xref: /openbmc/linux/drivers/dma/mmp_pdma.c (revision d2ba09c1)
1 /*
2  * Copyright 2012 Marvell International Ltd.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/interrupt.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/slab.h>
16 #include <linux/dmaengine.h>
17 #include <linux/platform_device.h>
18 #include <linux/device.h>
19 #include <linux/platform_data/mmp_dma.h>
20 #include <linux/dmapool.h>
21 #include <linux/of_device.h>
22 #include <linux/of_dma.h>
23 #include <linux/of.h>
24 #include <linux/dma/mmp-pdma.h>
25 
26 #include "dmaengine.h"
27 
28 #define DCSR		0x0000
29 #define DALGN		0x00a0
30 #define DINT		0x00f0
31 #define DDADR		0x0200
32 #define DSADR(n)	(0x0204 + ((n) << 4))
33 #define DTADR(n)	(0x0208 + ((n) << 4))
34 #define DCMD		0x020c
35 
36 #define DCSR_RUN	BIT(31)	/* Run Bit (read / write) */
37 #define DCSR_NODESC	BIT(30)	/* No-Descriptor Fetch (read / write) */
38 #define DCSR_STOPIRQEN	BIT(29)	/* Stop Interrupt Enable (read / write) */
39 #define DCSR_REQPEND	BIT(8)	/* Request Pending (read-only) */
40 #define DCSR_STOPSTATE	BIT(3)	/* Stop State (read-only) */
41 #define DCSR_ENDINTR	BIT(2)	/* End Interrupt (read / write) */
42 #define DCSR_STARTINTR	BIT(1)	/* Start Interrupt (read / write) */
43 #define DCSR_BUSERR	BIT(0)	/* Bus Error Interrupt (read / write) */
44 
45 #define DCSR_EORIRQEN	BIT(28)	/* End of Receive Interrupt Enable (R/W) */
46 #define DCSR_EORJMPEN	BIT(27)	/* Jump to next descriptor on EOR */
47 #define DCSR_EORSTOPEN	BIT(26)	/* STOP on an EOR */
48 #define DCSR_SETCMPST	BIT(25)	/* Set Descriptor Compare Status */
49 #define DCSR_CLRCMPST	BIT(24)	/* Clear Descriptor Compare Status */
50 #define DCSR_CMPST	BIT(10)	/* The Descriptor Compare Status */
51 #define DCSR_EORINTR	BIT(9)	/* The end of Receive */
52 
53 #define DRCMR(n)	((((n) < 64) ? 0x0100 : 0x1100) + (((n) & 0x3f) << 2))
54 #define DRCMR_MAPVLD	BIT(7)	/* Map Valid (read / write) */
55 #define DRCMR_CHLNUM	0x1f	/* mask for Channel Number (read / write) */
56 
57 #define DDADR_DESCADDR	0xfffffff0	/* Address of next descriptor (mask) */
58 #define DDADR_STOP	BIT(0)	/* Stop (read / write) */
59 
60 #define DCMD_INCSRCADDR	BIT(31)	/* Source Address Increment Setting. */
61 #define DCMD_INCTRGADDR	BIT(30)	/* Target Address Increment Setting. */
62 #define DCMD_FLOWSRC	BIT(29)	/* Flow Control by the source. */
63 #define DCMD_FLOWTRG	BIT(28)	/* Flow Control by the target. */
64 #define DCMD_STARTIRQEN	BIT(22)	/* Start Interrupt Enable */
65 #define DCMD_ENDIRQEN	BIT(21)	/* End Interrupt Enable */
66 #define DCMD_ENDIAN	BIT(18)	/* Device Endian-ness. */
67 #define DCMD_BURST8	(1 << 16)	/* 8 byte burst */
68 #define DCMD_BURST16	(2 << 16)	/* 16 byte burst */
69 #define DCMD_BURST32	(3 << 16)	/* 32 byte burst */
70 #define DCMD_WIDTH1	(1 << 14)	/* 1 byte width */
71 #define DCMD_WIDTH2	(2 << 14)	/* 2 byte width (HalfWord) */
72 #define DCMD_WIDTH4	(3 << 14)	/* 4 byte width (Word) */
73 #define DCMD_LENGTH	0x01fff		/* length mask (max = 8K - 1) */
74 
75 #define PDMA_MAX_DESC_BYTES	DCMD_LENGTH
76 
77 struct mmp_pdma_desc_hw {
78 	u32 ddadr;	/* Points to the next descriptor + flags */
79 	u32 dsadr;	/* DSADR value for the current transfer */
80 	u32 dtadr;	/* DTADR value for the current transfer */
81 	u32 dcmd;	/* DCMD value for the current transfer */
82 } __aligned(32);
83 
84 struct mmp_pdma_desc_sw {
85 	struct mmp_pdma_desc_hw desc;
86 	struct list_head node;
87 	struct list_head tx_list;
88 	struct dma_async_tx_descriptor async_tx;
89 };
90 
91 struct mmp_pdma_phy;
92 
93 struct mmp_pdma_chan {
94 	struct device *dev;
95 	struct dma_chan chan;
96 	struct dma_async_tx_descriptor desc;
97 	struct mmp_pdma_phy *phy;
98 	enum dma_transfer_direction dir;
99 
100 	struct mmp_pdma_desc_sw *cyclic_first;	/* first desc_sw if channel
101 						 * is in cyclic mode */
102 
103 	/* channel's basic info */
104 	struct tasklet_struct tasklet;
105 	u32 dcmd;
106 	u32 drcmr;
107 	u32 dev_addr;
108 
109 	/* list for desc */
110 	spinlock_t desc_lock;		/* Descriptor list lock */
111 	struct list_head chain_pending;	/* Link descriptors queue for pending */
112 	struct list_head chain_running;	/* Link descriptors queue for running */
113 	bool idle;			/* channel statue machine */
114 	bool byte_align;
115 
116 	struct dma_pool *desc_pool;	/* Descriptors pool */
117 };
118 
119 struct mmp_pdma_phy {
120 	int idx;
121 	void __iomem *base;
122 	struct mmp_pdma_chan *vchan;
123 };
124 
125 struct mmp_pdma_device {
126 	int				dma_channels;
127 	void __iomem			*base;
128 	struct device			*dev;
129 	struct dma_device		device;
130 	struct mmp_pdma_phy		*phy;
131 	spinlock_t phy_lock; /* protect alloc/free phy channels */
132 };
133 
134 #define tx_to_mmp_pdma_desc(tx)					\
135 	container_of(tx, struct mmp_pdma_desc_sw, async_tx)
136 #define to_mmp_pdma_desc(lh)					\
137 	container_of(lh, struct mmp_pdma_desc_sw, node)
138 #define to_mmp_pdma_chan(dchan)					\
139 	container_of(dchan, struct mmp_pdma_chan, chan)
140 #define to_mmp_pdma_dev(dmadev)					\
141 	container_of(dmadev, struct mmp_pdma_device, device)
142 
143 static void set_desc(struct mmp_pdma_phy *phy, dma_addr_t addr)
144 {
145 	u32 reg = (phy->idx << 4) + DDADR;
146 
147 	writel(addr, phy->base + reg);
148 }
149 
150 static void enable_chan(struct mmp_pdma_phy *phy)
151 {
152 	u32 reg, dalgn;
153 
154 	if (!phy->vchan)
155 		return;
156 
157 	reg = DRCMR(phy->vchan->drcmr);
158 	writel(DRCMR_MAPVLD | phy->idx, phy->base + reg);
159 
160 	dalgn = readl(phy->base + DALGN);
161 	if (phy->vchan->byte_align)
162 		dalgn |= 1 << phy->idx;
163 	else
164 		dalgn &= ~(1 << phy->idx);
165 	writel(dalgn, phy->base + DALGN);
166 
167 	reg = (phy->idx << 2) + DCSR;
168 	writel(readl(phy->base + reg) | DCSR_RUN, phy->base + reg);
169 }
170 
171 static void disable_chan(struct mmp_pdma_phy *phy)
172 {
173 	u32 reg;
174 
175 	if (!phy)
176 		return;
177 
178 	reg = (phy->idx << 2) + DCSR;
179 	writel(readl(phy->base + reg) & ~DCSR_RUN, phy->base + reg);
180 }
181 
182 static int clear_chan_irq(struct mmp_pdma_phy *phy)
183 {
184 	u32 dcsr;
185 	u32 dint = readl(phy->base + DINT);
186 	u32 reg = (phy->idx << 2) + DCSR;
187 
188 	if (!(dint & BIT(phy->idx)))
189 		return -EAGAIN;
190 
191 	/* clear irq */
192 	dcsr = readl(phy->base + reg);
193 	writel(dcsr, phy->base + reg);
194 	if ((dcsr & DCSR_BUSERR) && (phy->vchan))
195 		dev_warn(phy->vchan->dev, "DCSR_BUSERR\n");
196 
197 	return 0;
198 }
199 
200 static irqreturn_t mmp_pdma_chan_handler(int irq, void *dev_id)
201 {
202 	struct mmp_pdma_phy *phy = dev_id;
203 
204 	if (clear_chan_irq(phy) != 0)
205 		return IRQ_NONE;
206 
207 	tasklet_schedule(&phy->vchan->tasklet);
208 	return IRQ_HANDLED;
209 }
210 
211 static irqreturn_t mmp_pdma_int_handler(int irq, void *dev_id)
212 {
213 	struct mmp_pdma_device *pdev = dev_id;
214 	struct mmp_pdma_phy *phy;
215 	u32 dint = readl(pdev->base + DINT);
216 	int i, ret;
217 	int irq_num = 0;
218 
219 	while (dint) {
220 		i = __ffs(dint);
221 		/* only handle interrupts belonging to pdma driver*/
222 		if (i >= pdev->dma_channels)
223 			break;
224 		dint &= (dint - 1);
225 		phy = &pdev->phy[i];
226 		ret = mmp_pdma_chan_handler(irq, phy);
227 		if (ret == IRQ_HANDLED)
228 			irq_num++;
229 	}
230 
231 	if (irq_num)
232 		return IRQ_HANDLED;
233 
234 	return IRQ_NONE;
235 }
236 
237 /* lookup free phy channel as descending priority */
238 static struct mmp_pdma_phy *lookup_phy(struct mmp_pdma_chan *pchan)
239 {
240 	int prio, i;
241 	struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device);
242 	struct mmp_pdma_phy *phy, *found = NULL;
243 	unsigned long flags;
244 
245 	/*
246 	 * dma channel priorities
247 	 * ch 0 - 3,  16 - 19  <--> (0)
248 	 * ch 4 - 7,  20 - 23  <--> (1)
249 	 * ch 8 - 11, 24 - 27  <--> (2)
250 	 * ch 12 - 15, 28 - 31  <--> (3)
251 	 */
252 
253 	spin_lock_irqsave(&pdev->phy_lock, flags);
254 	for (prio = 0; prio <= ((pdev->dma_channels - 1) & 0xf) >> 2; prio++) {
255 		for (i = 0; i < pdev->dma_channels; i++) {
256 			if (prio != (i & 0xf) >> 2)
257 				continue;
258 			phy = &pdev->phy[i];
259 			if (!phy->vchan) {
260 				phy->vchan = pchan;
261 				found = phy;
262 				goto out_unlock;
263 			}
264 		}
265 	}
266 
267 out_unlock:
268 	spin_unlock_irqrestore(&pdev->phy_lock, flags);
269 	return found;
270 }
271 
272 static void mmp_pdma_free_phy(struct mmp_pdma_chan *pchan)
273 {
274 	struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device);
275 	unsigned long flags;
276 	u32 reg;
277 
278 	if (!pchan->phy)
279 		return;
280 
281 	/* clear the channel mapping in DRCMR */
282 	reg = DRCMR(pchan->drcmr);
283 	writel(0, pchan->phy->base + reg);
284 
285 	spin_lock_irqsave(&pdev->phy_lock, flags);
286 	pchan->phy->vchan = NULL;
287 	pchan->phy = NULL;
288 	spin_unlock_irqrestore(&pdev->phy_lock, flags);
289 }
290 
291 /**
292  * start_pending_queue - transfer any pending transactions
293  * pending list ==> running list
294  */
295 static void start_pending_queue(struct mmp_pdma_chan *chan)
296 {
297 	struct mmp_pdma_desc_sw *desc;
298 
299 	/* still in running, irq will start the pending list */
300 	if (!chan->idle) {
301 		dev_dbg(chan->dev, "DMA controller still busy\n");
302 		return;
303 	}
304 
305 	if (list_empty(&chan->chain_pending)) {
306 		/* chance to re-fetch phy channel with higher prio */
307 		mmp_pdma_free_phy(chan);
308 		dev_dbg(chan->dev, "no pending list\n");
309 		return;
310 	}
311 
312 	if (!chan->phy) {
313 		chan->phy = lookup_phy(chan);
314 		if (!chan->phy) {
315 			dev_dbg(chan->dev, "no free dma channel\n");
316 			return;
317 		}
318 	}
319 
320 	/*
321 	 * pending -> running
322 	 * reintilize pending list
323 	 */
324 	desc = list_first_entry(&chan->chain_pending,
325 				struct mmp_pdma_desc_sw, node);
326 	list_splice_tail_init(&chan->chain_pending, &chan->chain_running);
327 
328 	/*
329 	 * Program the descriptor's address into the DMA controller,
330 	 * then start the DMA transaction
331 	 */
332 	set_desc(chan->phy, desc->async_tx.phys);
333 	enable_chan(chan->phy);
334 	chan->idle = false;
335 }
336 
337 
338 /* desc->tx_list ==> pending list */
339 static dma_cookie_t mmp_pdma_tx_submit(struct dma_async_tx_descriptor *tx)
340 {
341 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(tx->chan);
342 	struct mmp_pdma_desc_sw *desc = tx_to_mmp_pdma_desc(tx);
343 	struct mmp_pdma_desc_sw *child;
344 	unsigned long flags;
345 	dma_cookie_t cookie = -EBUSY;
346 
347 	spin_lock_irqsave(&chan->desc_lock, flags);
348 
349 	list_for_each_entry(child, &desc->tx_list, node) {
350 		cookie = dma_cookie_assign(&child->async_tx);
351 	}
352 
353 	/* softly link to pending list - desc->tx_list ==> pending list */
354 	list_splice_tail_init(&desc->tx_list, &chan->chain_pending);
355 
356 	spin_unlock_irqrestore(&chan->desc_lock, flags);
357 
358 	return cookie;
359 }
360 
361 static struct mmp_pdma_desc_sw *
362 mmp_pdma_alloc_descriptor(struct mmp_pdma_chan *chan)
363 {
364 	struct mmp_pdma_desc_sw *desc;
365 	dma_addr_t pdesc;
366 
367 	desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
368 	if (!desc) {
369 		dev_err(chan->dev, "out of memory for link descriptor\n");
370 		return NULL;
371 	}
372 
373 	INIT_LIST_HEAD(&desc->tx_list);
374 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
375 	/* each desc has submit */
376 	desc->async_tx.tx_submit = mmp_pdma_tx_submit;
377 	desc->async_tx.phys = pdesc;
378 
379 	return desc;
380 }
381 
382 /**
383  * mmp_pdma_alloc_chan_resources - Allocate resources for DMA channel.
384  *
385  * This function will create a dma pool for descriptor allocation.
386  * Request irq only when channel is requested
387  * Return - The number of allocated descriptors.
388  */
389 
390 static int mmp_pdma_alloc_chan_resources(struct dma_chan *dchan)
391 {
392 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
393 
394 	if (chan->desc_pool)
395 		return 1;
396 
397 	chan->desc_pool = dma_pool_create(dev_name(&dchan->dev->device),
398 					  chan->dev,
399 					  sizeof(struct mmp_pdma_desc_sw),
400 					  __alignof__(struct mmp_pdma_desc_sw),
401 					  0);
402 	if (!chan->desc_pool) {
403 		dev_err(chan->dev, "unable to allocate descriptor pool\n");
404 		return -ENOMEM;
405 	}
406 
407 	mmp_pdma_free_phy(chan);
408 	chan->idle = true;
409 	chan->dev_addr = 0;
410 	return 1;
411 }
412 
413 static void mmp_pdma_free_desc_list(struct mmp_pdma_chan *chan,
414 				    struct list_head *list)
415 {
416 	struct mmp_pdma_desc_sw *desc, *_desc;
417 
418 	list_for_each_entry_safe(desc, _desc, list, node) {
419 		list_del(&desc->node);
420 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
421 	}
422 }
423 
424 static void mmp_pdma_free_chan_resources(struct dma_chan *dchan)
425 {
426 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
427 	unsigned long flags;
428 
429 	spin_lock_irqsave(&chan->desc_lock, flags);
430 	mmp_pdma_free_desc_list(chan, &chan->chain_pending);
431 	mmp_pdma_free_desc_list(chan, &chan->chain_running);
432 	spin_unlock_irqrestore(&chan->desc_lock, flags);
433 
434 	dma_pool_destroy(chan->desc_pool);
435 	chan->desc_pool = NULL;
436 	chan->idle = true;
437 	chan->dev_addr = 0;
438 	mmp_pdma_free_phy(chan);
439 	return;
440 }
441 
442 static struct dma_async_tx_descriptor *
443 mmp_pdma_prep_memcpy(struct dma_chan *dchan,
444 		     dma_addr_t dma_dst, dma_addr_t dma_src,
445 		     size_t len, unsigned long flags)
446 {
447 	struct mmp_pdma_chan *chan;
448 	struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new;
449 	size_t copy = 0;
450 
451 	if (!dchan)
452 		return NULL;
453 
454 	if (!len)
455 		return NULL;
456 
457 	chan = to_mmp_pdma_chan(dchan);
458 	chan->byte_align = false;
459 
460 	if (!chan->dir) {
461 		chan->dir = DMA_MEM_TO_MEM;
462 		chan->dcmd = DCMD_INCTRGADDR | DCMD_INCSRCADDR;
463 		chan->dcmd |= DCMD_BURST32;
464 	}
465 
466 	do {
467 		/* Allocate the link descriptor from DMA pool */
468 		new = mmp_pdma_alloc_descriptor(chan);
469 		if (!new) {
470 			dev_err(chan->dev, "no memory for desc\n");
471 			goto fail;
472 		}
473 
474 		copy = min_t(size_t, len, PDMA_MAX_DESC_BYTES);
475 		if (dma_src & 0x7 || dma_dst & 0x7)
476 			chan->byte_align = true;
477 
478 		new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & copy);
479 		new->desc.dsadr = dma_src;
480 		new->desc.dtadr = dma_dst;
481 
482 		if (!first)
483 			first = new;
484 		else
485 			prev->desc.ddadr = new->async_tx.phys;
486 
487 		new->async_tx.cookie = 0;
488 		async_tx_ack(&new->async_tx);
489 
490 		prev = new;
491 		len -= copy;
492 
493 		if (chan->dir == DMA_MEM_TO_DEV) {
494 			dma_src += copy;
495 		} else if (chan->dir == DMA_DEV_TO_MEM) {
496 			dma_dst += copy;
497 		} else if (chan->dir == DMA_MEM_TO_MEM) {
498 			dma_src += copy;
499 			dma_dst += copy;
500 		}
501 
502 		/* Insert the link descriptor to the LD ring */
503 		list_add_tail(&new->node, &first->tx_list);
504 	} while (len);
505 
506 	first->async_tx.flags = flags; /* client is in control of this ack */
507 	first->async_tx.cookie = -EBUSY;
508 
509 	/* last desc and fire IRQ */
510 	new->desc.ddadr = DDADR_STOP;
511 	new->desc.dcmd |= DCMD_ENDIRQEN;
512 
513 	chan->cyclic_first = NULL;
514 
515 	return &first->async_tx;
516 
517 fail:
518 	if (first)
519 		mmp_pdma_free_desc_list(chan, &first->tx_list);
520 	return NULL;
521 }
522 
523 static struct dma_async_tx_descriptor *
524 mmp_pdma_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
525 		       unsigned int sg_len, enum dma_transfer_direction dir,
526 		       unsigned long flags, void *context)
527 {
528 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
529 	struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new = NULL;
530 	size_t len, avail;
531 	struct scatterlist *sg;
532 	dma_addr_t addr;
533 	int i;
534 
535 	if ((sgl == NULL) || (sg_len == 0))
536 		return NULL;
537 
538 	chan->byte_align = false;
539 
540 	for_each_sg(sgl, sg, sg_len, i) {
541 		addr = sg_dma_address(sg);
542 		avail = sg_dma_len(sgl);
543 
544 		do {
545 			len = min_t(size_t, avail, PDMA_MAX_DESC_BYTES);
546 			if (addr & 0x7)
547 				chan->byte_align = true;
548 
549 			/* allocate and populate the descriptor */
550 			new = mmp_pdma_alloc_descriptor(chan);
551 			if (!new) {
552 				dev_err(chan->dev, "no memory for desc\n");
553 				goto fail;
554 			}
555 
556 			new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & len);
557 			if (dir == DMA_MEM_TO_DEV) {
558 				new->desc.dsadr = addr;
559 				new->desc.dtadr = chan->dev_addr;
560 			} else {
561 				new->desc.dsadr = chan->dev_addr;
562 				new->desc.dtadr = addr;
563 			}
564 
565 			if (!first)
566 				first = new;
567 			else
568 				prev->desc.ddadr = new->async_tx.phys;
569 
570 			new->async_tx.cookie = 0;
571 			async_tx_ack(&new->async_tx);
572 			prev = new;
573 
574 			/* Insert the link descriptor to the LD ring */
575 			list_add_tail(&new->node, &first->tx_list);
576 
577 			/* update metadata */
578 			addr += len;
579 			avail -= len;
580 		} while (avail);
581 	}
582 
583 	first->async_tx.cookie = -EBUSY;
584 	first->async_tx.flags = flags;
585 
586 	/* last desc and fire IRQ */
587 	new->desc.ddadr = DDADR_STOP;
588 	new->desc.dcmd |= DCMD_ENDIRQEN;
589 
590 	chan->dir = dir;
591 	chan->cyclic_first = NULL;
592 
593 	return &first->async_tx;
594 
595 fail:
596 	if (first)
597 		mmp_pdma_free_desc_list(chan, &first->tx_list);
598 	return NULL;
599 }
600 
601 static struct dma_async_tx_descriptor *
602 mmp_pdma_prep_dma_cyclic(struct dma_chan *dchan,
603 			 dma_addr_t buf_addr, size_t len, size_t period_len,
604 			 enum dma_transfer_direction direction,
605 			 unsigned long flags)
606 {
607 	struct mmp_pdma_chan *chan;
608 	struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new;
609 	dma_addr_t dma_src, dma_dst;
610 
611 	if (!dchan || !len || !period_len)
612 		return NULL;
613 
614 	/* the buffer length must be a multiple of period_len */
615 	if (len % period_len != 0)
616 		return NULL;
617 
618 	if (period_len > PDMA_MAX_DESC_BYTES)
619 		return NULL;
620 
621 	chan = to_mmp_pdma_chan(dchan);
622 
623 	switch (direction) {
624 	case DMA_MEM_TO_DEV:
625 		dma_src = buf_addr;
626 		dma_dst = chan->dev_addr;
627 		break;
628 	case DMA_DEV_TO_MEM:
629 		dma_dst = buf_addr;
630 		dma_src = chan->dev_addr;
631 		break;
632 	default:
633 		dev_err(chan->dev, "Unsupported direction for cyclic DMA\n");
634 		return NULL;
635 	}
636 
637 	chan->dir = direction;
638 
639 	do {
640 		/* Allocate the link descriptor from DMA pool */
641 		new = mmp_pdma_alloc_descriptor(chan);
642 		if (!new) {
643 			dev_err(chan->dev, "no memory for desc\n");
644 			goto fail;
645 		}
646 
647 		new->desc.dcmd = (chan->dcmd | DCMD_ENDIRQEN |
648 				  (DCMD_LENGTH & period_len));
649 		new->desc.dsadr = dma_src;
650 		new->desc.dtadr = dma_dst;
651 
652 		if (!first)
653 			first = new;
654 		else
655 			prev->desc.ddadr = new->async_tx.phys;
656 
657 		new->async_tx.cookie = 0;
658 		async_tx_ack(&new->async_tx);
659 
660 		prev = new;
661 		len -= period_len;
662 
663 		if (chan->dir == DMA_MEM_TO_DEV)
664 			dma_src += period_len;
665 		else
666 			dma_dst += period_len;
667 
668 		/* Insert the link descriptor to the LD ring */
669 		list_add_tail(&new->node, &first->tx_list);
670 	} while (len);
671 
672 	first->async_tx.flags = flags; /* client is in control of this ack */
673 	first->async_tx.cookie = -EBUSY;
674 
675 	/* make the cyclic link */
676 	new->desc.ddadr = first->async_tx.phys;
677 	chan->cyclic_first = first;
678 
679 	return &first->async_tx;
680 
681 fail:
682 	if (first)
683 		mmp_pdma_free_desc_list(chan, &first->tx_list);
684 	return NULL;
685 }
686 
687 static int mmp_pdma_config(struct dma_chan *dchan,
688 			   struct dma_slave_config *cfg)
689 {
690 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
691 	u32 maxburst = 0, addr = 0;
692 	enum dma_slave_buswidth width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
693 
694 	if (!dchan)
695 		return -EINVAL;
696 
697 	if (cfg->direction == DMA_DEV_TO_MEM) {
698 		chan->dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC;
699 		maxburst = cfg->src_maxburst;
700 		width = cfg->src_addr_width;
701 		addr = cfg->src_addr;
702 	} else if (cfg->direction == DMA_MEM_TO_DEV) {
703 		chan->dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG;
704 		maxburst = cfg->dst_maxburst;
705 		width = cfg->dst_addr_width;
706 		addr = cfg->dst_addr;
707 	}
708 
709 	if (width == DMA_SLAVE_BUSWIDTH_1_BYTE)
710 		chan->dcmd |= DCMD_WIDTH1;
711 	else if (width == DMA_SLAVE_BUSWIDTH_2_BYTES)
712 		chan->dcmd |= DCMD_WIDTH2;
713 	else if (width == DMA_SLAVE_BUSWIDTH_4_BYTES)
714 		chan->dcmd |= DCMD_WIDTH4;
715 
716 	if (maxburst == 8)
717 		chan->dcmd |= DCMD_BURST8;
718 	else if (maxburst == 16)
719 		chan->dcmd |= DCMD_BURST16;
720 	else if (maxburst == 32)
721 		chan->dcmd |= DCMD_BURST32;
722 
723 	chan->dir = cfg->direction;
724 	chan->dev_addr = addr;
725 	/* FIXME: drivers should be ported over to use the filter
726 	 * function. Once that's done, the following two lines can
727 	 * be removed.
728 	 */
729 	if (cfg->slave_id)
730 		chan->drcmr = cfg->slave_id;
731 
732 	return 0;
733 }
734 
735 static int mmp_pdma_terminate_all(struct dma_chan *dchan)
736 {
737 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
738 	unsigned long flags;
739 
740 	if (!dchan)
741 		return -EINVAL;
742 
743 	disable_chan(chan->phy);
744 	mmp_pdma_free_phy(chan);
745 	spin_lock_irqsave(&chan->desc_lock, flags);
746 	mmp_pdma_free_desc_list(chan, &chan->chain_pending);
747 	mmp_pdma_free_desc_list(chan, &chan->chain_running);
748 	spin_unlock_irqrestore(&chan->desc_lock, flags);
749 	chan->idle = true;
750 
751 	return 0;
752 }
753 
754 static unsigned int mmp_pdma_residue(struct mmp_pdma_chan *chan,
755 				     dma_cookie_t cookie)
756 {
757 	struct mmp_pdma_desc_sw *sw;
758 	u32 curr, residue = 0;
759 	bool passed = false;
760 	bool cyclic = chan->cyclic_first != NULL;
761 
762 	/*
763 	 * If the channel does not have a phy pointer anymore, it has already
764 	 * been completed. Therefore, its residue is 0.
765 	 */
766 	if (!chan->phy)
767 		return 0;
768 
769 	if (chan->dir == DMA_DEV_TO_MEM)
770 		curr = readl(chan->phy->base + DTADR(chan->phy->idx));
771 	else
772 		curr = readl(chan->phy->base + DSADR(chan->phy->idx));
773 
774 	list_for_each_entry(sw, &chan->chain_running, node) {
775 		u32 start, end, len;
776 
777 		if (chan->dir == DMA_DEV_TO_MEM)
778 			start = sw->desc.dtadr;
779 		else
780 			start = sw->desc.dsadr;
781 
782 		len = sw->desc.dcmd & DCMD_LENGTH;
783 		end = start + len;
784 
785 		/*
786 		 * 'passed' will be latched once we found the descriptor which
787 		 * lies inside the boundaries of the curr pointer. All
788 		 * descriptors that occur in the list _after_ we found that
789 		 * partially handled descriptor are still to be processed and
790 		 * are hence added to the residual bytes counter.
791 		 */
792 
793 		if (passed) {
794 			residue += len;
795 		} else if (curr >= start && curr <= end) {
796 			residue += end - curr;
797 			passed = true;
798 		}
799 
800 		/*
801 		 * Descriptors that have the ENDIRQEN bit set mark the end of a
802 		 * transaction chain, and the cookie assigned with it has been
803 		 * returned previously from mmp_pdma_tx_submit().
804 		 *
805 		 * In case we have multiple transactions in the running chain,
806 		 * and the cookie does not match the one the user asked us
807 		 * about, reset the state variables and start over.
808 		 *
809 		 * This logic does not apply to cyclic transactions, where all
810 		 * descriptors have the ENDIRQEN bit set, and for which we
811 		 * can't have multiple transactions on one channel anyway.
812 		 */
813 		if (cyclic || !(sw->desc.dcmd & DCMD_ENDIRQEN))
814 			continue;
815 
816 		if (sw->async_tx.cookie == cookie) {
817 			return residue;
818 		} else {
819 			residue = 0;
820 			passed = false;
821 		}
822 	}
823 
824 	/* We should only get here in case of cyclic transactions */
825 	return residue;
826 }
827 
828 static enum dma_status mmp_pdma_tx_status(struct dma_chan *dchan,
829 					  dma_cookie_t cookie,
830 					  struct dma_tx_state *txstate)
831 {
832 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
833 	enum dma_status ret;
834 
835 	ret = dma_cookie_status(dchan, cookie, txstate);
836 	if (likely(ret != DMA_ERROR))
837 		dma_set_residue(txstate, mmp_pdma_residue(chan, cookie));
838 
839 	return ret;
840 }
841 
842 /**
843  * mmp_pdma_issue_pending - Issue the DMA start command
844  * pending list ==> running list
845  */
846 static void mmp_pdma_issue_pending(struct dma_chan *dchan)
847 {
848 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
849 	unsigned long flags;
850 
851 	spin_lock_irqsave(&chan->desc_lock, flags);
852 	start_pending_queue(chan);
853 	spin_unlock_irqrestore(&chan->desc_lock, flags);
854 }
855 
856 /*
857  * dma_do_tasklet
858  * Do call back
859  * Start pending list
860  */
861 static void dma_do_tasklet(unsigned long data)
862 {
863 	struct mmp_pdma_chan *chan = (struct mmp_pdma_chan *)data;
864 	struct mmp_pdma_desc_sw *desc, *_desc;
865 	LIST_HEAD(chain_cleanup);
866 	unsigned long flags;
867 	struct dmaengine_desc_callback cb;
868 
869 	if (chan->cyclic_first) {
870 		spin_lock_irqsave(&chan->desc_lock, flags);
871 		desc = chan->cyclic_first;
872 		dmaengine_desc_get_callback(&desc->async_tx, &cb);
873 		spin_unlock_irqrestore(&chan->desc_lock, flags);
874 
875 		dmaengine_desc_callback_invoke(&cb, NULL);
876 
877 		return;
878 	}
879 
880 	/* submit pending list; callback for each desc; free desc */
881 	spin_lock_irqsave(&chan->desc_lock, flags);
882 
883 	list_for_each_entry_safe(desc, _desc, &chan->chain_running, node) {
884 		/*
885 		 * move the descriptors to a temporary list so we can drop
886 		 * the lock during the entire cleanup operation
887 		 */
888 		list_move(&desc->node, &chain_cleanup);
889 
890 		/*
891 		 * Look for the first list entry which has the ENDIRQEN flag
892 		 * set. That is the descriptor we got an interrupt for, so
893 		 * complete that transaction and its cookie.
894 		 */
895 		if (desc->desc.dcmd & DCMD_ENDIRQEN) {
896 			dma_cookie_t cookie = desc->async_tx.cookie;
897 			dma_cookie_complete(&desc->async_tx);
898 			dev_dbg(chan->dev, "completed_cookie=%d\n", cookie);
899 			break;
900 		}
901 	}
902 
903 	/*
904 	 * The hardware is idle and ready for more when the
905 	 * chain_running list is empty.
906 	 */
907 	chan->idle = list_empty(&chan->chain_running);
908 
909 	/* Start any pending transactions automatically */
910 	start_pending_queue(chan);
911 	spin_unlock_irqrestore(&chan->desc_lock, flags);
912 
913 	/* Run the callback for each descriptor, in order */
914 	list_for_each_entry_safe(desc, _desc, &chain_cleanup, node) {
915 		struct dma_async_tx_descriptor *txd = &desc->async_tx;
916 
917 		/* Remove from the list of transactions */
918 		list_del(&desc->node);
919 		/* Run the link descriptor callback function */
920 		dmaengine_desc_get_callback(txd, &cb);
921 		dmaengine_desc_callback_invoke(&cb, NULL);
922 
923 		dma_pool_free(chan->desc_pool, desc, txd->phys);
924 	}
925 }
926 
927 static int mmp_pdma_remove(struct platform_device *op)
928 {
929 	struct mmp_pdma_device *pdev = platform_get_drvdata(op);
930 	struct mmp_pdma_phy *phy;
931 	int i, irq = 0, irq_num = 0;
932 
933 
934 	for (i = 0; i < pdev->dma_channels; i++) {
935 		if (platform_get_irq(op, i) > 0)
936 			irq_num++;
937 	}
938 
939 	if (irq_num != pdev->dma_channels) {
940 		irq = platform_get_irq(op, 0);
941 		devm_free_irq(&op->dev, irq, pdev);
942 	} else {
943 		for (i = 0; i < pdev->dma_channels; i++) {
944 			phy = &pdev->phy[i];
945 			irq = platform_get_irq(op, i);
946 			devm_free_irq(&op->dev, irq, phy);
947 		}
948 	}
949 
950 	dma_async_device_unregister(&pdev->device);
951 	return 0;
952 }
953 
954 static int mmp_pdma_chan_init(struct mmp_pdma_device *pdev, int idx, int irq)
955 {
956 	struct mmp_pdma_phy *phy  = &pdev->phy[idx];
957 	struct mmp_pdma_chan *chan;
958 	int ret;
959 
960 	chan = devm_kzalloc(pdev->dev, sizeof(*chan), GFP_KERNEL);
961 	if (chan == NULL)
962 		return -ENOMEM;
963 
964 	phy->idx = idx;
965 	phy->base = pdev->base;
966 
967 	if (irq) {
968 		ret = devm_request_irq(pdev->dev, irq, mmp_pdma_chan_handler,
969 				       IRQF_SHARED, "pdma", phy);
970 		if (ret) {
971 			dev_err(pdev->dev, "channel request irq fail!\n");
972 			return ret;
973 		}
974 	}
975 
976 	spin_lock_init(&chan->desc_lock);
977 	chan->dev = pdev->dev;
978 	chan->chan.device = &pdev->device;
979 	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
980 	INIT_LIST_HEAD(&chan->chain_pending);
981 	INIT_LIST_HEAD(&chan->chain_running);
982 
983 	/* register virt channel to dma engine */
984 	list_add_tail(&chan->chan.device_node, &pdev->device.channels);
985 
986 	return 0;
987 }
988 
989 static const struct of_device_id mmp_pdma_dt_ids[] = {
990 	{ .compatible = "marvell,pdma-1.0", },
991 	{}
992 };
993 MODULE_DEVICE_TABLE(of, mmp_pdma_dt_ids);
994 
995 static struct dma_chan *mmp_pdma_dma_xlate(struct of_phandle_args *dma_spec,
996 					   struct of_dma *ofdma)
997 {
998 	struct mmp_pdma_device *d = ofdma->of_dma_data;
999 	struct dma_chan *chan;
1000 
1001 	chan = dma_get_any_slave_channel(&d->device);
1002 	if (!chan)
1003 		return NULL;
1004 
1005 	to_mmp_pdma_chan(chan)->drcmr = dma_spec->args[0];
1006 
1007 	return chan;
1008 }
1009 
1010 static int mmp_pdma_probe(struct platform_device *op)
1011 {
1012 	struct mmp_pdma_device *pdev;
1013 	const struct of_device_id *of_id;
1014 	struct mmp_dma_platdata *pdata = dev_get_platdata(&op->dev);
1015 	struct resource *iores;
1016 	int i, ret, irq = 0;
1017 	int dma_channels = 0, irq_num = 0;
1018 	const enum dma_slave_buswidth widths =
1019 		DMA_SLAVE_BUSWIDTH_1_BYTE   | DMA_SLAVE_BUSWIDTH_2_BYTES |
1020 		DMA_SLAVE_BUSWIDTH_4_BYTES;
1021 
1022 	pdev = devm_kzalloc(&op->dev, sizeof(*pdev), GFP_KERNEL);
1023 	if (!pdev)
1024 		return -ENOMEM;
1025 
1026 	pdev->dev = &op->dev;
1027 
1028 	spin_lock_init(&pdev->phy_lock);
1029 
1030 	iores = platform_get_resource(op, IORESOURCE_MEM, 0);
1031 	pdev->base = devm_ioremap_resource(pdev->dev, iores);
1032 	if (IS_ERR(pdev->base))
1033 		return PTR_ERR(pdev->base);
1034 
1035 	of_id = of_match_device(mmp_pdma_dt_ids, pdev->dev);
1036 	if (of_id)
1037 		of_property_read_u32(pdev->dev->of_node, "#dma-channels",
1038 				     &dma_channels);
1039 	else if (pdata && pdata->dma_channels)
1040 		dma_channels = pdata->dma_channels;
1041 	else
1042 		dma_channels = 32;	/* default 32 channel */
1043 	pdev->dma_channels = dma_channels;
1044 
1045 	for (i = 0; i < dma_channels; i++) {
1046 		if (platform_get_irq(op, i) > 0)
1047 			irq_num++;
1048 	}
1049 
1050 	pdev->phy = devm_kcalloc(pdev->dev, dma_channels, sizeof(*pdev->phy),
1051 				 GFP_KERNEL);
1052 	if (pdev->phy == NULL)
1053 		return -ENOMEM;
1054 
1055 	INIT_LIST_HEAD(&pdev->device.channels);
1056 
1057 	if (irq_num != dma_channels) {
1058 		/* all chan share one irq, demux inside */
1059 		irq = platform_get_irq(op, 0);
1060 		ret = devm_request_irq(pdev->dev, irq, mmp_pdma_int_handler,
1061 				       IRQF_SHARED, "pdma", pdev);
1062 		if (ret)
1063 			return ret;
1064 	}
1065 
1066 	for (i = 0; i < dma_channels; i++) {
1067 		irq = (irq_num != dma_channels) ? 0 : platform_get_irq(op, i);
1068 		ret = mmp_pdma_chan_init(pdev, i, irq);
1069 		if (ret)
1070 			return ret;
1071 	}
1072 
1073 	dma_cap_set(DMA_SLAVE, pdev->device.cap_mask);
1074 	dma_cap_set(DMA_MEMCPY, pdev->device.cap_mask);
1075 	dma_cap_set(DMA_CYCLIC, pdev->device.cap_mask);
1076 	dma_cap_set(DMA_PRIVATE, pdev->device.cap_mask);
1077 	pdev->device.dev = &op->dev;
1078 	pdev->device.device_alloc_chan_resources = mmp_pdma_alloc_chan_resources;
1079 	pdev->device.device_free_chan_resources = mmp_pdma_free_chan_resources;
1080 	pdev->device.device_tx_status = mmp_pdma_tx_status;
1081 	pdev->device.device_prep_dma_memcpy = mmp_pdma_prep_memcpy;
1082 	pdev->device.device_prep_slave_sg = mmp_pdma_prep_slave_sg;
1083 	pdev->device.device_prep_dma_cyclic = mmp_pdma_prep_dma_cyclic;
1084 	pdev->device.device_issue_pending = mmp_pdma_issue_pending;
1085 	pdev->device.device_config = mmp_pdma_config;
1086 	pdev->device.device_terminate_all = mmp_pdma_terminate_all;
1087 	pdev->device.copy_align = DMAENGINE_ALIGN_8_BYTES;
1088 	pdev->device.src_addr_widths = widths;
1089 	pdev->device.dst_addr_widths = widths;
1090 	pdev->device.directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1091 	pdev->device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1092 
1093 	if (pdev->dev->coherent_dma_mask)
1094 		dma_set_mask(pdev->dev, pdev->dev->coherent_dma_mask);
1095 	else
1096 		dma_set_mask(pdev->dev, DMA_BIT_MASK(64));
1097 
1098 	ret = dma_async_device_register(&pdev->device);
1099 	if (ret) {
1100 		dev_err(pdev->device.dev, "unable to register\n");
1101 		return ret;
1102 	}
1103 
1104 	if (op->dev.of_node) {
1105 		/* Device-tree DMA controller registration */
1106 		ret = of_dma_controller_register(op->dev.of_node,
1107 						 mmp_pdma_dma_xlate, pdev);
1108 		if (ret < 0) {
1109 			dev_err(&op->dev, "of_dma_controller_register failed\n");
1110 			return ret;
1111 		}
1112 	}
1113 
1114 	platform_set_drvdata(op, pdev);
1115 	dev_info(pdev->device.dev, "initialized %d channels\n", dma_channels);
1116 	return 0;
1117 }
1118 
1119 static const struct platform_device_id mmp_pdma_id_table[] = {
1120 	{ "mmp-pdma", },
1121 	{ },
1122 };
1123 
1124 static struct platform_driver mmp_pdma_driver = {
1125 	.driver		= {
1126 		.name	= "mmp-pdma",
1127 		.of_match_table = mmp_pdma_dt_ids,
1128 	},
1129 	.id_table	= mmp_pdma_id_table,
1130 	.probe		= mmp_pdma_probe,
1131 	.remove		= mmp_pdma_remove,
1132 };
1133 
1134 bool mmp_pdma_filter_fn(struct dma_chan *chan, void *param)
1135 {
1136 	struct mmp_pdma_chan *c = to_mmp_pdma_chan(chan);
1137 
1138 	if (chan->device->dev->driver != &mmp_pdma_driver.driver)
1139 		return false;
1140 
1141 	c->drcmr = *(unsigned int *)param;
1142 
1143 	return true;
1144 }
1145 EXPORT_SYMBOL_GPL(mmp_pdma_filter_fn);
1146 
1147 module_platform_driver(mmp_pdma_driver);
1148 
1149 MODULE_DESCRIPTION("MARVELL MMP Peripheral DMA Driver");
1150 MODULE_AUTHOR("Marvell International Ltd.");
1151 MODULE_LICENSE("GPL v2");
1152