1 /* 2 * Copyright 2012 Marvell International Ltd. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 */ 8 9 #include <linux/err.h> 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/types.h> 13 #include <linux/interrupt.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/slab.h> 16 #include <linux/dmaengine.h> 17 #include <linux/platform_device.h> 18 #include <linux/device.h> 19 #include <linux/platform_data/mmp_dma.h> 20 #include <linux/dmapool.h> 21 #include <linux/of_device.h> 22 #include <linux/of_dma.h> 23 #include <linux/of.h> 24 #include <linux/dma/mmp-pdma.h> 25 26 #include "dmaengine.h" 27 28 #define DCSR 0x0000 29 #define DALGN 0x00a0 30 #define DINT 0x00f0 31 #define DDADR 0x0200 32 #define DSADR(n) (0x0204 + ((n) << 4)) 33 #define DTADR(n) (0x0208 + ((n) << 4)) 34 #define DCMD 0x020c 35 36 #define DCSR_RUN BIT(31) /* Run Bit (read / write) */ 37 #define DCSR_NODESC BIT(30) /* No-Descriptor Fetch (read / write) */ 38 #define DCSR_STOPIRQEN BIT(29) /* Stop Interrupt Enable (read / write) */ 39 #define DCSR_REQPEND BIT(8) /* Request Pending (read-only) */ 40 #define DCSR_STOPSTATE BIT(3) /* Stop State (read-only) */ 41 #define DCSR_ENDINTR BIT(2) /* End Interrupt (read / write) */ 42 #define DCSR_STARTINTR BIT(1) /* Start Interrupt (read / write) */ 43 #define DCSR_BUSERR BIT(0) /* Bus Error Interrupt (read / write) */ 44 45 #define DCSR_EORIRQEN BIT(28) /* End of Receive Interrupt Enable (R/W) */ 46 #define DCSR_EORJMPEN BIT(27) /* Jump to next descriptor on EOR */ 47 #define DCSR_EORSTOPEN BIT(26) /* STOP on an EOR */ 48 #define DCSR_SETCMPST BIT(25) /* Set Descriptor Compare Status */ 49 #define DCSR_CLRCMPST BIT(24) /* Clear Descriptor Compare Status */ 50 #define DCSR_CMPST BIT(10) /* The Descriptor Compare Status */ 51 #define DCSR_EORINTR BIT(9) /* The end of Receive */ 52 53 #define DRCMR(n) ((((n) < 64) ? 0x0100 : 0x1100) + (((n) & 0x3f) << 2)) 54 #define DRCMR_MAPVLD BIT(7) /* Map Valid (read / write) */ 55 #define DRCMR_CHLNUM 0x1f /* mask for Channel Number (read / write) */ 56 57 #define DDADR_DESCADDR 0xfffffff0 /* Address of next descriptor (mask) */ 58 #define DDADR_STOP BIT(0) /* Stop (read / write) */ 59 60 #define DCMD_INCSRCADDR BIT(31) /* Source Address Increment Setting. */ 61 #define DCMD_INCTRGADDR BIT(30) /* Target Address Increment Setting. */ 62 #define DCMD_FLOWSRC BIT(29) /* Flow Control by the source. */ 63 #define DCMD_FLOWTRG BIT(28) /* Flow Control by the target. */ 64 #define DCMD_STARTIRQEN BIT(22) /* Start Interrupt Enable */ 65 #define DCMD_ENDIRQEN BIT(21) /* End Interrupt Enable */ 66 #define DCMD_ENDIAN BIT(18) /* Device Endian-ness. */ 67 #define DCMD_BURST8 (1 << 16) /* 8 byte burst */ 68 #define DCMD_BURST16 (2 << 16) /* 16 byte burst */ 69 #define DCMD_BURST32 (3 << 16) /* 32 byte burst */ 70 #define DCMD_WIDTH1 (1 << 14) /* 1 byte width */ 71 #define DCMD_WIDTH2 (2 << 14) /* 2 byte width (HalfWord) */ 72 #define DCMD_WIDTH4 (3 << 14) /* 4 byte width (Word) */ 73 #define DCMD_LENGTH 0x01fff /* length mask (max = 8K - 1) */ 74 75 #define PDMA_ALIGNMENT 3 76 #define PDMA_MAX_DESC_BYTES DCMD_LENGTH 77 78 struct mmp_pdma_desc_hw { 79 u32 ddadr; /* Points to the next descriptor + flags */ 80 u32 dsadr; /* DSADR value for the current transfer */ 81 u32 dtadr; /* DTADR value for the current transfer */ 82 u32 dcmd; /* DCMD value for the current transfer */ 83 } __aligned(32); 84 85 struct mmp_pdma_desc_sw { 86 struct mmp_pdma_desc_hw desc; 87 struct list_head node; 88 struct list_head tx_list; 89 struct dma_async_tx_descriptor async_tx; 90 }; 91 92 struct mmp_pdma_phy; 93 94 struct mmp_pdma_chan { 95 struct device *dev; 96 struct dma_chan chan; 97 struct dma_async_tx_descriptor desc; 98 struct mmp_pdma_phy *phy; 99 enum dma_transfer_direction dir; 100 101 struct mmp_pdma_desc_sw *cyclic_first; /* first desc_sw if channel 102 * is in cyclic mode */ 103 104 /* channel's basic info */ 105 struct tasklet_struct tasklet; 106 u32 dcmd; 107 u32 drcmr; 108 u32 dev_addr; 109 110 /* list for desc */ 111 spinlock_t desc_lock; /* Descriptor list lock */ 112 struct list_head chain_pending; /* Link descriptors queue for pending */ 113 struct list_head chain_running; /* Link descriptors queue for running */ 114 bool idle; /* channel statue machine */ 115 bool byte_align; 116 117 struct dma_pool *desc_pool; /* Descriptors pool */ 118 }; 119 120 struct mmp_pdma_phy { 121 int idx; 122 void __iomem *base; 123 struct mmp_pdma_chan *vchan; 124 }; 125 126 struct mmp_pdma_device { 127 int dma_channels; 128 void __iomem *base; 129 struct device *dev; 130 struct dma_device device; 131 struct mmp_pdma_phy *phy; 132 spinlock_t phy_lock; /* protect alloc/free phy channels */ 133 }; 134 135 #define tx_to_mmp_pdma_desc(tx) \ 136 container_of(tx, struct mmp_pdma_desc_sw, async_tx) 137 #define to_mmp_pdma_desc(lh) \ 138 container_of(lh, struct mmp_pdma_desc_sw, node) 139 #define to_mmp_pdma_chan(dchan) \ 140 container_of(dchan, struct mmp_pdma_chan, chan) 141 #define to_mmp_pdma_dev(dmadev) \ 142 container_of(dmadev, struct mmp_pdma_device, device) 143 144 static void set_desc(struct mmp_pdma_phy *phy, dma_addr_t addr) 145 { 146 u32 reg = (phy->idx << 4) + DDADR; 147 148 writel(addr, phy->base + reg); 149 } 150 151 static void enable_chan(struct mmp_pdma_phy *phy) 152 { 153 u32 reg, dalgn; 154 155 if (!phy->vchan) 156 return; 157 158 reg = DRCMR(phy->vchan->drcmr); 159 writel(DRCMR_MAPVLD | phy->idx, phy->base + reg); 160 161 dalgn = readl(phy->base + DALGN); 162 if (phy->vchan->byte_align) 163 dalgn |= 1 << phy->idx; 164 else 165 dalgn &= ~(1 << phy->idx); 166 writel(dalgn, phy->base + DALGN); 167 168 reg = (phy->idx << 2) + DCSR; 169 writel(readl(phy->base + reg) | DCSR_RUN, phy->base + reg); 170 } 171 172 static void disable_chan(struct mmp_pdma_phy *phy) 173 { 174 u32 reg; 175 176 if (!phy) 177 return; 178 179 reg = (phy->idx << 2) + DCSR; 180 writel(readl(phy->base + reg) & ~DCSR_RUN, phy->base + reg); 181 } 182 183 static int clear_chan_irq(struct mmp_pdma_phy *phy) 184 { 185 u32 dcsr; 186 u32 dint = readl(phy->base + DINT); 187 u32 reg = (phy->idx << 2) + DCSR; 188 189 if (!(dint & BIT(phy->idx))) 190 return -EAGAIN; 191 192 /* clear irq */ 193 dcsr = readl(phy->base + reg); 194 writel(dcsr, phy->base + reg); 195 if ((dcsr & DCSR_BUSERR) && (phy->vchan)) 196 dev_warn(phy->vchan->dev, "DCSR_BUSERR\n"); 197 198 return 0; 199 } 200 201 static irqreturn_t mmp_pdma_chan_handler(int irq, void *dev_id) 202 { 203 struct mmp_pdma_phy *phy = dev_id; 204 205 if (clear_chan_irq(phy) != 0) 206 return IRQ_NONE; 207 208 tasklet_schedule(&phy->vchan->tasklet); 209 return IRQ_HANDLED; 210 } 211 212 static irqreturn_t mmp_pdma_int_handler(int irq, void *dev_id) 213 { 214 struct mmp_pdma_device *pdev = dev_id; 215 struct mmp_pdma_phy *phy; 216 u32 dint = readl(pdev->base + DINT); 217 int i, ret; 218 int irq_num = 0; 219 220 while (dint) { 221 i = __ffs(dint); 222 /* only handle interrupts belonging to pdma driver*/ 223 if (i >= pdev->dma_channels) 224 break; 225 dint &= (dint - 1); 226 phy = &pdev->phy[i]; 227 ret = mmp_pdma_chan_handler(irq, phy); 228 if (ret == IRQ_HANDLED) 229 irq_num++; 230 } 231 232 if (irq_num) 233 return IRQ_HANDLED; 234 235 return IRQ_NONE; 236 } 237 238 /* lookup free phy channel as descending priority */ 239 static struct mmp_pdma_phy *lookup_phy(struct mmp_pdma_chan *pchan) 240 { 241 int prio, i; 242 struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device); 243 struct mmp_pdma_phy *phy, *found = NULL; 244 unsigned long flags; 245 246 /* 247 * dma channel priorities 248 * ch 0 - 3, 16 - 19 <--> (0) 249 * ch 4 - 7, 20 - 23 <--> (1) 250 * ch 8 - 11, 24 - 27 <--> (2) 251 * ch 12 - 15, 28 - 31 <--> (3) 252 */ 253 254 spin_lock_irqsave(&pdev->phy_lock, flags); 255 for (prio = 0; prio <= ((pdev->dma_channels - 1) & 0xf) >> 2; prio++) { 256 for (i = 0; i < pdev->dma_channels; i++) { 257 if (prio != (i & 0xf) >> 2) 258 continue; 259 phy = &pdev->phy[i]; 260 if (!phy->vchan) { 261 phy->vchan = pchan; 262 found = phy; 263 goto out_unlock; 264 } 265 } 266 } 267 268 out_unlock: 269 spin_unlock_irqrestore(&pdev->phy_lock, flags); 270 return found; 271 } 272 273 static void mmp_pdma_free_phy(struct mmp_pdma_chan *pchan) 274 { 275 struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device); 276 unsigned long flags; 277 u32 reg; 278 279 if (!pchan->phy) 280 return; 281 282 /* clear the channel mapping in DRCMR */ 283 reg = DRCMR(pchan->drcmr); 284 writel(0, pchan->phy->base + reg); 285 286 spin_lock_irqsave(&pdev->phy_lock, flags); 287 pchan->phy->vchan = NULL; 288 pchan->phy = NULL; 289 spin_unlock_irqrestore(&pdev->phy_lock, flags); 290 } 291 292 /** 293 * start_pending_queue - transfer any pending transactions 294 * pending list ==> running list 295 */ 296 static void start_pending_queue(struct mmp_pdma_chan *chan) 297 { 298 struct mmp_pdma_desc_sw *desc; 299 300 /* still in running, irq will start the pending list */ 301 if (!chan->idle) { 302 dev_dbg(chan->dev, "DMA controller still busy\n"); 303 return; 304 } 305 306 if (list_empty(&chan->chain_pending)) { 307 /* chance to re-fetch phy channel with higher prio */ 308 mmp_pdma_free_phy(chan); 309 dev_dbg(chan->dev, "no pending list\n"); 310 return; 311 } 312 313 if (!chan->phy) { 314 chan->phy = lookup_phy(chan); 315 if (!chan->phy) { 316 dev_dbg(chan->dev, "no free dma channel\n"); 317 return; 318 } 319 } 320 321 /* 322 * pending -> running 323 * reintilize pending list 324 */ 325 desc = list_first_entry(&chan->chain_pending, 326 struct mmp_pdma_desc_sw, node); 327 list_splice_tail_init(&chan->chain_pending, &chan->chain_running); 328 329 /* 330 * Program the descriptor's address into the DMA controller, 331 * then start the DMA transaction 332 */ 333 set_desc(chan->phy, desc->async_tx.phys); 334 enable_chan(chan->phy); 335 chan->idle = false; 336 } 337 338 339 /* desc->tx_list ==> pending list */ 340 static dma_cookie_t mmp_pdma_tx_submit(struct dma_async_tx_descriptor *tx) 341 { 342 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(tx->chan); 343 struct mmp_pdma_desc_sw *desc = tx_to_mmp_pdma_desc(tx); 344 struct mmp_pdma_desc_sw *child; 345 unsigned long flags; 346 dma_cookie_t cookie = -EBUSY; 347 348 spin_lock_irqsave(&chan->desc_lock, flags); 349 350 list_for_each_entry(child, &desc->tx_list, node) { 351 cookie = dma_cookie_assign(&child->async_tx); 352 } 353 354 /* softly link to pending list - desc->tx_list ==> pending list */ 355 list_splice_tail_init(&desc->tx_list, &chan->chain_pending); 356 357 spin_unlock_irqrestore(&chan->desc_lock, flags); 358 359 return cookie; 360 } 361 362 static struct mmp_pdma_desc_sw * 363 mmp_pdma_alloc_descriptor(struct mmp_pdma_chan *chan) 364 { 365 struct mmp_pdma_desc_sw *desc; 366 dma_addr_t pdesc; 367 368 desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc); 369 if (!desc) { 370 dev_err(chan->dev, "out of memory for link descriptor\n"); 371 return NULL; 372 } 373 374 memset(desc, 0, sizeof(*desc)); 375 INIT_LIST_HEAD(&desc->tx_list); 376 dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan); 377 /* each desc has submit */ 378 desc->async_tx.tx_submit = mmp_pdma_tx_submit; 379 desc->async_tx.phys = pdesc; 380 381 return desc; 382 } 383 384 /** 385 * mmp_pdma_alloc_chan_resources - Allocate resources for DMA channel. 386 * 387 * This function will create a dma pool for descriptor allocation. 388 * Request irq only when channel is requested 389 * Return - The number of allocated descriptors. 390 */ 391 392 static int mmp_pdma_alloc_chan_resources(struct dma_chan *dchan) 393 { 394 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 395 396 if (chan->desc_pool) 397 return 1; 398 399 chan->desc_pool = dma_pool_create(dev_name(&dchan->dev->device), 400 chan->dev, 401 sizeof(struct mmp_pdma_desc_sw), 402 __alignof__(struct mmp_pdma_desc_sw), 403 0); 404 if (!chan->desc_pool) { 405 dev_err(chan->dev, "unable to allocate descriptor pool\n"); 406 return -ENOMEM; 407 } 408 409 mmp_pdma_free_phy(chan); 410 chan->idle = true; 411 chan->dev_addr = 0; 412 return 1; 413 } 414 415 static void mmp_pdma_free_desc_list(struct mmp_pdma_chan *chan, 416 struct list_head *list) 417 { 418 struct mmp_pdma_desc_sw *desc, *_desc; 419 420 list_for_each_entry_safe(desc, _desc, list, node) { 421 list_del(&desc->node); 422 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys); 423 } 424 } 425 426 static void mmp_pdma_free_chan_resources(struct dma_chan *dchan) 427 { 428 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 429 unsigned long flags; 430 431 spin_lock_irqsave(&chan->desc_lock, flags); 432 mmp_pdma_free_desc_list(chan, &chan->chain_pending); 433 mmp_pdma_free_desc_list(chan, &chan->chain_running); 434 spin_unlock_irqrestore(&chan->desc_lock, flags); 435 436 dma_pool_destroy(chan->desc_pool); 437 chan->desc_pool = NULL; 438 chan->idle = true; 439 chan->dev_addr = 0; 440 mmp_pdma_free_phy(chan); 441 return; 442 } 443 444 static struct dma_async_tx_descriptor * 445 mmp_pdma_prep_memcpy(struct dma_chan *dchan, 446 dma_addr_t dma_dst, dma_addr_t dma_src, 447 size_t len, unsigned long flags) 448 { 449 struct mmp_pdma_chan *chan; 450 struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new; 451 size_t copy = 0; 452 453 if (!dchan) 454 return NULL; 455 456 if (!len) 457 return NULL; 458 459 chan = to_mmp_pdma_chan(dchan); 460 chan->byte_align = false; 461 462 if (!chan->dir) { 463 chan->dir = DMA_MEM_TO_MEM; 464 chan->dcmd = DCMD_INCTRGADDR | DCMD_INCSRCADDR; 465 chan->dcmd |= DCMD_BURST32; 466 } 467 468 do { 469 /* Allocate the link descriptor from DMA pool */ 470 new = mmp_pdma_alloc_descriptor(chan); 471 if (!new) { 472 dev_err(chan->dev, "no memory for desc\n"); 473 goto fail; 474 } 475 476 copy = min_t(size_t, len, PDMA_MAX_DESC_BYTES); 477 if (dma_src & 0x7 || dma_dst & 0x7) 478 chan->byte_align = true; 479 480 new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & copy); 481 new->desc.dsadr = dma_src; 482 new->desc.dtadr = dma_dst; 483 484 if (!first) 485 first = new; 486 else 487 prev->desc.ddadr = new->async_tx.phys; 488 489 new->async_tx.cookie = 0; 490 async_tx_ack(&new->async_tx); 491 492 prev = new; 493 len -= copy; 494 495 if (chan->dir == DMA_MEM_TO_DEV) { 496 dma_src += copy; 497 } else if (chan->dir == DMA_DEV_TO_MEM) { 498 dma_dst += copy; 499 } else if (chan->dir == DMA_MEM_TO_MEM) { 500 dma_src += copy; 501 dma_dst += copy; 502 } 503 504 /* Insert the link descriptor to the LD ring */ 505 list_add_tail(&new->node, &first->tx_list); 506 } while (len); 507 508 first->async_tx.flags = flags; /* client is in control of this ack */ 509 first->async_tx.cookie = -EBUSY; 510 511 /* last desc and fire IRQ */ 512 new->desc.ddadr = DDADR_STOP; 513 new->desc.dcmd |= DCMD_ENDIRQEN; 514 515 chan->cyclic_first = NULL; 516 517 return &first->async_tx; 518 519 fail: 520 if (first) 521 mmp_pdma_free_desc_list(chan, &first->tx_list); 522 return NULL; 523 } 524 525 static struct dma_async_tx_descriptor * 526 mmp_pdma_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl, 527 unsigned int sg_len, enum dma_transfer_direction dir, 528 unsigned long flags, void *context) 529 { 530 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 531 struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new = NULL; 532 size_t len, avail; 533 struct scatterlist *sg; 534 dma_addr_t addr; 535 int i; 536 537 if ((sgl == NULL) || (sg_len == 0)) 538 return NULL; 539 540 chan->byte_align = false; 541 542 for_each_sg(sgl, sg, sg_len, i) { 543 addr = sg_dma_address(sg); 544 avail = sg_dma_len(sgl); 545 546 do { 547 len = min_t(size_t, avail, PDMA_MAX_DESC_BYTES); 548 if (addr & 0x7) 549 chan->byte_align = true; 550 551 /* allocate and populate the descriptor */ 552 new = mmp_pdma_alloc_descriptor(chan); 553 if (!new) { 554 dev_err(chan->dev, "no memory for desc\n"); 555 goto fail; 556 } 557 558 new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & len); 559 if (dir == DMA_MEM_TO_DEV) { 560 new->desc.dsadr = addr; 561 new->desc.dtadr = chan->dev_addr; 562 } else { 563 new->desc.dsadr = chan->dev_addr; 564 new->desc.dtadr = addr; 565 } 566 567 if (!first) 568 first = new; 569 else 570 prev->desc.ddadr = new->async_tx.phys; 571 572 new->async_tx.cookie = 0; 573 async_tx_ack(&new->async_tx); 574 prev = new; 575 576 /* Insert the link descriptor to the LD ring */ 577 list_add_tail(&new->node, &first->tx_list); 578 579 /* update metadata */ 580 addr += len; 581 avail -= len; 582 } while (avail); 583 } 584 585 first->async_tx.cookie = -EBUSY; 586 first->async_tx.flags = flags; 587 588 /* last desc and fire IRQ */ 589 new->desc.ddadr = DDADR_STOP; 590 new->desc.dcmd |= DCMD_ENDIRQEN; 591 592 chan->dir = dir; 593 chan->cyclic_first = NULL; 594 595 return &first->async_tx; 596 597 fail: 598 if (first) 599 mmp_pdma_free_desc_list(chan, &first->tx_list); 600 return NULL; 601 } 602 603 static struct dma_async_tx_descriptor * 604 mmp_pdma_prep_dma_cyclic(struct dma_chan *dchan, 605 dma_addr_t buf_addr, size_t len, size_t period_len, 606 enum dma_transfer_direction direction, 607 unsigned long flags) 608 { 609 struct mmp_pdma_chan *chan; 610 struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new; 611 dma_addr_t dma_src, dma_dst; 612 613 if (!dchan || !len || !period_len) 614 return NULL; 615 616 /* the buffer length must be a multiple of period_len */ 617 if (len % period_len != 0) 618 return NULL; 619 620 if (period_len > PDMA_MAX_DESC_BYTES) 621 return NULL; 622 623 chan = to_mmp_pdma_chan(dchan); 624 625 switch (direction) { 626 case DMA_MEM_TO_DEV: 627 dma_src = buf_addr; 628 dma_dst = chan->dev_addr; 629 break; 630 case DMA_DEV_TO_MEM: 631 dma_dst = buf_addr; 632 dma_src = chan->dev_addr; 633 break; 634 default: 635 dev_err(chan->dev, "Unsupported direction for cyclic DMA\n"); 636 return NULL; 637 } 638 639 chan->dir = direction; 640 641 do { 642 /* Allocate the link descriptor from DMA pool */ 643 new = mmp_pdma_alloc_descriptor(chan); 644 if (!new) { 645 dev_err(chan->dev, "no memory for desc\n"); 646 goto fail; 647 } 648 649 new->desc.dcmd = (chan->dcmd | DCMD_ENDIRQEN | 650 (DCMD_LENGTH & period_len)); 651 new->desc.dsadr = dma_src; 652 new->desc.dtadr = dma_dst; 653 654 if (!first) 655 first = new; 656 else 657 prev->desc.ddadr = new->async_tx.phys; 658 659 new->async_tx.cookie = 0; 660 async_tx_ack(&new->async_tx); 661 662 prev = new; 663 len -= period_len; 664 665 if (chan->dir == DMA_MEM_TO_DEV) 666 dma_src += period_len; 667 else 668 dma_dst += period_len; 669 670 /* Insert the link descriptor to the LD ring */ 671 list_add_tail(&new->node, &first->tx_list); 672 } while (len); 673 674 first->async_tx.flags = flags; /* client is in control of this ack */ 675 first->async_tx.cookie = -EBUSY; 676 677 /* make the cyclic link */ 678 new->desc.ddadr = first->async_tx.phys; 679 chan->cyclic_first = first; 680 681 return &first->async_tx; 682 683 fail: 684 if (first) 685 mmp_pdma_free_desc_list(chan, &first->tx_list); 686 return NULL; 687 } 688 689 static int mmp_pdma_config(struct dma_chan *dchan, 690 struct dma_slave_config *cfg) 691 { 692 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 693 u32 maxburst = 0, addr = 0; 694 enum dma_slave_buswidth width = DMA_SLAVE_BUSWIDTH_UNDEFINED; 695 696 if (!dchan) 697 return -EINVAL; 698 699 if (cfg->direction == DMA_DEV_TO_MEM) { 700 chan->dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC; 701 maxburst = cfg->src_maxburst; 702 width = cfg->src_addr_width; 703 addr = cfg->src_addr; 704 } else if (cfg->direction == DMA_MEM_TO_DEV) { 705 chan->dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG; 706 maxburst = cfg->dst_maxburst; 707 width = cfg->dst_addr_width; 708 addr = cfg->dst_addr; 709 } 710 711 if (width == DMA_SLAVE_BUSWIDTH_1_BYTE) 712 chan->dcmd |= DCMD_WIDTH1; 713 else if (width == DMA_SLAVE_BUSWIDTH_2_BYTES) 714 chan->dcmd |= DCMD_WIDTH2; 715 else if (width == DMA_SLAVE_BUSWIDTH_4_BYTES) 716 chan->dcmd |= DCMD_WIDTH4; 717 718 if (maxburst == 8) 719 chan->dcmd |= DCMD_BURST8; 720 else if (maxburst == 16) 721 chan->dcmd |= DCMD_BURST16; 722 else if (maxburst == 32) 723 chan->dcmd |= DCMD_BURST32; 724 725 chan->dir = cfg->direction; 726 chan->dev_addr = addr; 727 /* FIXME: drivers should be ported over to use the filter 728 * function. Once that's done, the following two lines can 729 * be removed. 730 */ 731 if (cfg->slave_id) 732 chan->drcmr = cfg->slave_id; 733 734 return 0; 735 } 736 737 static int mmp_pdma_terminate_all(struct dma_chan *dchan) 738 { 739 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 740 unsigned long flags; 741 742 if (!dchan) 743 return -EINVAL; 744 745 disable_chan(chan->phy); 746 mmp_pdma_free_phy(chan); 747 spin_lock_irqsave(&chan->desc_lock, flags); 748 mmp_pdma_free_desc_list(chan, &chan->chain_pending); 749 mmp_pdma_free_desc_list(chan, &chan->chain_running); 750 spin_unlock_irqrestore(&chan->desc_lock, flags); 751 chan->idle = true; 752 753 return 0; 754 } 755 756 static unsigned int mmp_pdma_residue(struct mmp_pdma_chan *chan, 757 dma_cookie_t cookie) 758 { 759 struct mmp_pdma_desc_sw *sw; 760 u32 curr, residue = 0; 761 bool passed = false; 762 bool cyclic = chan->cyclic_first != NULL; 763 764 /* 765 * If the channel does not have a phy pointer anymore, it has already 766 * been completed. Therefore, its residue is 0. 767 */ 768 if (!chan->phy) 769 return 0; 770 771 if (chan->dir == DMA_DEV_TO_MEM) 772 curr = readl(chan->phy->base + DTADR(chan->phy->idx)); 773 else 774 curr = readl(chan->phy->base + DSADR(chan->phy->idx)); 775 776 list_for_each_entry(sw, &chan->chain_running, node) { 777 u32 start, end, len; 778 779 if (chan->dir == DMA_DEV_TO_MEM) 780 start = sw->desc.dtadr; 781 else 782 start = sw->desc.dsadr; 783 784 len = sw->desc.dcmd & DCMD_LENGTH; 785 end = start + len; 786 787 /* 788 * 'passed' will be latched once we found the descriptor which 789 * lies inside the boundaries of the curr pointer. All 790 * descriptors that occur in the list _after_ we found that 791 * partially handled descriptor are still to be processed and 792 * are hence added to the residual bytes counter. 793 */ 794 795 if (passed) { 796 residue += len; 797 } else if (curr >= start && curr <= end) { 798 residue += end - curr; 799 passed = true; 800 } 801 802 /* 803 * Descriptors that have the ENDIRQEN bit set mark the end of a 804 * transaction chain, and the cookie assigned with it has been 805 * returned previously from mmp_pdma_tx_submit(). 806 * 807 * In case we have multiple transactions in the running chain, 808 * and the cookie does not match the one the user asked us 809 * about, reset the state variables and start over. 810 * 811 * This logic does not apply to cyclic transactions, where all 812 * descriptors have the ENDIRQEN bit set, and for which we 813 * can't have multiple transactions on one channel anyway. 814 */ 815 if (cyclic || !(sw->desc.dcmd & DCMD_ENDIRQEN)) 816 continue; 817 818 if (sw->async_tx.cookie == cookie) { 819 return residue; 820 } else { 821 residue = 0; 822 passed = false; 823 } 824 } 825 826 /* We should only get here in case of cyclic transactions */ 827 return residue; 828 } 829 830 static enum dma_status mmp_pdma_tx_status(struct dma_chan *dchan, 831 dma_cookie_t cookie, 832 struct dma_tx_state *txstate) 833 { 834 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 835 enum dma_status ret; 836 837 ret = dma_cookie_status(dchan, cookie, txstate); 838 if (likely(ret != DMA_ERROR)) 839 dma_set_residue(txstate, mmp_pdma_residue(chan, cookie)); 840 841 return ret; 842 } 843 844 /** 845 * mmp_pdma_issue_pending - Issue the DMA start command 846 * pending list ==> running list 847 */ 848 static void mmp_pdma_issue_pending(struct dma_chan *dchan) 849 { 850 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 851 unsigned long flags; 852 853 spin_lock_irqsave(&chan->desc_lock, flags); 854 start_pending_queue(chan); 855 spin_unlock_irqrestore(&chan->desc_lock, flags); 856 } 857 858 /* 859 * dma_do_tasklet 860 * Do call back 861 * Start pending list 862 */ 863 static void dma_do_tasklet(unsigned long data) 864 { 865 struct mmp_pdma_chan *chan = (struct mmp_pdma_chan *)data; 866 struct mmp_pdma_desc_sw *desc, *_desc; 867 LIST_HEAD(chain_cleanup); 868 unsigned long flags; 869 870 if (chan->cyclic_first) { 871 dma_async_tx_callback cb = NULL; 872 void *cb_data = NULL; 873 874 spin_lock_irqsave(&chan->desc_lock, flags); 875 desc = chan->cyclic_first; 876 cb = desc->async_tx.callback; 877 cb_data = desc->async_tx.callback_param; 878 spin_unlock_irqrestore(&chan->desc_lock, flags); 879 880 if (cb) 881 cb(cb_data); 882 883 return; 884 } 885 886 /* submit pending list; callback for each desc; free desc */ 887 spin_lock_irqsave(&chan->desc_lock, flags); 888 889 list_for_each_entry_safe(desc, _desc, &chan->chain_running, node) { 890 /* 891 * move the descriptors to a temporary list so we can drop 892 * the lock during the entire cleanup operation 893 */ 894 list_move(&desc->node, &chain_cleanup); 895 896 /* 897 * Look for the first list entry which has the ENDIRQEN flag 898 * set. That is the descriptor we got an interrupt for, so 899 * complete that transaction and its cookie. 900 */ 901 if (desc->desc.dcmd & DCMD_ENDIRQEN) { 902 dma_cookie_t cookie = desc->async_tx.cookie; 903 dma_cookie_complete(&desc->async_tx); 904 dev_dbg(chan->dev, "completed_cookie=%d\n", cookie); 905 break; 906 } 907 } 908 909 /* 910 * The hardware is idle and ready for more when the 911 * chain_running list is empty. 912 */ 913 chan->idle = list_empty(&chan->chain_running); 914 915 /* Start any pending transactions automatically */ 916 start_pending_queue(chan); 917 spin_unlock_irqrestore(&chan->desc_lock, flags); 918 919 /* Run the callback for each descriptor, in order */ 920 list_for_each_entry_safe(desc, _desc, &chain_cleanup, node) { 921 struct dma_async_tx_descriptor *txd = &desc->async_tx; 922 923 /* Remove from the list of transactions */ 924 list_del(&desc->node); 925 /* Run the link descriptor callback function */ 926 if (txd->callback) 927 txd->callback(txd->callback_param); 928 929 dma_pool_free(chan->desc_pool, desc, txd->phys); 930 } 931 } 932 933 static int mmp_pdma_remove(struct platform_device *op) 934 { 935 struct mmp_pdma_device *pdev = platform_get_drvdata(op); 936 937 dma_async_device_unregister(&pdev->device); 938 return 0; 939 } 940 941 static int mmp_pdma_chan_init(struct mmp_pdma_device *pdev, int idx, int irq) 942 { 943 struct mmp_pdma_phy *phy = &pdev->phy[idx]; 944 struct mmp_pdma_chan *chan; 945 int ret; 946 947 chan = devm_kzalloc(pdev->dev, sizeof(*chan), GFP_KERNEL); 948 if (chan == NULL) 949 return -ENOMEM; 950 951 phy->idx = idx; 952 phy->base = pdev->base; 953 954 if (irq) { 955 ret = devm_request_irq(pdev->dev, irq, mmp_pdma_chan_handler, 956 IRQF_SHARED, "pdma", phy); 957 if (ret) { 958 dev_err(pdev->dev, "channel request irq fail!\n"); 959 return ret; 960 } 961 } 962 963 spin_lock_init(&chan->desc_lock); 964 chan->dev = pdev->dev; 965 chan->chan.device = &pdev->device; 966 tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan); 967 INIT_LIST_HEAD(&chan->chain_pending); 968 INIT_LIST_HEAD(&chan->chain_running); 969 970 /* register virt channel to dma engine */ 971 list_add_tail(&chan->chan.device_node, &pdev->device.channels); 972 973 return 0; 974 } 975 976 static const struct of_device_id mmp_pdma_dt_ids[] = { 977 { .compatible = "marvell,pdma-1.0", }, 978 {} 979 }; 980 MODULE_DEVICE_TABLE(of, mmp_pdma_dt_ids); 981 982 static struct dma_chan *mmp_pdma_dma_xlate(struct of_phandle_args *dma_spec, 983 struct of_dma *ofdma) 984 { 985 struct mmp_pdma_device *d = ofdma->of_dma_data; 986 struct dma_chan *chan; 987 988 chan = dma_get_any_slave_channel(&d->device); 989 if (!chan) 990 return NULL; 991 992 to_mmp_pdma_chan(chan)->drcmr = dma_spec->args[0]; 993 994 return chan; 995 } 996 997 static int mmp_pdma_probe(struct platform_device *op) 998 { 999 struct mmp_pdma_device *pdev; 1000 const struct of_device_id *of_id; 1001 struct mmp_dma_platdata *pdata = dev_get_platdata(&op->dev); 1002 struct resource *iores; 1003 int i, ret, irq = 0; 1004 int dma_channels = 0, irq_num = 0; 1005 const enum dma_slave_buswidth widths = 1006 DMA_SLAVE_BUSWIDTH_1_BYTE | DMA_SLAVE_BUSWIDTH_2_BYTES | 1007 DMA_SLAVE_BUSWIDTH_4_BYTES; 1008 1009 pdev = devm_kzalloc(&op->dev, sizeof(*pdev), GFP_KERNEL); 1010 if (!pdev) 1011 return -ENOMEM; 1012 1013 pdev->dev = &op->dev; 1014 1015 spin_lock_init(&pdev->phy_lock); 1016 1017 iores = platform_get_resource(op, IORESOURCE_MEM, 0); 1018 pdev->base = devm_ioremap_resource(pdev->dev, iores); 1019 if (IS_ERR(pdev->base)) 1020 return PTR_ERR(pdev->base); 1021 1022 of_id = of_match_device(mmp_pdma_dt_ids, pdev->dev); 1023 if (of_id) 1024 of_property_read_u32(pdev->dev->of_node, "#dma-channels", 1025 &dma_channels); 1026 else if (pdata && pdata->dma_channels) 1027 dma_channels = pdata->dma_channels; 1028 else 1029 dma_channels = 32; /* default 32 channel */ 1030 pdev->dma_channels = dma_channels; 1031 1032 for (i = 0; i < dma_channels; i++) { 1033 if (platform_get_irq(op, i) > 0) 1034 irq_num++; 1035 } 1036 1037 pdev->phy = devm_kcalloc(pdev->dev, dma_channels, sizeof(*pdev->phy), 1038 GFP_KERNEL); 1039 if (pdev->phy == NULL) 1040 return -ENOMEM; 1041 1042 INIT_LIST_HEAD(&pdev->device.channels); 1043 1044 if (irq_num != dma_channels) { 1045 /* all chan share one irq, demux inside */ 1046 irq = platform_get_irq(op, 0); 1047 ret = devm_request_irq(pdev->dev, irq, mmp_pdma_int_handler, 1048 IRQF_SHARED, "pdma", pdev); 1049 if (ret) 1050 return ret; 1051 } 1052 1053 for (i = 0; i < dma_channels; i++) { 1054 irq = (irq_num != dma_channels) ? 0 : platform_get_irq(op, i); 1055 ret = mmp_pdma_chan_init(pdev, i, irq); 1056 if (ret) 1057 return ret; 1058 } 1059 1060 dma_cap_set(DMA_SLAVE, pdev->device.cap_mask); 1061 dma_cap_set(DMA_MEMCPY, pdev->device.cap_mask); 1062 dma_cap_set(DMA_CYCLIC, pdev->device.cap_mask); 1063 dma_cap_set(DMA_PRIVATE, pdev->device.cap_mask); 1064 pdev->device.dev = &op->dev; 1065 pdev->device.device_alloc_chan_resources = mmp_pdma_alloc_chan_resources; 1066 pdev->device.device_free_chan_resources = mmp_pdma_free_chan_resources; 1067 pdev->device.device_tx_status = mmp_pdma_tx_status; 1068 pdev->device.device_prep_dma_memcpy = mmp_pdma_prep_memcpy; 1069 pdev->device.device_prep_slave_sg = mmp_pdma_prep_slave_sg; 1070 pdev->device.device_prep_dma_cyclic = mmp_pdma_prep_dma_cyclic; 1071 pdev->device.device_issue_pending = mmp_pdma_issue_pending; 1072 pdev->device.device_config = mmp_pdma_config; 1073 pdev->device.device_terminate_all = mmp_pdma_terminate_all; 1074 pdev->device.copy_align = PDMA_ALIGNMENT; 1075 pdev->device.src_addr_widths = widths; 1076 pdev->device.dst_addr_widths = widths; 1077 pdev->device.directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM); 1078 pdev->device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; 1079 1080 if (pdev->dev->coherent_dma_mask) 1081 dma_set_mask(pdev->dev, pdev->dev->coherent_dma_mask); 1082 else 1083 dma_set_mask(pdev->dev, DMA_BIT_MASK(64)); 1084 1085 ret = dma_async_device_register(&pdev->device); 1086 if (ret) { 1087 dev_err(pdev->device.dev, "unable to register\n"); 1088 return ret; 1089 } 1090 1091 if (op->dev.of_node) { 1092 /* Device-tree DMA controller registration */ 1093 ret = of_dma_controller_register(op->dev.of_node, 1094 mmp_pdma_dma_xlate, pdev); 1095 if (ret < 0) { 1096 dev_err(&op->dev, "of_dma_controller_register failed\n"); 1097 return ret; 1098 } 1099 } 1100 1101 platform_set_drvdata(op, pdev); 1102 dev_info(pdev->device.dev, "initialized %d channels\n", dma_channels); 1103 return 0; 1104 } 1105 1106 static const struct platform_device_id mmp_pdma_id_table[] = { 1107 { "mmp-pdma", }, 1108 { }, 1109 }; 1110 1111 static struct platform_driver mmp_pdma_driver = { 1112 .driver = { 1113 .name = "mmp-pdma", 1114 .of_match_table = mmp_pdma_dt_ids, 1115 }, 1116 .id_table = mmp_pdma_id_table, 1117 .probe = mmp_pdma_probe, 1118 .remove = mmp_pdma_remove, 1119 }; 1120 1121 bool mmp_pdma_filter_fn(struct dma_chan *chan, void *param) 1122 { 1123 struct mmp_pdma_chan *c = to_mmp_pdma_chan(chan); 1124 1125 if (chan->device->dev->driver != &mmp_pdma_driver.driver) 1126 return false; 1127 1128 c->drcmr = *(unsigned int *)param; 1129 1130 return true; 1131 } 1132 EXPORT_SYMBOL_GPL(mmp_pdma_filter_fn); 1133 1134 module_platform_driver(mmp_pdma_driver); 1135 1136 MODULE_DESCRIPTION("MARVELL MMP Peripheral DMA Driver"); 1137 MODULE_AUTHOR("Marvell International Ltd."); 1138 MODULE_LICENSE("GPL v2"); 1139