1 /* 2 * Copyright 2012 Marvell International Ltd. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 */ 8 9 #include <linux/err.h> 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/types.h> 13 #include <linux/interrupt.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/slab.h> 16 #include <linux/dmaengine.h> 17 #include <linux/platform_device.h> 18 #include <linux/device.h> 19 #include <linux/platform_data/mmp_dma.h> 20 #include <linux/dmapool.h> 21 #include <linux/of_device.h> 22 #include <linux/of_dma.h> 23 #include <linux/of.h> 24 #include <linux/dma/mmp-pdma.h> 25 26 #include "dmaengine.h" 27 28 #define DCSR 0x0000 29 #define DALGN 0x00a0 30 #define DINT 0x00f0 31 #define DDADR 0x0200 32 #define DSADR(n) (0x0204 + ((n) << 4)) 33 #define DTADR(n) (0x0208 + ((n) << 4)) 34 #define DCMD 0x020c 35 36 #define DCSR_RUN BIT(31) /* Run Bit (read / write) */ 37 #define DCSR_NODESC BIT(30) /* No-Descriptor Fetch (read / write) */ 38 #define DCSR_STOPIRQEN BIT(29) /* Stop Interrupt Enable (read / write) */ 39 #define DCSR_REQPEND BIT(8) /* Request Pending (read-only) */ 40 #define DCSR_STOPSTATE BIT(3) /* Stop State (read-only) */ 41 #define DCSR_ENDINTR BIT(2) /* End Interrupt (read / write) */ 42 #define DCSR_STARTINTR BIT(1) /* Start Interrupt (read / write) */ 43 #define DCSR_BUSERR BIT(0) /* Bus Error Interrupt (read / write) */ 44 45 #define DCSR_EORIRQEN BIT(28) /* End of Receive Interrupt Enable (R/W) */ 46 #define DCSR_EORJMPEN BIT(27) /* Jump to next descriptor on EOR */ 47 #define DCSR_EORSTOPEN BIT(26) /* STOP on an EOR */ 48 #define DCSR_SETCMPST BIT(25) /* Set Descriptor Compare Status */ 49 #define DCSR_CLRCMPST BIT(24) /* Clear Descriptor Compare Status */ 50 #define DCSR_CMPST BIT(10) /* The Descriptor Compare Status */ 51 #define DCSR_EORINTR BIT(9) /* The end of Receive */ 52 53 #define DRCMR(n) ((((n) < 64) ? 0x0100 : 0x1100) + (((n) & 0x3f) << 2)) 54 #define DRCMR_MAPVLD BIT(7) /* Map Valid (read / write) */ 55 #define DRCMR_CHLNUM 0x1f /* mask for Channel Number (read / write) */ 56 57 #define DDADR_DESCADDR 0xfffffff0 /* Address of next descriptor (mask) */ 58 #define DDADR_STOP BIT(0) /* Stop (read / write) */ 59 60 #define DCMD_INCSRCADDR BIT(31) /* Source Address Increment Setting. */ 61 #define DCMD_INCTRGADDR BIT(30) /* Target Address Increment Setting. */ 62 #define DCMD_FLOWSRC BIT(29) /* Flow Control by the source. */ 63 #define DCMD_FLOWTRG BIT(28) /* Flow Control by the target. */ 64 #define DCMD_STARTIRQEN BIT(22) /* Start Interrupt Enable */ 65 #define DCMD_ENDIRQEN BIT(21) /* End Interrupt Enable */ 66 #define DCMD_ENDIAN BIT(18) /* Device Endian-ness. */ 67 #define DCMD_BURST8 (1 << 16) /* 8 byte burst */ 68 #define DCMD_BURST16 (2 << 16) /* 16 byte burst */ 69 #define DCMD_BURST32 (3 << 16) /* 32 byte burst */ 70 #define DCMD_WIDTH1 (1 << 14) /* 1 byte width */ 71 #define DCMD_WIDTH2 (2 << 14) /* 2 byte width (HalfWord) */ 72 #define DCMD_WIDTH4 (3 << 14) /* 4 byte width (Word) */ 73 #define DCMD_LENGTH 0x01fff /* length mask (max = 8K - 1) */ 74 75 #define PDMA_ALIGNMENT 3 76 #define PDMA_MAX_DESC_BYTES DCMD_LENGTH 77 78 struct mmp_pdma_desc_hw { 79 u32 ddadr; /* Points to the next descriptor + flags */ 80 u32 dsadr; /* DSADR value for the current transfer */ 81 u32 dtadr; /* DTADR value for the current transfer */ 82 u32 dcmd; /* DCMD value for the current transfer */ 83 } __aligned(32); 84 85 struct mmp_pdma_desc_sw { 86 struct mmp_pdma_desc_hw desc; 87 struct list_head node; 88 struct list_head tx_list; 89 struct dma_async_tx_descriptor async_tx; 90 }; 91 92 struct mmp_pdma_phy; 93 94 struct mmp_pdma_chan { 95 struct device *dev; 96 struct dma_chan chan; 97 struct dma_async_tx_descriptor desc; 98 struct mmp_pdma_phy *phy; 99 enum dma_transfer_direction dir; 100 101 struct mmp_pdma_desc_sw *cyclic_first; /* first desc_sw if channel 102 * is in cyclic mode */ 103 104 /* channel's basic info */ 105 struct tasklet_struct tasklet; 106 u32 dcmd; 107 u32 drcmr; 108 u32 dev_addr; 109 110 /* list for desc */ 111 spinlock_t desc_lock; /* Descriptor list lock */ 112 struct list_head chain_pending; /* Link descriptors queue for pending */ 113 struct list_head chain_running; /* Link descriptors queue for running */ 114 bool idle; /* channel statue machine */ 115 bool byte_align; 116 117 struct dma_pool *desc_pool; /* Descriptors pool */ 118 }; 119 120 struct mmp_pdma_phy { 121 int idx; 122 void __iomem *base; 123 struct mmp_pdma_chan *vchan; 124 }; 125 126 struct mmp_pdma_device { 127 int dma_channels; 128 void __iomem *base; 129 struct device *dev; 130 struct dma_device device; 131 struct mmp_pdma_phy *phy; 132 spinlock_t phy_lock; /* protect alloc/free phy channels */ 133 }; 134 135 #define tx_to_mmp_pdma_desc(tx) \ 136 container_of(tx, struct mmp_pdma_desc_sw, async_tx) 137 #define to_mmp_pdma_desc(lh) \ 138 container_of(lh, struct mmp_pdma_desc_sw, node) 139 #define to_mmp_pdma_chan(dchan) \ 140 container_of(dchan, struct mmp_pdma_chan, chan) 141 #define to_mmp_pdma_dev(dmadev) \ 142 container_of(dmadev, struct mmp_pdma_device, device) 143 144 static void set_desc(struct mmp_pdma_phy *phy, dma_addr_t addr) 145 { 146 u32 reg = (phy->idx << 4) + DDADR; 147 148 writel(addr, phy->base + reg); 149 } 150 151 static void enable_chan(struct mmp_pdma_phy *phy) 152 { 153 u32 reg, dalgn; 154 155 if (!phy->vchan) 156 return; 157 158 reg = DRCMR(phy->vchan->drcmr); 159 writel(DRCMR_MAPVLD | phy->idx, phy->base + reg); 160 161 dalgn = readl(phy->base + DALGN); 162 if (phy->vchan->byte_align) 163 dalgn |= 1 << phy->idx; 164 else 165 dalgn &= ~(1 << phy->idx); 166 writel(dalgn, phy->base + DALGN); 167 168 reg = (phy->idx << 2) + DCSR; 169 writel(readl(phy->base + reg) | DCSR_RUN, phy->base + reg); 170 } 171 172 static void disable_chan(struct mmp_pdma_phy *phy) 173 { 174 u32 reg; 175 176 if (!phy) 177 return; 178 179 reg = (phy->idx << 2) + DCSR; 180 writel(readl(phy->base + reg) & ~DCSR_RUN, phy->base + reg); 181 } 182 183 static int clear_chan_irq(struct mmp_pdma_phy *phy) 184 { 185 u32 dcsr; 186 u32 dint = readl(phy->base + DINT); 187 u32 reg = (phy->idx << 2) + DCSR; 188 189 if (!(dint & BIT(phy->idx))) 190 return -EAGAIN; 191 192 /* clear irq */ 193 dcsr = readl(phy->base + reg); 194 writel(dcsr, phy->base + reg); 195 if ((dcsr & DCSR_BUSERR) && (phy->vchan)) 196 dev_warn(phy->vchan->dev, "DCSR_BUSERR\n"); 197 198 return 0; 199 } 200 201 static irqreturn_t mmp_pdma_chan_handler(int irq, void *dev_id) 202 { 203 struct mmp_pdma_phy *phy = dev_id; 204 205 if (clear_chan_irq(phy) != 0) 206 return IRQ_NONE; 207 208 tasklet_schedule(&phy->vchan->tasklet); 209 return IRQ_HANDLED; 210 } 211 212 static irqreturn_t mmp_pdma_int_handler(int irq, void *dev_id) 213 { 214 struct mmp_pdma_device *pdev = dev_id; 215 struct mmp_pdma_phy *phy; 216 u32 dint = readl(pdev->base + DINT); 217 int i, ret; 218 int irq_num = 0; 219 220 while (dint) { 221 i = __ffs(dint); 222 dint &= (dint - 1); 223 phy = &pdev->phy[i]; 224 ret = mmp_pdma_chan_handler(irq, phy); 225 if (ret == IRQ_HANDLED) 226 irq_num++; 227 } 228 229 if (irq_num) 230 return IRQ_HANDLED; 231 232 return IRQ_NONE; 233 } 234 235 /* lookup free phy channel as descending priority */ 236 static struct mmp_pdma_phy *lookup_phy(struct mmp_pdma_chan *pchan) 237 { 238 int prio, i; 239 struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device); 240 struct mmp_pdma_phy *phy, *found = NULL; 241 unsigned long flags; 242 243 /* 244 * dma channel priorities 245 * ch 0 - 3, 16 - 19 <--> (0) 246 * ch 4 - 7, 20 - 23 <--> (1) 247 * ch 8 - 11, 24 - 27 <--> (2) 248 * ch 12 - 15, 28 - 31 <--> (3) 249 */ 250 251 spin_lock_irqsave(&pdev->phy_lock, flags); 252 for (prio = 0; prio <= ((pdev->dma_channels - 1) & 0xf) >> 2; prio++) { 253 for (i = 0; i < pdev->dma_channels; i++) { 254 if (prio != (i & 0xf) >> 2) 255 continue; 256 phy = &pdev->phy[i]; 257 if (!phy->vchan) { 258 phy->vchan = pchan; 259 found = phy; 260 goto out_unlock; 261 } 262 } 263 } 264 265 out_unlock: 266 spin_unlock_irqrestore(&pdev->phy_lock, flags); 267 return found; 268 } 269 270 static void mmp_pdma_free_phy(struct mmp_pdma_chan *pchan) 271 { 272 struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device); 273 unsigned long flags; 274 u32 reg; 275 276 if (!pchan->phy) 277 return; 278 279 /* clear the channel mapping in DRCMR */ 280 reg = DRCMR(pchan->drcmr); 281 writel(0, pchan->phy->base + reg); 282 283 spin_lock_irqsave(&pdev->phy_lock, flags); 284 pchan->phy->vchan = NULL; 285 pchan->phy = NULL; 286 spin_unlock_irqrestore(&pdev->phy_lock, flags); 287 } 288 289 /** 290 * start_pending_queue - transfer any pending transactions 291 * pending list ==> running list 292 */ 293 static void start_pending_queue(struct mmp_pdma_chan *chan) 294 { 295 struct mmp_pdma_desc_sw *desc; 296 297 /* still in running, irq will start the pending list */ 298 if (!chan->idle) { 299 dev_dbg(chan->dev, "DMA controller still busy\n"); 300 return; 301 } 302 303 if (list_empty(&chan->chain_pending)) { 304 /* chance to re-fetch phy channel with higher prio */ 305 mmp_pdma_free_phy(chan); 306 dev_dbg(chan->dev, "no pending list\n"); 307 return; 308 } 309 310 if (!chan->phy) { 311 chan->phy = lookup_phy(chan); 312 if (!chan->phy) { 313 dev_dbg(chan->dev, "no free dma channel\n"); 314 return; 315 } 316 } 317 318 /* 319 * pending -> running 320 * reintilize pending list 321 */ 322 desc = list_first_entry(&chan->chain_pending, 323 struct mmp_pdma_desc_sw, node); 324 list_splice_tail_init(&chan->chain_pending, &chan->chain_running); 325 326 /* 327 * Program the descriptor's address into the DMA controller, 328 * then start the DMA transaction 329 */ 330 set_desc(chan->phy, desc->async_tx.phys); 331 enable_chan(chan->phy); 332 chan->idle = false; 333 } 334 335 336 /* desc->tx_list ==> pending list */ 337 static dma_cookie_t mmp_pdma_tx_submit(struct dma_async_tx_descriptor *tx) 338 { 339 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(tx->chan); 340 struct mmp_pdma_desc_sw *desc = tx_to_mmp_pdma_desc(tx); 341 struct mmp_pdma_desc_sw *child; 342 unsigned long flags; 343 dma_cookie_t cookie = -EBUSY; 344 345 spin_lock_irqsave(&chan->desc_lock, flags); 346 347 list_for_each_entry(child, &desc->tx_list, node) { 348 cookie = dma_cookie_assign(&child->async_tx); 349 } 350 351 /* softly link to pending list - desc->tx_list ==> pending list */ 352 list_splice_tail_init(&desc->tx_list, &chan->chain_pending); 353 354 spin_unlock_irqrestore(&chan->desc_lock, flags); 355 356 return cookie; 357 } 358 359 static struct mmp_pdma_desc_sw * 360 mmp_pdma_alloc_descriptor(struct mmp_pdma_chan *chan) 361 { 362 struct mmp_pdma_desc_sw *desc; 363 dma_addr_t pdesc; 364 365 desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc); 366 if (!desc) { 367 dev_err(chan->dev, "out of memory for link descriptor\n"); 368 return NULL; 369 } 370 371 memset(desc, 0, sizeof(*desc)); 372 INIT_LIST_HEAD(&desc->tx_list); 373 dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan); 374 /* each desc has submit */ 375 desc->async_tx.tx_submit = mmp_pdma_tx_submit; 376 desc->async_tx.phys = pdesc; 377 378 return desc; 379 } 380 381 /** 382 * mmp_pdma_alloc_chan_resources - Allocate resources for DMA channel. 383 * 384 * This function will create a dma pool for descriptor allocation. 385 * Request irq only when channel is requested 386 * Return - The number of allocated descriptors. 387 */ 388 389 static int mmp_pdma_alloc_chan_resources(struct dma_chan *dchan) 390 { 391 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 392 393 if (chan->desc_pool) 394 return 1; 395 396 chan->desc_pool = dma_pool_create(dev_name(&dchan->dev->device), 397 chan->dev, 398 sizeof(struct mmp_pdma_desc_sw), 399 __alignof__(struct mmp_pdma_desc_sw), 400 0); 401 if (!chan->desc_pool) { 402 dev_err(chan->dev, "unable to allocate descriptor pool\n"); 403 return -ENOMEM; 404 } 405 406 mmp_pdma_free_phy(chan); 407 chan->idle = true; 408 chan->dev_addr = 0; 409 return 1; 410 } 411 412 static void mmp_pdma_free_desc_list(struct mmp_pdma_chan *chan, 413 struct list_head *list) 414 { 415 struct mmp_pdma_desc_sw *desc, *_desc; 416 417 list_for_each_entry_safe(desc, _desc, list, node) { 418 list_del(&desc->node); 419 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys); 420 } 421 } 422 423 static void mmp_pdma_free_chan_resources(struct dma_chan *dchan) 424 { 425 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 426 unsigned long flags; 427 428 spin_lock_irqsave(&chan->desc_lock, flags); 429 mmp_pdma_free_desc_list(chan, &chan->chain_pending); 430 mmp_pdma_free_desc_list(chan, &chan->chain_running); 431 spin_unlock_irqrestore(&chan->desc_lock, flags); 432 433 dma_pool_destroy(chan->desc_pool); 434 chan->desc_pool = NULL; 435 chan->idle = true; 436 chan->dev_addr = 0; 437 mmp_pdma_free_phy(chan); 438 return; 439 } 440 441 static struct dma_async_tx_descriptor * 442 mmp_pdma_prep_memcpy(struct dma_chan *dchan, 443 dma_addr_t dma_dst, dma_addr_t dma_src, 444 size_t len, unsigned long flags) 445 { 446 struct mmp_pdma_chan *chan; 447 struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new; 448 size_t copy = 0; 449 450 if (!dchan) 451 return NULL; 452 453 if (!len) 454 return NULL; 455 456 chan = to_mmp_pdma_chan(dchan); 457 chan->byte_align = false; 458 459 if (!chan->dir) { 460 chan->dir = DMA_MEM_TO_MEM; 461 chan->dcmd = DCMD_INCTRGADDR | DCMD_INCSRCADDR; 462 chan->dcmd |= DCMD_BURST32; 463 } 464 465 do { 466 /* Allocate the link descriptor from DMA pool */ 467 new = mmp_pdma_alloc_descriptor(chan); 468 if (!new) { 469 dev_err(chan->dev, "no memory for desc\n"); 470 goto fail; 471 } 472 473 copy = min_t(size_t, len, PDMA_MAX_DESC_BYTES); 474 if (dma_src & 0x7 || dma_dst & 0x7) 475 chan->byte_align = true; 476 477 new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & copy); 478 new->desc.dsadr = dma_src; 479 new->desc.dtadr = dma_dst; 480 481 if (!first) 482 first = new; 483 else 484 prev->desc.ddadr = new->async_tx.phys; 485 486 new->async_tx.cookie = 0; 487 async_tx_ack(&new->async_tx); 488 489 prev = new; 490 len -= copy; 491 492 if (chan->dir == DMA_MEM_TO_DEV) { 493 dma_src += copy; 494 } else if (chan->dir == DMA_DEV_TO_MEM) { 495 dma_dst += copy; 496 } else if (chan->dir == DMA_MEM_TO_MEM) { 497 dma_src += copy; 498 dma_dst += copy; 499 } 500 501 /* Insert the link descriptor to the LD ring */ 502 list_add_tail(&new->node, &first->tx_list); 503 } while (len); 504 505 first->async_tx.flags = flags; /* client is in control of this ack */ 506 first->async_tx.cookie = -EBUSY; 507 508 /* last desc and fire IRQ */ 509 new->desc.ddadr = DDADR_STOP; 510 new->desc.dcmd |= DCMD_ENDIRQEN; 511 512 chan->cyclic_first = NULL; 513 514 return &first->async_tx; 515 516 fail: 517 if (first) 518 mmp_pdma_free_desc_list(chan, &first->tx_list); 519 return NULL; 520 } 521 522 static struct dma_async_tx_descriptor * 523 mmp_pdma_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl, 524 unsigned int sg_len, enum dma_transfer_direction dir, 525 unsigned long flags, void *context) 526 { 527 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 528 struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new = NULL; 529 size_t len, avail; 530 struct scatterlist *sg; 531 dma_addr_t addr; 532 int i; 533 534 if ((sgl == NULL) || (sg_len == 0)) 535 return NULL; 536 537 chan->byte_align = false; 538 539 for_each_sg(sgl, sg, sg_len, i) { 540 addr = sg_dma_address(sg); 541 avail = sg_dma_len(sgl); 542 543 do { 544 len = min_t(size_t, avail, PDMA_MAX_DESC_BYTES); 545 if (addr & 0x7) 546 chan->byte_align = true; 547 548 /* allocate and populate the descriptor */ 549 new = mmp_pdma_alloc_descriptor(chan); 550 if (!new) { 551 dev_err(chan->dev, "no memory for desc\n"); 552 goto fail; 553 } 554 555 new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & len); 556 if (dir == DMA_MEM_TO_DEV) { 557 new->desc.dsadr = addr; 558 new->desc.dtadr = chan->dev_addr; 559 } else { 560 new->desc.dsadr = chan->dev_addr; 561 new->desc.dtadr = addr; 562 } 563 564 if (!first) 565 first = new; 566 else 567 prev->desc.ddadr = new->async_tx.phys; 568 569 new->async_tx.cookie = 0; 570 async_tx_ack(&new->async_tx); 571 prev = new; 572 573 /* Insert the link descriptor to the LD ring */ 574 list_add_tail(&new->node, &first->tx_list); 575 576 /* update metadata */ 577 addr += len; 578 avail -= len; 579 } while (avail); 580 } 581 582 first->async_tx.cookie = -EBUSY; 583 first->async_tx.flags = flags; 584 585 /* last desc and fire IRQ */ 586 new->desc.ddadr = DDADR_STOP; 587 new->desc.dcmd |= DCMD_ENDIRQEN; 588 589 chan->dir = dir; 590 chan->cyclic_first = NULL; 591 592 return &first->async_tx; 593 594 fail: 595 if (first) 596 mmp_pdma_free_desc_list(chan, &first->tx_list); 597 return NULL; 598 } 599 600 static struct dma_async_tx_descriptor * 601 mmp_pdma_prep_dma_cyclic(struct dma_chan *dchan, 602 dma_addr_t buf_addr, size_t len, size_t period_len, 603 enum dma_transfer_direction direction, 604 unsigned long flags) 605 { 606 struct mmp_pdma_chan *chan; 607 struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new; 608 dma_addr_t dma_src, dma_dst; 609 610 if (!dchan || !len || !period_len) 611 return NULL; 612 613 /* the buffer length must be a multiple of period_len */ 614 if (len % period_len != 0) 615 return NULL; 616 617 if (period_len > PDMA_MAX_DESC_BYTES) 618 return NULL; 619 620 chan = to_mmp_pdma_chan(dchan); 621 622 switch (direction) { 623 case DMA_MEM_TO_DEV: 624 dma_src = buf_addr; 625 dma_dst = chan->dev_addr; 626 break; 627 case DMA_DEV_TO_MEM: 628 dma_dst = buf_addr; 629 dma_src = chan->dev_addr; 630 break; 631 default: 632 dev_err(chan->dev, "Unsupported direction for cyclic DMA\n"); 633 return NULL; 634 } 635 636 chan->dir = direction; 637 638 do { 639 /* Allocate the link descriptor from DMA pool */ 640 new = mmp_pdma_alloc_descriptor(chan); 641 if (!new) { 642 dev_err(chan->dev, "no memory for desc\n"); 643 goto fail; 644 } 645 646 new->desc.dcmd = (chan->dcmd | DCMD_ENDIRQEN | 647 (DCMD_LENGTH & period_len)); 648 new->desc.dsadr = dma_src; 649 new->desc.dtadr = dma_dst; 650 651 if (!first) 652 first = new; 653 else 654 prev->desc.ddadr = new->async_tx.phys; 655 656 new->async_tx.cookie = 0; 657 async_tx_ack(&new->async_tx); 658 659 prev = new; 660 len -= period_len; 661 662 if (chan->dir == DMA_MEM_TO_DEV) 663 dma_src += period_len; 664 else 665 dma_dst += period_len; 666 667 /* Insert the link descriptor to the LD ring */ 668 list_add_tail(&new->node, &first->tx_list); 669 } while (len); 670 671 first->async_tx.flags = flags; /* client is in control of this ack */ 672 first->async_tx.cookie = -EBUSY; 673 674 /* make the cyclic link */ 675 new->desc.ddadr = first->async_tx.phys; 676 chan->cyclic_first = first; 677 678 return &first->async_tx; 679 680 fail: 681 if (first) 682 mmp_pdma_free_desc_list(chan, &first->tx_list); 683 return NULL; 684 } 685 686 static int mmp_pdma_config(struct dma_chan *dchan, 687 struct dma_slave_config *cfg) 688 { 689 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 690 u32 maxburst = 0, addr = 0; 691 enum dma_slave_buswidth width = DMA_SLAVE_BUSWIDTH_UNDEFINED; 692 693 if (!dchan) 694 return -EINVAL; 695 696 if (cfg->direction == DMA_DEV_TO_MEM) { 697 chan->dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC; 698 maxburst = cfg->src_maxburst; 699 width = cfg->src_addr_width; 700 addr = cfg->src_addr; 701 } else if (cfg->direction == DMA_MEM_TO_DEV) { 702 chan->dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG; 703 maxburst = cfg->dst_maxburst; 704 width = cfg->dst_addr_width; 705 addr = cfg->dst_addr; 706 } 707 708 if (width == DMA_SLAVE_BUSWIDTH_1_BYTE) 709 chan->dcmd |= DCMD_WIDTH1; 710 else if (width == DMA_SLAVE_BUSWIDTH_2_BYTES) 711 chan->dcmd |= DCMD_WIDTH2; 712 else if (width == DMA_SLAVE_BUSWIDTH_4_BYTES) 713 chan->dcmd |= DCMD_WIDTH4; 714 715 if (maxburst == 8) 716 chan->dcmd |= DCMD_BURST8; 717 else if (maxburst == 16) 718 chan->dcmd |= DCMD_BURST16; 719 else if (maxburst == 32) 720 chan->dcmd |= DCMD_BURST32; 721 722 chan->dir = cfg->direction; 723 chan->dev_addr = addr; 724 /* FIXME: drivers should be ported over to use the filter 725 * function. Once that's done, the following two lines can 726 * be removed. 727 */ 728 if (cfg->slave_id) 729 chan->drcmr = cfg->slave_id; 730 731 return 0; 732 } 733 734 static int mmp_pdma_terminate_all(struct dma_chan *dchan) 735 { 736 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 737 unsigned long flags; 738 739 if (!dchan) 740 return -EINVAL; 741 742 disable_chan(chan->phy); 743 mmp_pdma_free_phy(chan); 744 spin_lock_irqsave(&chan->desc_lock, flags); 745 mmp_pdma_free_desc_list(chan, &chan->chain_pending); 746 mmp_pdma_free_desc_list(chan, &chan->chain_running); 747 spin_unlock_irqrestore(&chan->desc_lock, flags); 748 chan->idle = true; 749 750 return 0; 751 } 752 753 static unsigned int mmp_pdma_residue(struct mmp_pdma_chan *chan, 754 dma_cookie_t cookie) 755 { 756 struct mmp_pdma_desc_sw *sw; 757 u32 curr, residue = 0; 758 bool passed = false; 759 bool cyclic = chan->cyclic_first != NULL; 760 761 /* 762 * If the channel does not have a phy pointer anymore, it has already 763 * been completed. Therefore, its residue is 0. 764 */ 765 if (!chan->phy) 766 return 0; 767 768 if (chan->dir == DMA_DEV_TO_MEM) 769 curr = readl(chan->phy->base + DTADR(chan->phy->idx)); 770 else 771 curr = readl(chan->phy->base + DSADR(chan->phy->idx)); 772 773 list_for_each_entry(sw, &chan->chain_running, node) { 774 u32 start, end, len; 775 776 if (chan->dir == DMA_DEV_TO_MEM) 777 start = sw->desc.dtadr; 778 else 779 start = sw->desc.dsadr; 780 781 len = sw->desc.dcmd & DCMD_LENGTH; 782 end = start + len; 783 784 /* 785 * 'passed' will be latched once we found the descriptor which 786 * lies inside the boundaries of the curr pointer. All 787 * descriptors that occur in the list _after_ we found that 788 * partially handled descriptor are still to be processed and 789 * are hence added to the residual bytes counter. 790 */ 791 792 if (passed) { 793 residue += len; 794 } else if (curr >= start && curr <= end) { 795 residue += end - curr; 796 passed = true; 797 } 798 799 /* 800 * Descriptors that have the ENDIRQEN bit set mark the end of a 801 * transaction chain, and the cookie assigned with it has been 802 * returned previously from mmp_pdma_tx_submit(). 803 * 804 * In case we have multiple transactions in the running chain, 805 * and the cookie does not match the one the user asked us 806 * about, reset the state variables and start over. 807 * 808 * This logic does not apply to cyclic transactions, where all 809 * descriptors have the ENDIRQEN bit set, and for which we 810 * can't have multiple transactions on one channel anyway. 811 */ 812 if (cyclic || !(sw->desc.dcmd & DCMD_ENDIRQEN)) 813 continue; 814 815 if (sw->async_tx.cookie == cookie) { 816 return residue; 817 } else { 818 residue = 0; 819 passed = false; 820 } 821 } 822 823 /* We should only get here in case of cyclic transactions */ 824 return residue; 825 } 826 827 static enum dma_status mmp_pdma_tx_status(struct dma_chan *dchan, 828 dma_cookie_t cookie, 829 struct dma_tx_state *txstate) 830 { 831 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 832 enum dma_status ret; 833 834 ret = dma_cookie_status(dchan, cookie, txstate); 835 if (likely(ret != DMA_ERROR)) 836 dma_set_residue(txstate, mmp_pdma_residue(chan, cookie)); 837 838 return ret; 839 } 840 841 /** 842 * mmp_pdma_issue_pending - Issue the DMA start command 843 * pending list ==> running list 844 */ 845 static void mmp_pdma_issue_pending(struct dma_chan *dchan) 846 { 847 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 848 unsigned long flags; 849 850 spin_lock_irqsave(&chan->desc_lock, flags); 851 start_pending_queue(chan); 852 spin_unlock_irqrestore(&chan->desc_lock, flags); 853 } 854 855 /* 856 * dma_do_tasklet 857 * Do call back 858 * Start pending list 859 */ 860 static void dma_do_tasklet(unsigned long data) 861 { 862 struct mmp_pdma_chan *chan = (struct mmp_pdma_chan *)data; 863 struct mmp_pdma_desc_sw *desc, *_desc; 864 LIST_HEAD(chain_cleanup); 865 unsigned long flags; 866 867 if (chan->cyclic_first) { 868 dma_async_tx_callback cb = NULL; 869 void *cb_data = NULL; 870 871 spin_lock_irqsave(&chan->desc_lock, flags); 872 desc = chan->cyclic_first; 873 cb = desc->async_tx.callback; 874 cb_data = desc->async_tx.callback_param; 875 spin_unlock_irqrestore(&chan->desc_lock, flags); 876 877 if (cb) 878 cb(cb_data); 879 880 return; 881 } 882 883 /* submit pending list; callback for each desc; free desc */ 884 spin_lock_irqsave(&chan->desc_lock, flags); 885 886 list_for_each_entry_safe(desc, _desc, &chan->chain_running, node) { 887 /* 888 * move the descriptors to a temporary list so we can drop 889 * the lock during the entire cleanup operation 890 */ 891 list_move(&desc->node, &chain_cleanup); 892 893 /* 894 * Look for the first list entry which has the ENDIRQEN flag 895 * set. That is the descriptor we got an interrupt for, so 896 * complete that transaction and its cookie. 897 */ 898 if (desc->desc.dcmd & DCMD_ENDIRQEN) { 899 dma_cookie_t cookie = desc->async_tx.cookie; 900 dma_cookie_complete(&desc->async_tx); 901 dev_dbg(chan->dev, "completed_cookie=%d\n", cookie); 902 break; 903 } 904 } 905 906 /* 907 * The hardware is idle and ready for more when the 908 * chain_running list is empty. 909 */ 910 chan->idle = list_empty(&chan->chain_running); 911 912 /* Start any pending transactions automatically */ 913 start_pending_queue(chan); 914 spin_unlock_irqrestore(&chan->desc_lock, flags); 915 916 /* Run the callback for each descriptor, in order */ 917 list_for_each_entry_safe(desc, _desc, &chain_cleanup, node) { 918 struct dma_async_tx_descriptor *txd = &desc->async_tx; 919 920 /* Remove from the list of transactions */ 921 list_del(&desc->node); 922 /* Run the link descriptor callback function */ 923 if (txd->callback) 924 txd->callback(txd->callback_param); 925 926 dma_pool_free(chan->desc_pool, desc, txd->phys); 927 } 928 } 929 930 static int mmp_pdma_remove(struct platform_device *op) 931 { 932 struct mmp_pdma_device *pdev = platform_get_drvdata(op); 933 934 dma_async_device_unregister(&pdev->device); 935 return 0; 936 } 937 938 static int mmp_pdma_chan_init(struct mmp_pdma_device *pdev, int idx, int irq) 939 { 940 struct mmp_pdma_phy *phy = &pdev->phy[idx]; 941 struct mmp_pdma_chan *chan; 942 int ret; 943 944 chan = devm_kzalloc(pdev->dev, sizeof(*chan), GFP_KERNEL); 945 if (chan == NULL) 946 return -ENOMEM; 947 948 phy->idx = idx; 949 phy->base = pdev->base; 950 951 if (irq) { 952 ret = devm_request_irq(pdev->dev, irq, mmp_pdma_chan_handler, 953 IRQF_SHARED, "pdma", phy); 954 if (ret) { 955 dev_err(pdev->dev, "channel request irq fail!\n"); 956 return ret; 957 } 958 } 959 960 spin_lock_init(&chan->desc_lock); 961 chan->dev = pdev->dev; 962 chan->chan.device = &pdev->device; 963 tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan); 964 INIT_LIST_HEAD(&chan->chain_pending); 965 INIT_LIST_HEAD(&chan->chain_running); 966 967 /* register virt channel to dma engine */ 968 list_add_tail(&chan->chan.device_node, &pdev->device.channels); 969 970 return 0; 971 } 972 973 static struct of_device_id mmp_pdma_dt_ids[] = { 974 { .compatible = "marvell,pdma-1.0", }, 975 {} 976 }; 977 MODULE_DEVICE_TABLE(of, mmp_pdma_dt_ids); 978 979 static struct dma_chan *mmp_pdma_dma_xlate(struct of_phandle_args *dma_spec, 980 struct of_dma *ofdma) 981 { 982 struct mmp_pdma_device *d = ofdma->of_dma_data; 983 struct dma_chan *chan; 984 985 chan = dma_get_any_slave_channel(&d->device); 986 if (!chan) 987 return NULL; 988 989 to_mmp_pdma_chan(chan)->drcmr = dma_spec->args[0]; 990 991 return chan; 992 } 993 994 static int mmp_pdma_probe(struct platform_device *op) 995 { 996 struct mmp_pdma_device *pdev; 997 const struct of_device_id *of_id; 998 struct mmp_dma_platdata *pdata = dev_get_platdata(&op->dev); 999 struct resource *iores; 1000 int i, ret, irq = 0; 1001 int dma_channels = 0, irq_num = 0; 1002 1003 pdev = devm_kzalloc(&op->dev, sizeof(*pdev), GFP_KERNEL); 1004 if (!pdev) 1005 return -ENOMEM; 1006 1007 pdev->dev = &op->dev; 1008 1009 spin_lock_init(&pdev->phy_lock); 1010 1011 iores = platform_get_resource(op, IORESOURCE_MEM, 0); 1012 pdev->base = devm_ioremap_resource(pdev->dev, iores); 1013 if (IS_ERR(pdev->base)) 1014 return PTR_ERR(pdev->base); 1015 1016 of_id = of_match_device(mmp_pdma_dt_ids, pdev->dev); 1017 if (of_id) 1018 of_property_read_u32(pdev->dev->of_node, "#dma-channels", 1019 &dma_channels); 1020 else if (pdata && pdata->dma_channels) 1021 dma_channels = pdata->dma_channels; 1022 else 1023 dma_channels = 32; /* default 32 channel */ 1024 pdev->dma_channels = dma_channels; 1025 1026 for (i = 0; i < dma_channels; i++) { 1027 if (platform_get_irq(op, i) > 0) 1028 irq_num++; 1029 } 1030 1031 pdev->phy = devm_kcalloc(pdev->dev, dma_channels, sizeof(*pdev->phy), 1032 GFP_KERNEL); 1033 if (pdev->phy == NULL) 1034 return -ENOMEM; 1035 1036 INIT_LIST_HEAD(&pdev->device.channels); 1037 1038 if (irq_num != dma_channels) { 1039 /* all chan share one irq, demux inside */ 1040 irq = platform_get_irq(op, 0); 1041 ret = devm_request_irq(pdev->dev, irq, mmp_pdma_int_handler, 1042 IRQF_SHARED, "pdma", pdev); 1043 if (ret) 1044 return ret; 1045 } 1046 1047 for (i = 0; i < dma_channels; i++) { 1048 irq = (irq_num != dma_channels) ? 0 : platform_get_irq(op, i); 1049 ret = mmp_pdma_chan_init(pdev, i, irq); 1050 if (ret) 1051 return ret; 1052 } 1053 1054 dma_cap_set(DMA_SLAVE, pdev->device.cap_mask); 1055 dma_cap_set(DMA_MEMCPY, pdev->device.cap_mask); 1056 dma_cap_set(DMA_CYCLIC, pdev->device.cap_mask); 1057 dma_cap_set(DMA_PRIVATE, pdev->device.cap_mask); 1058 pdev->device.dev = &op->dev; 1059 pdev->device.device_alloc_chan_resources = mmp_pdma_alloc_chan_resources; 1060 pdev->device.device_free_chan_resources = mmp_pdma_free_chan_resources; 1061 pdev->device.device_tx_status = mmp_pdma_tx_status; 1062 pdev->device.device_prep_dma_memcpy = mmp_pdma_prep_memcpy; 1063 pdev->device.device_prep_slave_sg = mmp_pdma_prep_slave_sg; 1064 pdev->device.device_prep_dma_cyclic = mmp_pdma_prep_dma_cyclic; 1065 pdev->device.device_issue_pending = mmp_pdma_issue_pending; 1066 pdev->device.device_config = mmp_pdma_config; 1067 pdev->device.device_terminate_all = mmp_pdma_terminate_all; 1068 pdev->device.copy_align = PDMA_ALIGNMENT; 1069 1070 if (pdev->dev->coherent_dma_mask) 1071 dma_set_mask(pdev->dev, pdev->dev->coherent_dma_mask); 1072 else 1073 dma_set_mask(pdev->dev, DMA_BIT_MASK(64)); 1074 1075 ret = dma_async_device_register(&pdev->device); 1076 if (ret) { 1077 dev_err(pdev->device.dev, "unable to register\n"); 1078 return ret; 1079 } 1080 1081 if (op->dev.of_node) { 1082 /* Device-tree DMA controller registration */ 1083 ret = of_dma_controller_register(op->dev.of_node, 1084 mmp_pdma_dma_xlate, pdev); 1085 if (ret < 0) { 1086 dev_err(&op->dev, "of_dma_controller_register failed\n"); 1087 return ret; 1088 } 1089 } 1090 1091 platform_set_drvdata(op, pdev); 1092 dev_info(pdev->device.dev, "initialized %d channels\n", dma_channels); 1093 return 0; 1094 } 1095 1096 static const struct platform_device_id mmp_pdma_id_table[] = { 1097 { "mmp-pdma", }, 1098 { }, 1099 }; 1100 1101 static struct platform_driver mmp_pdma_driver = { 1102 .driver = { 1103 .name = "mmp-pdma", 1104 .of_match_table = mmp_pdma_dt_ids, 1105 }, 1106 .id_table = mmp_pdma_id_table, 1107 .probe = mmp_pdma_probe, 1108 .remove = mmp_pdma_remove, 1109 }; 1110 1111 bool mmp_pdma_filter_fn(struct dma_chan *chan, void *param) 1112 { 1113 struct mmp_pdma_chan *c = to_mmp_pdma_chan(chan); 1114 1115 if (chan->device->dev->driver != &mmp_pdma_driver.driver) 1116 return false; 1117 1118 c->drcmr = *(unsigned int *)param; 1119 1120 return true; 1121 } 1122 EXPORT_SYMBOL_GPL(mmp_pdma_filter_fn); 1123 1124 module_platform_driver(mmp_pdma_driver); 1125 1126 MODULE_DESCRIPTION("MARVELL MMP Peripheral DMA Driver"); 1127 MODULE_AUTHOR("Marvell International Ltd."); 1128 MODULE_LICENSE("GPL v2"); 1129