xref: /openbmc/linux/drivers/dma/mv_xor.c (revision 92a76f6d)
1 /*
2  * offload engine driver for the Marvell XOR engine
3  * Copyright (C) 2007, 2008, Marvell International Ltd.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/memory.h>
24 #include <linux/clk.h>
25 #include <linux/of.h>
26 #include <linux/of_irq.h>
27 #include <linux/irqdomain.h>
28 #include <linux/cpumask.h>
29 #include <linux/platform_data/dma-mv_xor.h>
30 
31 #include "dmaengine.h"
32 #include "mv_xor.h"
33 
34 enum mv_xor_mode {
35 	XOR_MODE_IN_REG,
36 	XOR_MODE_IN_DESC,
37 };
38 
39 static void mv_xor_issue_pending(struct dma_chan *chan);
40 
41 #define to_mv_xor_chan(chan)		\
42 	container_of(chan, struct mv_xor_chan, dmachan)
43 
44 #define to_mv_xor_slot(tx)		\
45 	container_of(tx, struct mv_xor_desc_slot, async_tx)
46 
47 #define mv_chan_to_devp(chan)           \
48 	((chan)->dmadev.dev)
49 
50 static void mv_desc_init(struct mv_xor_desc_slot *desc,
51 			 dma_addr_t addr, u32 byte_count,
52 			 enum dma_ctrl_flags flags)
53 {
54 	struct mv_xor_desc *hw_desc = desc->hw_desc;
55 
56 	hw_desc->status = XOR_DESC_DMA_OWNED;
57 	hw_desc->phy_next_desc = 0;
58 	/* Enable end-of-descriptor interrupts only for DMA_PREP_INTERRUPT */
59 	hw_desc->desc_command = (flags & DMA_PREP_INTERRUPT) ?
60 				XOR_DESC_EOD_INT_EN : 0;
61 	hw_desc->phy_dest_addr = addr;
62 	hw_desc->byte_count = byte_count;
63 }
64 
65 static void mv_desc_set_mode(struct mv_xor_desc_slot *desc)
66 {
67 	struct mv_xor_desc *hw_desc = desc->hw_desc;
68 
69 	switch (desc->type) {
70 	case DMA_XOR:
71 	case DMA_INTERRUPT:
72 		hw_desc->desc_command |= XOR_DESC_OPERATION_XOR;
73 		break;
74 	case DMA_MEMCPY:
75 		hw_desc->desc_command |= XOR_DESC_OPERATION_MEMCPY;
76 		break;
77 	default:
78 		BUG();
79 		return;
80 	}
81 }
82 
83 static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc,
84 				  u32 next_desc_addr)
85 {
86 	struct mv_xor_desc *hw_desc = desc->hw_desc;
87 	BUG_ON(hw_desc->phy_next_desc);
88 	hw_desc->phy_next_desc = next_desc_addr;
89 }
90 
91 static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc,
92 				 int index, dma_addr_t addr)
93 {
94 	struct mv_xor_desc *hw_desc = desc->hw_desc;
95 	hw_desc->phy_src_addr[mv_phy_src_idx(index)] = addr;
96 	if (desc->type == DMA_XOR)
97 		hw_desc->desc_command |= (1 << index);
98 }
99 
100 static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan)
101 {
102 	return readl_relaxed(XOR_CURR_DESC(chan));
103 }
104 
105 static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan,
106 					u32 next_desc_addr)
107 {
108 	writel_relaxed(next_desc_addr, XOR_NEXT_DESC(chan));
109 }
110 
111 static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan)
112 {
113 	u32 val = readl_relaxed(XOR_INTR_MASK(chan));
114 	val |= XOR_INTR_MASK_VALUE << (chan->idx * 16);
115 	writel_relaxed(val, XOR_INTR_MASK(chan));
116 }
117 
118 static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan)
119 {
120 	u32 intr_cause = readl_relaxed(XOR_INTR_CAUSE(chan));
121 	intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF;
122 	return intr_cause;
123 }
124 
125 static void mv_chan_clear_eoc_cause(struct mv_xor_chan *chan)
126 {
127 	u32 val;
128 
129 	val = XOR_INT_END_OF_DESC | XOR_INT_END_OF_CHAIN | XOR_INT_STOPPED;
130 	val = ~(val << (chan->idx * 16));
131 	dev_dbg(mv_chan_to_devp(chan), "%s, val 0x%08x\n", __func__, val);
132 	writel_relaxed(val, XOR_INTR_CAUSE(chan));
133 }
134 
135 static void mv_chan_clear_err_status(struct mv_xor_chan *chan)
136 {
137 	u32 val = 0xFFFF0000 >> (chan->idx * 16);
138 	writel_relaxed(val, XOR_INTR_CAUSE(chan));
139 }
140 
141 static void mv_chan_set_mode(struct mv_xor_chan *chan,
142 			     u32 op_mode)
143 {
144 	u32 config = readl_relaxed(XOR_CONFIG(chan));
145 
146 	config &= ~0x7;
147 	config |= op_mode;
148 
149 #if defined(__BIG_ENDIAN)
150 	config |= XOR_DESCRIPTOR_SWAP;
151 #else
152 	config &= ~XOR_DESCRIPTOR_SWAP;
153 #endif
154 
155 	writel_relaxed(config, XOR_CONFIG(chan));
156 }
157 
158 static void mv_chan_activate(struct mv_xor_chan *chan)
159 {
160 	dev_dbg(mv_chan_to_devp(chan), " activate chan.\n");
161 
162 	/* writel ensures all descriptors are flushed before activation */
163 	writel(BIT(0), XOR_ACTIVATION(chan));
164 }
165 
166 static char mv_chan_is_busy(struct mv_xor_chan *chan)
167 {
168 	u32 state = readl_relaxed(XOR_ACTIVATION(chan));
169 
170 	state = (state >> 4) & 0x3;
171 
172 	return (state == 1) ? 1 : 0;
173 }
174 
175 /*
176  * mv_chan_start_new_chain - program the engine to operate on new
177  * chain headed by sw_desc
178  * Caller must hold &mv_chan->lock while calling this function
179  */
180 static void mv_chan_start_new_chain(struct mv_xor_chan *mv_chan,
181 				    struct mv_xor_desc_slot *sw_desc)
182 {
183 	dev_dbg(mv_chan_to_devp(mv_chan), "%s %d: sw_desc %p\n",
184 		__func__, __LINE__, sw_desc);
185 
186 	/* set the hardware chain */
187 	mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys);
188 
189 	mv_chan->pending++;
190 	mv_xor_issue_pending(&mv_chan->dmachan);
191 }
192 
193 static dma_cookie_t
194 mv_desc_run_tx_complete_actions(struct mv_xor_desc_slot *desc,
195 				struct mv_xor_chan *mv_chan,
196 				dma_cookie_t cookie)
197 {
198 	BUG_ON(desc->async_tx.cookie < 0);
199 
200 	if (desc->async_tx.cookie > 0) {
201 		cookie = desc->async_tx.cookie;
202 
203 		/* call the callback (must not sleep or submit new
204 		 * operations to this channel)
205 		 */
206 		if (desc->async_tx.callback)
207 			desc->async_tx.callback(
208 				desc->async_tx.callback_param);
209 
210 		dma_descriptor_unmap(&desc->async_tx);
211 	}
212 
213 	/* run dependent operations */
214 	dma_run_dependencies(&desc->async_tx);
215 
216 	return cookie;
217 }
218 
219 static int
220 mv_chan_clean_completed_slots(struct mv_xor_chan *mv_chan)
221 {
222 	struct mv_xor_desc_slot *iter, *_iter;
223 
224 	dev_dbg(mv_chan_to_devp(mv_chan), "%s %d\n", __func__, __LINE__);
225 	list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
226 				 node) {
227 
228 		if (async_tx_test_ack(&iter->async_tx))
229 			list_move_tail(&iter->node, &mv_chan->free_slots);
230 	}
231 	return 0;
232 }
233 
234 static int
235 mv_desc_clean_slot(struct mv_xor_desc_slot *desc,
236 		   struct mv_xor_chan *mv_chan)
237 {
238 	dev_dbg(mv_chan_to_devp(mv_chan), "%s %d: desc %p flags %d\n",
239 		__func__, __LINE__, desc, desc->async_tx.flags);
240 
241 	/* the client is allowed to attach dependent operations
242 	 * until 'ack' is set
243 	 */
244 	if (!async_tx_test_ack(&desc->async_tx))
245 		/* move this slot to the completed_slots */
246 		list_move_tail(&desc->node, &mv_chan->completed_slots);
247 	else
248 		list_move_tail(&desc->node, &mv_chan->free_slots);
249 
250 	return 0;
251 }
252 
253 /* This function must be called with the mv_xor_chan spinlock held */
254 static void mv_chan_slot_cleanup(struct mv_xor_chan *mv_chan)
255 {
256 	struct mv_xor_desc_slot *iter, *_iter;
257 	dma_cookie_t cookie = 0;
258 	int busy = mv_chan_is_busy(mv_chan);
259 	u32 current_desc = mv_chan_get_current_desc(mv_chan);
260 	int current_cleaned = 0;
261 	struct mv_xor_desc *hw_desc;
262 
263 	dev_dbg(mv_chan_to_devp(mv_chan), "%s %d\n", __func__, __LINE__);
264 	dev_dbg(mv_chan_to_devp(mv_chan), "current_desc %x\n", current_desc);
265 	mv_chan_clean_completed_slots(mv_chan);
266 
267 	/* free completed slots from the chain starting with
268 	 * the oldest descriptor
269 	 */
270 
271 	list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
272 				 node) {
273 
274 		/* clean finished descriptors */
275 		hw_desc = iter->hw_desc;
276 		if (hw_desc->status & XOR_DESC_SUCCESS) {
277 			cookie = mv_desc_run_tx_complete_actions(iter, mv_chan,
278 								 cookie);
279 
280 			/* done processing desc, clean slot */
281 			mv_desc_clean_slot(iter, mv_chan);
282 
283 			/* break if we did cleaned the current */
284 			if (iter->async_tx.phys == current_desc) {
285 				current_cleaned = 1;
286 				break;
287 			}
288 		} else {
289 			if (iter->async_tx.phys == current_desc) {
290 				current_cleaned = 0;
291 				break;
292 			}
293 		}
294 	}
295 
296 	if ((busy == 0) && !list_empty(&mv_chan->chain)) {
297 		if (current_cleaned) {
298 			/*
299 			 * current descriptor cleaned and removed, run
300 			 * from list head
301 			 */
302 			iter = list_entry(mv_chan->chain.next,
303 					  struct mv_xor_desc_slot,
304 					  node);
305 			mv_chan_start_new_chain(mv_chan, iter);
306 		} else {
307 			if (!list_is_last(&iter->node, &mv_chan->chain)) {
308 				/*
309 				 * descriptors are still waiting after
310 				 * current, trigger them
311 				 */
312 				iter = list_entry(iter->node.next,
313 						  struct mv_xor_desc_slot,
314 						  node);
315 				mv_chan_start_new_chain(mv_chan, iter);
316 			} else {
317 				/*
318 				 * some descriptors are still waiting
319 				 * to be cleaned
320 				 */
321 				tasklet_schedule(&mv_chan->irq_tasklet);
322 			}
323 		}
324 	}
325 
326 	if (cookie > 0)
327 		mv_chan->dmachan.completed_cookie = cookie;
328 }
329 
330 static void mv_xor_tasklet(unsigned long data)
331 {
332 	struct mv_xor_chan *chan = (struct mv_xor_chan *) data;
333 
334 	spin_lock_bh(&chan->lock);
335 	mv_chan_slot_cleanup(chan);
336 	spin_unlock_bh(&chan->lock);
337 }
338 
339 static struct mv_xor_desc_slot *
340 mv_chan_alloc_slot(struct mv_xor_chan *mv_chan)
341 {
342 	struct mv_xor_desc_slot *iter;
343 
344 	spin_lock_bh(&mv_chan->lock);
345 
346 	if (!list_empty(&mv_chan->free_slots)) {
347 		iter = list_first_entry(&mv_chan->free_slots,
348 					struct mv_xor_desc_slot,
349 					node);
350 
351 		list_move_tail(&iter->node, &mv_chan->allocated_slots);
352 
353 		spin_unlock_bh(&mv_chan->lock);
354 
355 		/* pre-ack descriptor */
356 		async_tx_ack(&iter->async_tx);
357 		iter->async_tx.cookie = -EBUSY;
358 
359 		return iter;
360 
361 	}
362 
363 	spin_unlock_bh(&mv_chan->lock);
364 
365 	/* try to free some slots if the allocation fails */
366 	tasklet_schedule(&mv_chan->irq_tasklet);
367 
368 	return NULL;
369 }
370 
371 /************************ DMA engine API functions ****************************/
372 static dma_cookie_t
373 mv_xor_tx_submit(struct dma_async_tx_descriptor *tx)
374 {
375 	struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx);
376 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan);
377 	struct mv_xor_desc_slot *old_chain_tail;
378 	dma_cookie_t cookie;
379 	int new_hw_chain = 1;
380 
381 	dev_dbg(mv_chan_to_devp(mv_chan),
382 		"%s sw_desc %p: async_tx %p\n",
383 		__func__, sw_desc, &sw_desc->async_tx);
384 
385 	spin_lock_bh(&mv_chan->lock);
386 	cookie = dma_cookie_assign(tx);
387 
388 	if (list_empty(&mv_chan->chain))
389 		list_move_tail(&sw_desc->node, &mv_chan->chain);
390 	else {
391 		new_hw_chain = 0;
392 
393 		old_chain_tail = list_entry(mv_chan->chain.prev,
394 					    struct mv_xor_desc_slot,
395 					    node);
396 		list_move_tail(&sw_desc->node, &mv_chan->chain);
397 
398 		dev_dbg(mv_chan_to_devp(mv_chan), "Append to last desc %pa\n",
399 			&old_chain_tail->async_tx.phys);
400 
401 		/* fix up the hardware chain */
402 		mv_desc_set_next_desc(old_chain_tail, sw_desc->async_tx.phys);
403 
404 		/* if the channel is not busy */
405 		if (!mv_chan_is_busy(mv_chan)) {
406 			u32 current_desc = mv_chan_get_current_desc(mv_chan);
407 			/*
408 			 * and the curren desc is the end of the chain before
409 			 * the append, then we need to start the channel
410 			 */
411 			if (current_desc == old_chain_tail->async_tx.phys)
412 				new_hw_chain = 1;
413 		}
414 	}
415 
416 	if (new_hw_chain)
417 		mv_chan_start_new_chain(mv_chan, sw_desc);
418 
419 	spin_unlock_bh(&mv_chan->lock);
420 
421 	return cookie;
422 }
423 
424 /* returns the number of allocated descriptors */
425 static int mv_xor_alloc_chan_resources(struct dma_chan *chan)
426 {
427 	void *virt_desc;
428 	dma_addr_t dma_desc;
429 	int idx;
430 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
431 	struct mv_xor_desc_slot *slot = NULL;
432 	int num_descs_in_pool = MV_XOR_POOL_SIZE/MV_XOR_SLOT_SIZE;
433 
434 	/* Allocate descriptor slots */
435 	idx = mv_chan->slots_allocated;
436 	while (idx < num_descs_in_pool) {
437 		slot = kzalloc(sizeof(*slot), GFP_KERNEL);
438 		if (!slot) {
439 			dev_info(mv_chan_to_devp(mv_chan),
440 				 "channel only initialized %d descriptor slots",
441 				 idx);
442 			break;
443 		}
444 		virt_desc = mv_chan->dma_desc_pool_virt;
445 		slot->hw_desc = virt_desc + idx * MV_XOR_SLOT_SIZE;
446 
447 		dma_async_tx_descriptor_init(&slot->async_tx, chan);
448 		slot->async_tx.tx_submit = mv_xor_tx_submit;
449 		INIT_LIST_HEAD(&slot->node);
450 		dma_desc = mv_chan->dma_desc_pool;
451 		slot->async_tx.phys = dma_desc + idx * MV_XOR_SLOT_SIZE;
452 		slot->idx = idx++;
453 
454 		spin_lock_bh(&mv_chan->lock);
455 		mv_chan->slots_allocated = idx;
456 		list_add_tail(&slot->node, &mv_chan->free_slots);
457 		spin_unlock_bh(&mv_chan->lock);
458 	}
459 
460 	dev_dbg(mv_chan_to_devp(mv_chan),
461 		"allocated %d descriptor slots\n",
462 		mv_chan->slots_allocated);
463 
464 	return mv_chan->slots_allocated ? : -ENOMEM;
465 }
466 
467 static struct dma_async_tx_descriptor *
468 mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
469 		    unsigned int src_cnt, size_t len, unsigned long flags)
470 {
471 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
472 	struct mv_xor_desc_slot *sw_desc;
473 
474 	if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
475 		return NULL;
476 
477 	BUG_ON(len > MV_XOR_MAX_BYTE_COUNT);
478 
479 	dev_dbg(mv_chan_to_devp(mv_chan),
480 		"%s src_cnt: %d len: %u dest %pad flags: %ld\n",
481 		__func__, src_cnt, len, &dest, flags);
482 
483 	sw_desc = mv_chan_alloc_slot(mv_chan);
484 	if (sw_desc) {
485 		sw_desc->type = DMA_XOR;
486 		sw_desc->async_tx.flags = flags;
487 		mv_desc_init(sw_desc, dest, len, flags);
488 		if (mv_chan->op_in_desc == XOR_MODE_IN_DESC)
489 			mv_desc_set_mode(sw_desc);
490 		while (src_cnt--)
491 			mv_desc_set_src_addr(sw_desc, src_cnt, src[src_cnt]);
492 	}
493 
494 	dev_dbg(mv_chan_to_devp(mv_chan),
495 		"%s sw_desc %p async_tx %p \n",
496 		__func__, sw_desc, &sw_desc->async_tx);
497 	return sw_desc ? &sw_desc->async_tx : NULL;
498 }
499 
500 static struct dma_async_tx_descriptor *
501 mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
502 		size_t len, unsigned long flags)
503 {
504 	/*
505 	 * A MEMCPY operation is identical to an XOR operation with only
506 	 * a single source address.
507 	 */
508 	return mv_xor_prep_dma_xor(chan, dest, &src, 1, len, flags);
509 }
510 
511 static struct dma_async_tx_descriptor *
512 mv_xor_prep_dma_interrupt(struct dma_chan *chan, unsigned long flags)
513 {
514 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
515 	dma_addr_t src, dest;
516 	size_t len;
517 
518 	src = mv_chan->dummy_src_addr;
519 	dest = mv_chan->dummy_dst_addr;
520 	len = MV_XOR_MIN_BYTE_COUNT;
521 
522 	/*
523 	 * We implement the DMA_INTERRUPT operation as a minimum sized
524 	 * XOR operation with a single dummy source address.
525 	 */
526 	return mv_xor_prep_dma_xor(chan, dest, &src, 1, len, flags);
527 }
528 
529 static void mv_xor_free_chan_resources(struct dma_chan *chan)
530 {
531 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
532 	struct mv_xor_desc_slot *iter, *_iter;
533 	int in_use_descs = 0;
534 
535 	spin_lock_bh(&mv_chan->lock);
536 
537 	mv_chan_slot_cleanup(mv_chan);
538 
539 	list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
540 					node) {
541 		in_use_descs++;
542 		list_move_tail(&iter->node, &mv_chan->free_slots);
543 	}
544 	list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
545 				 node) {
546 		in_use_descs++;
547 		list_move_tail(&iter->node, &mv_chan->free_slots);
548 	}
549 	list_for_each_entry_safe(iter, _iter, &mv_chan->allocated_slots,
550 				 node) {
551 		in_use_descs++;
552 		list_move_tail(&iter->node, &mv_chan->free_slots);
553 	}
554 	list_for_each_entry_safe_reverse(
555 		iter, _iter, &mv_chan->free_slots, node) {
556 		list_del(&iter->node);
557 		kfree(iter);
558 		mv_chan->slots_allocated--;
559 	}
560 
561 	dev_dbg(mv_chan_to_devp(mv_chan), "%s slots_allocated %d\n",
562 		__func__, mv_chan->slots_allocated);
563 	spin_unlock_bh(&mv_chan->lock);
564 
565 	if (in_use_descs)
566 		dev_err(mv_chan_to_devp(mv_chan),
567 			"freeing %d in use descriptors!\n", in_use_descs);
568 }
569 
570 /**
571  * mv_xor_status - poll the status of an XOR transaction
572  * @chan: XOR channel handle
573  * @cookie: XOR transaction identifier
574  * @txstate: XOR transactions state holder (or NULL)
575  */
576 static enum dma_status mv_xor_status(struct dma_chan *chan,
577 					  dma_cookie_t cookie,
578 					  struct dma_tx_state *txstate)
579 {
580 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
581 	enum dma_status ret;
582 
583 	ret = dma_cookie_status(chan, cookie, txstate);
584 	if (ret == DMA_COMPLETE)
585 		return ret;
586 
587 	spin_lock_bh(&mv_chan->lock);
588 	mv_chan_slot_cleanup(mv_chan);
589 	spin_unlock_bh(&mv_chan->lock);
590 
591 	return dma_cookie_status(chan, cookie, txstate);
592 }
593 
594 static void mv_chan_dump_regs(struct mv_xor_chan *chan)
595 {
596 	u32 val;
597 
598 	val = readl_relaxed(XOR_CONFIG(chan));
599 	dev_err(mv_chan_to_devp(chan), "config       0x%08x\n", val);
600 
601 	val = readl_relaxed(XOR_ACTIVATION(chan));
602 	dev_err(mv_chan_to_devp(chan), "activation   0x%08x\n", val);
603 
604 	val = readl_relaxed(XOR_INTR_CAUSE(chan));
605 	dev_err(mv_chan_to_devp(chan), "intr cause   0x%08x\n", val);
606 
607 	val = readl_relaxed(XOR_INTR_MASK(chan));
608 	dev_err(mv_chan_to_devp(chan), "intr mask    0x%08x\n", val);
609 
610 	val = readl_relaxed(XOR_ERROR_CAUSE(chan));
611 	dev_err(mv_chan_to_devp(chan), "error cause  0x%08x\n", val);
612 
613 	val = readl_relaxed(XOR_ERROR_ADDR(chan));
614 	dev_err(mv_chan_to_devp(chan), "error addr   0x%08x\n", val);
615 }
616 
617 static void mv_chan_err_interrupt_handler(struct mv_xor_chan *chan,
618 					  u32 intr_cause)
619 {
620 	if (intr_cause & XOR_INT_ERR_DECODE) {
621 		dev_dbg(mv_chan_to_devp(chan), "ignoring address decode error\n");
622 		return;
623 	}
624 
625 	dev_err(mv_chan_to_devp(chan), "error on chan %d. intr cause 0x%08x\n",
626 		chan->idx, intr_cause);
627 
628 	mv_chan_dump_regs(chan);
629 	WARN_ON(1);
630 }
631 
632 static irqreturn_t mv_xor_interrupt_handler(int irq, void *data)
633 {
634 	struct mv_xor_chan *chan = data;
635 	u32 intr_cause = mv_chan_get_intr_cause(chan);
636 
637 	dev_dbg(mv_chan_to_devp(chan), "intr cause %x\n", intr_cause);
638 
639 	if (intr_cause & XOR_INTR_ERRORS)
640 		mv_chan_err_interrupt_handler(chan, intr_cause);
641 
642 	tasklet_schedule(&chan->irq_tasklet);
643 
644 	mv_chan_clear_eoc_cause(chan);
645 
646 	return IRQ_HANDLED;
647 }
648 
649 static void mv_xor_issue_pending(struct dma_chan *chan)
650 {
651 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
652 
653 	if (mv_chan->pending >= MV_XOR_THRESHOLD) {
654 		mv_chan->pending = 0;
655 		mv_chan_activate(mv_chan);
656 	}
657 }
658 
659 /*
660  * Perform a transaction to verify the HW works.
661  */
662 
663 static int mv_chan_memcpy_self_test(struct mv_xor_chan *mv_chan)
664 {
665 	int i, ret;
666 	void *src, *dest;
667 	dma_addr_t src_dma, dest_dma;
668 	struct dma_chan *dma_chan;
669 	dma_cookie_t cookie;
670 	struct dma_async_tx_descriptor *tx;
671 	struct dmaengine_unmap_data *unmap;
672 	int err = 0;
673 
674 	src = kmalloc(sizeof(u8) * PAGE_SIZE, GFP_KERNEL);
675 	if (!src)
676 		return -ENOMEM;
677 
678 	dest = kzalloc(sizeof(u8) * PAGE_SIZE, GFP_KERNEL);
679 	if (!dest) {
680 		kfree(src);
681 		return -ENOMEM;
682 	}
683 
684 	/* Fill in src buffer */
685 	for (i = 0; i < PAGE_SIZE; i++)
686 		((u8 *) src)[i] = (u8)i;
687 
688 	dma_chan = &mv_chan->dmachan;
689 	if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
690 		err = -ENODEV;
691 		goto out;
692 	}
693 
694 	unmap = dmaengine_get_unmap_data(dma_chan->device->dev, 2, GFP_KERNEL);
695 	if (!unmap) {
696 		err = -ENOMEM;
697 		goto free_resources;
698 	}
699 
700 	src_dma = dma_map_page(dma_chan->device->dev, virt_to_page(src), 0,
701 				 PAGE_SIZE, DMA_TO_DEVICE);
702 	unmap->addr[0] = src_dma;
703 
704 	ret = dma_mapping_error(dma_chan->device->dev, src_dma);
705 	if (ret) {
706 		err = -ENOMEM;
707 		goto free_resources;
708 	}
709 	unmap->to_cnt = 1;
710 
711 	dest_dma = dma_map_page(dma_chan->device->dev, virt_to_page(dest), 0,
712 				  PAGE_SIZE, DMA_FROM_DEVICE);
713 	unmap->addr[1] = dest_dma;
714 
715 	ret = dma_mapping_error(dma_chan->device->dev, dest_dma);
716 	if (ret) {
717 		err = -ENOMEM;
718 		goto free_resources;
719 	}
720 	unmap->from_cnt = 1;
721 	unmap->len = PAGE_SIZE;
722 
723 	tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
724 				    PAGE_SIZE, 0);
725 	if (!tx) {
726 		dev_err(dma_chan->device->dev,
727 			"Self-test cannot prepare operation, disabling\n");
728 		err = -ENODEV;
729 		goto free_resources;
730 	}
731 
732 	cookie = mv_xor_tx_submit(tx);
733 	if (dma_submit_error(cookie)) {
734 		dev_err(dma_chan->device->dev,
735 			"Self-test submit error, disabling\n");
736 		err = -ENODEV;
737 		goto free_resources;
738 	}
739 
740 	mv_xor_issue_pending(dma_chan);
741 	async_tx_ack(tx);
742 	msleep(1);
743 
744 	if (mv_xor_status(dma_chan, cookie, NULL) !=
745 	    DMA_COMPLETE) {
746 		dev_err(dma_chan->device->dev,
747 			"Self-test copy timed out, disabling\n");
748 		err = -ENODEV;
749 		goto free_resources;
750 	}
751 
752 	dma_sync_single_for_cpu(dma_chan->device->dev, dest_dma,
753 				PAGE_SIZE, DMA_FROM_DEVICE);
754 	if (memcmp(src, dest, PAGE_SIZE)) {
755 		dev_err(dma_chan->device->dev,
756 			"Self-test copy failed compare, disabling\n");
757 		err = -ENODEV;
758 		goto free_resources;
759 	}
760 
761 free_resources:
762 	dmaengine_unmap_put(unmap);
763 	mv_xor_free_chan_resources(dma_chan);
764 out:
765 	kfree(src);
766 	kfree(dest);
767 	return err;
768 }
769 
770 #define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */
771 static int
772 mv_chan_xor_self_test(struct mv_xor_chan *mv_chan)
773 {
774 	int i, src_idx, ret;
775 	struct page *dest;
776 	struct page *xor_srcs[MV_XOR_NUM_SRC_TEST];
777 	dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST];
778 	dma_addr_t dest_dma;
779 	struct dma_async_tx_descriptor *tx;
780 	struct dmaengine_unmap_data *unmap;
781 	struct dma_chan *dma_chan;
782 	dma_cookie_t cookie;
783 	u8 cmp_byte = 0;
784 	u32 cmp_word;
785 	int err = 0;
786 	int src_count = MV_XOR_NUM_SRC_TEST;
787 
788 	for (src_idx = 0; src_idx < src_count; src_idx++) {
789 		xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
790 		if (!xor_srcs[src_idx]) {
791 			while (src_idx--)
792 				__free_page(xor_srcs[src_idx]);
793 			return -ENOMEM;
794 		}
795 	}
796 
797 	dest = alloc_page(GFP_KERNEL);
798 	if (!dest) {
799 		while (src_idx--)
800 			__free_page(xor_srcs[src_idx]);
801 		return -ENOMEM;
802 	}
803 
804 	/* Fill in src buffers */
805 	for (src_idx = 0; src_idx < src_count; src_idx++) {
806 		u8 *ptr = page_address(xor_srcs[src_idx]);
807 		for (i = 0; i < PAGE_SIZE; i++)
808 			ptr[i] = (1 << src_idx);
809 	}
810 
811 	for (src_idx = 0; src_idx < src_count; src_idx++)
812 		cmp_byte ^= (u8) (1 << src_idx);
813 
814 	cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
815 		(cmp_byte << 8) | cmp_byte;
816 
817 	memset(page_address(dest), 0, PAGE_SIZE);
818 
819 	dma_chan = &mv_chan->dmachan;
820 	if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
821 		err = -ENODEV;
822 		goto out;
823 	}
824 
825 	unmap = dmaengine_get_unmap_data(dma_chan->device->dev, src_count + 1,
826 					 GFP_KERNEL);
827 	if (!unmap) {
828 		err = -ENOMEM;
829 		goto free_resources;
830 	}
831 
832 	/* test xor */
833 	for (i = 0; i < src_count; i++) {
834 		unmap->addr[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
835 					      0, PAGE_SIZE, DMA_TO_DEVICE);
836 		dma_srcs[i] = unmap->addr[i];
837 		ret = dma_mapping_error(dma_chan->device->dev, unmap->addr[i]);
838 		if (ret) {
839 			err = -ENOMEM;
840 			goto free_resources;
841 		}
842 		unmap->to_cnt++;
843 	}
844 
845 	unmap->addr[src_count] = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE,
846 				      DMA_FROM_DEVICE);
847 	dest_dma = unmap->addr[src_count];
848 	ret = dma_mapping_error(dma_chan->device->dev, unmap->addr[src_count]);
849 	if (ret) {
850 		err = -ENOMEM;
851 		goto free_resources;
852 	}
853 	unmap->from_cnt = 1;
854 	unmap->len = PAGE_SIZE;
855 
856 	tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
857 				 src_count, PAGE_SIZE, 0);
858 	if (!tx) {
859 		dev_err(dma_chan->device->dev,
860 			"Self-test cannot prepare operation, disabling\n");
861 		err = -ENODEV;
862 		goto free_resources;
863 	}
864 
865 	cookie = mv_xor_tx_submit(tx);
866 	if (dma_submit_error(cookie)) {
867 		dev_err(dma_chan->device->dev,
868 			"Self-test submit error, disabling\n");
869 		err = -ENODEV;
870 		goto free_resources;
871 	}
872 
873 	mv_xor_issue_pending(dma_chan);
874 	async_tx_ack(tx);
875 	msleep(8);
876 
877 	if (mv_xor_status(dma_chan, cookie, NULL) !=
878 	    DMA_COMPLETE) {
879 		dev_err(dma_chan->device->dev,
880 			"Self-test xor timed out, disabling\n");
881 		err = -ENODEV;
882 		goto free_resources;
883 	}
884 
885 	dma_sync_single_for_cpu(dma_chan->device->dev, dest_dma,
886 				PAGE_SIZE, DMA_FROM_DEVICE);
887 	for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
888 		u32 *ptr = page_address(dest);
889 		if (ptr[i] != cmp_word) {
890 			dev_err(dma_chan->device->dev,
891 				"Self-test xor failed compare, disabling. index %d, data %x, expected %x\n",
892 				i, ptr[i], cmp_word);
893 			err = -ENODEV;
894 			goto free_resources;
895 		}
896 	}
897 
898 free_resources:
899 	dmaengine_unmap_put(unmap);
900 	mv_xor_free_chan_resources(dma_chan);
901 out:
902 	src_idx = src_count;
903 	while (src_idx--)
904 		__free_page(xor_srcs[src_idx]);
905 	__free_page(dest);
906 	return err;
907 }
908 
909 static int mv_xor_channel_remove(struct mv_xor_chan *mv_chan)
910 {
911 	struct dma_chan *chan, *_chan;
912 	struct device *dev = mv_chan->dmadev.dev;
913 
914 	dma_async_device_unregister(&mv_chan->dmadev);
915 
916 	dma_free_coherent(dev, MV_XOR_POOL_SIZE,
917 			  mv_chan->dma_desc_pool_virt, mv_chan->dma_desc_pool);
918 	dma_unmap_single(dev, mv_chan->dummy_src_addr,
919 			 MV_XOR_MIN_BYTE_COUNT, DMA_FROM_DEVICE);
920 	dma_unmap_single(dev, mv_chan->dummy_dst_addr,
921 			 MV_XOR_MIN_BYTE_COUNT, DMA_TO_DEVICE);
922 
923 	list_for_each_entry_safe(chan, _chan, &mv_chan->dmadev.channels,
924 				 device_node) {
925 		list_del(&chan->device_node);
926 	}
927 
928 	free_irq(mv_chan->irq, mv_chan);
929 
930 	return 0;
931 }
932 
933 static struct mv_xor_chan *
934 mv_xor_channel_add(struct mv_xor_device *xordev,
935 		   struct platform_device *pdev,
936 		   int idx, dma_cap_mask_t cap_mask, int irq, int op_in_desc)
937 {
938 	int ret = 0;
939 	struct mv_xor_chan *mv_chan;
940 	struct dma_device *dma_dev;
941 
942 	mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL);
943 	if (!mv_chan)
944 		return ERR_PTR(-ENOMEM);
945 
946 	mv_chan->idx = idx;
947 	mv_chan->irq = irq;
948 	mv_chan->op_in_desc = op_in_desc;
949 
950 	dma_dev = &mv_chan->dmadev;
951 
952 	/*
953 	 * These source and destination dummy buffers are used to implement
954 	 * a DMA_INTERRUPT operation as a minimum-sized XOR operation.
955 	 * Hence, we only need to map the buffers at initialization-time.
956 	 */
957 	mv_chan->dummy_src_addr = dma_map_single(dma_dev->dev,
958 		mv_chan->dummy_src, MV_XOR_MIN_BYTE_COUNT, DMA_FROM_DEVICE);
959 	mv_chan->dummy_dst_addr = dma_map_single(dma_dev->dev,
960 		mv_chan->dummy_dst, MV_XOR_MIN_BYTE_COUNT, DMA_TO_DEVICE);
961 
962 	/* allocate coherent memory for hardware descriptors
963 	 * note: writecombine gives slightly better performance, but
964 	 * requires that we explicitly flush the writes
965 	 */
966 	mv_chan->dma_desc_pool_virt =
967 	  dma_alloc_wc(&pdev->dev, MV_XOR_POOL_SIZE, &mv_chan->dma_desc_pool,
968 		       GFP_KERNEL);
969 	if (!mv_chan->dma_desc_pool_virt)
970 		return ERR_PTR(-ENOMEM);
971 
972 	/* discover transaction capabilites from the platform data */
973 	dma_dev->cap_mask = cap_mask;
974 
975 	INIT_LIST_HEAD(&dma_dev->channels);
976 
977 	/* set base routines */
978 	dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources;
979 	dma_dev->device_free_chan_resources = mv_xor_free_chan_resources;
980 	dma_dev->device_tx_status = mv_xor_status;
981 	dma_dev->device_issue_pending = mv_xor_issue_pending;
982 	dma_dev->dev = &pdev->dev;
983 
984 	/* set prep routines based on capability */
985 	if (dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask))
986 		dma_dev->device_prep_dma_interrupt = mv_xor_prep_dma_interrupt;
987 	if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
988 		dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy;
989 	if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
990 		dma_dev->max_xor = 8;
991 		dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor;
992 	}
993 
994 	mv_chan->mmr_base = xordev->xor_base;
995 	mv_chan->mmr_high_base = xordev->xor_high_base;
996 	tasklet_init(&mv_chan->irq_tasklet, mv_xor_tasklet, (unsigned long)
997 		     mv_chan);
998 
999 	/* clear errors before enabling interrupts */
1000 	mv_chan_clear_err_status(mv_chan);
1001 
1002 	ret = request_irq(mv_chan->irq, mv_xor_interrupt_handler,
1003 			  0, dev_name(&pdev->dev), mv_chan);
1004 	if (ret)
1005 		goto err_free_dma;
1006 
1007 	mv_chan_unmask_interrupts(mv_chan);
1008 
1009 	if (mv_chan->op_in_desc == XOR_MODE_IN_DESC)
1010 		mv_chan_set_mode(mv_chan, XOR_OPERATION_MODE_IN_DESC);
1011 	else
1012 		mv_chan_set_mode(mv_chan, XOR_OPERATION_MODE_XOR);
1013 
1014 	spin_lock_init(&mv_chan->lock);
1015 	INIT_LIST_HEAD(&mv_chan->chain);
1016 	INIT_LIST_HEAD(&mv_chan->completed_slots);
1017 	INIT_LIST_HEAD(&mv_chan->free_slots);
1018 	INIT_LIST_HEAD(&mv_chan->allocated_slots);
1019 	mv_chan->dmachan.device = dma_dev;
1020 	dma_cookie_init(&mv_chan->dmachan);
1021 
1022 	list_add_tail(&mv_chan->dmachan.device_node, &dma_dev->channels);
1023 
1024 	if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
1025 		ret = mv_chan_memcpy_self_test(mv_chan);
1026 		dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
1027 		if (ret)
1028 			goto err_free_irq;
1029 	}
1030 
1031 	if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1032 		ret = mv_chan_xor_self_test(mv_chan);
1033 		dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
1034 		if (ret)
1035 			goto err_free_irq;
1036 	}
1037 
1038 	dev_info(&pdev->dev, "Marvell XOR (%s): ( %s%s%s)\n",
1039 		 mv_chan->op_in_desc ? "Descriptor Mode" : "Registers Mode",
1040 		 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
1041 		 dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
1042 		 dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
1043 
1044 	dma_async_device_register(dma_dev);
1045 	return mv_chan;
1046 
1047 err_free_irq:
1048 	free_irq(mv_chan->irq, mv_chan);
1049  err_free_dma:
1050 	dma_free_coherent(&pdev->dev, MV_XOR_POOL_SIZE,
1051 			  mv_chan->dma_desc_pool_virt, mv_chan->dma_desc_pool);
1052 	return ERR_PTR(ret);
1053 }
1054 
1055 static void
1056 mv_xor_conf_mbus_windows(struct mv_xor_device *xordev,
1057 			 const struct mbus_dram_target_info *dram)
1058 {
1059 	void __iomem *base = xordev->xor_high_base;
1060 	u32 win_enable = 0;
1061 	int i;
1062 
1063 	for (i = 0; i < 8; i++) {
1064 		writel(0, base + WINDOW_BASE(i));
1065 		writel(0, base + WINDOW_SIZE(i));
1066 		if (i < 4)
1067 			writel(0, base + WINDOW_REMAP_HIGH(i));
1068 	}
1069 
1070 	for (i = 0; i < dram->num_cs; i++) {
1071 		const struct mbus_dram_window *cs = dram->cs + i;
1072 
1073 		writel((cs->base & 0xffff0000) |
1074 		       (cs->mbus_attr << 8) |
1075 		       dram->mbus_dram_target_id, base + WINDOW_BASE(i));
1076 		writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));
1077 
1078 		win_enable |= (1 << i);
1079 		win_enable |= 3 << (16 + (2 * i));
1080 	}
1081 
1082 	writel(win_enable, base + WINDOW_BAR_ENABLE(0));
1083 	writel(win_enable, base + WINDOW_BAR_ENABLE(1));
1084 	writel(0, base + WINDOW_OVERRIDE_CTRL(0));
1085 	writel(0, base + WINDOW_OVERRIDE_CTRL(1));
1086 }
1087 
1088 /*
1089  * Since this XOR driver is basically used only for RAID5, we don't
1090  * need to care about synchronizing ->suspend with DMA activity,
1091  * because the DMA engine will naturally be quiet due to the block
1092  * devices being suspended.
1093  */
1094 static int mv_xor_suspend(struct platform_device *pdev, pm_message_t state)
1095 {
1096 	struct mv_xor_device *xordev = platform_get_drvdata(pdev);
1097 	int i;
1098 
1099 	for (i = 0; i < MV_XOR_MAX_CHANNELS; i++) {
1100 		struct mv_xor_chan *mv_chan = xordev->channels[i];
1101 
1102 		if (!mv_chan)
1103 			continue;
1104 
1105 		mv_chan->saved_config_reg =
1106 			readl_relaxed(XOR_CONFIG(mv_chan));
1107 		mv_chan->saved_int_mask_reg =
1108 			readl_relaxed(XOR_INTR_MASK(mv_chan));
1109 	}
1110 
1111 	return 0;
1112 }
1113 
1114 static int mv_xor_resume(struct platform_device *dev)
1115 {
1116 	struct mv_xor_device *xordev = platform_get_drvdata(dev);
1117 	const struct mbus_dram_target_info *dram;
1118 	int i;
1119 
1120 	for (i = 0; i < MV_XOR_MAX_CHANNELS; i++) {
1121 		struct mv_xor_chan *mv_chan = xordev->channels[i];
1122 
1123 		if (!mv_chan)
1124 			continue;
1125 
1126 		writel_relaxed(mv_chan->saved_config_reg,
1127 			       XOR_CONFIG(mv_chan));
1128 		writel_relaxed(mv_chan->saved_int_mask_reg,
1129 			       XOR_INTR_MASK(mv_chan));
1130 	}
1131 
1132 	dram = mv_mbus_dram_info();
1133 	if (dram)
1134 		mv_xor_conf_mbus_windows(xordev, dram);
1135 
1136 	return 0;
1137 }
1138 
1139 static const struct of_device_id mv_xor_dt_ids[] = {
1140 	{ .compatible = "marvell,orion-xor", .data = (void *)XOR_MODE_IN_REG },
1141 	{ .compatible = "marvell,armada-380-xor", .data = (void *)XOR_MODE_IN_DESC },
1142 	{},
1143 };
1144 
1145 static unsigned int mv_xor_engine_count;
1146 
1147 static int mv_xor_probe(struct platform_device *pdev)
1148 {
1149 	const struct mbus_dram_target_info *dram;
1150 	struct mv_xor_device *xordev;
1151 	struct mv_xor_platform_data *pdata = dev_get_platdata(&pdev->dev);
1152 	struct resource *res;
1153 	unsigned int max_engines, max_channels;
1154 	int i, ret;
1155 	int op_in_desc;
1156 
1157 	dev_notice(&pdev->dev, "Marvell shared XOR driver\n");
1158 
1159 	xordev = devm_kzalloc(&pdev->dev, sizeof(*xordev), GFP_KERNEL);
1160 	if (!xordev)
1161 		return -ENOMEM;
1162 
1163 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1164 	if (!res)
1165 		return -ENODEV;
1166 
1167 	xordev->xor_base = devm_ioremap(&pdev->dev, res->start,
1168 					resource_size(res));
1169 	if (!xordev->xor_base)
1170 		return -EBUSY;
1171 
1172 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1173 	if (!res)
1174 		return -ENODEV;
1175 
1176 	xordev->xor_high_base = devm_ioremap(&pdev->dev, res->start,
1177 					     resource_size(res));
1178 	if (!xordev->xor_high_base)
1179 		return -EBUSY;
1180 
1181 	platform_set_drvdata(pdev, xordev);
1182 
1183 	/*
1184 	 * (Re-)program MBUS remapping windows if we are asked to.
1185 	 */
1186 	dram = mv_mbus_dram_info();
1187 	if (dram)
1188 		mv_xor_conf_mbus_windows(xordev, dram);
1189 
1190 	/* Not all platforms can gate the clock, so it is not
1191 	 * an error if the clock does not exists.
1192 	 */
1193 	xordev->clk = clk_get(&pdev->dev, NULL);
1194 	if (!IS_ERR(xordev->clk))
1195 		clk_prepare_enable(xordev->clk);
1196 
1197 	/*
1198 	 * We don't want to have more than one channel per CPU in
1199 	 * order for async_tx to perform well. So we limit the number
1200 	 * of engines and channels so that we take into account this
1201 	 * constraint. Note that we also want to use channels from
1202 	 * separate engines when possible.
1203 	 */
1204 	max_engines = num_present_cpus();
1205 	max_channels = min_t(unsigned int,
1206 			     MV_XOR_MAX_CHANNELS,
1207 			     DIV_ROUND_UP(num_present_cpus(), 2));
1208 
1209 	if (mv_xor_engine_count >= max_engines)
1210 		return 0;
1211 
1212 	if (pdev->dev.of_node) {
1213 		struct device_node *np;
1214 		int i = 0;
1215 		const struct of_device_id *of_id =
1216 			of_match_device(mv_xor_dt_ids,
1217 					&pdev->dev);
1218 
1219 		for_each_child_of_node(pdev->dev.of_node, np) {
1220 			struct mv_xor_chan *chan;
1221 			dma_cap_mask_t cap_mask;
1222 			int irq;
1223 			op_in_desc = (int)of_id->data;
1224 
1225 			if (i >= max_channels)
1226 				continue;
1227 
1228 			dma_cap_zero(cap_mask);
1229 			dma_cap_set(DMA_MEMCPY, cap_mask);
1230 			dma_cap_set(DMA_XOR, cap_mask);
1231 			dma_cap_set(DMA_INTERRUPT, cap_mask);
1232 
1233 			irq = irq_of_parse_and_map(np, 0);
1234 			if (!irq) {
1235 				ret = -ENODEV;
1236 				goto err_channel_add;
1237 			}
1238 
1239 			chan = mv_xor_channel_add(xordev, pdev, i,
1240 						  cap_mask, irq, op_in_desc);
1241 			if (IS_ERR(chan)) {
1242 				ret = PTR_ERR(chan);
1243 				irq_dispose_mapping(irq);
1244 				goto err_channel_add;
1245 			}
1246 
1247 			xordev->channels[i] = chan;
1248 			i++;
1249 		}
1250 	} else if (pdata && pdata->channels) {
1251 		for (i = 0; i < max_channels; i++) {
1252 			struct mv_xor_channel_data *cd;
1253 			struct mv_xor_chan *chan;
1254 			int irq;
1255 
1256 			cd = &pdata->channels[i];
1257 			if (!cd) {
1258 				ret = -ENODEV;
1259 				goto err_channel_add;
1260 			}
1261 
1262 			irq = platform_get_irq(pdev, i);
1263 			if (irq < 0) {
1264 				ret = irq;
1265 				goto err_channel_add;
1266 			}
1267 
1268 			chan = mv_xor_channel_add(xordev, pdev, i,
1269 						  cd->cap_mask, irq,
1270 						  XOR_MODE_IN_REG);
1271 			if (IS_ERR(chan)) {
1272 				ret = PTR_ERR(chan);
1273 				goto err_channel_add;
1274 			}
1275 
1276 			xordev->channels[i] = chan;
1277 		}
1278 	}
1279 
1280 	return 0;
1281 
1282 err_channel_add:
1283 	for (i = 0; i < MV_XOR_MAX_CHANNELS; i++)
1284 		if (xordev->channels[i]) {
1285 			mv_xor_channel_remove(xordev->channels[i]);
1286 			if (pdev->dev.of_node)
1287 				irq_dispose_mapping(xordev->channels[i]->irq);
1288 		}
1289 
1290 	if (!IS_ERR(xordev->clk)) {
1291 		clk_disable_unprepare(xordev->clk);
1292 		clk_put(xordev->clk);
1293 	}
1294 
1295 	return ret;
1296 }
1297 
1298 static struct platform_driver mv_xor_driver = {
1299 	.probe		= mv_xor_probe,
1300 	.suspend        = mv_xor_suspend,
1301 	.resume         = mv_xor_resume,
1302 	.driver		= {
1303 		.name	        = MV_XOR_NAME,
1304 		.of_match_table = of_match_ptr(mv_xor_dt_ids),
1305 	},
1306 };
1307 
1308 
1309 static int __init mv_xor_init(void)
1310 {
1311 	return platform_driver_register(&mv_xor_driver);
1312 }
1313 device_initcall(mv_xor_init);
1314 
1315 /*
1316 MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
1317 MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine");
1318 MODULE_LICENSE("GPL");
1319 */
1320