xref: /openbmc/linux/drivers/dma/mmp_pdma.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Copyright 2012 Marvell International Ltd.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/interrupt.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/slab.h>
16 #include <linux/dmaengine.h>
17 #include <linux/platform_device.h>
18 #include <linux/device.h>
19 #include <linux/platform_data/mmp_dma.h>
20 #include <linux/dmapool.h>
21 #include <linux/of_device.h>
22 #include <linux/of_dma.h>
23 #include <linux/of.h>
24 #include <linux/dma/mmp-pdma.h>
25 
26 #include "dmaengine.h"
27 
28 #define DCSR		0x0000
29 #define DALGN		0x00a0
30 #define DINT		0x00f0
31 #define DDADR		0x0200
32 #define DSADR(n)	(0x0204 + ((n) << 4))
33 #define DTADR(n)	(0x0208 + ((n) << 4))
34 #define DCMD		0x020c
35 
36 #define DCSR_RUN	BIT(31)	/* Run Bit (read / write) */
37 #define DCSR_NODESC	BIT(30)	/* No-Descriptor Fetch (read / write) */
38 #define DCSR_STOPIRQEN	BIT(29)	/* Stop Interrupt Enable (read / write) */
39 #define DCSR_REQPEND	BIT(8)	/* Request Pending (read-only) */
40 #define DCSR_STOPSTATE	BIT(3)	/* Stop State (read-only) */
41 #define DCSR_ENDINTR	BIT(2)	/* End Interrupt (read / write) */
42 #define DCSR_STARTINTR	BIT(1)	/* Start Interrupt (read / write) */
43 #define DCSR_BUSERR	BIT(0)	/* Bus Error Interrupt (read / write) */
44 
45 #define DCSR_EORIRQEN	BIT(28)	/* End of Receive Interrupt Enable (R/W) */
46 #define DCSR_EORJMPEN	BIT(27)	/* Jump to next descriptor on EOR */
47 #define DCSR_EORSTOPEN	BIT(26)	/* STOP on an EOR */
48 #define DCSR_SETCMPST	BIT(25)	/* Set Descriptor Compare Status */
49 #define DCSR_CLRCMPST	BIT(24)	/* Clear Descriptor Compare Status */
50 #define DCSR_CMPST	BIT(10)	/* The Descriptor Compare Status */
51 #define DCSR_EORINTR	BIT(9)	/* The end of Receive */
52 
53 #define DRCMR(n)	((((n) < 64) ? 0x0100 : 0x1100) + (((n) & 0x3f) << 2))
54 #define DRCMR_MAPVLD	BIT(7)	/* Map Valid (read / write) */
55 #define DRCMR_CHLNUM	0x1f	/* mask for Channel Number (read / write) */
56 
57 #define DDADR_DESCADDR	0xfffffff0	/* Address of next descriptor (mask) */
58 #define DDADR_STOP	BIT(0)	/* Stop (read / write) */
59 
60 #define DCMD_INCSRCADDR	BIT(31)	/* Source Address Increment Setting. */
61 #define DCMD_INCTRGADDR	BIT(30)	/* Target Address Increment Setting. */
62 #define DCMD_FLOWSRC	BIT(29)	/* Flow Control by the source. */
63 #define DCMD_FLOWTRG	BIT(28)	/* Flow Control by the target. */
64 #define DCMD_STARTIRQEN	BIT(22)	/* Start Interrupt Enable */
65 #define DCMD_ENDIRQEN	BIT(21)	/* End Interrupt Enable */
66 #define DCMD_ENDIAN	BIT(18)	/* Device Endian-ness. */
67 #define DCMD_BURST8	(1 << 16)	/* 8 byte burst */
68 #define DCMD_BURST16	(2 << 16)	/* 16 byte burst */
69 #define DCMD_BURST32	(3 << 16)	/* 32 byte burst */
70 #define DCMD_WIDTH1	(1 << 14)	/* 1 byte width */
71 #define DCMD_WIDTH2	(2 << 14)	/* 2 byte width (HalfWord) */
72 #define DCMD_WIDTH4	(3 << 14)	/* 4 byte width (Word) */
73 #define DCMD_LENGTH	0x01fff		/* length mask (max = 8K - 1) */
74 
75 #define PDMA_MAX_DESC_BYTES	DCMD_LENGTH
76 
77 struct mmp_pdma_desc_hw {
78 	u32 ddadr;	/* Points to the next descriptor + flags */
79 	u32 dsadr;	/* DSADR value for the current transfer */
80 	u32 dtadr;	/* DTADR value for the current transfer */
81 	u32 dcmd;	/* DCMD value for the current transfer */
82 } __aligned(32);
83 
84 struct mmp_pdma_desc_sw {
85 	struct mmp_pdma_desc_hw desc;
86 	struct list_head node;
87 	struct list_head tx_list;
88 	struct dma_async_tx_descriptor async_tx;
89 };
90 
91 struct mmp_pdma_phy;
92 
93 struct mmp_pdma_chan {
94 	struct device *dev;
95 	struct dma_chan chan;
96 	struct dma_async_tx_descriptor desc;
97 	struct mmp_pdma_phy *phy;
98 	enum dma_transfer_direction dir;
99 
100 	struct mmp_pdma_desc_sw *cyclic_first;	/* first desc_sw if channel
101 						 * is in cyclic mode */
102 
103 	/* channel's basic info */
104 	struct tasklet_struct tasklet;
105 	u32 dcmd;
106 	u32 drcmr;
107 	u32 dev_addr;
108 
109 	/* list for desc */
110 	spinlock_t desc_lock;		/* Descriptor list lock */
111 	struct list_head chain_pending;	/* Link descriptors queue for pending */
112 	struct list_head chain_running;	/* Link descriptors queue for running */
113 	bool idle;			/* channel statue machine */
114 	bool byte_align;
115 
116 	struct dma_pool *desc_pool;	/* Descriptors pool */
117 };
118 
119 struct mmp_pdma_phy {
120 	int idx;
121 	void __iomem *base;
122 	struct mmp_pdma_chan *vchan;
123 };
124 
125 struct mmp_pdma_device {
126 	int				dma_channels;
127 	void __iomem			*base;
128 	struct device			*dev;
129 	struct dma_device		device;
130 	struct mmp_pdma_phy		*phy;
131 	spinlock_t phy_lock; /* protect alloc/free phy channels */
132 };
133 
134 #define tx_to_mmp_pdma_desc(tx)					\
135 	container_of(tx, struct mmp_pdma_desc_sw, async_tx)
136 #define to_mmp_pdma_desc(lh)					\
137 	container_of(lh, struct mmp_pdma_desc_sw, node)
138 #define to_mmp_pdma_chan(dchan)					\
139 	container_of(dchan, struct mmp_pdma_chan, chan)
140 #define to_mmp_pdma_dev(dmadev)					\
141 	container_of(dmadev, struct mmp_pdma_device, device)
142 
143 static void set_desc(struct mmp_pdma_phy *phy, dma_addr_t addr)
144 {
145 	u32 reg = (phy->idx << 4) + DDADR;
146 
147 	writel(addr, phy->base + reg);
148 }
149 
150 static void enable_chan(struct mmp_pdma_phy *phy)
151 {
152 	u32 reg, dalgn;
153 
154 	if (!phy->vchan)
155 		return;
156 
157 	reg = DRCMR(phy->vchan->drcmr);
158 	writel(DRCMR_MAPVLD | phy->idx, phy->base + reg);
159 
160 	dalgn = readl(phy->base + DALGN);
161 	if (phy->vchan->byte_align)
162 		dalgn |= 1 << phy->idx;
163 	else
164 		dalgn &= ~(1 << phy->idx);
165 	writel(dalgn, phy->base + DALGN);
166 
167 	reg = (phy->idx << 2) + DCSR;
168 	writel(readl(phy->base + reg) | DCSR_RUN, phy->base + reg);
169 }
170 
171 static void disable_chan(struct mmp_pdma_phy *phy)
172 {
173 	u32 reg;
174 
175 	if (!phy)
176 		return;
177 
178 	reg = (phy->idx << 2) + DCSR;
179 	writel(readl(phy->base + reg) & ~DCSR_RUN, phy->base + reg);
180 }
181 
182 static int clear_chan_irq(struct mmp_pdma_phy *phy)
183 {
184 	u32 dcsr;
185 	u32 dint = readl(phy->base + DINT);
186 	u32 reg = (phy->idx << 2) + DCSR;
187 
188 	if (!(dint & BIT(phy->idx)))
189 		return -EAGAIN;
190 
191 	/* clear irq */
192 	dcsr = readl(phy->base + reg);
193 	writel(dcsr, phy->base + reg);
194 	if ((dcsr & DCSR_BUSERR) && (phy->vchan))
195 		dev_warn(phy->vchan->dev, "DCSR_BUSERR\n");
196 
197 	return 0;
198 }
199 
200 static irqreturn_t mmp_pdma_chan_handler(int irq, void *dev_id)
201 {
202 	struct mmp_pdma_phy *phy = dev_id;
203 
204 	if (clear_chan_irq(phy) != 0)
205 		return IRQ_NONE;
206 
207 	tasklet_schedule(&phy->vchan->tasklet);
208 	return IRQ_HANDLED;
209 }
210 
211 static irqreturn_t mmp_pdma_int_handler(int irq, void *dev_id)
212 {
213 	struct mmp_pdma_device *pdev = dev_id;
214 	struct mmp_pdma_phy *phy;
215 	u32 dint = readl(pdev->base + DINT);
216 	int i, ret;
217 	int irq_num = 0;
218 
219 	while (dint) {
220 		i = __ffs(dint);
221 		/* only handle interrupts belonging to pdma driver*/
222 		if (i >= pdev->dma_channels)
223 			break;
224 		dint &= (dint - 1);
225 		phy = &pdev->phy[i];
226 		ret = mmp_pdma_chan_handler(irq, phy);
227 		if (ret == IRQ_HANDLED)
228 			irq_num++;
229 	}
230 
231 	if (irq_num)
232 		return IRQ_HANDLED;
233 
234 	return IRQ_NONE;
235 }
236 
237 /* lookup free phy channel as descending priority */
238 static struct mmp_pdma_phy *lookup_phy(struct mmp_pdma_chan *pchan)
239 {
240 	int prio, i;
241 	struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device);
242 	struct mmp_pdma_phy *phy, *found = NULL;
243 	unsigned long flags;
244 
245 	/*
246 	 * dma channel priorities
247 	 * ch 0 - 3,  16 - 19  <--> (0)
248 	 * ch 4 - 7,  20 - 23  <--> (1)
249 	 * ch 8 - 11, 24 - 27  <--> (2)
250 	 * ch 12 - 15, 28 - 31  <--> (3)
251 	 */
252 
253 	spin_lock_irqsave(&pdev->phy_lock, flags);
254 	for (prio = 0; prio <= ((pdev->dma_channels - 1) & 0xf) >> 2; prio++) {
255 		for (i = 0; i < pdev->dma_channels; i++) {
256 			if (prio != (i & 0xf) >> 2)
257 				continue;
258 			phy = &pdev->phy[i];
259 			if (!phy->vchan) {
260 				phy->vchan = pchan;
261 				found = phy;
262 				goto out_unlock;
263 			}
264 		}
265 	}
266 
267 out_unlock:
268 	spin_unlock_irqrestore(&pdev->phy_lock, flags);
269 	return found;
270 }
271 
272 static void mmp_pdma_free_phy(struct mmp_pdma_chan *pchan)
273 {
274 	struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device);
275 	unsigned long flags;
276 	u32 reg;
277 
278 	if (!pchan->phy)
279 		return;
280 
281 	/* clear the channel mapping in DRCMR */
282 	reg = DRCMR(pchan->drcmr);
283 	writel(0, pchan->phy->base + reg);
284 
285 	spin_lock_irqsave(&pdev->phy_lock, flags);
286 	pchan->phy->vchan = NULL;
287 	pchan->phy = NULL;
288 	spin_unlock_irqrestore(&pdev->phy_lock, flags);
289 }
290 
291 /**
292  * start_pending_queue - transfer any pending transactions
293  * pending list ==> running list
294  */
295 static void start_pending_queue(struct mmp_pdma_chan *chan)
296 {
297 	struct mmp_pdma_desc_sw *desc;
298 
299 	/* still in running, irq will start the pending list */
300 	if (!chan->idle) {
301 		dev_dbg(chan->dev, "DMA controller still busy\n");
302 		return;
303 	}
304 
305 	if (list_empty(&chan->chain_pending)) {
306 		/* chance to re-fetch phy channel with higher prio */
307 		mmp_pdma_free_phy(chan);
308 		dev_dbg(chan->dev, "no pending list\n");
309 		return;
310 	}
311 
312 	if (!chan->phy) {
313 		chan->phy = lookup_phy(chan);
314 		if (!chan->phy) {
315 			dev_dbg(chan->dev, "no free dma channel\n");
316 			return;
317 		}
318 	}
319 
320 	/*
321 	 * pending -> running
322 	 * reintilize pending list
323 	 */
324 	desc = list_first_entry(&chan->chain_pending,
325 				struct mmp_pdma_desc_sw, node);
326 	list_splice_tail_init(&chan->chain_pending, &chan->chain_running);
327 
328 	/*
329 	 * Program the descriptor's address into the DMA controller,
330 	 * then start the DMA transaction
331 	 */
332 	set_desc(chan->phy, desc->async_tx.phys);
333 	enable_chan(chan->phy);
334 	chan->idle = false;
335 }
336 
337 
338 /* desc->tx_list ==> pending list */
339 static dma_cookie_t mmp_pdma_tx_submit(struct dma_async_tx_descriptor *tx)
340 {
341 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(tx->chan);
342 	struct mmp_pdma_desc_sw *desc = tx_to_mmp_pdma_desc(tx);
343 	struct mmp_pdma_desc_sw *child;
344 	unsigned long flags;
345 	dma_cookie_t cookie = -EBUSY;
346 
347 	spin_lock_irqsave(&chan->desc_lock, flags);
348 
349 	list_for_each_entry(child, &desc->tx_list, node) {
350 		cookie = dma_cookie_assign(&child->async_tx);
351 	}
352 
353 	/* softly link to pending list - desc->tx_list ==> pending list */
354 	list_splice_tail_init(&desc->tx_list, &chan->chain_pending);
355 
356 	spin_unlock_irqrestore(&chan->desc_lock, flags);
357 
358 	return cookie;
359 }
360 
361 static struct mmp_pdma_desc_sw *
362 mmp_pdma_alloc_descriptor(struct mmp_pdma_chan *chan)
363 {
364 	struct mmp_pdma_desc_sw *desc;
365 	dma_addr_t pdesc;
366 
367 	desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
368 	if (!desc) {
369 		dev_err(chan->dev, "out of memory for link descriptor\n");
370 		return NULL;
371 	}
372 
373 	memset(desc, 0, sizeof(*desc));
374 	INIT_LIST_HEAD(&desc->tx_list);
375 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
376 	/* each desc has submit */
377 	desc->async_tx.tx_submit = mmp_pdma_tx_submit;
378 	desc->async_tx.phys = pdesc;
379 
380 	return desc;
381 }
382 
383 /**
384  * mmp_pdma_alloc_chan_resources - Allocate resources for DMA channel.
385  *
386  * This function will create a dma pool for descriptor allocation.
387  * Request irq only when channel is requested
388  * Return - The number of allocated descriptors.
389  */
390 
391 static int mmp_pdma_alloc_chan_resources(struct dma_chan *dchan)
392 {
393 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
394 
395 	if (chan->desc_pool)
396 		return 1;
397 
398 	chan->desc_pool = dma_pool_create(dev_name(&dchan->dev->device),
399 					  chan->dev,
400 					  sizeof(struct mmp_pdma_desc_sw),
401 					  __alignof__(struct mmp_pdma_desc_sw),
402 					  0);
403 	if (!chan->desc_pool) {
404 		dev_err(chan->dev, "unable to allocate descriptor pool\n");
405 		return -ENOMEM;
406 	}
407 
408 	mmp_pdma_free_phy(chan);
409 	chan->idle = true;
410 	chan->dev_addr = 0;
411 	return 1;
412 }
413 
414 static void mmp_pdma_free_desc_list(struct mmp_pdma_chan *chan,
415 				    struct list_head *list)
416 {
417 	struct mmp_pdma_desc_sw *desc, *_desc;
418 
419 	list_for_each_entry_safe(desc, _desc, list, node) {
420 		list_del(&desc->node);
421 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
422 	}
423 }
424 
425 static void mmp_pdma_free_chan_resources(struct dma_chan *dchan)
426 {
427 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
428 	unsigned long flags;
429 
430 	spin_lock_irqsave(&chan->desc_lock, flags);
431 	mmp_pdma_free_desc_list(chan, &chan->chain_pending);
432 	mmp_pdma_free_desc_list(chan, &chan->chain_running);
433 	spin_unlock_irqrestore(&chan->desc_lock, flags);
434 
435 	dma_pool_destroy(chan->desc_pool);
436 	chan->desc_pool = NULL;
437 	chan->idle = true;
438 	chan->dev_addr = 0;
439 	mmp_pdma_free_phy(chan);
440 	return;
441 }
442 
443 static struct dma_async_tx_descriptor *
444 mmp_pdma_prep_memcpy(struct dma_chan *dchan,
445 		     dma_addr_t dma_dst, dma_addr_t dma_src,
446 		     size_t len, unsigned long flags)
447 {
448 	struct mmp_pdma_chan *chan;
449 	struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new;
450 	size_t copy = 0;
451 
452 	if (!dchan)
453 		return NULL;
454 
455 	if (!len)
456 		return NULL;
457 
458 	chan = to_mmp_pdma_chan(dchan);
459 	chan->byte_align = false;
460 
461 	if (!chan->dir) {
462 		chan->dir = DMA_MEM_TO_MEM;
463 		chan->dcmd = DCMD_INCTRGADDR | DCMD_INCSRCADDR;
464 		chan->dcmd |= DCMD_BURST32;
465 	}
466 
467 	do {
468 		/* Allocate the link descriptor from DMA pool */
469 		new = mmp_pdma_alloc_descriptor(chan);
470 		if (!new) {
471 			dev_err(chan->dev, "no memory for desc\n");
472 			goto fail;
473 		}
474 
475 		copy = min_t(size_t, len, PDMA_MAX_DESC_BYTES);
476 		if (dma_src & 0x7 || dma_dst & 0x7)
477 			chan->byte_align = true;
478 
479 		new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & copy);
480 		new->desc.dsadr = dma_src;
481 		new->desc.dtadr = dma_dst;
482 
483 		if (!first)
484 			first = new;
485 		else
486 			prev->desc.ddadr = new->async_tx.phys;
487 
488 		new->async_tx.cookie = 0;
489 		async_tx_ack(&new->async_tx);
490 
491 		prev = new;
492 		len -= copy;
493 
494 		if (chan->dir == DMA_MEM_TO_DEV) {
495 			dma_src += copy;
496 		} else if (chan->dir == DMA_DEV_TO_MEM) {
497 			dma_dst += copy;
498 		} else if (chan->dir == DMA_MEM_TO_MEM) {
499 			dma_src += copy;
500 			dma_dst += copy;
501 		}
502 
503 		/* Insert the link descriptor to the LD ring */
504 		list_add_tail(&new->node, &first->tx_list);
505 	} while (len);
506 
507 	first->async_tx.flags = flags; /* client is in control of this ack */
508 	first->async_tx.cookie = -EBUSY;
509 
510 	/* last desc and fire IRQ */
511 	new->desc.ddadr = DDADR_STOP;
512 	new->desc.dcmd |= DCMD_ENDIRQEN;
513 
514 	chan->cyclic_first = NULL;
515 
516 	return &first->async_tx;
517 
518 fail:
519 	if (first)
520 		mmp_pdma_free_desc_list(chan, &first->tx_list);
521 	return NULL;
522 }
523 
524 static struct dma_async_tx_descriptor *
525 mmp_pdma_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
526 		       unsigned int sg_len, enum dma_transfer_direction dir,
527 		       unsigned long flags, void *context)
528 {
529 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
530 	struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new = NULL;
531 	size_t len, avail;
532 	struct scatterlist *sg;
533 	dma_addr_t addr;
534 	int i;
535 
536 	if ((sgl == NULL) || (sg_len == 0))
537 		return NULL;
538 
539 	chan->byte_align = false;
540 
541 	for_each_sg(sgl, sg, sg_len, i) {
542 		addr = sg_dma_address(sg);
543 		avail = sg_dma_len(sgl);
544 
545 		do {
546 			len = min_t(size_t, avail, PDMA_MAX_DESC_BYTES);
547 			if (addr & 0x7)
548 				chan->byte_align = true;
549 
550 			/* allocate and populate the descriptor */
551 			new = mmp_pdma_alloc_descriptor(chan);
552 			if (!new) {
553 				dev_err(chan->dev, "no memory for desc\n");
554 				goto fail;
555 			}
556 
557 			new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & len);
558 			if (dir == DMA_MEM_TO_DEV) {
559 				new->desc.dsadr = addr;
560 				new->desc.dtadr = chan->dev_addr;
561 			} else {
562 				new->desc.dsadr = chan->dev_addr;
563 				new->desc.dtadr = addr;
564 			}
565 
566 			if (!first)
567 				first = new;
568 			else
569 				prev->desc.ddadr = new->async_tx.phys;
570 
571 			new->async_tx.cookie = 0;
572 			async_tx_ack(&new->async_tx);
573 			prev = new;
574 
575 			/* Insert the link descriptor to the LD ring */
576 			list_add_tail(&new->node, &first->tx_list);
577 
578 			/* update metadata */
579 			addr += len;
580 			avail -= len;
581 		} while (avail);
582 	}
583 
584 	first->async_tx.cookie = -EBUSY;
585 	first->async_tx.flags = flags;
586 
587 	/* last desc and fire IRQ */
588 	new->desc.ddadr = DDADR_STOP;
589 	new->desc.dcmd |= DCMD_ENDIRQEN;
590 
591 	chan->dir = dir;
592 	chan->cyclic_first = NULL;
593 
594 	return &first->async_tx;
595 
596 fail:
597 	if (first)
598 		mmp_pdma_free_desc_list(chan, &first->tx_list);
599 	return NULL;
600 }
601 
602 static struct dma_async_tx_descriptor *
603 mmp_pdma_prep_dma_cyclic(struct dma_chan *dchan,
604 			 dma_addr_t buf_addr, size_t len, size_t period_len,
605 			 enum dma_transfer_direction direction,
606 			 unsigned long flags)
607 {
608 	struct mmp_pdma_chan *chan;
609 	struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new;
610 	dma_addr_t dma_src, dma_dst;
611 
612 	if (!dchan || !len || !period_len)
613 		return NULL;
614 
615 	/* the buffer length must be a multiple of period_len */
616 	if (len % period_len != 0)
617 		return NULL;
618 
619 	if (period_len > PDMA_MAX_DESC_BYTES)
620 		return NULL;
621 
622 	chan = to_mmp_pdma_chan(dchan);
623 
624 	switch (direction) {
625 	case DMA_MEM_TO_DEV:
626 		dma_src = buf_addr;
627 		dma_dst = chan->dev_addr;
628 		break;
629 	case DMA_DEV_TO_MEM:
630 		dma_dst = buf_addr;
631 		dma_src = chan->dev_addr;
632 		break;
633 	default:
634 		dev_err(chan->dev, "Unsupported direction for cyclic DMA\n");
635 		return NULL;
636 	}
637 
638 	chan->dir = direction;
639 
640 	do {
641 		/* Allocate the link descriptor from DMA pool */
642 		new = mmp_pdma_alloc_descriptor(chan);
643 		if (!new) {
644 			dev_err(chan->dev, "no memory for desc\n");
645 			goto fail;
646 		}
647 
648 		new->desc.dcmd = (chan->dcmd | DCMD_ENDIRQEN |
649 				  (DCMD_LENGTH & period_len));
650 		new->desc.dsadr = dma_src;
651 		new->desc.dtadr = dma_dst;
652 
653 		if (!first)
654 			first = new;
655 		else
656 			prev->desc.ddadr = new->async_tx.phys;
657 
658 		new->async_tx.cookie = 0;
659 		async_tx_ack(&new->async_tx);
660 
661 		prev = new;
662 		len -= period_len;
663 
664 		if (chan->dir == DMA_MEM_TO_DEV)
665 			dma_src += period_len;
666 		else
667 			dma_dst += period_len;
668 
669 		/* Insert the link descriptor to the LD ring */
670 		list_add_tail(&new->node, &first->tx_list);
671 	} while (len);
672 
673 	first->async_tx.flags = flags; /* client is in control of this ack */
674 	first->async_tx.cookie = -EBUSY;
675 
676 	/* make the cyclic link */
677 	new->desc.ddadr = first->async_tx.phys;
678 	chan->cyclic_first = first;
679 
680 	return &first->async_tx;
681 
682 fail:
683 	if (first)
684 		mmp_pdma_free_desc_list(chan, &first->tx_list);
685 	return NULL;
686 }
687 
688 static int mmp_pdma_config(struct dma_chan *dchan,
689 			   struct dma_slave_config *cfg)
690 {
691 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
692 	u32 maxburst = 0, addr = 0;
693 	enum dma_slave_buswidth width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
694 
695 	if (!dchan)
696 		return -EINVAL;
697 
698 	if (cfg->direction == DMA_DEV_TO_MEM) {
699 		chan->dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC;
700 		maxburst = cfg->src_maxburst;
701 		width = cfg->src_addr_width;
702 		addr = cfg->src_addr;
703 	} else if (cfg->direction == DMA_MEM_TO_DEV) {
704 		chan->dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG;
705 		maxburst = cfg->dst_maxburst;
706 		width = cfg->dst_addr_width;
707 		addr = cfg->dst_addr;
708 	}
709 
710 	if (width == DMA_SLAVE_BUSWIDTH_1_BYTE)
711 		chan->dcmd |= DCMD_WIDTH1;
712 	else if (width == DMA_SLAVE_BUSWIDTH_2_BYTES)
713 		chan->dcmd |= DCMD_WIDTH2;
714 	else if (width == DMA_SLAVE_BUSWIDTH_4_BYTES)
715 		chan->dcmd |= DCMD_WIDTH4;
716 
717 	if (maxburst == 8)
718 		chan->dcmd |= DCMD_BURST8;
719 	else if (maxburst == 16)
720 		chan->dcmd |= DCMD_BURST16;
721 	else if (maxburst == 32)
722 		chan->dcmd |= DCMD_BURST32;
723 
724 	chan->dir = cfg->direction;
725 	chan->dev_addr = addr;
726 	/* FIXME: drivers should be ported over to use the filter
727 	 * function. Once that's done, the following two lines can
728 	 * be removed.
729 	 */
730 	if (cfg->slave_id)
731 		chan->drcmr = cfg->slave_id;
732 
733 	return 0;
734 }
735 
736 static int mmp_pdma_terminate_all(struct dma_chan *dchan)
737 {
738 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
739 	unsigned long flags;
740 
741 	if (!dchan)
742 		return -EINVAL;
743 
744 	disable_chan(chan->phy);
745 	mmp_pdma_free_phy(chan);
746 	spin_lock_irqsave(&chan->desc_lock, flags);
747 	mmp_pdma_free_desc_list(chan, &chan->chain_pending);
748 	mmp_pdma_free_desc_list(chan, &chan->chain_running);
749 	spin_unlock_irqrestore(&chan->desc_lock, flags);
750 	chan->idle = true;
751 
752 	return 0;
753 }
754 
755 static unsigned int mmp_pdma_residue(struct mmp_pdma_chan *chan,
756 				     dma_cookie_t cookie)
757 {
758 	struct mmp_pdma_desc_sw *sw;
759 	u32 curr, residue = 0;
760 	bool passed = false;
761 	bool cyclic = chan->cyclic_first != NULL;
762 
763 	/*
764 	 * If the channel does not have a phy pointer anymore, it has already
765 	 * been completed. Therefore, its residue is 0.
766 	 */
767 	if (!chan->phy)
768 		return 0;
769 
770 	if (chan->dir == DMA_DEV_TO_MEM)
771 		curr = readl(chan->phy->base + DTADR(chan->phy->idx));
772 	else
773 		curr = readl(chan->phy->base + DSADR(chan->phy->idx));
774 
775 	list_for_each_entry(sw, &chan->chain_running, node) {
776 		u32 start, end, len;
777 
778 		if (chan->dir == DMA_DEV_TO_MEM)
779 			start = sw->desc.dtadr;
780 		else
781 			start = sw->desc.dsadr;
782 
783 		len = sw->desc.dcmd & DCMD_LENGTH;
784 		end = start + len;
785 
786 		/*
787 		 * 'passed' will be latched once we found the descriptor which
788 		 * lies inside the boundaries of the curr pointer. All
789 		 * descriptors that occur in the list _after_ we found that
790 		 * partially handled descriptor are still to be processed and
791 		 * are hence added to the residual bytes counter.
792 		 */
793 
794 		if (passed) {
795 			residue += len;
796 		} else if (curr >= start && curr <= end) {
797 			residue += end - curr;
798 			passed = true;
799 		}
800 
801 		/*
802 		 * Descriptors that have the ENDIRQEN bit set mark the end of a
803 		 * transaction chain, and the cookie assigned with it has been
804 		 * returned previously from mmp_pdma_tx_submit().
805 		 *
806 		 * In case we have multiple transactions in the running chain,
807 		 * and the cookie does not match the one the user asked us
808 		 * about, reset the state variables and start over.
809 		 *
810 		 * This logic does not apply to cyclic transactions, where all
811 		 * descriptors have the ENDIRQEN bit set, and for which we
812 		 * can't have multiple transactions on one channel anyway.
813 		 */
814 		if (cyclic || !(sw->desc.dcmd & DCMD_ENDIRQEN))
815 			continue;
816 
817 		if (sw->async_tx.cookie == cookie) {
818 			return residue;
819 		} else {
820 			residue = 0;
821 			passed = false;
822 		}
823 	}
824 
825 	/* We should only get here in case of cyclic transactions */
826 	return residue;
827 }
828 
829 static enum dma_status mmp_pdma_tx_status(struct dma_chan *dchan,
830 					  dma_cookie_t cookie,
831 					  struct dma_tx_state *txstate)
832 {
833 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
834 	enum dma_status ret;
835 
836 	ret = dma_cookie_status(dchan, cookie, txstate);
837 	if (likely(ret != DMA_ERROR))
838 		dma_set_residue(txstate, mmp_pdma_residue(chan, cookie));
839 
840 	return ret;
841 }
842 
843 /**
844  * mmp_pdma_issue_pending - Issue the DMA start command
845  * pending list ==> running list
846  */
847 static void mmp_pdma_issue_pending(struct dma_chan *dchan)
848 {
849 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
850 	unsigned long flags;
851 
852 	spin_lock_irqsave(&chan->desc_lock, flags);
853 	start_pending_queue(chan);
854 	spin_unlock_irqrestore(&chan->desc_lock, flags);
855 }
856 
857 /*
858  * dma_do_tasklet
859  * Do call back
860  * Start pending list
861  */
862 static void dma_do_tasklet(unsigned long data)
863 {
864 	struct mmp_pdma_chan *chan = (struct mmp_pdma_chan *)data;
865 	struct mmp_pdma_desc_sw *desc, *_desc;
866 	LIST_HEAD(chain_cleanup);
867 	unsigned long flags;
868 
869 	if (chan->cyclic_first) {
870 		dma_async_tx_callback cb = NULL;
871 		void *cb_data = NULL;
872 
873 		spin_lock_irqsave(&chan->desc_lock, flags);
874 		desc = chan->cyclic_first;
875 		cb = desc->async_tx.callback;
876 		cb_data = desc->async_tx.callback_param;
877 		spin_unlock_irqrestore(&chan->desc_lock, flags);
878 
879 		if (cb)
880 			cb(cb_data);
881 
882 		return;
883 	}
884 
885 	/* submit pending list; callback for each desc; free desc */
886 	spin_lock_irqsave(&chan->desc_lock, flags);
887 
888 	list_for_each_entry_safe(desc, _desc, &chan->chain_running, node) {
889 		/*
890 		 * move the descriptors to a temporary list so we can drop
891 		 * the lock during the entire cleanup operation
892 		 */
893 		list_move(&desc->node, &chain_cleanup);
894 
895 		/*
896 		 * Look for the first list entry which has the ENDIRQEN flag
897 		 * set. That is the descriptor we got an interrupt for, so
898 		 * complete that transaction and its cookie.
899 		 */
900 		if (desc->desc.dcmd & DCMD_ENDIRQEN) {
901 			dma_cookie_t cookie = desc->async_tx.cookie;
902 			dma_cookie_complete(&desc->async_tx);
903 			dev_dbg(chan->dev, "completed_cookie=%d\n", cookie);
904 			break;
905 		}
906 	}
907 
908 	/*
909 	 * The hardware is idle and ready for more when the
910 	 * chain_running list is empty.
911 	 */
912 	chan->idle = list_empty(&chan->chain_running);
913 
914 	/* Start any pending transactions automatically */
915 	start_pending_queue(chan);
916 	spin_unlock_irqrestore(&chan->desc_lock, flags);
917 
918 	/* Run the callback for each descriptor, in order */
919 	list_for_each_entry_safe(desc, _desc, &chain_cleanup, node) {
920 		struct dma_async_tx_descriptor *txd = &desc->async_tx;
921 
922 		/* Remove from the list of transactions */
923 		list_del(&desc->node);
924 		/* Run the link descriptor callback function */
925 		if (txd->callback)
926 			txd->callback(txd->callback_param);
927 
928 		dma_pool_free(chan->desc_pool, desc, txd->phys);
929 	}
930 }
931 
932 static int mmp_pdma_remove(struct platform_device *op)
933 {
934 	struct mmp_pdma_device *pdev = platform_get_drvdata(op);
935 
936 	dma_async_device_unregister(&pdev->device);
937 	return 0;
938 }
939 
940 static int mmp_pdma_chan_init(struct mmp_pdma_device *pdev, int idx, int irq)
941 {
942 	struct mmp_pdma_phy *phy  = &pdev->phy[idx];
943 	struct mmp_pdma_chan *chan;
944 	int ret;
945 
946 	chan = devm_kzalloc(pdev->dev, sizeof(*chan), GFP_KERNEL);
947 	if (chan == NULL)
948 		return -ENOMEM;
949 
950 	phy->idx = idx;
951 	phy->base = pdev->base;
952 
953 	if (irq) {
954 		ret = devm_request_irq(pdev->dev, irq, mmp_pdma_chan_handler,
955 				       IRQF_SHARED, "pdma", phy);
956 		if (ret) {
957 			dev_err(pdev->dev, "channel request irq fail!\n");
958 			return ret;
959 		}
960 	}
961 
962 	spin_lock_init(&chan->desc_lock);
963 	chan->dev = pdev->dev;
964 	chan->chan.device = &pdev->device;
965 	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
966 	INIT_LIST_HEAD(&chan->chain_pending);
967 	INIT_LIST_HEAD(&chan->chain_running);
968 
969 	/* register virt channel to dma engine */
970 	list_add_tail(&chan->chan.device_node, &pdev->device.channels);
971 
972 	return 0;
973 }
974 
975 static const struct of_device_id mmp_pdma_dt_ids[] = {
976 	{ .compatible = "marvell,pdma-1.0", },
977 	{}
978 };
979 MODULE_DEVICE_TABLE(of, mmp_pdma_dt_ids);
980 
981 static struct dma_chan *mmp_pdma_dma_xlate(struct of_phandle_args *dma_spec,
982 					   struct of_dma *ofdma)
983 {
984 	struct mmp_pdma_device *d = ofdma->of_dma_data;
985 	struct dma_chan *chan;
986 
987 	chan = dma_get_any_slave_channel(&d->device);
988 	if (!chan)
989 		return NULL;
990 
991 	to_mmp_pdma_chan(chan)->drcmr = dma_spec->args[0];
992 
993 	return chan;
994 }
995 
996 static int mmp_pdma_probe(struct platform_device *op)
997 {
998 	struct mmp_pdma_device *pdev;
999 	const struct of_device_id *of_id;
1000 	struct mmp_dma_platdata *pdata = dev_get_platdata(&op->dev);
1001 	struct resource *iores;
1002 	int i, ret, irq = 0;
1003 	int dma_channels = 0, irq_num = 0;
1004 	const enum dma_slave_buswidth widths =
1005 		DMA_SLAVE_BUSWIDTH_1_BYTE   | DMA_SLAVE_BUSWIDTH_2_BYTES |
1006 		DMA_SLAVE_BUSWIDTH_4_BYTES;
1007 
1008 	pdev = devm_kzalloc(&op->dev, sizeof(*pdev), GFP_KERNEL);
1009 	if (!pdev)
1010 		return -ENOMEM;
1011 
1012 	pdev->dev = &op->dev;
1013 
1014 	spin_lock_init(&pdev->phy_lock);
1015 
1016 	iores = platform_get_resource(op, IORESOURCE_MEM, 0);
1017 	pdev->base = devm_ioremap_resource(pdev->dev, iores);
1018 	if (IS_ERR(pdev->base))
1019 		return PTR_ERR(pdev->base);
1020 
1021 	of_id = of_match_device(mmp_pdma_dt_ids, pdev->dev);
1022 	if (of_id)
1023 		of_property_read_u32(pdev->dev->of_node, "#dma-channels",
1024 				     &dma_channels);
1025 	else if (pdata && pdata->dma_channels)
1026 		dma_channels = pdata->dma_channels;
1027 	else
1028 		dma_channels = 32;	/* default 32 channel */
1029 	pdev->dma_channels = dma_channels;
1030 
1031 	for (i = 0; i < dma_channels; i++) {
1032 		if (platform_get_irq(op, i) > 0)
1033 			irq_num++;
1034 	}
1035 
1036 	pdev->phy = devm_kcalloc(pdev->dev, dma_channels, sizeof(*pdev->phy),
1037 				 GFP_KERNEL);
1038 	if (pdev->phy == NULL)
1039 		return -ENOMEM;
1040 
1041 	INIT_LIST_HEAD(&pdev->device.channels);
1042 
1043 	if (irq_num != dma_channels) {
1044 		/* all chan share one irq, demux inside */
1045 		irq = platform_get_irq(op, 0);
1046 		ret = devm_request_irq(pdev->dev, irq, mmp_pdma_int_handler,
1047 				       IRQF_SHARED, "pdma", pdev);
1048 		if (ret)
1049 			return ret;
1050 	}
1051 
1052 	for (i = 0; i < dma_channels; i++) {
1053 		irq = (irq_num != dma_channels) ? 0 : platform_get_irq(op, i);
1054 		ret = mmp_pdma_chan_init(pdev, i, irq);
1055 		if (ret)
1056 			return ret;
1057 	}
1058 
1059 	dma_cap_set(DMA_SLAVE, pdev->device.cap_mask);
1060 	dma_cap_set(DMA_MEMCPY, pdev->device.cap_mask);
1061 	dma_cap_set(DMA_CYCLIC, pdev->device.cap_mask);
1062 	dma_cap_set(DMA_PRIVATE, pdev->device.cap_mask);
1063 	pdev->device.dev = &op->dev;
1064 	pdev->device.device_alloc_chan_resources = mmp_pdma_alloc_chan_resources;
1065 	pdev->device.device_free_chan_resources = mmp_pdma_free_chan_resources;
1066 	pdev->device.device_tx_status = mmp_pdma_tx_status;
1067 	pdev->device.device_prep_dma_memcpy = mmp_pdma_prep_memcpy;
1068 	pdev->device.device_prep_slave_sg = mmp_pdma_prep_slave_sg;
1069 	pdev->device.device_prep_dma_cyclic = mmp_pdma_prep_dma_cyclic;
1070 	pdev->device.device_issue_pending = mmp_pdma_issue_pending;
1071 	pdev->device.device_config = mmp_pdma_config;
1072 	pdev->device.device_terminate_all = mmp_pdma_terminate_all;
1073 	pdev->device.copy_align = DMAENGINE_ALIGN_8_BYTES;
1074 	pdev->device.src_addr_widths = widths;
1075 	pdev->device.dst_addr_widths = widths;
1076 	pdev->device.directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1077 	pdev->device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1078 
1079 	if (pdev->dev->coherent_dma_mask)
1080 		dma_set_mask(pdev->dev, pdev->dev->coherent_dma_mask);
1081 	else
1082 		dma_set_mask(pdev->dev, DMA_BIT_MASK(64));
1083 
1084 	ret = dma_async_device_register(&pdev->device);
1085 	if (ret) {
1086 		dev_err(pdev->device.dev, "unable to register\n");
1087 		return ret;
1088 	}
1089 
1090 	if (op->dev.of_node) {
1091 		/* Device-tree DMA controller registration */
1092 		ret = of_dma_controller_register(op->dev.of_node,
1093 						 mmp_pdma_dma_xlate, pdev);
1094 		if (ret < 0) {
1095 			dev_err(&op->dev, "of_dma_controller_register failed\n");
1096 			return ret;
1097 		}
1098 	}
1099 
1100 	platform_set_drvdata(op, pdev);
1101 	dev_info(pdev->device.dev, "initialized %d channels\n", dma_channels);
1102 	return 0;
1103 }
1104 
1105 static const struct platform_device_id mmp_pdma_id_table[] = {
1106 	{ "mmp-pdma", },
1107 	{ },
1108 };
1109 
1110 static struct platform_driver mmp_pdma_driver = {
1111 	.driver		= {
1112 		.name	= "mmp-pdma",
1113 		.of_match_table = mmp_pdma_dt_ids,
1114 	},
1115 	.id_table	= mmp_pdma_id_table,
1116 	.probe		= mmp_pdma_probe,
1117 	.remove		= mmp_pdma_remove,
1118 };
1119 
1120 bool mmp_pdma_filter_fn(struct dma_chan *chan, void *param)
1121 {
1122 	struct mmp_pdma_chan *c = to_mmp_pdma_chan(chan);
1123 
1124 	if (chan->device->dev->driver != &mmp_pdma_driver.driver)
1125 		return false;
1126 
1127 	c->drcmr = *(unsigned int *)param;
1128 
1129 	return true;
1130 }
1131 EXPORT_SYMBOL_GPL(mmp_pdma_filter_fn);
1132 
1133 module_platform_driver(mmp_pdma_driver);
1134 
1135 MODULE_DESCRIPTION("MARVELL MMP Peripheral DMA Driver");
1136 MODULE_AUTHOR("Marvell International Ltd.");
1137 MODULE_LICENSE("GPL v2");
1138