656 } 657 658 static struct dma_async_tx_descriptor * 659 mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 660 size_t len, unsigned long flags) 661 { 662 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan); 663 struct mv_xor_desc_slot *sw_desc, *grp_start; 664 int slot_cnt; 665 666 dev_dbg(mv_chan->device->common.dev, 667 "%s dest: %x src %x len: %u flags: %ld\n", 668 __func__, dest, src, len, flags); 669 if (unlikely(len < MV_XOR_MIN_BYTE_COUNT)) 670 return NULL; 671 672 BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT)); 673 674 spin_lock_bh(&mv_chan->lock); 675 slot_cnt = mv_chan_memcpy_slot_count(len); 676 sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1); 677 if (sw_desc) { 678 sw_desc->type = DMA_MEMCPY; 679 sw_desc->async_tx.flags = flags; 680 grp_start = sw_desc->group_head; 681 mv_desc_init(grp_start, flags); 682 mv_desc_set_byte_count(grp_start, len); 683 mv_desc_set_dest_addr(sw_desc->group_head, dest); 684 mv_desc_set_src_addr(grp_start, 0, src); 685 sw_desc->unmap_src_cnt = 1; 686 sw_desc->unmap_len = len; 687 } 688 spin_unlock_bh(&mv_chan->lock); 689 690 dev_dbg(mv_chan->device->common.dev, 691 "%s sw_desc %p async_tx %p\n", 692 __func__, sw_desc, sw_desc ? &sw_desc->async_tx : 0); 693 694 return sw_desc ? &sw_desc->async_tx : NULL; 695 } 696 697 static struct dma_async_tx_descriptor * 698 mv_xor_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value, 699 size_t len, unsigned long flags) 700 { 701 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan); 702 struct mv_xor_desc_slot *sw_desc, *grp_start; 703 int slot_cnt; 704 705 dev_dbg(mv_chan->device->common.dev, 706 "%s dest: %x len: %u flags: %ld\n", 707 __func__, dest, len, flags); 708 if (unlikely(len < MV_XOR_MIN_BYTE_COUNT)) 709 return NULL; 710 711 BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT)); 712 713 spin_lock_bh(&mv_chan->lock); 714 slot_cnt = mv_chan_memset_slot_count(len); 715 sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1); 716 if (sw_desc) { 717 sw_desc->type = DMA_MEMSET; 718 sw_desc->async_tx.flags = flags; 719 grp_start = sw_desc->group_head; 720 mv_desc_init(grp_start, flags); 721 mv_desc_set_byte_count(grp_start, len); 722 mv_desc_set_dest_addr(sw_desc->group_head, dest); 723 mv_desc_set_block_fill_val(grp_start, value); 724 sw_desc->unmap_src_cnt = 1; 725 sw_desc->unmap_len = len; 726 } 727 spin_unlock_bh(&mv_chan->lock); 728 dev_dbg(mv_chan->device->common.dev, 729 "%s sw_desc %p async_tx %p \n", 730 __func__, sw_desc, &sw_desc->async_tx); 731 return sw_desc ? &sw_desc->async_tx : NULL; 732 } 733 734 static struct dma_async_tx_descriptor * 735 mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, 736 unsigned int src_cnt, size_t len, unsigned long flags) 737 { 738 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan); 739 struct mv_xor_desc_slot *sw_desc, *grp_start; 740 int slot_cnt; 741 742 if (unlikely(len < MV_XOR_MIN_BYTE_COUNT)) 743 return NULL; 744 745 BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT)); 746 747 dev_dbg(mv_chan->device->common.dev, 748 "%s src_cnt: %d len: dest %x %u flags: %ld\n", 749 __func__, src_cnt, len, dest, flags); 750 751 spin_lock_bh(&mv_chan->lock); 752 slot_cnt = mv_chan_xor_slot_count(len, src_cnt); 753 sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1); 754 if (sw_desc) { 755 sw_desc->type = DMA_XOR; 756 sw_desc->async_tx.flags = flags; 757 grp_start = sw_desc->group_head; 758 mv_desc_init(grp_start, flags); 759 /* the byte count field is the same as in memcpy desc*/ 760 mv_desc_set_byte_count(grp_start, len); 761 mv_desc_set_dest_addr(sw_desc->group_head, dest); 762 sw_desc->unmap_src_cnt = src_cnt; 763 sw_desc->unmap_len = len; 764 while (src_cnt--) 765 mv_desc_set_src_addr(grp_start, src_cnt, src[src_cnt]); 766 } 767 spin_unlock_bh(&mv_chan->lock); 768 dev_dbg(mv_chan->device->common.dev, 769 "%s sw_desc %p async_tx %p \n", 770 __func__, sw_desc, &sw_desc->async_tx); 771 return sw_desc ? &sw_desc->async_tx : NULL; 772 } 773 774 static void mv_xor_free_chan_resources(struct dma_chan *chan) 775 { 776 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan); 777 struct mv_xor_desc_slot *iter, *_iter; 778 int in_use_descs = 0; 779 780 mv_xor_slot_cleanup(mv_chan); 781 782 spin_lock_bh(&mv_chan->lock); 783 list_for_each_entry_safe(iter, _iter, &mv_chan->chain, 784 chain_node) { 785 in_use_descs++; 786 list_del(&iter->chain_node); 787 } 788 list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots, 789 completed_node) { 790 in_use_descs++; 791 list_del(&iter->completed_node); 792 } 793 list_for_each_entry_safe_reverse( 794 iter, _iter, &mv_chan->all_slots, slot_node) { 795 list_del(&iter->slot_node); 796 kfree(iter); 797 mv_chan->slots_allocated--; 798 } 799 mv_chan->last_used = NULL; 800 801 dev_dbg(mv_chan->device->common.dev, "%s slots_allocated %d\n", 802 __func__, mv_chan->slots_allocated); 803 spin_unlock_bh(&mv_chan->lock); 804 805 if (in_use_descs) 806 dev_err(mv_chan->device->common.dev, 807 "freeing %d in use descriptors!\n", in_use_descs); 808 } 809 810 /** 811 * mv_xor_is_complete - poll the status of an XOR transaction 812 * @chan: XOR channel handle 813 * @cookie: XOR transaction identifier 814 */ 815 static enum dma_status mv_xor_is_complete(struct dma_chan *chan, 816 dma_cookie_t cookie, 817 dma_cookie_t *done, 818 dma_cookie_t *used) 819 { 820 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan); 821 dma_cookie_t last_used; 822 dma_cookie_t last_complete; 823 enum dma_status ret; 824 825 last_used = chan->cookie; 826 last_complete = mv_chan->completed_cookie; 827 mv_chan->is_complete_cookie = cookie; 828 if (done) 829 *done = last_complete; 830 if (used) 831 *used = last_used; 832 833 ret = dma_async_is_complete(cookie, last_complete, last_used); 834 if (ret == DMA_SUCCESS) { 835 mv_xor_clean_completed_slots(mv_chan); 836 return ret; 837 } 838 mv_xor_slot_cleanup(mv_chan); 839 840 last_used = chan->cookie; 841 last_complete = mv_chan->completed_cookie; 842 843 if (done) 844 *done = last_complete; 845 if (used) 846 *used = last_used; 847 848 return dma_async_is_complete(cookie, last_complete, last_used); 849 } 850 851 static void mv_dump_xor_regs(struct mv_xor_chan *chan) 852 { 853 u32 val; 854 855 val = __raw_readl(XOR_CONFIG(chan)); 856 dev_printk(KERN_ERR, chan->device->common.dev, 857 "config 0x%08x.\n", val); 858 859 val = __raw_readl(XOR_ACTIVATION(chan)); 860 dev_printk(KERN_ERR, chan->device->common.dev, 861 "activation 0x%08x.\n", val); 862 863 val = __raw_readl(XOR_INTR_CAUSE(chan)); 864 dev_printk(KERN_ERR, chan->device->common.dev, 865 "intr cause 0x%08x.\n", val); 866 867 val = __raw_readl(XOR_INTR_MASK(chan)); 868 dev_printk(KERN_ERR, chan->device->common.dev, 869 "intr mask 0x%08x.\n", val); 870 871 val = __raw_readl(XOR_ERROR_CAUSE(chan)); 872 dev_printk(KERN_ERR, chan->device->common.dev, 873 "error cause 0x%08x.\n", val); 874 875 val = __raw_readl(XOR_ERROR_ADDR(chan)); 876 dev_printk(KERN_ERR, chan->device->common.dev, 877 "error addr 0x%08x.\n", val); 878 } 879 880 static void mv_xor_err_interrupt_handler(struct mv_xor_chan *chan, 881 u32 intr_cause) 882 { 883 if (intr_cause & (1 << 4)) { 884 dev_dbg(chan->device->common.dev, 885 "ignore this error\n"); 886 return; 887 } 888 889 dev_printk(KERN_ERR, chan->device->common.dev, 890 "error on chan %d. intr cause 0x%08x.\n", 891 chan->idx, intr_cause); 892 893 mv_dump_xor_regs(chan); 894 BUG(); 895 } 896 897 static irqreturn_t mv_xor_interrupt_handler(int irq, void *data) 898 { 899 struct mv_xor_chan *chan = data; 900 u32 intr_cause = mv_chan_get_intr_cause(chan); 901 902 dev_dbg(chan->device->common.dev, "intr cause %x\n", intr_cause); 903 904 if (mv_is_err_intr(intr_cause)) 905 mv_xor_err_interrupt_handler(chan, intr_cause); 906 907 tasklet_schedule(&chan->irq_tasklet); 908 909 mv_xor_device_clear_eoc_cause(chan); 910 911 return IRQ_HANDLED; 912 } 913 914 static void mv_xor_issue_pending(struct dma_chan *chan) 915 { 916 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan); 917 918 if (mv_chan->pending >= MV_XOR_THRESHOLD) { 919 mv_chan->pending = 0; 920 mv_chan_activate(mv_chan); 921 } 922 } 923 924 /* 925 * Perform a transaction to verify the HW works. 926 */ 927 #define MV_XOR_TEST_SIZE 2000 928 929 static int __devinit mv_xor_memcpy_self_test(struct mv_xor_device *device) 930 { 931 int i; 932 void *src, *dest; 933 dma_addr_t src_dma, dest_dma; 934 struct dma_chan *dma_chan; 935 dma_cookie_t cookie; 936 struct dma_async_tx_descriptor *tx; 937 int err = 0; 938 struct mv_xor_chan *mv_chan; 939 940 src = kmalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL); 941 if (!src) 942 return -ENOMEM; 943 944 dest = kzalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL); 945 if (!dest) { 946 kfree(src); 947 return -ENOMEM; 948 } 949 950 /* Fill in src buffer */ 951 for (i = 0; i < MV_XOR_TEST_SIZE; i++) 952 ((u8 *) src)[i] = (u8)i; 953 954 /* Start copy, using first DMA channel */ 955 dma_chan = container_of(device->common.channels.next, 956 struct dma_chan, 957 device_node); 958 if (mv_xor_alloc_chan_resources(dma_chan) < 1) { 959 err = -ENODEV; 960 goto out; 961 } 962 963 dest_dma = dma_map_single(dma_chan->device->dev, dest, 964 MV_XOR_TEST_SIZE, DMA_FROM_DEVICE); 965 966 src_dma = dma_map_single(dma_chan->device->dev, src, 967 MV_XOR_TEST_SIZE, DMA_TO_DEVICE); 968 969 tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma, 970 MV_XOR_TEST_SIZE, 0); 971 cookie = mv_xor_tx_submit(tx); 972 mv_xor_issue_pending(dma_chan); 973 async_tx_ack(tx); 974 msleep(1); 975 976 if (mv_xor_is_complete(dma_chan, cookie, NULL, NULL) != 977 DMA_SUCCESS) { 978 dev_printk(KERN_ERR, dma_chan->device->dev, 979 "Self-test copy timed out, disabling\n"); 980 err = -ENODEV; 981 goto free_resources; 982 } 983 984 mv_chan = to_mv_xor_chan(dma_chan); 985 dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma, 986 MV_XOR_TEST_SIZE, DMA_FROM_DEVICE); 987 if (memcmp(src, dest, MV_XOR_TEST_SIZE)) { 988 dev_printk(KERN_ERR, dma_chan->device->dev, 989 "Self-test copy failed compare, disabling\n"); 990 err = -ENODEV; 991 goto free_resources; 992 } 993 994 free_resources: 995 mv_xor_free_chan_resources(dma_chan); 996 out: 997 kfree(src); 998 kfree(dest); 999 return err; 1000 } 1001 1002 #define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */ 1003 static int __devinit 1004 mv_xor_xor_self_test(struct mv_xor_device *device) 1005 { 1006 int i, src_idx; 1007 struct page *dest; 1008 struct page *xor_srcs[MV_XOR_NUM_SRC_TEST]; 1009 dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST]; 1010 dma_addr_t dest_dma; 1011 struct dma_async_tx_descriptor *tx; 1012 struct dma_chan *dma_chan; 1013 dma_cookie_t cookie; 1014 u8 cmp_byte = 0; 1015 u32 cmp_word; 1016 int err = 0; 1017 struct mv_xor_chan *mv_chan; 1018 1019 for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) { 1020 xor_srcs[src_idx] = alloc_page(GFP_KERNEL); 1021 if (!xor_srcs[src_idx]) { 1022 while (src_idx--) 1023 __free_page(xor_srcs[src_idx]); 1024 return -ENOMEM; 1025 } 1026 } 1027 1028 dest = alloc_page(GFP_KERNEL); 1029 if (!dest) { 1030 while (src_idx--) 1031 __free_page(xor_srcs[src_idx]); 1032 return -ENOMEM; 1033 } 1034 1035 /* Fill in src buffers */ 1036 for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) { 1037 u8 *ptr = page_address(xor_srcs[src_idx]); 1038 for (i = 0; i < PAGE_SIZE; i++) 1039 ptr[i] = (1 << src_idx); 1040 } 1041 1042 for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) 1043 cmp_byte ^= (u8) (1 << src_idx); 1044 1045 cmp_word = (cmp_byte << 24) | (cmp_byte << 16) | 1046 (cmp_byte << 8) | cmp_byte; 1047 1048 memset(page_address(dest), 0, PAGE_SIZE); 1049 1050 dma_chan = container_of(device->common.channels.next, 1051 struct dma_chan, 1052 device_node); 1053 if (mv_xor_alloc_chan_resources(dma_chan) < 1) { 1054 err = -ENODEV; 1055 goto out; 1056 } 1057 1058 /* test xor */ 1059 dest_dma = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE, 1060 DMA_FROM_DEVICE); 1061 1062 for (i = 0; i < MV_XOR_NUM_SRC_TEST; i++) 1063 dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i], 1064 0, PAGE_SIZE, DMA_TO_DEVICE); 1065 1066 tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs, 1067 MV_XOR_NUM_SRC_TEST, PAGE_SIZE, 0); 1068 1069 cookie = mv_xor_tx_submit(tx); 1070 mv_xor_issue_pending(dma_chan); 1071 async_tx_ack(tx); 1072 msleep(8); 1073 1074 if (mv_xor_is_complete(dma_chan, cookie, NULL, NULL) != 1075 DMA_SUCCESS) { 1076 dev_printk(KERN_ERR, dma_chan->device->dev, 1077 "Self-test xor timed out, disabling\n"); 1078 err = -ENODEV; 1079 goto free_resources; 1080 } 1081 1082 mv_chan = to_mv_xor_chan(dma_chan); 1083 dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma, 1084 PAGE_SIZE, DMA_FROM_DEVICE); 1085 for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) { 1086 u32 *ptr = page_address(dest); 1087 if (ptr[i] != cmp_word) { 1088 dev_printk(KERN_ERR, dma_chan->device->dev, 1089 "Self-test xor failed compare, disabling." 1090 " index %d, data %x, expected %x\n", i, 1091 ptr[i], cmp_word); 1092 err = -ENODEV; 1093 goto free_resources; 1094 } 1095 } 1096 1097 free_resources: 1098 mv_xor_free_chan_resources(dma_chan); 1099 out: 1100 src_idx = MV_XOR_NUM_SRC_TEST; 1101 while (src_idx--) 1102 __free_page(xor_srcs[src_idx]); 1103 __free_page(dest); 1104 return err; 1105 } 1106 1107 static int __devexit mv_xor_remove(struct platform_device *dev) 1108 { 1109 struct mv_xor_device *device = platform_get_drvdata(dev); 1110 struct dma_chan *chan, *_chan; 1111 struct mv_xor_chan *mv_chan; 1112 struct mv_xor_platform_data *plat_data = dev->dev.platform_data; 1113 1114 dma_async_device_unregister(&device->common); 1115 1116 dma_free_coherent(&dev->dev, plat_data->pool_size, 1117 device->dma_desc_pool_virt, device->dma_desc_pool); 1118 1119 list_for_each_entry_safe(chan, _chan, &device->common.channels, 1120 device_node) { 1121 mv_chan = to_mv_xor_chan(chan); 1122 list_del(&chan->device_node); 1123 } 1124 1125 return 0; 1126 } 1127 1128 static int __devinit mv_xor_probe(struct platform_device *pdev) 1129 { 1130 int ret = 0; 1131 int irq; 1132 struct mv_xor_device *adev; 1133 struct mv_xor_chan *mv_chan; 1134 struct dma_device *dma_dev; 1135 struct mv_xor_platform_data *plat_data = pdev->dev.platform_data; 1136 1137 1138 adev = devm_kzalloc(&pdev->dev, sizeof(*adev), GFP_KERNEL); 1139 if (!adev) 1140 return -ENOMEM; 1141 1142 dma_dev = &adev->common; 1143 1144 /* allocate coherent memory for hardware descriptors 1145 * note: writecombine gives slightly better performance, but 1146 * requires that we explicitly flush the writes 1147 */ 1148 adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev, 1149 plat_data->pool_size, 1150 &adev->dma_desc_pool, 1151 GFP_KERNEL); 1152 if (!adev->dma_desc_pool_virt) 1153 return -ENOMEM; 1154 1155 adev->id = plat_data->hw_id; 1156 1157 /* discover transaction capabilites from the platform data */ 1158 dma_dev->cap_mask = plat_data->cap_mask; 1159 adev->pdev = pdev; 1160 platform_set_drvdata(pdev, adev); 1161 1162 adev->shared = platform_get_drvdata(plat_data->shared); 1163 1164 INIT_LIST_HEAD(&dma_dev->channels); 1165 1166 /* set base routines */ 1167 dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources; 1168 dma_dev->device_free_chan_resources = mv_xor_free_chan_resources; 1169 dma_dev->device_is_tx_complete = mv_xor_is_complete; 1170 dma_dev->device_issue_pending = mv_xor_issue_pending; 1171 dma_dev->dev = &pdev->dev; 1172 1173 /* set prep routines based on capability */ 1174 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) 1175 dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy; 1176 if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask)) 1177 dma_dev->device_prep_dma_memset = mv_xor_prep_dma_memset; 1178 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) { 1179 dma_dev->max_xor = 8; ; 1180 dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor; 1181 } 1182 1183 mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL); 1184 if (!mv_chan) { 1185 ret = -ENOMEM; 1186 goto err_free_dma; 1187 } 1188 mv_chan->device = adev; 1189 mv_chan->idx = plat_data->hw_id; 1190 mv_chan->mmr_base = adev->shared->xor_base; 1191 1192 if (!mv_chan->mmr_base) { 1193 ret = -ENOMEM; 1194 goto err_free_dma; 1195 } 1196 tasklet_init(&mv_chan->irq_tasklet, mv_xor_tasklet, (unsigned long) 1197 mv_chan); 1198 1199 /* clear errors before enabling interrupts */ 1200 mv_xor_device_clear_err_status(mv_chan); 1201 1202 irq = platform_get_irq(pdev, 0); 1203 if (irq < 0) { 1204 ret = irq; 1205 goto err_free_dma; 1206 } 1207 ret = devm_request_irq(&pdev->dev, irq, 1208 mv_xor_interrupt_handler, 1209 0, dev_name(&pdev->dev), mv_chan); 1210 if (ret) 1211 goto err_free_dma; 1212 1213 mv_chan_unmask_interrupts(mv_chan); 1214 1215 mv_set_mode(mv_chan, DMA_MEMCPY); 1216 1217 spin_lock_init(&mv_chan->lock); 1218 INIT_LIST_HEAD(&mv_chan->chain); 1219 INIT_LIST_HEAD(&mv_chan->completed_slots); 1220 INIT_LIST_HEAD(&mv_chan->all_slots); 1221 mv_chan->common.device = dma_dev; 1222 1223 list_add_tail(&mv_chan->common.device_node, &dma_dev->channels); 1224 1225 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) { 1226 ret = mv_xor_memcpy_self_test(adev); 1227 dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret); 1228 if (ret) 1229 goto err_free_dma; 1230 } 1231 1232 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) { 1233 ret = mv_xor_xor_self_test(adev); 1234 dev_dbg(&pdev->dev, "xor self test returned %d\n", ret); 1235 if (ret) 1236 goto err_free_dma; 1237 } 1238 1239 dev_printk(KERN_INFO, &pdev->dev, "Marvell XOR: " 1240 "( %s%s%s%s)\n", 1241 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "", 1242 dma_has_cap(DMA_MEMSET, dma_dev->cap_mask) ? "fill " : "", 1243 dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "", 1244 dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : ""); 1245 1246 dma_async_device_register(dma_dev); 1247 goto out; 1248 1249 err_free_dma: 1250 dma_free_coherent(&adev->pdev->dev, plat_data->pool_size, 1251 adev->dma_desc_pool_virt, adev->dma_desc_pool); 1252 out: 1253 return ret; 1254 } 1255 1256 static void 1257 mv_xor_conf_mbus_windows(struct mv_xor_shared_private *msp, 1258 struct mbus_dram_target_info *dram) 1259 { 1260 void __iomem *base = msp->xor_base; 1261 u32 win_enable = 0; 1262 int i; 1263 1264 for (i = 0; i < 8; i++) { 1265 writel(0, base + WINDOW_BASE(i)); 1266 writel(0, base + WINDOW_SIZE(i)); 1267 if (i < 4) 1268 writel(0, base + WINDOW_REMAP_HIGH(i)); 1269 } 1270 1271 for (i = 0; i < dram->num_cs; i++) { 1272 struct mbus_dram_window *cs = dram->cs + i; 1273 1274 writel((cs->base & 0xffff0000) | 1275 (cs->mbus_attr << 8) | 1276 dram->mbus_dram_target_id, base + WINDOW_BASE(i)); 1277 writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i)); 1278 1279 win_enable |= (1 << i); 1280 win_enable |= 3 << (16 + (2 * i)); 1281 } 1282 1283 writel(win_enable, base + WINDOW_BAR_ENABLE(0)); 1284 writel(win_enable, base + WINDOW_BAR_ENABLE(1)); 1285 } 1286 1287 static struct platform_driver mv_xor_driver = { 1288 .probe = mv_xor_probe, 1289 .remove = __devexit_p(mv_xor_remove), 1290 .driver = { 1291 .owner = THIS_MODULE, 1292 .name = MV_XOR_NAME, 1293 }, 1294 }; 1295 1296 static int mv_xor_shared_probe(struct platform_device *pdev) 1297 { 1298 struct mv_xor_platform_shared_data *msd = pdev->dev.platform_data; 1299 struct mv_xor_shared_private *msp; 1300 struct resource *res; 1301 1302 dev_printk(KERN_NOTICE, &pdev->dev, "Marvell shared XOR driver\n"); 1303 1304 msp = devm_kzalloc(&pdev->dev, sizeof(*msp), GFP_KERNEL); 1305 if (!msp) 1306 return -ENOMEM; 1307 1308 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1309 if (!res) 1310 return -ENODEV; 1311 1312 msp->xor_base = devm_ioremap(&pdev->dev, res->start, 1313 res->end - res->start + 1); 1314 if (!msp->xor_base) 1315 return -EBUSY; 1316 1317 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1318 if (!res) 1319 return -ENODEV; 1320 1321 msp->xor_high_base = devm_ioremap(&pdev->dev, res->start, 1322 res->end - res->start + 1); 1323 if (!msp->xor_high_base) 1324 return -EBUSY; 1325 1326 platform_set_drvdata(pdev, msp); 1327 1328 /* 1329 * (Re-)program MBUS remapping windows if we are asked to. 1330 */ 1331 if (msd != NULL && msd->dram != NULL) 1332 mv_xor_conf_mbus_windows(msp, msd->dram); 1333 1334 return 0; 1335 } 1336 1337 static int mv_xor_shared_remove(struct platform_device *pdev) 1338 { 1339 return 0; 1340 } 1341 1342 static struct platform_driver mv_xor_shared_driver = { 1343 .probe = mv_xor_shared_probe, 1344 .remove = mv_xor_shared_remove, 1345 .driver = { 1346 .owner = THIS_MODULE, 1347 .name = MV_XOR_SHARED_NAME, 1348 }, 1349 }; 1350 1351 1352 static int __init mv_xor_init(void) 1353 { 1354 int rc; 1355 1356 rc = platform_driver_register(&mv_xor_shared_driver); 1357 if (!rc) { 1358 rc = platform_driver_register(&mv_xor_driver); 1359 if (rc) 1360 platform_driver_unregister(&mv_xor_shared_driver); 1361 } 1362 return rc; 1363 } 1364 module_init(mv_xor_init); 1365 1366 /* it's currently unsafe to unload this module */ 1367 #if 0 1368 static void __exit mv_xor_exit(void) 1369 { 1370 platform_driver_unregister(&mv_xor_driver); 1371 platform_driver_unregister(&mv_xor_shared_driver); 1372 return; 1373 } 1374 1375 module_exit(mv_xor_exit); 1376 #endif 1377 1378 MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>"); 1379 MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine"); 1380 MODULE_LICENSE("GPL"); 1381