xref: /openbmc/linux/drivers/dma/mmp_pdma.c (revision abade675e02e1b73da0c20ffaf08fbe309038298)
1 /*
2  * Copyright 2012 Marvell International Ltd.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/interrupt.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/slab.h>
16 #include <linux/dmaengine.h>
17 #include <linux/platform_device.h>
18 #include <linux/device.h>
19 #include <linux/platform_data/mmp_dma.h>
20 #include <linux/dmapool.h>
21 #include <linux/of_device.h>
22 #include <linux/of_dma.h>
23 #include <linux/of.h>
24 #include <linux/dma/mmp-pdma.h>
25 
26 #include "dmaengine.h"
27 
28 #define DCSR		0x0000
29 #define DALGN		0x00a0
30 #define DINT		0x00f0
31 #define DDADR		0x0200
32 #define DSADR(n)	(0x0204 + ((n) << 4))
33 #define DTADR(n)	(0x0208 + ((n) << 4))
34 #define DCMD		0x020c
35 
36 #define DCSR_RUN	BIT(31)	/* Run Bit (read / write) */
37 #define DCSR_NODESC	BIT(30)	/* No-Descriptor Fetch (read / write) */
38 #define DCSR_STOPIRQEN	BIT(29)	/* Stop Interrupt Enable (read / write) */
39 #define DCSR_REQPEND	BIT(8)	/* Request Pending (read-only) */
40 #define DCSR_STOPSTATE	BIT(3)	/* Stop State (read-only) */
41 #define DCSR_ENDINTR	BIT(2)	/* End Interrupt (read / write) */
42 #define DCSR_STARTINTR	BIT(1)	/* Start Interrupt (read / write) */
43 #define DCSR_BUSERR	BIT(0)	/* Bus Error Interrupt (read / write) */
44 
45 #define DCSR_EORIRQEN	BIT(28)	/* End of Receive Interrupt Enable (R/W) */
46 #define DCSR_EORJMPEN	BIT(27)	/* Jump to next descriptor on EOR */
47 #define DCSR_EORSTOPEN	BIT(26)	/* STOP on an EOR */
48 #define DCSR_SETCMPST	BIT(25)	/* Set Descriptor Compare Status */
49 #define DCSR_CLRCMPST	BIT(24)	/* Clear Descriptor Compare Status */
50 #define DCSR_CMPST	BIT(10)	/* The Descriptor Compare Status */
51 #define DCSR_EORINTR	BIT(9)	/* The end of Receive */
52 
53 #define DRCMR(n)	((((n) < 64) ? 0x0100 : 0x1100) + (((n) & 0x3f) << 2))
54 #define DRCMR_MAPVLD	BIT(7)	/* Map Valid (read / write) */
55 #define DRCMR_CHLNUM	0x1f	/* mask for Channel Number (read / write) */
56 
57 #define DDADR_DESCADDR	0xfffffff0	/* Address of next descriptor (mask) */
58 #define DDADR_STOP	BIT(0)	/* Stop (read / write) */
59 
60 #define DCMD_INCSRCADDR	BIT(31)	/* Source Address Increment Setting. */
61 #define DCMD_INCTRGADDR	BIT(30)	/* Target Address Increment Setting. */
62 #define DCMD_FLOWSRC	BIT(29)	/* Flow Control by the source. */
63 #define DCMD_FLOWTRG	BIT(28)	/* Flow Control by the target. */
64 #define DCMD_STARTIRQEN	BIT(22)	/* Start Interrupt Enable */
65 #define DCMD_ENDIRQEN	BIT(21)	/* End Interrupt Enable */
66 #define DCMD_ENDIAN	BIT(18)	/* Device Endian-ness. */
67 #define DCMD_BURST8	(1 << 16)	/* 8 byte burst */
68 #define DCMD_BURST16	(2 << 16)	/* 16 byte burst */
69 #define DCMD_BURST32	(3 << 16)	/* 32 byte burst */
70 #define DCMD_WIDTH1	(1 << 14)	/* 1 byte width */
71 #define DCMD_WIDTH2	(2 << 14)	/* 2 byte width (HalfWord) */
72 #define DCMD_WIDTH4	(3 << 14)	/* 4 byte width (Word) */
73 #define DCMD_LENGTH	0x01fff		/* length mask (max = 8K - 1) */
74 
75 #define PDMA_MAX_DESC_BYTES	DCMD_LENGTH
76 
77 struct mmp_pdma_desc_hw {
78 	u32 ddadr;	/* Points to the next descriptor + flags */
79 	u32 dsadr;	/* DSADR value for the current transfer */
80 	u32 dtadr;	/* DTADR value for the current transfer */
81 	u32 dcmd;	/* DCMD value for the current transfer */
82 } __aligned(32);
83 
84 struct mmp_pdma_desc_sw {
85 	struct mmp_pdma_desc_hw desc;
86 	struct list_head node;
87 	struct list_head tx_list;
88 	struct dma_async_tx_descriptor async_tx;
89 };
90 
91 struct mmp_pdma_phy;
92 
93 struct mmp_pdma_chan {
94 	struct device *dev;
95 	struct dma_chan chan;
96 	struct dma_async_tx_descriptor desc;
97 	struct mmp_pdma_phy *phy;
98 	enum dma_transfer_direction dir;
99 	struct dma_slave_config slave_config;
100 
101 	struct mmp_pdma_desc_sw *cyclic_first;	/* first desc_sw if channel
102 						 * is in cyclic mode */
103 
104 	/* channel's basic info */
105 	struct tasklet_struct tasklet;
106 	u32 dcmd;
107 	u32 drcmr;
108 	u32 dev_addr;
109 
110 	/* list for desc */
111 	spinlock_t desc_lock;		/* Descriptor list lock */
112 	struct list_head chain_pending;	/* Link descriptors queue for pending */
113 	struct list_head chain_running;	/* Link descriptors queue for running */
114 	bool idle;			/* channel statue machine */
115 	bool byte_align;
116 
117 	struct dma_pool *desc_pool;	/* Descriptors pool */
118 };
119 
120 struct mmp_pdma_phy {
121 	int idx;
122 	void __iomem *base;
123 	struct mmp_pdma_chan *vchan;
124 };
125 
126 struct mmp_pdma_device {
127 	int				dma_channels;
128 	void __iomem			*base;
129 	struct device			*dev;
130 	struct dma_device		device;
131 	struct mmp_pdma_phy		*phy;
132 	spinlock_t phy_lock; /* protect alloc/free phy channels */
133 };
134 
135 #define tx_to_mmp_pdma_desc(tx)					\
136 	container_of(tx, struct mmp_pdma_desc_sw, async_tx)
137 #define to_mmp_pdma_desc(lh)					\
138 	container_of(lh, struct mmp_pdma_desc_sw, node)
139 #define to_mmp_pdma_chan(dchan)					\
140 	container_of(dchan, struct mmp_pdma_chan, chan)
141 #define to_mmp_pdma_dev(dmadev)					\
142 	container_of(dmadev, struct mmp_pdma_device, device)
143 
144 static int mmp_pdma_config_write(struct dma_chan *dchan,
145 			   struct dma_slave_config *cfg,
146 			   enum dma_transfer_direction direction);
147 
148 static void set_desc(struct mmp_pdma_phy *phy, dma_addr_t addr)
149 {
150 	u32 reg = (phy->idx << 4) + DDADR;
151 
152 	writel(addr, phy->base + reg);
153 }
154 
155 static void enable_chan(struct mmp_pdma_phy *phy)
156 {
157 	u32 reg, dalgn;
158 
159 	if (!phy->vchan)
160 		return;
161 
162 	reg = DRCMR(phy->vchan->drcmr);
163 	writel(DRCMR_MAPVLD | phy->idx, phy->base + reg);
164 
165 	dalgn = readl(phy->base + DALGN);
166 	if (phy->vchan->byte_align)
167 		dalgn |= 1 << phy->idx;
168 	else
169 		dalgn &= ~(1 << phy->idx);
170 	writel(dalgn, phy->base + DALGN);
171 
172 	reg = (phy->idx << 2) + DCSR;
173 	writel(readl(phy->base + reg) | DCSR_RUN, phy->base + reg);
174 }
175 
176 static void disable_chan(struct mmp_pdma_phy *phy)
177 {
178 	u32 reg;
179 
180 	if (!phy)
181 		return;
182 
183 	reg = (phy->idx << 2) + DCSR;
184 	writel(readl(phy->base + reg) & ~DCSR_RUN, phy->base + reg);
185 }
186 
187 static int clear_chan_irq(struct mmp_pdma_phy *phy)
188 {
189 	u32 dcsr;
190 	u32 dint = readl(phy->base + DINT);
191 	u32 reg = (phy->idx << 2) + DCSR;
192 
193 	if (!(dint & BIT(phy->idx)))
194 		return -EAGAIN;
195 
196 	/* clear irq */
197 	dcsr = readl(phy->base + reg);
198 	writel(dcsr, phy->base + reg);
199 	if ((dcsr & DCSR_BUSERR) && (phy->vchan))
200 		dev_warn(phy->vchan->dev, "DCSR_BUSERR\n");
201 
202 	return 0;
203 }
204 
205 static irqreturn_t mmp_pdma_chan_handler(int irq, void *dev_id)
206 {
207 	struct mmp_pdma_phy *phy = dev_id;
208 
209 	if (clear_chan_irq(phy) != 0)
210 		return IRQ_NONE;
211 
212 	tasklet_schedule(&phy->vchan->tasklet);
213 	return IRQ_HANDLED;
214 }
215 
216 static irqreturn_t mmp_pdma_int_handler(int irq, void *dev_id)
217 {
218 	struct mmp_pdma_device *pdev = dev_id;
219 	struct mmp_pdma_phy *phy;
220 	u32 dint = readl(pdev->base + DINT);
221 	int i, ret;
222 	int irq_num = 0;
223 
224 	while (dint) {
225 		i = __ffs(dint);
226 		/* only handle interrupts belonging to pdma driver*/
227 		if (i >= pdev->dma_channels)
228 			break;
229 		dint &= (dint - 1);
230 		phy = &pdev->phy[i];
231 		ret = mmp_pdma_chan_handler(irq, phy);
232 		if (ret == IRQ_HANDLED)
233 			irq_num++;
234 	}
235 
236 	if (irq_num)
237 		return IRQ_HANDLED;
238 
239 	return IRQ_NONE;
240 }
241 
242 /* lookup free phy channel as descending priority */
243 static struct mmp_pdma_phy *lookup_phy(struct mmp_pdma_chan *pchan)
244 {
245 	int prio, i;
246 	struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device);
247 	struct mmp_pdma_phy *phy, *found = NULL;
248 	unsigned long flags;
249 
250 	/*
251 	 * dma channel priorities
252 	 * ch 0 - 3,  16 - 19  <--> (0)
253 	 * ch 4 - 7,  20 - 23  <--> (1)
254 	 * ch 8 - 11, 24 - 27  <--> (2)
255 	 * ch 12 - 15, 28 - 31  <--> (3)
256 	 */
257 
258 	spin_lock_irqsave(&pdev->phy_lock, flags);
259 	for (prio = 0; prio <= ((pdev->dma_channels - 1) & 0xf) >> 2; prio++) {
260 		for (i = 0; i < pdev->dma_channels; i++) {
261 			if (prio != (i & 0xf) >> 2)
262 				continue;
263 			phy = &pdev->phy[i];
264 			if (!phy->vchan) {
265 				phy->vchan = pchan;
266 				found = phy;
267 				goto out_unlock;
268 			}
269 		}
270 	}
271 
272 out_unlock:
273 	spin_unlock_irqrestore(&pdev->phy_lock, flags);
274 	return found;
275 }
276 
277 static void mmp_pdma_free_phy(struct mmp_pdma_chan *pchan)
278 {
279 	struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device);
280 	unsigned long flags;
281 	u32 reg;
282 
283 	if (!pchan->phy)
284 		return;
285 
286 	/* clear the channel mapping in DRCMR */
287 	reg = DRCMR(pchan->drcmr);
288 	writel(0, pchan->phy->base + reg);
289 
290 	spin_lock_irqsave(&pdev->phy_lock, flags);
291 	pchan->phy->vchan = NULL;
292 	pchan->phy = NULL;
293 	spin_unlock_irqrestore(&pdev->phy_lock, flags);
294 }
295 
296 /**
297  * start_pending_queue - transfer any pending transactions
298  * pending list ==> running list
299  */
300 static void start_pending_queue(struct mmp_pdma_chan *chan)
301 {
302 	struct mmp_pdma_desc_sw *desc;
303 
304 	/* still in running, irq will start the pending list */
305 	if (!chan->idle) {
306 		dev_dbg(chan->dev, "DMA controller still busy\n");
307 		return;
308 	}
309 
310 	if (list_empty(&chan->chain_pending)) {
311 		/* chance to re-fetch phy channel with higher prio */
312 		mmp_pdma_free_phy(chan);
313 		dev_dbg(chan->dev, "no pending list\n");
314 		return;
315 	}
316 
317 	if (!chan->phy) {
318 		chan->phy = lookup_phy(chan);
319 		if (!chan->phy) {
320 			dev_dbg(chan->dev, "no free dma channel\n");
321 			return;
322 		}
323 	}
324 
325 	/*
326 	 * pending -> running
327 	 * reintilize pending list
328 	 */
329 	desc = list_first_entry(&chan->chain_pending,
330 				struct mmp_pdma_desc_sw, node);
331 	list_splice_tail_init(&chan->chain_pending, &chan->chain_running);
332 
333 	/*
334 	 * Program the descriptor's address into the DMA controller,
335 	 * then start the DMA transaction
336 	 */
337 	set_desc(chan->phy, desc->async_tx.phys);
338 	enable_chan(chan->phy);
339 	chan->idle = false;
340 }
341 
342 
343 /* desc->tx_list ==> pending list */
344 static dma_cookie_t mmp_pdma_tx_submit(struct dma_async_tx_descriptor *tx)
345 {
346 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(tx->chan);
347 	struct mmp_pdma_desc_sw *desc = tx_to_mmp_pdma_desc(tx);
348 	struct mmp_pdma_desc_sw *child;
349 	unsigned long flags;
350 	dma_cookie_t cookie = -EBUSY;
351 
352 	spin_lock_irqsave(&chan->desc_lock, flags);
353 
354 	list_for_each_entry(child, &desc->tx_list, node) {
355 		cookie = dma_cookie_assign(&child->async_tx);
356 	}
357 
358 	/* softly link to pending list - desc->tx_list ==> pending list */
359 	list_splice_tail_init(&desc->tx_list, &chan->chain_pending);
360 
361 	spin_unlock_irqrestore(&chan->desc_lock, flags);
362 
363 	return cookie;
364 }
365 
366 static struct mmp_pdma_desc_sw *
367 mmp_pdma_alloc_descriptor(struct mmp_pdma_chan *chan)
368 {
369 	struct mmp_pdma_desc_sw *desc;
370 	dma_addr_t pdesc;
371 
372 	desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
373 	if (!desc) {
374 		dev_err(chan->dev, "out of memory for link descriptor\n");
375 		return NULL;
376 	}
377 
378 	INIT_LIST_HEAD(&desc->tx_list);
379 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
380 	/* each desc has submit */
381 	desc->async_tx.tx_submit = mmp_pdma_tx_submit;
382 	desc->async_tx.phys = pdesc;
383 
384 	return desc;
385 }
386 
387 /**
388  * mmp_pdma_alloc_chan_resources - Allocate resources for DMA channel.
389  *
390  * This function will create a dma pool for descriptor allocation.
391  * Request irq only when channel is requested
392  * Return - The number of allocated descriptors.
393  */
394 
395 static int mmp_pdma_alloc_chan_resources(struct dma_chan *dchan)
396 {
397 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
398 
399 	if (chan->desc_pool)
400 		return 1;
401 
402 	chan->desc_pool = dma_pool_create(dev_name(&dchan->dev->device),
403 					  chan->dev,
404 					  sizeof(struct mmp_pdma_desc_sw),
405 					  __alignof__(struct mmp_pdma_desc_sw),
406 					  0);
407 	if (!chan->desc_pool) {
408 		dev_err(chan->dev, "unable to allocate descriptor pool\n");
409 		return -ENOMEM;
410 	}
411 
412 	mmp_pdma_free_phy(chan);
413 	chan->idle = true;
414 	chan->dev_addr = 0;
415 	return 1;
416 }
417 
418 static void mmp_pdma_free_desc_list(struct mmp_pdma_chan *chan,
419 				    struct list_head *list)
420 {
421 	struct mmp_pdma_desc_sw *desc, *_desc;
422 
423 	list_for_each_entry_safe(desc, _desc, list, node) {
424 		list_del(&desc->node);
425 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
426 	}
427 }
428 
429 static void mmp_pdma_free_chan_resources(struct dma_chan *dchan)
430 {
431 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
432 	unsigned long flags;
433 
434 	spin_lock_irqsave(&chan->desc_lock, flags);
435 	mmp_pdma_free_desc_list(chan, &chan->chain_pending);
436 	mmp_pdma_free_desc_list(chan, &chan->chain_running);
437 	spin_unlock_irqrestore(&chan->desc_lock, flags);
438 
439 	dma_pool_destroy(chan->desc_pool);
440 	chan->desc_pool = NULL;
441 	chan->idle = true;
442 	chan->dev_addr = 0;
443 	mmp_pdma_free_phy(chan);
444 	return;
445 }
446 
447 static struct dma_async_tx_descriptor *
448 mmp_pdma_prep_memcpy(struct dma_chan *dchan,
449 		     dma_addr_t dma_dst, dma_addr_t dma_src,
450 		     size_t len, unsigned long flags)
451 {
452 	struct mmp_pdma_chan *chan;
453 	struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new;
454 	size_t copy = 0;
455 
456 	if (!dchan)
457 		return NULL;
458 
459 	if (!len)
460 		return NULL;
461 
462 	chan = to_mmp_pdma_chan(dchan);
463 	chan->byte_align = false;
464 
465 	if (!chan->dir) {
466 		chan->dir = DMA_MEM_TO_MEM;
467 		chan->dcmd = DCMD_INCTRGADDR | DCMD_INCSRCADDR;
468 		chan->dcmd |= DCMD_BURST32;
469 	}
470 
471 	do {
472 		/* Allocate the link descriptor from DMA pool */
473 		new = mmp_pdma_alloc_descriptor(chan);
474 		if (!new) {
475 			dev_err(chan->dev, "no memory for desc\n");
476 			goto fail;
477 		}
478 
479 		copy = min_t(size_t, len, PDMA_MAX_DESC_BYTES);
480 		if (dma_src & 0x7 || dma_dst & 0x7)
481 			chan->byte_align = true;
482 
483 		new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & copy);
484 		new->desc.dsadr = dma_src;
485 		new->desc.dtadr = dma_dst;
486 
487 		if (!first)
488 			first = new;
489 		else
490 			prev->desc.ddadr = new->async_tx.phys;
491 
492 		new->async_tx.cookie = 0;
493 		async_tx_ack(&new->async_tx);
494 
495 		prev = new;
496 		len -= copy;
497 
498 		if (chan->dir == DMA_MEM_TO_DEV) {
499 			dma_src += copy;
500 		} else if (chan->dir == DMA_DEV_TO_MEM) {
501 			dma_dst += copy;
502 		} else if (chan->dir == DMA_MEM_TO_MEM) {
503 			dma_src += copy;
504 			dma_dst += copy;
505 		}
506 
507 		/* Insert the link descriptor to the LD ring */
508 		list_add_tail(&new->node, &first->tx_list);
509 	} while (len);
510 
511 	first->async_tx.flags = flags; /* client is in control of this ack */
512 	first->async_tx.cookie = -EBUSY;
513 
514 	/* last desc and fire IRQ */
515 	new->desc.ddadr = DDADR_STOP;
516 	new->desc.dcmd |= DCMD_ENDIRQEN;
517 
518 	chan->cyclic_first = NULL;
519 
520 	return &first->async_tx;
521 
522 fail:
523 	if (first)
524 		mmp_pdma_free_desc_list(chan, &first->tx_list);
525 	return NULL;
526 }
527 
528 static struct dma_async_tx_descriptor *
529 mmp_pdma_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
530 		       unsigned int sg_len, enum dma_transfer_direction dir,
531 		       unsigned long flags, void *context)
532 {
533 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
534 	struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new = NULL;
535 	size_t len, avail;
536 	struct scatterlist *sg;
537 	dma_addr_t addr;
538 	int i;
539 
540 	if ((sgl == NULL) || (sg_len == 0))
541 		return NULL;
542 
543 	chan->byte_align = false;
544 
545 	mmp_pdma_config_write(dchan, &chan->slave_config, dir);
546 
547 	for_each_sg(sgl, sg, sg_len, i) {
548 		addr = sg_dma_address(sg);
549 		avail = sg_dma_len(sgl);
550 
551 		do {
552 			len = min_t(size_t, avail, PDMA_MAX_DESC_BYTES);
553 			if (addr & 0x7)
554 				chan->byte_align = true;
555 
556 			/* allocate and populate the descriptor */
557 			new = mmp_pdma_alloc_descriptor(chan);
558 			if (!new) {
559 				dev_err(chan->dev, "no memory for desc\n");
560 				goto fail;
561 			}
562 
563 			new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & len);
564 			if (dir == DMA_MEM_TO_DEV) {
565 				new->desc.dsadr = addr;
566 				new->desc.dtadr = chan->dev_addr;
567 			} else {
568 				new->desc.dsadr = chan->dev_addr;
569 				new->desc.dtadr = addr;
570 			}
571 
572 			if (!first)
573 				first = new;
574 			else
575 				prev->desc.ddadr = new->async_tx.phys;
576 
577 			new->async_tx.cookie = 0;
578 			async_tx_ack(&new->async_tx);
579 			prev = new;
580 
581 			/* Insert the link descriptor to the LD ring */
582 			list_add_tail(&new->node, &first->tx_list);
583 
584 			/* update metadata */
585 			addr += len;
586 			avail -= len;
587 		} while (avail);
588 	}
589 
590 	first->async_tx.cookie = -EBUSY;
591 	first->async_tx.flags = flags;
592 
593 	/* last desc and fire IRQ */
594 	new->desc.ddadr = DDADR_STOP;
595 	new->desc.dcmd |= DCMD_ENDIRQEN;
596 
597 	chan->dir = dir;
598 	chan->cyclic_first = NULL;
599 
600 	return &first->async_tx;
601 
602 fail:
603 	if (first)
604 		mmp_pdma_free_desc_list(chan, &first->tx_list);
605 	return NULL;
606 }
607 
608 static struct dma_async_tx_descriptor *
609 mmp_pdma_prep_dma_cyclic(struct dma_chan *dchan,
610 			 dma_addr_t buf_addr, size_t len, size_t period_len,
611 			 enum dma_transfer_direction direction,
612 			 unsigned long flags)
613 {
614 	struct mmp_pdma_chan *chan;
615 	struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new;
616 	dma_addr_t dma_src, dma_dst;
617 
618 	if (!dchan || !len || !period_len)
619 		return NULL;
620 
621 	/* the buffer length must be a multiple of period_len */
622 	if (len % period_len != 0)
623 		return NULL;
624 
625 	if (period_len > PDMA_MAX_DESC_BYTES)
626 		return NULL;
627 
628 	chan = to_mmp_pdma_chan(dchan);
629 	mmp_pdma_config_write(dchan, &chan->slave_config, direction);
630 
631 	switch (direction) {
632 	case DMA_MEM_TO_DEV:
633 		dma_src = buf_addr;
634 		dma_dst = chan->dev_addr;
635 		break;
636 	case DMA_DEV_TO_MEM:
637 		dma_dst = buf_addr;
638 		dma_src = chan->dev_addr;
639 		break;
640 	default:
641 		dev_err(chan->dev, "Unsupported direction for cyclic DMA\n");
642 		return NULL;
643 	}
644 
645 	chan->dir = direction;
646 
647 	do {
648 		/* Allocate the link descriptor from DMA pool */
649 		new = mmp_pdma_alloc_descriptor(chan);
650 		if (!new) {
651 			dev_err(chan->dev, "no memory for desc\n");
652 			goto fail;
653 		}
654 
655 		new->desc.dcmd = (chan->dcmd | DCMD_ENDIRQEN |
656 				  (DCMD_LENGTH & period_len));
657 		new->desc.dsadr = dma_src;
658 		new->desc.dtadr = dma_dst;
659 
660 		if (!first)
661 			first = new;
662 		else
663 			prev->desc.ddadr = new->async_tx.phys;
664 
665 		new->async_tx.cookie = 0;
666 		async_tx_ack(&new->async_tx);
667 
668 		prev = new;
669 		len -= period_len;
670 
671 		if (chan->dir == DMA_MEM_TO_DEV)
672 			dma_src += period_len;
673 		else
674 			dma_dst += period_len;
675 
676 		/* Insert the link descriptor to the LD ring */
677 		list_add_tail(&new->node, &first->tx_list);
678 	} while (len);
679 
680 	first->async_tx.flags = flags; /* client is in control of this ack */
681 	first->async_tx.cookie = -EBUSY;
682 
683 	/* make the cyclic link */
684 	new->desc.ddadr = first->async_tx.phys;
685 	chan->cyclic_first = first;
686 
687 	return &first->async_tx;
688 
689 fail:
690 	if (first)
691 		mmp_pdma_free_desc_list(chan, &first->tx_list);
692 	return NULL;
693 }
694 
695 static int mmp_pdma_config_write(struct dma_chan *dchan,
696 			   struct dma_slave_config *cfg,
697 			   enum dma_transfer_direction direction)
698 {
699 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
700 	u32 maxburst = 0, addr = 0;
701 	enum dma_slave_buswidth width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
702 
703 	if (!dchan)
704 		return -EINVAL;
705 
706 	if (direction == DMA_DEV_TO_MEM) {
707 		chan->dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC;
708 		maxburst = cfg->src_maxburst;
709 		width = cfg->src_addr_width;
710 		addr = cfg->src_addr;
711 	} else if (direction == DMA_MEM_TO_DEV) {
712 		chan->dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG;
713 		maxburst = cfg->dst_maxburst;
714 		width = cfg->dst_addr_width;
715 		addr = cfg->dst_addr;
716 	}
717 
718 	if (width == DMA_SLAVE_BUSWIDTH_1_BYTE)
719 		chan->dcmd |= DCMD_WIDTH1;
720 	else if (width == DMA_SLAVE_BUSWIDTH_2_BYTES)
721 		chan->dcmd |= DCMD_WIDTH2;
722 	else if (width == DMA_SLAVE_BUSWIDTH_4_BYTES)
723 		chan->dcmd |= DCMD_WIDTH4;
724 
725 	if (maxburst == 8)
726 		chan->dcmd |= DCMD_BURST8;
727 	else if (maxburst == 16)
728 		chan->dcmd |= DCMD_BURST16;
729 	else if (maxburst == 32)
730 		chan->dcmd |= DCMD_BURST32;
731 
732 	chan->dir = direction;
733 	chan->dev_addr = addr;
734 	/* FIXME: drivers should be ported over to use the filter
735 	 * function. Once that's done, the following two lines can
736 	 * be removed.
737 	 */
738 	if (cfg->slave_id)
739 		chan->drcmr = cfg->slave_id;
740 
741 	return 0;
742 }
743 
744 static int mmp_pdma_config(struct dma_chan *dchan,
745 			   struct dma_slave_config *cfg)
746 {
747 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
748 
749 	memcpy(&chan->slave_config, cfg, sizeof(*cfg));
750 	return 0;
751 }
752 
753 static int mmp_pdma_terminate_all(struct dma_chan *dchan)
754 {
755 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
756 	unsigned long flags;
757 
758 	if (!dchan)
759 		return -EINVAL;
760 
761 	disable_chan(chan->phy);
762 	mmp_pdma_free_phy(chan);
763 	spin_lock_irqsave(&chan->desc_lock, flags);
764 	mmp_pdma_free_desc_list(chan, &chan->chain_pending);
765 	mmp_pdma_free_desc_list(chan, &chan->chain_running);
766 	spin_unlock_irqrestore(&chan->desc_lock, flags);
767 	chan->idle = true;
768 
769 	return 0;
770 }
771 
772 static unsigned int mmp_pdma_residue(struct mmp_pdma_chan *chan,
773 				     dma_cookie_t cookie)
774 {
775 	struct mmp_pdma_desc_sw *sw;
776 	u32 curr, residue = 0;
777 	bool passed = false;
778 	bool cyclic = chan->cyclic_first != NULL;
779 
780 	/*
781 	 * If the channel does not have a phy pointer anymore, it has already
782 	 * been completed. Therefore, its residue is 0.
783 	 */
784 	if (!chan->phy)
785 		return 0;
786 
787 	if (chan->dir == DMA_DEV_TO_MEM)
788 		curr = readl(chan->phy->base + DTADR(chan->phy->idx));
789 	else
790 		curr = readl(chan->phy->base + DSADR(chan->phy->idx));
791 
792 	list_for_each_entry(sw, &chan->chain_running, node) {
793 		u32 start, end, len;
794 
795 		if (chan->dir == DMA_DEV_TO_MEM)
796 			start = sw->desc.dtadr;
797 		else
798 			start = sw->desc.dsadr;
799 
800 		len = sw->desc.dcmd & DCMD_LENGTH;
801 		end = start + len;
802 
803 		/*
804 		 * 'passed' will be latched once we found the descriptor which
805 		 * lies inside the boundaries of the curr pointer. All
806 		 * descriptors that occur in the list _after_ we found that
807 		 * partially handled descriptor are still to be processed and
808 		 * are hence added to the residual bytes counter.
809 		 */
810 
811 		if (passed) {
812 			residue += len;
813 		} else if (curr >= start && curr <= end) {
814 			residue += end - curr;
815 			passed = true;
816 		}
817 
818 		/*
819 		 * Descriptors that have the ENDIRQEN bit set mark the end of a
820 		 * transaction chain, and the cookie assigned with it has been
821 		 * returned previously from mmp_pdma_tx_submit().
822 		 *
823 		 * In case we have multiple transactions in the running chain,
824 		 * and the cookie does not match the one the user asked us
825 		 * about, reset the state variables and start over.
826 		 *
827 		 * This logic does not apply to cyclic transactions, where all
828 		 * descriptors have the ENDIRQEN bit set, and for which we
829 		 * can't have multiple transactions on one channel anyway.
830 		 */
831 		if (cyclic || !(sw->desc.dcmd & DCMD_ENDIRQEN))
832 			continue;
833 
834 		if (sw->async_tx.cookie == cookie) {
835 			return residue;
836 		} else {
837 			residue = 0;
838 			passed = false;
839 		}
840 	}
841 
842 	/* We should only get here in case of cyclic transactions */
843 	return residue;
844 }
845 
846 static enum dma_status mmp_pdma_tx_status(struct dma_chan *dchan,
847 					  dma_cookie_t cookie,
848 					  struct dma_tx_state *txstate)
849 {
850 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
851 	enum dma_status ret;
852 
853 	ret = dma_cookie_status(dchan, cookie, txstate);
854 	if (likely(ret != DMA_ERROR))
855 		dma_set_residue(txstate, mmp_pdma_residue(chan, cookie));
856 
857 	return ret;
858 }
859 
860 /**
861  * mmp_pdma_issue_pending - Issue the DMA start command
862  * pending list ==> running list
863  */
864 static void mmp_pdma_issue_pending(struct dma_chan *dchan)
865 {
866 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
867 	unsigned long flags;
868 
869 	spin_lock_irqsave(&chan->desc_lock, flags);
870 	start_pending_queue(chan);
871 	spin_unlock_irqrestore(&chan->desc_lock, flags);
872 }
873 
874 /*
875  * dma_do_tasklet
876  * Do call back
877  * Start pending list
878  */
879 static void dma_do_tasklet(unsigned long data)
880 {
881 	struct mmp_pdma_chan *chan = (struct mmp_pdma_chan *)data;
882 	struct mmp_pdma_desc_sw *desc, *_desc;
883 	LIST_HEAD(chain_cleanup);
884 	unsigned long flags;
885 	struct dmaengine_desc_callback cb;
886 
887 	if (chan->cyclic_first) {
888 		spin_lock_irqsave(&chan->desc_lock, flags);
889 		desc = chan->cyclic_first;
890 		dmaengine_desc_get_callback(&desc->async_tx, &cb);
891 		spin_unlock_irqrestore(&chan->desc_lock, flags);
892 
893 		dmaengine_desc_callback_invoke(&cb, NULL);
894 
895 		return;
896 	}
897 
898 	/* submit pending list; callback for each desc; free desc */
899 	spin_lock_irqsave(&chan->desc_lock, flags);
900 
901 	list_for_each_entry_safe(desc, _desc, &chan->chain_running, node) {
902 		/*
903 		 * move the descriptors to a temporary list so we can drop
904 		 * the lock during the entire cleanup operation
905 		 */
906 		list_move(&desc->node, &chain_cleanup);
907 
908 		/*
909 		 * Look for the first list entry which has the ENDIRQEN flag
910 		 * set. That is the descriptor we got an interrupt for, so
911 		 * complete that transaction and its cookie.
912 		 */
913 		if (desc->desc.dcmd & DCMD_ENDIRQEN) {
914 			dma_cookie_t cookie = desc->async_tx.cookie;
915 			dma_cookie_complete(&desc->async_tx);
916 			dev_dbg(chan->dev, "completed_cookie=%d\n", cookie);
917 			break;
918 		}
919 	}
920 
921 	/*
922 	 * The hardware is idle and ready for more when the
923 	 * chain_running list is empty.
924 	 */
925 	chan->idle = list_empty(&chan->chain_running);
926 
927 	/* Start any pending transactions automatically */
928 	start_pending_queue(chan);
929 	spin_unlock_irqrestore(&chan->desc_lock, flags);
930 
931 	/* Run the callback for each descriptor, in order */
932 	list_for_each_entry_safe(desc, _desc, &chain_cleanup, node) {
933 		struct dma_async_tx_descriptor *txd = &desc->async_tx;
934 
935 		/* Remove from the list of transactions */
936 		list_del(&desc->node);
937 		/* Run the link descriptor callback function */
938 		dmaengine_desc_get_callback(txd, &cb);
939 		dmaengine_desc_callback_invoke(&cb, NULL);
940 
941 		dma_pool_free(chan->desc_pool, desc, txd->phys);
942 	}
943 }
944 
945 static int mmp_pdma_remove(struct platform_device *op)
946 {
947 	struct mmp_pdma_device *pdev = platform_get_drvdata(op);
948 	struct mmp_pdma_phy *phy;
949 	int i, irq = 0, irq_num = 0;
950 
951 
952 	for (i = 0; i < pdev->dma_channels; i++) {
953 		if (platform_get_irq(op, i) > 0)
954 			irq_num++;
955 	}
956 
957 	if (irq_num != pdev->dma_channels) {
958 		irq = platform_get_irq(op, 0);
959 		devm_free_irq(&op->dev, irq, pdev);
960 	} else {
961 		for (i = 0; i < pdev->dma_channels; i++) {
962 			phy = &pdev->phy[i];
963 			irq = platform_get_irq(op, i);
964 			devm_free_irq(&op->dev, irq, phy);
965 		}
966 	}
967 
968 	dma_async_device_unregister(&pdev->device);
969 	return 0;
970 }
971 
972 static int mmp_pdma_chan_init(struct mmp_pdma_device *pdev, int idx, int irq)
973 {
974 	struct mmp_pdma_phy *phy  = &pdev->phy[idx];
975 	struct mmp_pdma_chan *chan;
976 	int ret;
977 
978 	chan = devm_kzalloc(pdev->dev, sizeof(*chan), GFP_KERNEL);
979 	if (chan == NULL)
980 		return -ENOMEM;
981 
982 	phy->idx = idx;
983 	phy->base = pdev->base;
984 
985 	if (irq) {
986 		ret = devm_request_irq(pdev->dev, irq, mmp_pdma_chan_handler,
987 				       IRQF_SHARED, "pdma", phy);
988 		if (ret) {
989 			dev_err(pdev->dev, "channel request irq fail!\n");
990 			return ret;
991 		}
992 	}
993 
994 	spin_lock_init(&chan->desc_lock);
995 	chan->dev = pdev->dev;
996 	chan->chan.device = &pdev->device;
997 	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
998 	INIT_LIST_HEAD(&chan->chain_pending);
999 	INIT_LIST_HEAD(&chan->chain_running);
1000 
1001 	/* register virt channel to dma engine */
1002 	list_add_tail(&chan->chan.device_node, &pdev->device.channels);
1003 
1004 	return 0;
1005 }
1006 
1007 static const struct of_device_id mmp_pdma_dt_ids[] = {
1008 	{ .compatible = "marvell,pdma-1.0", },
1009 	{}
1010 };
1011 MODULE_DEVICE_TABLE(of, mmp_pdma_dt_ids);
1012 
1013 static struct dma_chan *mmp_pdma_dma_xlate(struct of_phandle_args *dma_spec,
1014 					   struct of_dma *ofdma)
1015 {
1016 	struct mmp_pdma_device *d = ofdma->of_dma_data;
1017 	struct dma_chan *chan;
1018 
1019 	chan = dma_get_any_slave_channel(&d->device);
1020 	if (!chan)
1021 		return NULL;
1022 
1023 	to_mmp_pdma_chan(chan)->drcmr = dma_spec->args[0];
1024 
1025 	return chan;
1026 }
1027 
1028 static int mmp_pdma_probe(struct platform_device *op)
1029 {
1030 	struct mmp_pdma_device *pdev;
1031 	const struct of_device_id *of_id;
1032 	struct mmp_dma_platdata *pdata = dev_get_platdata(&op->dev);
1033 	struct resource *iores;
1034 	int i, ret, irq = 0;
1035 	int dma_channels = 0, irq_num = 0;
1036 	const enum dma_slave_buswidth widths =
1037 		DMA_SLAVE_BUSWIDTH_1_BYTE   | DMA_SLAVE_BUSWIDTH_2_BYTES |
1038 		DMA_SLAVE_BUSWIDTH_4_BYTES;
1039 
1040 	pdev = devm_kzalloc(&op->dev, sizeof(*pdev), GFP_KERNEL);
1041 	if (!pdev)
1042 		return -ENOMEM;
1043 
1044 	pdev->dev = &op->dev;
1045 
1046 	spin_lock_init(&pdev->phy_lock);
1047 
1048 	iores = platform_get_resource(op, IORESOURCE_MEM, 0);
1049 	pdev->base = devm_ioremap_resource(pdev->dev, iores);
1050 	if (IS_ERR(pdev->base))
1051 		return PTR_ERR(pdev->base);
1052 
1053 	of_id = of_match_device(mmp_pdma_dt_ids, pdev->dev);
1054 	if (of_id)
1055 		of_property_read_u32(pdev->dev->of_node, "#dma-channels",
1056 				     &dma_channels);
1057 	else if (pdata && pdata->dma_channels)
1058 		dma_channels = pdata->dma_channels;
1059 	else
1060 		dma_channels = 32;	/* default 32 channel */
1061 	pdev->dma_channels = dma_channels;
1062 
1063 	for (i = 0; i < dma_channels; i++) {
1064 		if (platform_get_irq(op, i) > 0)
1065 			irq_num++;
1066 	}
1067 
1068 	pdev->phy = devm_kcalloc(pdev->dev, dma_channels, sizeof(*pdev->phy),
1069 				 GFP_KERNEL);
1070 	if (pdev->phy == NULL)
1071 		return -ENOMEM;
1072 
1073 	INIT_LIST_HEAD(&pdev->device.channels);
1074 
1075 	if (irq_num != dma_channels) {
1076 		/* all chan share one irq, demux inside */
1077 		irq = platform_get_irq(op, 0);
1078 		ret = devm_request_irq(pdev->dev, irq, mmp_pdma_int_handler,
1079 				       IRQF_SHARED, "pdma", pdev);
1080 		if (ret)
1081 			return ret;
1082 	}
1083 
1084 	for (i = 0; i < dma_channels; i++) {
1085 		irq = (irq_num != dma_channels) ? 0 : platform_get_irq(op, i);
1086 		ret = mmp_pdma_chan_init(pdev, i, irq);
1087 		if (ret)
1088 			return ret;
1089 	}
1090 
1091 	dma_cap_set(DMA_SLAVE, pdev->device.cap_mask);
1092 	dma_cap_set(DMA_MEMCPY, pdev->device.cap_mask);
1093 	dma_cap_set(DMA_CYCLIC, pdev->device.cap_mask);
1094 	dma_cap_set(DMA_PRIVATE, pdev->device.cap_mask);
1095 	pdev->device.dev = &op->dev;
1096 	pdev->device.device_alloc_chan_resources = mmp_pdma_alloc_chan_resources;
1097 	pdev->device.device_free_chan_resources = mmp_pdma_free_chan_resources;
1098 	pdev->device.device_tx_status = mmp_pdma_tx_status;
1099 	pdev->device.device_prep_dma_memcpy = mmp_pdma_prep_memcpy;
1100 	pdev->device.device_prep_slave_sg = mmp_pdma_prep_slave_sg;
1101 	pdev->device.device_prep_dma_cyclic = mmp_pdma_prep_dma_cyclic;
1102 	pdev->device.device_issue_pending = mmp_pdma_issue_pending;
1103 	pdev->device.device_config = mmp_pdma_config;
1104 	pdev->device.device_terminate_all = mmp_pdma_terminate_all;
1105 	pdev->device.copy_align = DMAENGINE_ALIGN_8_BYTES;
1106 	pdev->device.src_addr_widths = widths;
1107 	pdev->device.dst_addr_widths = widths;
1108 	pdev->device.directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1109 	pdev->device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1110 
1111 	if (pdev->dev->coherent_dma_mask)
1112 		dma_set_mask(pdev->dev, pdev->dev->coherent_dma_mask);
1113 	else
1114 		dma_set_mask(pdev->dev, DMA_BIT_MASK(64));
1115 
1116 	ret = dma_async_device_register(&pdev->device);
1117 	if (ret) {
1118 		dev_err(pdev->device.dev, "unable to register\n");
1119 		return ret;
1120 	}
1121 
1122 	if (op->dev.of_node) {
1123 		/* Device-tree DMA controller registration */
1124 		ret = of_dma_controller_register(op->dev.of_node,
1125 						 mmp_pdma_dma_xlate, pdev);
1126 		if (ret < 0) {
1127 			dev_err(&op->dev, "of_dma_controller_register failed\n");
1128 			return ret;
1129 		}
1130 	}
1131 
1132 	platform_set_drvdata(op, pdev);
1133 	dev_info(pdev->device.dev, "initialized %d channels\n", dma_channels);
1134 	return 0;
1135 }
1136 
1137 static const struct platform_device_id mmp_pdma_id_table[] = {
1138 	{ "mmp-pdma", },
1139 	{ },
1140 };
1141 
1142 static struct platform_driver mmp_pdma_driver = {
1143 	.driver		= {
1144 		.name	= "mmp-pdma",
1145 		.of_match_table = mmp_pdma_dt_ids,
1146 	},
1147 	.id_table	= mmp_pdma_id_table,
1148 	.probe		= mmp_pdma_probe,
1149 	.remove		= mmp_pdma_remove,
1150 };
1151 
1152 bool mmp_pdma_filter_fn(struct dma_chan *chan, void *param)
1153 {
1154 	struct mmp_pdma_chan *c = to_mmp_pdma_chan(chan);
1155 
1156 	if (chan->device->dev->driver != &mmp_pdma_driver.driver)
1157 		return false;
1158 
1159 	c->drcmr = *(unsigned int *)param;
1160 
1161 	return true;
1162 }
1163 EXPORT_SYMBOL_GPL(mmp_pdma_filter_fn);
1164 
1165 module_platform_driver(mmp_pdma_driver);
1166 
1167 MODULE_DESCRIPTION("MARVELL MMP Peripheral DMA Driver");
1168 MODULE_AUTHOR("Marvell International Ltd.");
1169 MODULE_LICENSE("GPL v2");
1170