1 /* 2 * Copyright 2012 Marvell International Ltd. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 */ 8 9 #include <linux/err.h> 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/types.h> 13 #include <linux/interrupt.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/slab.h> 16 #include <linux/dmaengine.h> 17 #include <linux/platform_device.h> 18 #include <linux/device.h> 19 #include <linux/platform_data/mmp_dma.h> 20 #include <linux/dmapool.h> 21 #include <linux/of_device.h> 22 #include <linux/of_dma.h> 23 #include <linux/of.h> 24 #include <linux/dma/mmp-pdma.h> 25 26 #include "dmaengine.h" 27 28 #define DCSR 0x0000 29 #define DALGN 0x00a0 30 #define DINT 0x00f0 31 #define DDADR 0x0200 32 #define DSADR(n) (0x0204 + ((n) << 4)) 33 #define DTADR(n) (0x0208 + ((n) << 4)) 34 #define DCMD 0x020c 35 36 #define DCSR_RUN BIT(31) /* Run Bit (read / write) */ 37 #define DCSR_NODESC BIT(30) /* No-Descriptor Fetch (read / write) */ 38 #define DCSR_STOPIRQEN BIT(29) /* Stop Interrupt Enable (read / write) */ 39 #define DCSR_REQPEND BIT(8) /* Request Pending (read-only) */ 40 #define DCSR_STOPSTATE BIT(3) /* Stop State (read-only) */ 41 #define DCSR_ENDINTR BIT(2) /* End Interrupt (read / write) */ 42 #define DCSR_STARTINTR BIT(1) /* Start Interrupt (read / write) */ 43 #define DCSR_BUSERR BIT(0) /* Bus Error Interrupt (read / write) */ 44 45 #define DCSR_EORIRQEN BIT(28) /* End of Receive Interrupt Enable (R/W) */ 46 #define DCSR_EORJMPEN BIT(27) /* Jump to next descriptor on EOR */ 47 #define DCSR_EORSTOPEN BIT(26) /* STOP on an EOR */ 48 #define DCSR_SETCMPST BIT(25) /* Set Descriptor Compare Status */ 49 #define DCSR_CLRCMPST BIT(24) /* Clear Descriptor Compare Status */ 50 #define DCSR_CMPST BIT(10) /* The Descriptor Compare Status */ 51 #define DCSR_EORINTR BIT(9) /* The end of Receive */ 52 53 #define DRCMR(n) ((((n) < 64) ? 0x0100 : 0x1100) + (((n) & 0x3f) << 2)) 54 #define DRCMR_MAPVLD BIT(7) /* Map Valid (read / write) */ 55 #define DRCMR_CHLNUM 0x1f /* mask for Channel Number (read / write) */ 56 57 #define DDADR_DESCADDR 0xfffffff0 /* Address of next descriptor (mask) */ 58 #define DDADR_STOP BIT(0) /* Stop (read / write) */ 59 60 #define DCMD_INCSRCADDR BIT(31) /* Source Address Increment Setting. */ 61 #define DCMD_INCTRGADDR BIT(30) /* Target Address Increment Setting. */ 62 #define DCMD_FLOWSRC BIT(29) /* Flow Control by the source. */ 63 #define DCMD_FLOWTRG BIT(28) /* Flow Control by the target. */ 64 #define DCMD_STARTIRQEN BIT(22) /* Start Interrupt Enable */ 65 #define DCMD_ENDIRQEN BIT(21) /* End Interrupt Enable */ 66 #define DCMD_ENDIAN BIT(18) /* Device Endian-ness. */ 67 #define DCMD_BURST8 (1 << 16) /* 8 byte burst */ 68 #define DCMD_BURST16 (2 << 16) /* 16 byte burst */ 69 #define DCMD_BURST32 (3 << 16) /* 32 byte burst */ 70 #define DCMD_WIDTH1 (1 << 14) /* 1 byte width */ 71 #define DCMD_WIDTH2 (2 << 14) /* 2 byte width (HalfWord) */ 72 #define DCMD_WIDTH4 (3 << 14) /* 4 byte width (Word) */ 73 #define DCMD_LENGTH 0x01fff /* length mask (max = 8K - 1) */ 74 75 #define PDMA_MAX_DESC_BYTES DCMD_LENGTH 76 77 struct mmp_pdma_desc_hw { 78 u32 ddadr; /* Points to the next descriptor + flags */ 79 u32 dsadr; /* DSADR value for the current transfer */ 80 u32 dtadr; /* DTADR value for the current transfer */ 81 u32 dcmd; /* DCMD value for the current transfer */ 82 } __aligned(32); 83 84 struct mmp_pdma_desc_sw { 85 struct mmp_pdma_desc_hw desc; 86 struct list_head node; 87 struct list_head tx_list; 88 struct dma_async_tx_descriptor async_tx; 89 }; 90 91 struct mmp_pdma_phy; 92 93 struct mmp_pdma_chan { 94 struct device *dev; 95 struct dma_chan chan; 96 struct dma_async_tx_descriptor desc; 97 struct mmp_pdma_phy *phy; 98 enum dma_transfer_direction dir; 99 100 struct mmp_pdma_desc_sw *cyclic_first; /* first desc_sw if channel 101 * is in cyclic mode */ 102 103 /* channel's basic info */ 104 struct tasklet_struct tasklet; 105 u32 dcmd; 106 u32 drcmr; 107 u32 dev_addr; 108 109 /* list for desc */ 110 spinlock_t desc_lock; /* Descriptor list lock */ 111 struct list_head chain_pending; /* Link descriptors queue for pending */ 112 struct list_head chain_running; /* Link descriptors queue for running */ 113 bool idle; /* channel statue machine */ 114 bool byte_align; 115 116 struct dma_pool *desc_pool; /* Descriptors pool */ 117 }; 118 119 struct mmp_pdma_phy { 120 int idx; 121 void __iomem *base; 122 struct mmp_pdma_chan *vchan; 123 }; 124 125 struct mmp_pdma_device { 126 int dma_channels; 127 void __iomem *base; 128 struct device *dev; 129 struct dma_device device; 130 struct mmp_pdma_phy *phy; 131 spinlock_t phy_lock; /* protect alloc/free phy channels */ 132 }; 133 134 #define tx_to_mmp_pdma_desc(tx) \ 135 container_of(tx, struct mmp_pdma_desc_sw, async_tx) 136 #define to_mmp_pdma_desc(lh) \ 137 container_of(lh, struct mmp_pdma_desc_sw, node) 138 #define to_mmp_pdma_chan(dchan) \ 139 container_of(dchan, struct mmp_pdma_chan, chan) 140 #define to_mmp_pdma_dev(dmadev) \ 141 container_of(dmadev, struct mmp_pdma_device, device) 142 143 static void set_desc(struct mmp_pdma_phy *phy, dma_addr_t addr) 144 { 145 u32 reg = (phy->idx << 4) + DDADR; 146 147 writel(addr, phy->base + reg); 148 } 149 150 static void enable_chan(struct mmp_pdma_phy *phy) 151 { 152 u32 reg, dalgn; 153 154 if (!phy->vchan) 155 return; 156 157 reg = DRCMR(phy->vchan->drcmr); 158 writel(DRCMR_MAPVLD | phy->idx, phy->base + reg); 159 160 dalgn = readl(phy->base + DALGN); 161 if (phy->vchan->byte_align) 162 dalgn |= 1 << phy->idx; 163 else 164 dalgn &= ~(1 << phy->idx); 165 writel(dalgn, phy->base + DALGN); 166 167 reg = (phy->idx << 2) + DCSR; 168 writel(readl(phy->base + reg) | DCSR_RUN, phy->base + reg); 169 } 170 171 static void disable_chan(struct mmp_pdma_phy *phy) 172 { 173 u32 reg; 174 175 if (!phy) 176 return; 177 178 reg = (phy->idx << 2) + DCSR; 179 writel(readl(phy->base + reg) & ~DCSR_RUN, phy->base + reg); 180 } 181 182 static int clear_chan_irq(struct mmp_pdma_phy *phy) 183 { 184 u32 dcsr; 185 u32 dint = readl(phy->base + DINT); 186 u32 reg = (phy->idx << 2) + DCSR; 187 188 if (!(dint & BIT(phy->idx))) 189 return -EAGAIN; 190 191 /* clear irq */ 192 dcsr = readl(phy->base + reg); 193 writel(dcsr, phy->base + reg); 194 if ((dcsr & DCSR_BUSERR) && (phy->vchan)) 195 dev_warn(phy->vchan->dev, "DCSR_BUSERR\n"); 196 197 return 0; 198 } 199 200 static irqreturn_t mmp_pdma_chan_handler(int irq, void *dev_id) 201 { 202 struct mmp_pdma_phy *phy = dev_id; 203 204 if (clear_chan_irq(phy) != 0) 205 return IRQ_NONE; 206 207 tasklet_schedule(&phy->vchan->tasklet); 208 return IRQ_HANDLED; 209 } 210 211 static irqreturn_t mmp_pdma_int_handler(int irq, void *dev_id) 212 { 213 struct mmp_pdma_device *pdev = dev_id; 214 struct mmp_pdma_phy *phy; 215 u32 dint = readl(pdev->base + DINT); 216 int i, ret; 217 int irq_num = 0; 218 219 while (dint) { 220 i = __ffs(dint); 221 /* only handle interrupts belonging to pdma driver*/ 222 if (i >= pdev->dma_channels) 223 break; 224 dint &= (dint - 1); 225 phy = &pdev->phy[i]; 226 ret = mmp_pdma_chan_handler(irq, phy); 227 if (ret == IRQ_HANDLED) 228 irq_num++; 229 } 230 231 if (irq_num) 232 return IRQ_HANDLED; 233 234 return IRQ_NONE; 235 } 236 237 /* lookup free phy channel as descending priority */ 238 static struct mmp_pdma_phy *lookup_phy(struct mmp_pdma_chan *pchan) 239 { 240 int prio, i; 241 struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device); 242 struct mmp_pdma_phy *phy, *found = NULL; 243 unsigned long flags; 244 245 /* 246 * dma channel priorities 247 * ch 0 - 3, 16 - 19 <--> (0) 248 * ch 4 - 7, 20 - 23 <--> (1) 249 * ch 8 - 11, 24 - 27 <--> (2) 250 * ch 12 - 15, 28 - 31 <--> (3) 251 */ 252 253 spin_lock_irqsave(&pdev->phy_lock, flags); 254 for (prio = 0; prio <= ((pdev->dma_channels - 1) & 0xf) >> 2; prio++) { 255 for (i = 0; i < pdev->dma_channels; i++) { 256 if (prio != (i & 0xf) >> 2) 257 continue; 258 phy = &pdev->phy[i]; 259 if (!phy->vchan) { 260 phy->vchan = pchan; 261 found = phy; 262 goto out_unlock; 263 } 264 } 265 } 266 267 out_unlock: 268 spin_unlock_irqrestore(&pdev->phy_lock, flags); 269 return found; 270 } 271 272 static void mmp_pdma_free_phy(struct mmp_pdma_chan *pchan) 273 { 274 struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device); 275 unsigned long flags; 276 u32 reg; 277 278 if (!pchan->phy) 279 return; 280 281 /* clear the channel mapping in DRCMR */ 282 reg = DRCMR(pchan->drcmr); 283 writel(0, pchan->phy->base + reg); 284 285 spin_lock_irqsave(&pdev->phy_lock, flags); 286 pchan->phy->vchan = NULL; 287 pchan->phy = NULL; 288 spin_unlock_irqrestore(&pdev->phy_lock, flags); 289 } 290 291 /** 292 * start_pending_queue - transfer any pending transactions 293 * pending list ==> running list 294 */ 295 static void start_pending_queue(struct mmp_pdma_chan *chan) 296 { 297 struct mmp_pdma_desc_sw *desc; 298 299 /* still in running, irq will start the pending list */ 300 if (!chan->idle) { 301 dev_dbg(chan->dev, "DMA controller still busy\n"); 302 return; 303 } 304 305 if (list_empty(&chan->chain_pending)) { 306 /* chance to re-fetch phy channel with higher prio */ 307 mmp_pdma_free_phy(chan); 308 dev_dbg(chan->dev, "no pending list\n"); 309 return; 310 } 311 312 if (!chan->phy) { 313 chan->phy = lookup_phy(chan); 314 if (!chan->phy) { 315 dev_dbg(chan->dev, "no free dma channel\n"); 316 return; 317 } 318 } 319 320 /* 321 * pending -> running 322 * reintilize pending list 323 */ 324 desc = list_first_entry(&chan->chain_pending, 325 struct mmp_pdma_desc_sw, node); 326 list_splice_tail_init(&chan->chain_pending, &chan->chain_running); 327 328 /* 329 * Program the descriptor's address into the DMA controller, 330 * then start the DMA transaction 331 */ 332 set_desc(chan->phy, desc->async_tx.phys); 333 enable_chan(chan->phy); 334 chan->idle = false; 335 } 336 337 338 /* desc->tx_list ==> pending list */ 339 static dma_cookie_t mmp_pdma_tx_submit(struct dma_async_tx_descriptor *tx) 340 { 341 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(tx->chan); 342 struct mmp_pdma_desc_sw *desc = tx_to_mmp_pdma_desc(tx); 343 struct mmp_pdma_desc_sw *child; 344 unsigned long flags; 345 dma_cookie_t cookie = -EBUSY; 346 347 spin_lock_irqsave(&chan->desc_lock, flags); 348 349 list_for_each_entry(child, &desc->tx_list, node) { 350 cookie = dma_cookie_assign(&child->async_tx); 351 } 352 353 /* softly link to pending list - desc->tx_list ==> pending list */ 354 list_splice_tail_init(&desc->tx_list, &chan->chain_pending); 355 356 spin_unlock_irqrestore(&chan->desc_lock, flags); 357 358 return cookie; 359 } 360 361 static struct mmp_pdma_desc_sw * 362 mmp_pdma_alloc_descriptor(struct mmp_pdma_chan *chan) 363 { 364 struct mmp_pdma_desc_sw *desc; 365 dma_addr_t pdesc; 366 367 desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc); 368 if (!desc) { 369 dev_err(chan->dev, "out of memory for link descriptor\n"); 370 return NULL; 371 } 372 373 INIT_LIST_HEAD(&desc->tx_list); 374 dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan); 375 /* each desc has submit */ 376 desc->async_tx.tx_submit = mmp_pdma_tx_submit; 377 desc->async_tx.phys = pdesc; 378 379 return desc; 380 } 381 382 /** 383 * mmp_pdma_alloc_chan_resources - Allocate resources for DMA channel. 384 * 385 * This function will create a dma pool for descriptor allocation. 386 * Request irq only when channel is requested 387 * Return - The number of allocated descriptors. 388 */ 389 390 static int mmp_pdma_alloc_chan_resources(struct dma_chan *dchan) 391 { 392 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 393 394 if (chan->desc_pool) 395 return 1; 396 397 chan->desc_pool = dma_pool_create(dev_name(&dchan->dev->device), 398 chan->dev, 399 sizeof(struct mmp_pdma_desc_sw), 400 __alignof__(struct mmp_pdma_desc_sw), 401 0); 402 if (!chan->desc_pool) { 403 dev_err(chan->dev, "unable to allocate descriptor pool\n"); 404 return -ENOMEM; 405 } 406 407 mmp_pdma_free_phy(chan); 408 chan->idle = true; 409 chan->dev_addr = 0; 410 return 1; 411 } 412 413 static void mmp_pdma_free_desc_list(struct mmp_pdma_chan *chan, 414 struct list_head *list) 415 { 416 struct mmp_pdma_desc_sw *desc, *_desc; 417 418 list_for_each_entry_safe(desc, _desc, list, node) { 419 list_del(&desc->node); 420 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys); 421 } 422 } 423 424 static void mmp_pdma_free_chan_resources(struct dma_chan *dchan) 425 { 426 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 427 unsigned long flags; 428 429 spin_lock_irqsave(&chan->desc_lock, flags); 430 mmp_pdma_free_desc_list(chan, &chan->chain_pending); 431 mmp_pdma_free_desc_list(chan, &chan->chain_running); 432 spin_unlock_irqrestore(&chan->desc_lock, flags); 433 434 dma_pool_destroy(chan->desc_pool); 435 chan->desc_pool = NULL; 436 chan->idle = true; 437 chan->dev_addr = 0; 438 mmp_pdma_free_phy(chan); 439 return; 440 } 441 442 static struct dma_async_tx_descriptor * 443 mmp_pdma_prep_memcpy(struct dma_chan *dchan, 444 dma_addr_t dma_dst, dma_addr_t dma_src, 445 size_t len, unsigned long flags) 446 { 447 struct mmp_pdma_chan *chan; 448 struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new; 449 size_t copy = 0; 450 451 if (!dchan) 452 return NULL; 453 454 if (!len) 455 return NULL; 456 457 chan = to_mmp_pdma_chan(dchan); 458 chan->byte_align = false; 459 460 if (!chan->dir) { 461 chan->dir = DMA_MEM_TO_MEM; 462 chan->dcmd = DCMD_INCTRGADDR | DCMD_INCSRCADDR; 463 chan->dcmd |= DCMD_BURST32; 464 } 465 466 do { 467 /* Allocate the link descriptor from DMA pool */ 468 new = mmp_pdma_alloc_descriptor(chan); 469 if (!new) { 470 dev_err(chan->dev, "no memory for desc\n"); 471 goto fail; 472 } 473 474 copy = min_t(size_t, len, PDMA_MAX_DESC_BYTES); 475 if (dma_src & 0x7 || dma_dst & 0x7) 476 chan->byte_align = true; 477 478 new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & copy); 479 new->desc.dsadr = dma_src; 480 new->desc.dtadr = dma_dst; 481 482 if (!first) 483 first = new; 484 else 485 prev->desc.ddadr = new->async_tx.phys; 486 487 new->async_tx.cookie = 0; 488 async_tx_ack(&new->async_tx); 489 490 prev = new; 491 len -= copy; 492 493 if (chan->dir == DMA_MEM_TO_DEV) { 494 dma_src += copy; 495 } else if (chan->dir == DMA_DEV_TO_MEM) { 496 dma_dst += copy; 497 } else if (chan->dir == DMA_MEM_TO_MEM) { 498 dma_src += copy; 499 dma_dst += copy; 500 } 501 502 /* Insert the link descriptor to the LD ring */ 503 list_add_tail(&new->node, &first->tx_list); 504 } while (len); 505 506 first->async_tx.flags = flags; /* client is in control of this ack */ 507 first->async_tx.cookie = -EBUSY; 508 509 /* last desc and fire IRQ */ 510 new->desc.ddadr = DDADR_STOP; 511 new->desc.dcmd |= DCMD_ENDIRQEN; 512 513 chan->cyclic_first = NULL; 514 515 return &first->async_tx; 516 517 fail: 518 if (first) 519 mmp_pdma_free_desc_list(chan, &first->tx_list); 520 return NULL; 521 } 522 523 static struct dma_async_tx_descriptor * 524 mmp_pdma_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl, 525 unsigned int sg_len, enum dma_transfer_direction dir, 526 unsigned long flags, void *context) 527 { 528 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 529 struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new = NULL; 530 size_t len, avail; 531 struct scatterlist *sg; 532 dma_addr_t addr; 533 int i; 534 535 if ((sgl == NULL) || (sg_len == 0)) 536 return NULL; 537 538 chan->byte_align = false; 539 540 for_each_sg(sgl, sg, sg_len, i) { 541 addr = sg_dma_address(sg); 542 avail = sg_dma_len(sgl); 543 544 do { 545 len = min_t(size_t, avail, PDMA_MAX_DESC_BYTES); 546 if (addr & 0x7) 547 chan->byte_align = true; 548 549 /* allocate and populate the descriptor */ 550 new = mmp_pdma_alloc_descriptor(chan); 551 if (!new) { 552 dev_err(chan->dev, "no memory for desc\n"); 553 goto fail; 554 } 555 556 new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & len); 557 if (dir == DMA_MEM_TO_DEV) { 558 new->desc.dsadr = addr; 559 new->desc.dtadr = chan->dev_addr; 560 } else { 561 new->desc.dsadr = chan->dev_addr; 562 new->desc.dtadr = addr; 563 } 564 565 if (!first) 566 first = new; 567 else 568 prev->desc.ddadr = new->async_tx.phys; 569 570 new->async_tx.cookie = 0; 571 async_tx_ack(&new->async_tx); 572 prev = new; 573 574 /* Insert the link descriptor to the LD ring */ 575 list_add_tail(&new->node, &first->tx_list); 576 577 /* update metadata */ 578 addr += len; 579 avail -= len; 580 } while (avail); 581 } 582 583 first->async_tx.cookie = -EBUSY; 584 first->async_tx.flags = flags; 585 586 /* last desc and fire IRQ */ 587 new->desc.ddadr = DDADR_STOP; 588 new->desc.dcmd |= DCMD_ENDIRQEN; 589 590 chan->dir = dir; 591 chan->cyclic_first = NULL; 592 593 return &first->async_tx; 594 595 fail: 596 if (first) 597 mmp_pdma_free_desc_list(chan, &first->tx_list); 598 return NULL; 599 } 600 601 static struct dma_async_tx_descriptor * 602 mmp_pdma_prep_dma_cyclic(struct dma_chan *dchan, 603 dma_addr_t buf_addr, size_t len, size_t period_len, 604 enum dma_transfer_direction direction, 605 unsigned long flags) 606 { 607 struct mmp_pdma_chan *chan; 608 struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new; 609 dma_addr_t dma_src, dma_dst; 610 611 if (!dchan || !len || !period_len) 612 return NULL; 613 614 /* the buffer length must be a multiple of period_len */ 615 if (len % period_len != 0) 616 return NULL; 617 618 if (period_len > PDMA_MAX_DESC_BYTES) 619 return NULL; 620 621 chan = to_mmp_pdma_chan(dchan); 622 623 switch (direction) { 624 case DMA_MEM_TO_DEV: 625 dma_src = buf_addr; 626 dma_dst = chan->dev_addr; 627 break; 628 case DMA_DEV_TO_MEM: 629 dma_dst = buf_addr; 630 dma_src = chan->dev_addr; 631 break; 632 default: 633 dev_err(chan->dev, "Unsupported direction for cyclic DMA\n"); 634 return NULL; 635 } 636 637 chan->dir = direction; 638 639 do { 640 /* Allocate the link descriptor from DMA pool */ 641 new = mmp_pdma_alloc_descriptor(chan); 642 if (!new) { 643 dev_err(chan->dev, "no memory for desc\n"); 644 goto fail; 645 } 646 647 new->desc.dcmd = (chan->dcmd | DCMD_ENDIRQEN | 648 (DCMD_LENGTH & period_len)); 649 new->desc.dsadr = dma_src; 650 new->desc.dtadr = dma_dst; 651 652 if (!first) 653 first = new; 654 else 655 prev->desc.ddadr = new->async_tx.phys; 656 657 new->async_tx.cookie = 0; 658 async_tx_ack(&new->async_tx); 659 660 prev = new; 661 len -= period_len; 662 663 if (chan->dir == DMA_MEM_TO_DEV) 664 dma_src += period_len; 665 else 666 dma_dst += period_len; 667 668 /* Insert the link descriptor to the LD ring */ 669 list_add_tail(&new->node, &first->tx_list); 670 } while (len); 671 672 first->async_tx.flags = flags; /* client is in control of this ack */ 673 first->async_tx.cookie = -EBUSY; 674 675 /* make the cyclic link */ 676 new->desc.ddadr = first->async_tx.phys; 677 chan->cyclic_first = first; 678 679 return &first->async_tx; 680 681 fail: 682 if (first) 683 mmp_pdma_free_desc_list(chan, &first->tx_list); 684 return NULL; 685 } 686 687 static int mmp_pdma_config(struct dma_chan *dchan, 688 struct dma_slave_config *cfg) 689 { 690 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 691 u32 maxburst = 0, addr = 0; 692 enum dma_slave_buswidth width = DMA_SLAVE_BUSWIDTH_UNDEFINED; 693 694 if (!dchan) 695 return -EINVAL; 696 697 if (cfg->direction == DMA_DEV_TO_MEM) { 698 chan->dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC; 699 maxburst = cfg->src_maxburst; 700 width = cfg->src_addr_width; 701 addr = cfg->src_addr; 702 } else if (cfg->direction == DMA_MEM_TO_DEV) { 703 chan->dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG; 704 maxburst = cfg->dst_maxburst; 705 width = cfg->dst_addr_width; 706 addr = cfg->dst_addr; 707 } 708 709 if (width == DMA_SLAVE_BUSWIDTH_1_BYTE) 710 chan->dcmd |= DCMD_WIDTH1; 711 else if (width == DMA_SLAVE_BUSWIDTH_2_BYTES) 712 chan->dcmd |= DCMD_WIDTH2; 713 else if (width == DMA_SLAVE_BUSWIDTH_4_BYTES) 714 chan->dcmd |= DCMD_WIDTH4; 715 716 if (maxburst == 8) 717 chan->dcmd |= DCMD_BURST8; 718 else if (maxburst == 16) 719 chan->dcmd |= DCMD_BURST16; 720 else if (maxburst == 32) 721 chan->dcmd |= DCMD_BURST32; 722 723 chan->dir = cfg->direction; 724 chan->dev_addr = addr; 725 /* FIXME: drivers should be ported over to use the filter 726 * function. Once that's done, the following two lines can 727 * be removed. 728 */ 729 if (cfg->slave_id) 730 chan->drcmr = cfg->slave_id; 731 732 return 0; 733 } 734 735 static int mmp_pdma_terminate_all(struct dma_chan *dchan) 736 { 737 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 738 unsigned long flags; 739 740 if (!dchan) 741 return -EINVAL; 742 743 disable_chan(chan->phy); 744 mmp_pdma_free_phy(chan); 745 spin_lock_irqsave(&chan->desc_lock, flags); 746 mmp_pdma_free_desc_list(chan, &chan->chain_pending); 747 mmp_pdma_free_desc_list(chan, &chan->chain_running); 748 spin_unlock_irqrestore(&chan->desc_lock, flags); 749 chan->idle = true; 750 751 return 0; 752 } 753 754 static unsigned int mmp_pdma_residue(struct mmp_pdma_chan *chan, 755 dma_cookie_t cookie) 756 { 757 struct mmp_pdma_desc_sw *sw; 758 u32 curr, residue = 0; 759 bool passed = false; 760 bool cyclic = chan->cyclic_first != NULL; 761 762 /* 763 * If the channel does not have a phy pointer anymore, it has already 764 * been completed. Therefore, its residue is 0. 765 */ 766 if (!chan->phy) 767 return 0; 768 769 if (chan->dir == DMA_DEV_TO_MEM) 770 curr = readl(chan->phy->base + DTADR(chan->phy->idx)); 771 else 772 curr = readl(chan->phy->base + DSADR(chan->phy->idx)); 773 774 list_for_each_entry(sw, &chan->chain_running, node) { 775 u32 start, end, len; 776 777 if (chan->dir == DMA_DEV_TO_MEM) 778 start = sw->desc.dtadr; 779 else 780 start = sw->desc.dsadr; 781 782 len = sw->desc.dcmd & DCMD_LENGTH; 783 end = start + len; 784 785 /* 786 * 'passed' will be latched once we found the descriptor which 787 * lies inside the boundaries of the curr pointer. All 788 * descriptors that occur in the list _after_ we found that 789 * partially handled descriptor are still to be processed and 790 * are hence added to the residual bytes counter. 791 */ 792 793 if (passed) { 794 residue += len; 795 } else if (curr >= start && curr <= end) { 796 residue += end - curr; 797 passed = true; 798 } 799 800 /* 801 * Descriptors that have the ENDIRQEN bit set mark the end of a 802 * transaction chain, and the cookie assigned with it has been 803 * returned previously from mmp_pdma_tx_submit(). 804 * 805 * In case we have multiple transactions in the running chain, 806 * and the cookie does not match the one the user asked us 807 * about, reset the state variables and start over. 808 * 809 * This logic does not apply to cyclic transactions, where all 810 * descriptors have the ENDIRQEN bit set, and for which we 811 * can't have multiple transactions on one channel anyway. 812 */ 813 if (cyclic || !(sw->desc.dcmd & DCMD_ENDIRQEN)) 814 continue; 815 816 if (sw->async_tx.cookie == cookie) { 817 return residue; 818 } else { 819 residue = 0; 820 passed = false; 821 } 822 } 823 824 /* We should only get here in case of cyclic transactions */ 825 return residue; 826 } 827 828 static enum dma_status mmp_pdma_tx_status(struct dma_chan *dchan, 829 dma_cookie_t cookie, 830 struct dma_tx_state *txstate) 831 { 832 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 833 enum dma_status ret; 834 835 ret = dma_cookie_status(dchan, cookie, txstate); 836 if (likely(ret != DMA_ERROR)) 837 dma_set_residue(txstate, mmp_pdma_residue(chan, cookie)); 838 839 return ret; 840 } 841 842 /** 843 * mmp_pdma_issue_pending - Issue the DMA start command 844 * pending list ==> running list 845 */ 846 static void mmp_pdma_issue_pending(struct dma_chan *dchan) 847 { 848 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 849 unsigned long flags; 850 851 spin_lock_irqsave(&chan->desc_lock, flags); 852 start_pending_queue(chan); 853 spin_unlock_irqrestore(&chan->desc_lock, flags); 854 } 855 856 /* 857 * dma_do_tasklet 858 * Do call back 859 * Start pending list 860 */ 861 static void dma_do_tasklet(unsigned long data) 862 { 863 struct mmp_pdma_chan *chan = (struct mmp_pdma_chan *)data; 864 struct mmp_pdma_desc_sw *desc, *_desc; 865 LIST_HEAD(chain_cleanup); 866 unsigned long flags; 867 868 if (chan->cyclic_first) { 869 dma_async_tx_callback cb = NULL; 870 void *cb_data = NULL; 871 872 spin_lock_irqsave(&chan->desc_lock, flags); 873 desc = chan->cyclic_first; 874 cb = desc->async_tx.callback; 875 cb_data = desc->async_tx.callback_param; 876 spin_unlock_irqrestore(&chan->desc_lock, flags); 877 878 if (cb) 879 cb(cb_data); 880 881 return; 882 } 883 884 /* submit pending list; callback for each desc; free desc */ 885 spin_lock_irqsave(&chan->desc_lock, flags); 886 887 list_for_each_entry_safe(desc, _desc, &chan->chain_running, node) { 888 /* 889 * move the descriptors to a temporary list so we can drop 890 * the lock during the entire cleanup operation 891 */ 892 list_move(&desc->node, &chain_cleanup); 893 894 /* 895 * Look for the first list entry which has the ENDIRQEN flag 896 * set. That is the descriptor we got an interrupt for, so 897 * complete that transaction and its cookie. 898 */ 899 if (desc->desc.dcmd & DCMD_ENDIRQEN) { 900 dma_cookie_t cookie = desc->async_tx.cookie; 901 dma_cookie_complete(&desc->async_tx); 902 dev_dbg(chan->dev, "completed_cookie=%d\n", cookie); 903 break; 904 } 905 } 906 907 /* 908 * The hardware is idle and ready for more when the 909 * chain_running list is empty. 910 */ 911 chan->idle = list_empty(&chan->chain_running); 912 913 /* Start any pending transactions automatically */ 914 start_pending_queue(chan); 915 spin_unlock_irqrestore(&chan->desc_lock, flags); 916 917 /* Run the callback for each descriptor, in order */ 918 list_for_each_entry_safe(desc, _desc, &chain_cleanup, node) { 919 struct dma_async_tx_descriptor *txd = &desc->async_tx; 920 921 /* Remove from the list of transactions */ 922 list_del(&desc->node); 923 /* Run the link descriptor callback function */ 924 if (txd->callback) 925 txd->callback(txd->callback_param); 926 927 dma_pool_free(chan->desc_pool, desc, txd->phys); 928 } 929 } 930 931 static int mmp_pdma_remove(struct platform_device *op) 932 { 933 struct mmp_pdma_device *pdev = platform_get_drvdata(op); 934 935 dma_async_device_unregister(&pdev->device); 936 return 0; 937 } 938 939 static int mmp_pdma_chan_init(struct mmp_pdma_device *pdev, int idx, int irq) 940 { 941 struct mmp_pdma_phy *phy = &pdev->phy[idx]; 942 struct mmp_pdma_chan *chan; 943 int ret; 944 945 chan = devm_kzalloc(pdev->dev, sizeof(*chan), GFP_KERNEL); 946 if (chan == NULL) 947 return -ENOMEM; 948 949 phy->idx = idx; 950 phy->base = pdev->base; 951 952 if (irq) { 953 ret = devm_request_irq(pdev->dev, irq, mmp_pdma_chan_handler, 954 IRQF_SHARED, "pdma", phy); 955 if (ret) { 956 dev_err(pdev->dev, "channel request irq fail!\n"); 957 return ret; 958 } 959 } 960 961 spin_lock_init(&chan->desc_lock); 962 chan->dev = pdev->dev; 963 chan->chan.device = &pdev->device; 964 tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan); 965 INIT_LIST_HEAD(&chan->chain_pending); 966 INIT_LIST_HEAD(&chan->chain_running); 967 968 /* register virt channel to dma engine */ 969 list_add_tail(&chan->chan.device_node, &pdev->device.channels); 970 971 return 0; 972 } 973 974 static const struct of_device_id mmp_pdma_dt_ids[] = { 975 { .compatible = "marvell,pdma-1.0", }, 976 {} 977 }; 978 MODULE_DEVICE_TABLE(of, mmp_pdma_dt_ids); 979 980 static struct dma_chan *mmp_pdma_dma_xlate(struct of_phandle_args *dma_spec, 981 struct of_dma *ofdma) 982 { 983 struct mmp_pdma_device *d = ofdma->of_dma_data; 984 struct dma_chan *chan; 985 986 chan = dma_get_any_slave_channel(&d->device); 987 if (!chan) 988 return NULL; 989 990 to_mmp_pdma_chan(chan)->drcmr = dma_spec->args[0]; 991 992 return chan; 993 } 994 995 static int mmp_pdma_probe(struct platform_device *op) 996 { 997 struct mmp_pdma_device *pdev; 998 const struct of_device_id *of_id; 999 struct mmp_dma_platdata *pdata = dev_get_platdata(&op->dev); 1000 struct resource *iores; 1001 int i, ret, irq = 0; 1002 int dma_channels = 0, irq_num = 0; 1003 const enum dma_slave_buswidth widths = 1004 DMA_SLAVE_BUSWIDTH_1_BYTE | DMA_SLAVE_BUSWIDTH_2_BYTES | 1005 DMA_SLAVE_BUSWIDTH_4_BYTES; 1006 1007 pdev = devm_kzalloc(&op->dev, sizeof(*pdev), GFP_KERNEL); 1008 if (!pdev) 1009 return -ENOMEM; 1010 1011 pdev->dev = &op->dev; 1012 1013 spin_lock_init(&pdev->phy_lock); 1014 1015 iores = platform_get_resource(op, IORESOURCE_MEM, 0); 1016 pdev->base = devm_ioremap_resource(pdev->dev, iores); 1017 if (IS_ERR(pdev->base)) 1018 return PTR_ERR(pdev->base); 1019 1020 of_id = of_match_device(mmp_pdma_dt_ids, pdev->dev); 1021 if (of_id) 1022 of_property_read_u32(pdev->dev->of_node, "#dma-channels", 1023 &dma_channels); 1024 else if (pdata && pdata->dma_channels) 1025 dma_channels = pdata->dma_channels; 1026 else 1027 dma_channels = 32; /* default 32 channel */ 1028 pdev->dma_channels = dma_channels; 1029 1030 for (i = 0; i < dma_channels; i++) { 1031 if (platform_get_irq(op, i) > 0) 1032 irq_num++; 1033 } 1034 1035 pdev->phy = devm_kcalloc(pdev->dev, dma_channels, sizeof(*pdev->phy), 1036 GFP_KERNEL); 1037 if (pdev->phy == NULL) 1038 return -ENOMEM; 1039 1040 INIT_LIST_HEAD(&pdev->device.channels); 1041 1042 if (irq_num != dma_channels) { 1043 /* all chan share one irq, demux inside */ 1044 irq = platform_get_irq(op, 0); 1045 ret = devm_request_irq(pdev->dev, irq, mmp_pdma_int_handler, 1046 IRQF_SHARED, "pdma", pdev); 1047 if (ret) 1048 return ret; 1049 } 1050 1051 for (i = 0; i < dma_channels; i++) { 1052 irq = (irq_num != dma_channels) ? 0 : platform_get_irq(op, i); 1053 ret = mmp_pdma_chan_init(pdev, i, irq); 1054 if (ret) 1055 return ret; 1056 } 1057 1058 dma_cap_set(DMA_SLAVE, pdev->device.cap_mask); 1059 dma_cap_set(DMA_MEMCPY, pdev->device.cap_mask); 1060 dma_cap_set(DMA_CYCLIC, pdev->device.cap_mask); 1061 dma_cap_set(DMA_PRIVATE, pdev->device.cap_mask); 1062 pdev->device.dev = &op->dev; 1063 pdev->device.device_alloc_chan_resources = mmp_pdma_alloc_chan_resources; 1064 pdev->device.device_free_chan_resources = mmp_pdma_free_chan_resources; 1065 pdev->device.device_tx_status = mmp_pdma_tx_status; 1066 pdev->device.device_prep_dma_memcpy = mmp_pdma_prep_memcpy; 1067 pdev->device.device_prep_slave_sg = mmp_pdma_prep_slave_sg; 1068 pdev->device.device_prep_dma_cyclic = mmp_pdma_prep_dma_cyclic; 1069 pdev->device.device_issue_pending = mmp_pdma_issue_pending; 1070 pdev->device.device_config = mmp_pdma_config; 1071 pdev->device.device_terminate_all = mmp_pdma_terminate_all; 1072 pdev->device.copy_align = DMAENGINE_ALIGN_8_BYTES; 1073 pdev->device.src_addr_widths = widths; 1074 pdev->device.dst_addr_widths = widths; 1075 pdev->device.directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM); 1076 pdev->device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; 1077 1078 if (pdev->dev->coherent_dma_mask) 1079 dma_set_mask(pdev->dev, pdev->dev->coherent_dma_mask); 1080 else 1081 dma_set_mask(pdev->dev, DMA_BIT_MASK(64)); 1082 1083 ret = dma_async_device_register(&pdev->device); 1084 if (ret) { 1085 dev_err(pdev->device.dev, "unable to register\n"); 1086 return ret; 1087 } 1088 1089 if (op->dev.of_node) { 1090 /* Device-tree DMA controller registration */ 1091 ret = of_dma_controller_register(op->dev.of_node, 1092 mmp_pdma_dma_xlate, pdev); 1093 if (ret < 0) { 1094 dev_err(&op->dev, "of_dma_controller_register failed\n"); 1095 return ret; 1096 } 1097 } 1098 1099 platform_set_drvdata(op, pdev); 1100 dev_info(pdev->device.dev, "initialized %d channels\n", dma_channels); 1101 return 0; 1102 } 1103 1104 static const struct platform_device_id mmp_pdma_id_table[] = { 1105 { "mmp-pdma", }, 1106 { }, 1107 }; 1108 1109 static struct platform_driver mmp_pdma_driver = { 1110 .driver = { 1111 .name = "mmp-pdma", 1112 .of_match_table = mmp_pdma_dt_ids, 1113 }, 1114 .id_table = mmp_pdma_id_table, 1115 .probe = mmp_pdma_probe, 1116 .remove = mmp_pdma_remove, 1117 }; 1118 1119 bool mmp_pdma_filter_fn(struct dma_chan *chan, void *param) 1120 { 1121 struct mmp_pdma_chan *c = to_mmp_pdma_chan(chan); 1122 1123 if (chan->device->dev->driver != &mmp_pdma_driver.driver) 1124 return false; 1125 1126 c->drcmr = *(unsigned int *)param; 1127 1128 return true; 1129 } 1130 EXPORT_SYMBOL_GPL(mmp_pdma_filter_fn); 1131 1132 module_platform_driver(mmp_pdma_driver); 1133 1134 MODULE_DESCRIPTION("MARVELL MMP Peripheral DMA Driver"); 1135 MODULE_AUTHOR("Marvell International Ltd."); 1136 MODULE_LICENSE("GPL v2"); 1137