xref: /openbmc/linux/drivers/dma/mv_xor.c (revision 07f2211e)
1 /*
2  * offload engine driver for the Marvell XOR engine
3  * Copyright (C) 2007, 2008, Marvell International Ltd.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18 
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/delay.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/memory.h>
27 #include <plat/mv_xor.h>
28 #include "mv_xor.h"
29 
30 static void mv_xor_issue_pending(struct dma_chan *chan);
31 
32 #define to_mv_xor_chan(chan)		\
33 	container_of(chan, struct mv_xor_chan, common)
34 
35 #define to_mv_xor_device(dev)		\
36 	container_of(dev, struct mv_xor_device, common)
37 
38 #define to_mv_xor_slot(tx)		\
39 	container_of(tx, struct mv_xor_desc_slot, async_tx)
40 
41 static void mv_desc_init(struct mv_xor_desc_slot *desc, unsigned long flags)
42 {
43 	struct mv_xor_desc *hw_desc = desc->hw_desc;
44 
45 	hw_desc->status = (1 << 31);
46 	hw_desc->phy_next_desc = 0;
47 	hw_desc->desc_command = (1 << 31);
48 }
49 
50 static u32 mv_desc_get_dest_addr(struct mv_xor_desc_slot *desc)
51 {
52 	struct mv_xor_desc *hw_desc = desc->hw_desc;
53 	return hw_desc->phy_dest_addr;
54 }
55 
56 static u32 mv_desc_get_src_addr(struct mv_xor_desc_slot *desc,
57 				int src_idx)
58 {
59 	struct mv_xor_desc *hw_desc = desc->hw_desc;
60 	return hw_desc->phy_src_addr[src_idx];
61 }
62 
63 
64 static void mv_desc_set_byte_count(struct mv_xor_desc_slot *desc,
65 				   u32 byte_count)
66 {
67 	struct mv_xor_desc *hw_desc = desc->hw_desc;
68 	hw_desc->byte_count = byte_count;
69 }
70 
71 static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc,
72 				  u32 next_desc_addr)
73 {
74 	struct mv_xor_desc *hw_desc = desc->hw_desc;
75 	BUG_ON(hw_desc->phy_next_desc);
76 	hw_desc->phy_next_desc = next_desc_addr;
77 }
78 
79 static void mv_desc_clear_next_desc(struct mv_xor_desc_slot *desc)
80 {
81 	struct mv_xor_desc *hw_desc = desc->hw_desc;
82 	hw_desc->phy_next_desc = 0;
83 }
84 
85 static void mv_desc_set_block_fill_val(struct mv_xor_desc_slot *desc, u32 val)
86 {
87 	desc->value = val;
88 }
89 
90 static void mv_desc_set_dest_addr(struct mv_xor_desc_slot *desc,
91 				  dma_addr_t addr)
92 {
93 	struct mv_xor_desc *hw_desc = desc->hw_desc;
94 	hw_desc->phy_dest_addr = addr;
95 }
96 
97 static int mv_chan_memset_slot_count(size_t len)
98 {
99 	return 1;
100 }
101 
102 #define mv_chan_memcpy_slot_count(c) mv_chan_memset_slot_count(c)
103 
104 static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc,
105 				 int index, dma_addr_t addr)
106 {
107 	struct mv_xor_desc *hw_desc = desc->hw_desc;
108 	hw_desc->phy_src_addr[index] = addr;
109 	if (desc->type == DMA_XOR)
110 		hw_desc->desc_command |= (1 << index);
111 }
112 
113 static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan)
114 {
115 	return __raw_readl(XOR_CURR_DESC(chan));
116 }
117 
118 static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan,
119 					u32 next_desc_addr)
120 {
121 	__raw_writel(next_desc_addr, XOR_NEXT_DESC(chan));
122 }
123 
124 static void mv_chan_set_dest_pointer(struct mv_xor_chan *chan, u32 desc_addr)
125 {
126 	__raw_writel(desc_addr, XOR_DEST_POINTER(chan));
127 }
128 
129 static void mv_chan_set_block_size(struct mv_xor_chan *chan, u32 block_size)
130 {
131 	__raw_writel(block_size, XOR_BLOCK_SIZE(chan));
132 }
133 
134 static void mv_chan_set_value(struct mv_xor_chan *chan, u32 value)
135 {
136 	__raw_writel(value, XOR_INIT_VALUE_LOW(chan));
137 	__raw_writel(value, XOR_INIT_VALUE_HIGH(chan));
138 }
139 
140 static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan)
141 {
142 	u32 val = __raw_readl(XOR_INTR_MASK(chan));
143 	val |= XOR_INTR_MASK_VALUE << (chan->idx * 16);
144 	__raw_writel(val, XOR_INTR_MASK(chan));
145 }
146 
147 static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan)
148 {
149 	u32 intr_cause = __raw_readl(XOR_INTR_CAUSE(chan));
150 	intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF;
151 	return intr_cause;
152 }
153 
154 static int mv_is_err_intr(u32 intr_cause)
155 {
156 	if (intr_cause & ((1<<4)|(1<<5)|(1<<6)|(1<<7)|(1<<8)|(1<<9)))
157 		return 1;
158 
159 	return 0;
160 }
161 
162 static void mv_xor_device_clear_eoc_cause(struct mv_xor_chan *chan)
163 {
164 	u32 val = (1 << (1 + (chan->idx * 16)));
165 	dev_dbg(chan->device->common.dev, "%s, val 0x%08x\n", __func__, val);
166 	__raw_writel(val, XOR_INTR_CAUSE(chan));
167 }
168 
169 static void mv_xor_device_clear_err_status(struct mv_xor_chan *chan)
170 {
171 	u32 val = 0xFFFF0000 >> (chan->idx * 16);
172 	__raw_writel(val, XOR_INTR_CAUSE(chan));
173 }
174 
175 static int mv_can_chain(struct mv_xor_desc_slot *desc)
176 {
177 	struct mv_xor_desc_slot *chain_old_tail = list_entry(
178 		desc->chain_node.prev, struct mv_xor_desc_slot, chain_node);
179 
180 	if (chain_old_tail->type != desc->type)
181 		return 0;
182 	if (desc->type == DMA_MEMSET)
183 		return 0;
184 
185 	return 1;
186 }
187 
188 static void mv_set_mode(struct mv_xor_chan *chan,
189 			       enum dma_transaction_type type)
190 {
191 	u32 op_mode;
192 	u32 config = __raw_readl(XOR_CONFIG(chan));
193 
194 	switch (type) {
195 	case DMA_XOR:
196 		op_mode = XOR_OPERATION_MODE_XOR;
197 		break;
198 	case DMA_MEMCPY:
199 		op_mode = XOR_OPERATION_MODE_MEMCPY;
200 		break;
201 	case DMA_MEMSET:
202 		op_mode = XOR_OPERATION_MODE_MEMSET;
203 		break;
204 	default:
205 		dev_printk(KERN_ERR, chan->device->common.dev,
206 			   "error: unsupported operation %d.\n",
207 			   type);
208 		BUG();
209 		return;
210 	}
211 
212 	config &= ~0x7;
213 	config |= op_mode;
214 	__raw_writel(config, XOR_CONFIG(chan));
215 	chan->current_type = type;
216 }
217 
218 static void mv_chan_activate(struct mv_xor_chan *chan)
219 {
220 	u32 activation;
221 
222 	dev_dbg(chan->device->common.dev, " activate chan.\n");
223 	activation = __raw_readl(XOR_ACTIVATION(chan));
224 	activation |= 0x1;
225 	__raw_writel(activation, XOR_ACTIVATION(chan));
226 }
227 
228 static char mv_chan_is_busy(struct mv_xor_chan *chan)
229 {
230 	u32 state = __raw_readl(XOR_ACTIVATION(chan));
231 
232 	state = (state >> 4) & 0x3;
233 
234 	return (state == 1) ? 1 : 0;
235 }
236 
237 static int mv_chan_xor_slot_count(size_t len, int src_cnt)
238 {
239 	return 1;
240 }
241 
242 /**
243  * mv_xor_free_slots - flags descriptor slots for reuse
244  * @slot: Slot to free
245  * Caller must hold &mv_chan->lock while calling this function
246  */
247 static void mv_xor_free_slots(struct mv_xor_chan *mv_chan,
248 			      struct mv_xor_desc_slot *slot)
249 {
250 	dev_dbg(mv_chan->device->common.dev, "%s %d slot %p\n",
251 		__func__, __LINE__, slot);
252 
253 	slot->slots_per_op = 0;
254 
255 }
256 
257 /*
258  * mv_xor_start_new_chain - program the engine to operate on new chain headed by
259  * sw_desc
260  * Caller must hold &mv_chan->lock while calling this function
261  */
262 static void mv_xor_start_new_chain(struct mv_xor_chan *mv_chan,
263 				   struct mv_xor_desc_slot *sw_desc)
264 {
265 	dev_dbg(mv_chan->device->common.dev, "%s %d: sw_desc %p\n",
266 		__func__, __LINE__, sw_desc);
267 	if (sw_desc->type != mv_chan->current_type)
268 		mv_set_mode(mv_chan, sw_desc->type);
269 
270 	if (sw_desc->type == DMA_MEMSET) {
271 		/* for memset requests we need to program the engine, no
272 		 * descriptors used.
273 		 */
274 		struct mv_xor_desc *hw_desc = sw_desc->hw_desc;
275 		mv_chan_set_dest_pointer(mv_chan, hw_desc->phy_dest_addr);
276 		mv_chan_set_block_size(mv_chan, sw_desc->unmap_len);
277 		mv_chan_set_value(mv_chan, sw_desc->value);
278 	} else {
279 		/* set the hardware chain */
280 		mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys);
281 	}
282 	mv_chan->pending += sw_desc->slot_cnt;
283 	mv_xor_issue_pending(&mv_chan->common);
284 }
285 
286 static dma_cookie_t
287 mv_xor_run_tx_complete_actions(struct mv_xor_desc_slot *desc,
288 	struct mv_xor_chan *mv_chan, dma_cookie_t cookie)
289 {
290 	BUG_ON(desc->async_tx.cookie < 0);
291 
292 	if (desc->async_tx.cookie > 0) {
293 		cookie = desc->async_tx.cookie;
294 
295 		/* call the callback (must not sleep or submit new
296 		 * operations to this channel)
297 		 */
298 		if (desc->async_tx.callback)
299 			desc->async_tx.callback(
300 				desc->async_tx.callback_param);
301 
302 		/* unmap dma addresses
303 		 * (unmap_single vs unmap_page?)
304 		 */
305 		if (desc->group_head && desc->unmap_len) {
306 			struct mv_xor_desc_slot *unmap = desc->group_head;
307 			struct device *dev =
308 				&mv_chan->device->pdev->dev;
309 			u32 len = unmap->unmap_len;
310 			enum dma_ctrl_flags flags = desc->async_tx.flags;
311 			u32 src_cnt;
312 			dma_addr_t addr;
313 			dma_addr_t dest;
314 
315 			src_cnt = unmap->unmap_src_cnt;
316 			dest = mv_desc_get_dest_addr(unmap);
317 			if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
318 				enum dma_data_direction dir;
319 
320 				if (src_cnt > 1) /* is xor ? */
321 					dir = DMA_BIDIRECTIONAL;
322 				else
323 					dir = DMA_FROM_DEVICE;
324 				dma_unmap_page(dev, dest, len, dir);
325 			}
326 
327 			if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
328 				while (src_cnt--) {
329 					addr = mv_desc_get_src_addr(unmap,
330 								    src_cnt);
331 					if (addr == dest)
332 						continue;
333 					dma_unmap_page(dev, addr, len,
334 						       DMA_TO_DEVICE);
335 				}
336 			}
337 			desc->group_head = NULL;
338 		}
339 	}
340 
341 	/* run dependent operations */
342 	dma_run_dependencies(&desc->async_tx);
343 
344 	return cookie;
345 }
346 
347 static int
348 mv_xor_clean_completed_slots(struct mv_xor_chan *mv_chan)
349 {
350 	struct mv_xor_desc_slot *iter, *_iter;
351 
352 	dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
353 	list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
354 				 completed_node) {
355 
356 		if (async_tx_test_ack(&iter->async_tx)) {
357 			list_del(&iter->completed_node);
358 			mv_xor_free_slots(mv_chan, iter);
359 		}
360 	}
361 	return 0;
362 }
363 
364 static int
365 mv_xor_clean_slot(struct mv_xor_desc_slot *desc,
366 	struct mv_xor_chan *mv_chan)
367 {
368 	dev_dbg(mv_chan->device->common.dev, "%s %d: desc %p flags %d\n",
369 		__func__, __LINE__, desc, desc->async_tx.flags);
370 	list_del(&desc->chain_node);
371 	/* the client is allowed to attach dependent operations
372 	 * until 'ack' is set
373 	 */
374 	if (!async_tx_test_ack(&desc->async_tx)) {
375 		/* move this slot to the completed_slots */
376 		list_add_tail(&desc->completed_node, &mv_chan->completed_slots);
377 		return 0;
378 	}
379 
380 	mv_xor_free_slots(mv_chan, desc);
381 	return 0;
382 }
383 
384 static void __mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
385 {
386 	struct mv_xor_desc_slot *iter, *_iter;
387 	dma_cookie_t cookie = 0;
388 	int busy = mv_chan_is_busy(mv_chan);
389 	u32 current_desc = mv_chan_get_current_desc(mv_chan);
390 	int seen_current = 0;
391 
392 	dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
393 	dev_dbg(mv_chan->device->common.dev, "current_desc %x\n", current_desc);
394 	mv_xor_clean_completed_slots(mv_chan);
395 
396 	/* free completed slots from the chain starting with
397 	 * the oldest descriptor
398 	 */
399 
400 	list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
401 					chain_node) {
402 		prefetch(_iter);
403 		prefetch(&_iter->async_tx);
404 
405 		/* do not advance past the current descriptor loaded into the
406 		 * hardware channel, subsequent descriptors are either in
407 		 * process or have not been submitted
408 		 */
409 		if (seen_current)
410 			break;
411 
412 		/* stop the search if we reach the current descriptor and the
413 		 * channel is busy
414 		 */
415 		if (iter->async_tx.phys == current_desc) {
416 			seen_current = 1;
417 			if (busy)
418 				break;
419 		}
420 
421 		cookie = mv_xor_run_tx_complete_actions(iter, mv_chan, cookie);
422 
423 		if (mv_xor_clean_slot(iter, mv_chan))
424 			break;
425 	}
426 
427 	if ((busy == 0) && !list_empty(&mv_chan->chain)) {
428 		struct mv_xor_desc_slot *chain_head;
429 		chain_head = list_entry(mv_chan->chain.next,
430 					struct mv_xor_desc_slot,
431 					chain_node);
432 
433 		mv_xor_start_new_chain(mv_chan, chain_head);
434 	}
435 
436 	if (cookie > 0)
437 		mv_chan->completed_cookie = cookie;
438 }
439 
440 static void
441 mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
442 {
443 	spin_lock_bh(&mv_chan->lock);
444 	__mv_xor_slot_cleanup(mv_chan);
445 	spin_unlock_bh(&mv_chan->lock);
446 }
447 
448 static void mv_xor_tasklet(unsigned long data)
449 {
450 	struct mv_xor_chan *chan = (struct mv_xor_chan *) data;
451 	__mv_xor_slot_cleanup(chan);
452 }
453 
454 static struct mv_xor_desc_slot *
455 mv_xor_alloc_slots(struct mv_xor_chan *mv_chan, int num_slots,
456 		    int slots_per_op)
457 {
458 	struct mv_xor_desc_slot *iter, *_iter, *alloc_start = NULL;
459 	LIST_HEAD(chain);
460 	int slots_found, retry = 0;
461 
462 	/* start search from the last allocated descrtiptor
463 	 * if a contiguous allocation can not be found start searching
464 	 * from the beginning of the list
465 	 */
466 retry:
467 	slots_found = 0;
468 	if (retry == 0)
469 		iter = mv_chan->last_used;
470 	else
471 		iter = list_entry(&mv_chan->all_slots,
472 			struct mv_xor_desc_slot,
473 			slot_node);
474 
475 	list_for_each_entry_safe_continue(
476 		iter, _iter, &mv_chan->all_slots, slot_node) {
477 		prefetch(_iter);
478 		prefetch(&_iter->async_tx);
479 		if (iter->slots_per_op) {
480 			/* give up after finding the first busy slot
481 			 * on the second pass through the list
482 			 */
483 			if (retry)
484 				break;
485 
486 			slots_found = 0;
487 			continue;
488 		}
489 
490 		/* start the allocation if the slot is correctly aligned */
491 		if (!slots_found++)
492 			alloc_start = iter;
493 
494 		if (slots_found == num_slots) {
495 			struct mv_xor_desc_slot *alloc_tail = NULL;
496 			struct mv_xor_desc_slot *last_used = NULL;
497 			iter = alloc_start;
498 			while (num_slots) {
499 				int i;
500 
501 				/* pre-ack all but the last descriptor */
502 				async_tx_ack(&iter->async_tx);
503 
504 				list_add_tail(&iter->chain_node, &chain);
505 				alloc_tail = iter;
506 				iter->async_tx.cookie = 0;
507 				iter->slot_cnt = num_slots;
508 				iter->xor_check_result = NULL;
509 				for (i = 0; i < slots_per_op; i++) {
510 					iter->slots_per_op = slots_per_op - i;
511 					last_used = iter;
512 					iter = list_entry(iter->slot_node.next,
513 						struct mv_xor_desc_slot,
514 						slot_node);
515 				}
516 				num_slots -= slots_per_op;
517 			}
518 			alloc_tail->group_head = alloc_start;
519 			alloc_tail->async_tx.cookie = -EBUSY;
520 			list_splice(&chain, &alloc_tail->async_tx.tx_list);
521 			mv_chan->last_used = last_used;
522 			mv_desc_clear_next_desc(alloc_start);
523 			mv_desc_clear_next_desc(alloc_tail);
524 			return alloc_tail;
525 		}
526 	}
527 	if (!retry++)
528 		goto retry;
529 
530 	/* try to free some slots if the allocation fails */
531 	tasklet_schedule(&mv_chan->irq_tasklet);
532 
533 	return NULL;
534 }
535 
536 static dma_cookie_t
537 mv_desc_assign_cookie(struct mv_xor_chan *mv_chan,
538 		      struct mv_xor_desc_slot *desc)
539 {
540 	dma_cookie_t cookie = mv_chan->common.cookie;
541 
542 	if (++cookie < 0)
543 		cookie = 1;
544 	mv_chan->common.cookie = desc->async_tx.cookie = cookie;
545 	return cookie;
546 }
547 
548 /************************ DMA engine API functions ****************************/
549 static dma_cookie_t
550 mv_xor_tx_submit(struct dma_async_tx_descriptor *tx)
551 {
552 	struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx);
553 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan);
554 	struct mv_xor_desc_slot *grp_start, *old_chain_tail;
555 	dma_cookie_t cookie;
556 	int new_hw_chain = 1;
557 
558 	dev_dbg(mv_chan->device->common.dev,
559 		"%s sw_desc %p: async_tx %p\n",
560 		__func__, sw_desc, &sw_desc->async_tx);
561 
562 	grp_start = sw_desc->group_head;
563 
564 	spin_lock_bh(&mv_chan->lock);
565 	cookie = mv_desc_assign_cookie(mv_chan, sw_desc);
566 
567 	if (list_empty(&mv_chan->chain))
568 		list_splice_init(&sw_desc->async_tx.tx_list, &mv_chan->chain);
569 	else {
570 		new_hw_chain = 0;
571 
572 		old_chain_tail = list_entry(mv_chan->chain.prev,
573 					    struct mv_xor_desc_slot,
574 					    chain_node);
575 		list_splice_init(&grp_start->async_tx.tx_list,
576 				 &old_chain_tail->chain_node);
577 
578 		if (!mv_can_chain(grp_start))
579 			goto submit_done;
580 
581 		dev_dbg(mv_chan->device->common.dev, "Append to last desc %x\n",
582 			old_chain_tail->async_tx.phys);
583 
584 		/* fix up the hardware chain */
585 		mv_desc_set_next_desc(old_chain_tail, grp_start->async_tx.phys);
586 
587 		/* if the channel is not busy */
588 		if (!mv_chan_is_busy(mv_chan)) {
589 			u32 current_desc = mv_chan_get_current_desc(mv_chan);
590 			/*
591 			 * and the curren desc is the end of the chain before
592 			 * the append, then we need to start the channel
593 			 */
594 			if (current_desc == old_chain_tail->async_tx.phys)
595 				new_hw_chain = 1;
596 		}
597 	}
598 
599 	if (new_hw_chain)
600 		mv_xor_start_new_chain(mv_chan, grp_start);
601 
602 submit_done:
603 	spin_unlock_bh(&mv_chan->lock);
604 
605 	return cookie;
606 }
607 
608 /* returns the number of allocated descriptors */
609 static int mv_xor_alloc_chan_resources(struct dma_chan *chan,
610 				       struct dma_client *client)
611 {
612 	char *hw_desc;
613 	int idx;
614 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
615 	struct mv_xor_desc_slot *slot = NULL;
616 	struct mv_xor_platform_data *plat_data =
617 		mv_chan->device->pdev->dev.platform_data;
618 	int num_descs_in_pool = plat_data->pool_size/MV_XOR_SLOT_SIZE;
619 
620 	/* Allocate descriptor slots */
621 	idx = mv_chan->slots_allocated;
622 	while (idx < num_descs_in_pool) {
623 		slot = kzalloc(sizeof(*slot), GFP_KERNEL);
624 		if (!slot) {
625 			printk(KERN_INFO "MV XOR Channel only initialized"
626 				" %d descriptor slots", idx);
627 			break;
628 		}
629 		hw_desc = (char *) mv_chan->device->dma_desc_pool_virt;
630 		slot->hw_desc = (void *) &hw_desc[idx * MV_XOR_SLOT_SIZE];
631 
632 		dma_async_tx_descriptor_init(&slot->async_tx, chan);
633 		slot->async_tx.tx_submit = mv_xor_tx_submit;
634 		INIT_LIST_HEAD(&slot->chain_node);
635 		INIT_LIST_HEAD(&slot->slot_node);
636 		INIT_LIST_HEAD(&slot->async_tx.tx_list);
637 		hw_desc = (char *) mv_chan->device->dma_desc_pool;
638 		slot->async_tx.phys =
639 			(dma_addr_t) &hw_desc[idx * MV_XOR_SLOT_SIZE];
640 		slot->idx = idx++;
641 
642 		spin_lock_bh(&mv_chan->lock);
643 		mv_chan->slots_allocated = idx;
644 		list_add_tail(&slot->slot_node, &mv_chan->all_slots);
645 		spin_unlock_bh(&mv_chan->lock);
646 	}
647 
648 	if (mv_chan->slots_allocated && !mv_chan->last_used)
649 		mv_chan->last_used = list_entry(mv_chan->all_slots.next,
650 					struct mv_xor_desc_slot,
651 					slot_node);
652 
653 	dev_dbg(mv_chan->device->common.dev,
654 		"allocated %d descriptor slots last_used: %p\n",
655 		mv_chan->slots_allocated, mv_chan->last_used);
656 
657 	return mv_chan->slots_allocated ? : -ENOMEM;
658 }
659 
660 static struct dma_async_tx_descriptor *
661 mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
662 		size_t len, unsigned long flags)
663 {
664 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
665 	struct mv_xor_desc_slot *sw_desc, *grp_start;
666 	int slot_cnt;
667 
668 	dev_dbg(mv_chan->device->common.dev,
669 		"%s dest: %x src %x len: %u flags: %ld\n",
670 		__func__, dest, src, len, flags);
671 	if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
672 		return NULL;
673 
674 	BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
675 
676 	spin_lock_bh(&mv_chan->lock);
677 	slot_cnt = mv_chan_memcpy_slot_count(len);
678 	sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
679 	if (sw_desc) {
680 		sw_desc->type = DMA_MEMCPY;
681 		sw_desc->async_tx.flags = flags;
682 		grp_start = sw_desc->group_head;
683 		mv_desc_init(grp_start, flags);
684 		mv_desc_set_byte_count(grp_start, len);
685 		mv_desc_set_dest_addr(sw_desc->group_head, dest);
686 		mv_desc_set_src_addr(grp_start, 0, src);
687 		sw_desc->unmap_src_cnt = 1;
688 		sw_desc->unmap_len = len;
689 	}
690 	spin_unlock_bh(&mv_chan->lock);
691 
692 	dev_dbg(mv_chan->device->common.dev,
693 		"%s sw_desc %p async_tx %p\n",
694 		__func__, sw_desc, sw_desc ? &sw_desc->async_tx : 0);
695 
696 	return sw_desc ? &sw_desc->async_tx : NULL;
697 }
698 
699 static struct dma_async_tx_descriptor *
700 mv_xor_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
701 		       size_t len, unsigned long flags)
702 {
703 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
704 	struct mv_xor_desc_slot *sw_desc, *grp_start;
705 	int slot_cnt;
706 
707 	dev_dbg(mv_chan->device->common.dev,
708 		"%s dest: %x len: %u flags: %ld\n",
709 		__func__, dest, len, flags);
710 	if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
711 		return NULL;
712 
713 	BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
714 
715 	spin_lock_bh(&mv_chan->lock);
716 	slot_cnt = mv_chan_memset_slot_count(len);
717 	sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
718 	if (sw_desc) {
719 		sw_desc->type = DMA_MEMSET;
720 		sw_desc->async_tx.flags = flags;
721 		grp_start = sw_desc->group_head;
722 		mv_desc_init(grp_start, flags);
723 		mv_desc_set_byte_count(grp_start, len);
724 		mv_desc_set_dest_addr(sw_desc->group_head, dest);
725 		mv_desc_set_block_fill_val(grp_start, value);
726 		sw_desc->unmap_src_cnt = 1;
727 		sw_desc->unmap_len = len;
728 	}
729 	spin_unlock_bh(&mv_chan->lock);
730 	dev_dbg(mv_chan->device->common.dev,
731 		"%s sw_desc %p async_tx %p \n",
732 		__func__, sw_desc, &sw_desc->async_tx);
733 	return sw_desc ? &sw_desc->async_tx : NULL;
734 }
735 
736 static struct dma_async_tx_descriptor *
737 mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
738 		    unsigned int src_cnt, size_t len, unsigned long flags)
739 {
740 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
741 	struct mv_xor_desc_slot *sw_desc, *grp_start;
742 	int slot_cnt;
743 
744 	if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
745 		return NULL;
746 
747 	BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
748 
749 	dev_dbg(mv_chan->device->common.dev,
750 		"%s src_cnt: %d len: dest %x %u flags: %ld\n",
751 		__func__, src_cnt, len, dest, flags);
752 
753 	spin_lock_bh(&mv_chan->lock);
754 	slot_cnt = mv_chan_xor_slot_count(len, src_cnt);
755 	sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
756 	if (sw_desc) {
757 		sw_desc->type = DMA_XOR;
758 		sw_desc->async_tx.flags = flags;
759 		grp_start = sw_desc->group_head;
760 		mv_desc_init(grp_start, flags);
761 		/* the byte count field is the same as in memcpy desc*/
762 		mv_desc_set_byte_count(grp_start, len);
763 		mv_desc_set_dest_addr(sw_desc->group_head, dest);
764 		sw_desc->unmap_src_cnt = src_cnt;
765 		sw_desc->unmap_len = len;
766 		while (src_cnt--)
767 			mv_desc_set_src_addr(grp_start, src_cnt, src[src_cnt]);
768 	}
769 	spin_unlock_bh(&mv_chan->lock);
770 	dev_dbg(mv_chan->device->common.dev,
771 		"%s sw_desc %p async_tx %p \n",
772 		__func__, sw_desc, &sw_desc->async_tx);
773 	return sw_desc ? &sw_desc->async_tx : NULL;
774 }
775 
776 static void mv_xor_free_chan_resources(struct dma_chan *chan)
777 {
778 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
779 	struct mv_xor_desc_slot *iter, *_iter;
780 	int in_use_descs = 0;
781 
782 	mv_xor_slot_cleanup(mv_chan);
783 
784 	spin_lock_bh(&mv_chan->lock);
785 	list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
786 					chain_node) {
787 		in_use_descs++;
788 		list_del(&iter->chain_node);
789 	}
790 	list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
791 				 completed_node) {
792 		in_use_descs++;
793 		list_del(&iter->completed_node);
794 	}
795 	list_for_each_entry_safe_reverse(
796 		iter, _iter, &mv_chan->all_slots, slot_node) {
797 		list_del(&iter->slot_node);
798 		kfree(iter);
799 		mv_chan->slots_allocated--;
800 	}
801 	mv_chan->last_used = NULL;
802 
803 	dev_dbg(mv_chan->device->common.dev, "%s slots_allocated %d\n",
804 		__func__, mv_chan->slots_allocated);
805 	spin_unlock_bh(&mv_chan->lock);
806 
807 	if (in_use_descs)
808 		dev_err(mv_chan->device->common.dev,
809 			"freeing %d in use descriptors!\n", in_use_descs);
810 }
811 
812 /**
813  * mv_xor_is_complete - poll the status of an XOR transaction
814  * @chan: XOR channel handle
815  * @cookie: XOR transaction identifier
816  */
817 static enum dma_status mv_xor_is_complete(struct dma_chan *chan,
818 					  dma_cookie_t cookie,
819 					  dma_cookie_t *done,
820 					  dma_cookie_t *used)
821 {
822 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
823 	dma_cookie_t last_used;
824 	dma_cookie_t last_complete;
825 	enum dma_status ret;
826 
827 	last_used = chan->cookie;
828 	last_complete = mv_chan->completed_cookie;
829 	mv_chan->is_complete_cookie = cookie;
830 	if (done)
831 		*done = last_complete;
832 	if (used)
833 		*used = last_used;
834 
835 	ret = dma_async_is_complete(cookie, last_complete, last_used);
836 	if (ret == DMA_SUCCESS) {
837 		mv_xor_clean_completed_slots(mv_chan);
838 		return ret;
839 	}
840 	mv_xor_slot_cleanup(mv_chan);
841 
842 	last_used = chan->cookie;
843 	last_complete = mv_chan->completed_cookie;
844 
845 	if (done)
846 		*done = last_complete;
847 	if (used)
848 		*used = last_used;
849 
850 	return dma_async_is_complete(cookie, last_complete, last_used);
851 }
852 
853 static void mv_dump_xor_regs(struct mv_xor_chan *chan)
854 {
855 	u32 val;
856 
857 	val = __raw_readl(XOR_CONFIG(chan));
858 	dev_printk(KERN_ERR, chan->device->common.dev,
859 		   "config       0x%08x.\n", val);
860 
861 	val = __raw_readl(XOR_ACTIVATION(chan));
862 	dev_printk(KERN_ERR, chan->device->common.dev,
863 		   "activation   0x%08x.\n", val);
864 
865 	val = __raw_readl(XOR_INTR_CAUSE(chan));
866 	dev_printk(KERN_ERR, chan->device->common.dev,
867 		   "intr cause   0x%08x.\n", val);
868 
869 	val = __raw_readl(XOR_INTR_MASK(chan));
870 	dev_printk(KERN_ERR, chan->device->common.dev,
871 		   "intr mask    0x%08x.\n", val);
872 
873 	val = __raw_readl(XOR_ERROR_CAUSE(chan));
874 	dev_printk(KERN_ERR, chan->device->common.dev,
875 		   "error cause  0x%08x.\n", val);
876 
877 	val = __raw_readl(XOR_ERROR_ADDR(chan));
878 	dev_printk(KERN_ERR, chan->device->common.dev,
879 		   "error addr   0x%08x.\n", val);
880 }
881 
882 static void mv_xor_err_interrupt_handler(struct mv_xor_chan *chan,
883 					 u32 intr_cause)
884 {
885 	if (intr_cause & (1 << 4)) {
886 	     dev_dbg(chan->device->common.dev,
887 		     "ignore this error\n");
888 	     return;
889 	}
890 
891 	dev_printk(KERN_ERR, chan->device->common.dev,
892 		   "error on chan %d. intr cause 0x%08x.\n",
893 		   chan->idx, intr_cause);
894 
895 	mv_dump_xor_regs(chan);
896 	BUG();
897 }
898 
899 static irqreturn_t mv_xor_interrupt_handler(int irq, void *data)
900 {
901 	struct mv_xor_chan *chan = data;
902 	u32 intr_cause = mv_chan_get_intr_cause(chan);
903 
904 	dev_dbg(chan->device->common.dev, "intr cause %x\n", intr_cause);
905 
906 	if (mv_is_err_intr(intr_cause))
907 		mv_xor_err_interrupt_handler(chan, intr_cause);
908 
909 	tasklet_schedule(&chan->irq_tasklet);
910 
911 	mv_xor_device_clear_eoc_cause(chan);
912 
913 	return IRQ_HANDLED;
914 }
915 
916 static void mv_xor_issue_pending(struct dma_chan *chan)
917 {
918 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
919 
920 	if (mv_chan->pending >= MV_XOR_THRESHOLD) {
921 		mv_chan->pending = 0;
922 		mv_chan_activate(mv_chan);
923 	}
924 }
925 
926 /*
927  * Perform a transaction to verify the HW works.
928  */
929 #define MV_XOR_TEST_SIZE 2000
930 
931 static int __devinit mv_xor_memcpy_self_test(struct mv_xor_device *device)
932 {
933 	int i;
934 	void *src, *dest;
935 	dma_addr_t src_dma, dest_dma;
936 	struct dma_chan *dma_chan;
937 	dma_cookie_t cookie;
938 	struct dma_async_tx_descriptor *tx;
939 	int err = 0;
940 	struct mv_xor_chan *mv_chan;
941 
942 	src = kmalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
943 	if (!src)
944 		return -ENOMEM;
945 
946 	dest = kzalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
947 	if (!dest) {
948 		kfree(src);
949 		return -ENOMEM;
950 	}
951 
952 	/* Fill in src buffer */
953 	for (i = 0; i < MV_XOR_TEST_SIZE; i++)
954 		((u8 *) src)[i] = (u8)i;
955 
956 	/* Start copy, using first DMA channel */
957 	dma_chan = container_of(device->common.channels.next,
958 				struct dma_chan,
959 				device_node);
960 	if (mv_xor_alloc_chan_resources(dma_chan, NULL) < 1) {
961 		err = -ENODEV;
962 		goto out;
963 	}
964 
965 	dest_dma = dma_map_single(dma_chan->device->dev, dest,
966 				  MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
967 
968 	src_dma = dma_map_single(dma_chan->device->dev, src,
969 				 MV_XOR_TEST_SIZE, DMA_TO_DEVICE);
970 
971 	tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
972 				    MV_XOR_TEST_SIZE, 0);
973 	cookie = mv_xor_tx_submit(tx);
974 	mv_xor_issue_pending(dma_chan);
975 	async_tx_ack(tx);
976 	msleep(1);
977 
978 	if (mv_xor_is_complete(dma_chan, cookie, NULL, NULL) !=
979 	    DMA_SUCCESS) {
980 		dev_printk(KERN_ERR, dma_chan->device->dev,
981 			   "Self-test copy timed out, disabling\n");
982 		err = -ENODEV;
983 		goto free_resources;
984 	}
985 
986 	mv_chan = to_mv_xor_chan(dma_chan);
987 	dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
988 				MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
989 	if (memcmp(src, dest, MV_XOR_TEST_SIZE)) {
990 		dev_printk(KERN_ERR, dma_chan->device->dev,
991 			   "Self-test copy failed compare, disabling\n");
992 		err = -ENODEV;
993 		goto free_resources;
994 	}
995 
996 free_resources:
997 	mv_xor_free_chan_resources(dma_chan);
998 out:
999 	kfree(src);
1000 	kfree(dest);
1001 	return err;
1002 }
1003 
1004 #define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */
1005 static int __devinit
1006 mv_xor_xor_self_test(struct mv_xor_device *device)
1007 {
1008 	int i, src_idx;
1009 	struct page *dest;
1010 	struct page *xor_srcs[MV_XOR_NUM_SRC_TEST];
1011 	dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST];
1012 	dma_addr_t dest_dma;
1013 	struct dma_async_tx_descriptor *tx;
1014 	struct dma_chan *dma_chan;
1015 	dma_cookie_t cookie;
1016 	u8 cmp_byte = 0;
1017 	u32 cmp_word;
1018 	int err = 0;
1019 	struct mv_xor_chan *mv_chan;
1020 
1021 	for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
1022 		xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
1023 		if (!xor_srcs[src_idx])
1024 			while (src_idx--) {
1025 				__free_page(xor_srcs[src_idx]);
1026 				return -ENOMEM;
1027 			}
1028 	}
1029 
1030 	dest = alloc_page(GFP_KERNEL);
1031 	if (!dest)
1032 		while (src_idx--) {
1033 			__free_page(xor_srcs[src_idx]);
1034 			return -ENOMEM;
1035 		}
1036 
1037 	/* Fill in src buffers */
1038 	for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
1039 		u8 *ptr = page_address(xor_srcs[src_idx]);
1040 		for (i = 0; i < PAGE_SIZE; i++)
1041 			ptr[i] = (1 << src_idx);
1042 	}
1043 
1044 	for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++)
1045 		cmp_byte ^= (u8) (1 << src_idx);
1046 
1047 	cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
1048 		(cmp_byte << 8) | cmp_byte;
1049 
1050 	memset(page_address(dest), 0, PAGE_SIZE);
1051 
1052 	dma_chan = container_of(device->common.channels.next,
1053 				struct dma_chan,
1054 				device_node);
1055 	if (mv_xor_alloc_chan_resources(dma_chan, NULL) < 1) {
1056 		err = -ENODEV;
1057 		goto out;
1058 	}
1059 
1060 	/* test xor */
1061 	dest_dma = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE,
1062 				DMA_FROM_DEVICE);
1063 
1064 	for (i = 0; i < MV_XOR_NUM_SRC_TEST; i++)
1065 		dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
1066 					   0, PAGE_SIZE, DMA_TO_DEVICE);
1067 
1068 	tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
1069 				 MV_XOR_NUM_SRC_TEST, PAGE_SIZE, 0);
1070 
1071 	cookie = mv_xor_tx_submit(tx);
1072 	mv_xor_issue_pending(dma_chan);
1073 	async_tx_ack(tx);
1074 	msleep(8);
1075 
1076 	if (mv_xor_is_complete(dma_chan, cookie, NULL, NULL) !=
1077 	    DMA_SUCCESS) {
1078 		dev_printk(KERN_ERR, dma_chan->device->dev,
1079 			   "Self-test xor timed out, disabling\n");
1080 		err = -ENODEV;
1081 		goto free_resources;
1082 	}
1083 
1084 	mv_chan = to_mv_xor_chan(dma_chan);
1085 	dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
1086 				PAGE_SIZE, DMA_FROM_DEVICE);
1087 	for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
1088 		u32 *ptr = page_address(dest);
1089 		if (ptr[i] != cmp_word) {
1090 			dev_printk(KERN_ERR, dma_chan->device->dev,
1091 				   "Self-test xor failed compare, disabling."
1092 				   " index %d, data %x, expected %x\n", i,
1093 				   ptr[i], cmp_word);
1094 			err = -ENODEV;
1095 			goto free_resources;
1096 		}
1097 	}
1098 
1099 free_resources:
1100 	mv_xor_free_chan_resources(dma_chan);
1101 out:
1102 	src_idx = MV_XOR_NUM_SRC_TEST;
1103 	while (src_idx--)
1104 		__free_page(xor_srcs[src_idx]);
1105 	__free_page(dest);
1106 	return err;
1107 }
1108 
1109 static int __devexit mv_xor_remove(struct platform_device *dev)
1110 {
1111 	struct mv_xor_device *device = platform_get_drvdata(dev);
1112 	struct dma_chan *chan, *_chan;
1113 	struct mv_xor_chan *mv_chan;
1114 	struct mv_xor_platform_data *plat_data = dev->dev.platform_data;
1115 
1116 	dma_async_device_unregister(&device->common);
1117 
1118 	dma_free_coherent(&dev->dev, plat_data->pool_size,
1119 			device->dma_desc_pool_virt, device->dma_desc_pool);
1120 
1121 	list_for_each_entry_safe(chan, _chan, &device->common.channels,
1122 				device_node) {
1123 		mv_chan = to_mv_xor_chan(chan);
1124 		list_del(&chan->device_node);
1125 	}
1126 
1127 	return 0;
1128 }
1129 
1130 static int __devinit mv_xor_probe(struct platform_device *pdev)
1131 {
1132 	int ret = 0;
1133 	int irq;
1134 	struct mv_xor_device *adev;
1135 	struct mv_xor_chan *mv_chan;
1136 	struct dma_device *dma_dev;
1137 	struct mv_xor_platform_data *plat_data = pdev->dev.platform_data;
1138 
1139 
1140 	adev = devm_kzalloc(&pdev->dev, sizeof(*adev), GFP_KERNEL);
1141 	if (!adev)
1142 		return -ENOMEM;
1143 
1144 	dma_dev = &adev->common;
1145 
1146 	/* allocate coherent memory for hardware descriptors
1147 	 * note: writecombine gives slightly better performance, but
1148 	 * requires that we explicitly flush the writes
1149 	 */
1150 	adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev,
1151 							  plat_data->pool_size,
1152 							  &adev->dma_desc_pool,
1153 							  GFP_KERNEL);
1154 	if (!adev->dma_desc_pool_virt)
1155 		return -ENOMEM;
1156 
1157 	adev->id = plat_data->hw_id;
1158 
1159 	/* discover transaction capabilites from the platform data */
1160 	dma_dev->cap_mask = plat_data->cap_mask;
1161 	adev->pdev = pdev;
1162 	platform_set_drvdata(pdev, adev);
1163 
1164 	adev->shared = platform_get_drvdata(plat_data->shared);
1165 
1166 	INIT_LIST_HEAD(&dma_dev->channels);
1167 
1168 	/* set base routines */
1169 	dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources;
1170 	dma_dev->device_free_chan_resources = mv_xor_free_chan_resources;
1171 	dma_dev->device_is_tx_complete = mv_xor_is_complete;
1172 	dma_dev->device_issue_pending = mv_xor_issue_pending;
1173 	dma_dev->dev = &pdev->dev;
1174 
1175 	/* set prep routines based on capability */
1176 	if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
1177 		dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy;
1178 	if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask))
1179 		dma_dev->device_prep_dma_memset = mv_xor_prep_dma_memset;
1180 	if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1181 		dma_dev->max_xor = 8;                  ;
1182 		dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor;
1183 	}
1184 
1185 	mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL);
1186 	if (!mv_chan) {
1187 		ret = -ENOMEM;
1188 		goto err_free_dma;
1189 	}
1190 	mv_chan->device = adev;
1191 	mv_chan->idx = plat_data->hw_id;
1192 	mv_chan->mmr_base = adev->shared->xor_base;
1193 
1194 	if (!mv_chan->mmr_base) {
1195 		ret = -ENOMEM;
1196 		goto err_free_dma;
1197 	}
1198 	tasklet_init(&mv_chan->irq_tasklet, mv_xor_tasklet, (unsigned long)
1199 		     mv_chan);
1200 
1201 	/* clear errors before enabling interrupts */
1202 	mv_xor_device_clear_err_status(mv_chan);
1203 
1204 	irq = platform_get_irq(pdev, 0);
1205 	if (irq < 0) {
1206 		ret = irq;
1207 		goto err_free_dma;
1208 	}
1209 	ret = devm_request_irq(&pdev->dev, irq,
1210 			       mv_xor_interrupt_handler,
1211 			       0, dev_name(&pdev->dev), mv_chan);
1212 	if (ret)
1213 		goto err_free_dma;
1214 
1215 	mv_chan_unmask_interrupts(mv_chan);
1216 
1217 	mv_set_mode(mv_chan, DMA_MEMCPY);
1218 
1219 	spin_lock_init(&mv_chan->lock);
1220 	INIT_LIST_HEAD(&mv_chan->chain);
1221 	INIT_LIST_HEAD(&mv_chan->completed_slots);
1222 	INIT_LIST_HEAD(&mv_chan->all_slots);
1223 	INIT_RCU_HEAD(&mv_chan->common.rcu);
1224 	mv_chan->common.device = dma_dev;
1225 
1226 	list_add_tail(&mv_chan->common.device_node, &dma_dev->channels);
1227 
1228 	if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
1229 		ret = mv_xor_memcpy_self_test(adev);
1230 		dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
1231 		if (ret)
1232 			goto err_free_dma;
1233 	}
1234 
1235 	if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1236 		ret = mv_xor_xor_self_test(adev);
1237 		dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
1238 		if (ret)
1239 			goto err_free_dma;
1240 	}
1241 
1242 	dev_printk(KERN_INFO, &pdev->dev, "Marvell XOR: "
1243 	  "( %s%s%s%s)\n",
1244 	  dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
1245 	  dma_has_cap(DMA_MEMSET, dma_dev->cap_mask)  ? "fill " : "",
1246 	  dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
1247 	  dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
1248 
1249 	dma_async_device_register(dma_dev);
1250 	goto out;
1251 
1252  err_free_dma:
1253 	dma_free_coherent(&adev->pdev->dev, plat_data->pool_size,
1254 			adev->dma_desc_pool_virt, adev->dma_desc_pool);
1255  out:
1256 	return ret;
1257 }
1258 
1259 static void
1260 mv_xor_conf_mbus_windows(struct mv_xor_shared_private *msp,
1261 			 struct mbus_dram_target_info *dram)
1262 {
1263 	void __iomem *base = msp->xor_base;
1264 	u32 win_enable = 0;
1265 	int i;
1266 
1267 	for (i = 0; i < 8; i++) {
1268 		writel(0, base + WINDOW_BASE(i));
1269 		writel(0, base + WINDOW_SIZE(i));
1270 		if (i < 4)
1271 			writel(0, base + WINDOW_REMAP_HIGH(i));
1272 	}
1273 
1274 	for (i = 0; i < dram->num_cs; i++) {
1275 		struct mbus_dram_window *cs = dram->cs + i;
1276 
1277 		writel((cs->base & 0xffff0000) |
1278 		       (cs->mbus_attr << 8) |
1279 		       dram->mbus_dram_target_id, base + WINDOW_BASE(i));
1280 		writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));
1281 
1282 		win_enable |= (1 << i);
1283 		win_enable |= 3 << (16 + (2 * i));
1284 	}
1285 
1286 	writel(win_enable, base + WINDOW_BAR_ENABLE(0));
1287 	writel(win_enable, base + WINDOW_BAR_ENABLE(1));
1288 }
1289 
1290 static struct platform_driver mv_xor_driver = {
1291 	.probe		= mv_xor_probe,
1292 	.remove		= mv_xor_remove,
1293 	.driver		= {
1294 		.owner	= THIS_MODULE,
1295 		.name	= MV_XOR_NAME,
1296 	},
1297 };
1298 
1299 static int mv_xor_shared_probe(struct platform_device *pdev)
1300 {
1301 	struct mv_xor_platform_shared_data *msd = pdev->dev.platform_data;
1302 	struct mv_xor_shared_private *msp;
1303 	struct resource *res;
1304 
1305 	dev_printk(KERN_NOTICE, &pdev->dev, "Marvell shared XOR driver\n");
1306 
1307 	msp = devm_kzalloc(&pdev->dev, sizeof(*msp), GFP_KERNEL);
1308 	if (!msp)
1309 		return -ENOMEM;
1310 
1311 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1312 	if (!res)
1313 		return -ENODEV;
1314 
1315 	msp->xor_base = devm_ioremap(&pdev->dev, res->start,
1316 				     res->end - res->start + 1);
1317 	if (!msp->xor_base)
1318 		return -EBUSY;
1319 
1320 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1321 	if (!res)
1322 		return -ENODEV;
1323 
1324 	msp->xor_high_base = devm_ioremap(&pdev->dev, res->start,
1325 					  res->end - res->start + 1);
1326 	if (!msp->xor_high_base)
1327 		return -EBUSY;
1328 
1329 	platform_set_drvdata(pdev, msp);
1330 
1331 	/*
1332 	 * (Re-)program MBUS remapping windows if we are asked to.
1333 	 */
1334 	if (msd != NULL && msd->dram != NULL)
1335 		mv_xor_conf_mbus_windows(msp, msd->dram);
1336 
1337 	return 0;
1338 }
1339 
1340 static int mv_xor_shared_remove(struct platform_device *pdev)
1341 {
1342 	return 0;
1343 }
1344 
1345 static struct platform_driver mv_xor_shared_driver = {
1346 	.probe		= mv_xor_shared_probe,
1347 	.remove		= mv_xor_shared_remove,
1348 	.driver		= {
1349 		.owner	= THIS_MODULE,
1350 		.name	= MV_XOR_SHARED_NAME,
1351 	},
1352 };
1353 
1354 
1355 static int __init mv_xor_init(void)
1356 {
1357 	int rc;
1358 
1359 	rc = platform_driver_register(&mv_xor_shared_driver);
1360 	if (!rc) {
1361 		rc = platform_driver_register(&mv_xor_driver);
1362 		if (rc)
1363 			platform_driver_unregister(&mv_xor_shared_driver);
1364 	}
1365 	return rc;
1366 }
1367 module_init(mv_xor_init);
1368 
1369 /* it's currently unsafe to unload this module */
1370 #if 0
1371 static void __exit mv_xor_exit(void)
1372 {
1373 	platform_driver_unregister(&mv_xor_driver);
1374 	platform_driver_unregister(&mv_xor_shared_driver);
1375 	return;
1376 }
1377 
1378 module_exit(mv_xor_exit);
1379 #endif
1380 
1381 MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
1382 MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine");
1383 MODULE_LICENSE("GPL");
1384