1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * MediaTek UART APDMA driver. 4 * 5 * Copyright (c) 2019 MediaTek Inc. 6 * Author: Long Cheng <long.cheng@mediatek.com> 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/dmaengine.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/err.h> 13 #include <linux/init.h> 14 #include <linux/interrupt.h> 15 #include <linux/iopoll.h> 16 #include <linux/kernel.h> 17 #include <linux/list.h> 18 #include <linux/module.h> 19 #include <linux/of_dma.h> 20 #include <linux/platform_device.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/slab.h> 23 #include <linux/spinlock.h> 24 25 #include "../virt-dma.h" 26 27 /* The default number of virtual channel */ 28 #define MTK_UART_APDMA_NR_VCHANS 8 29 30 #define VFF_EN_B BIT(0) 31 #define VFF_STOP_B BIT(0) 32 #define VFF_FLUSH_B BIT(0) 33 #define VFF_4G_EN_B BIT(0) 34 /* rx valid size >= vff thre */ 35 #define VFF_RX_INT_EN_B (BIT(0) | BIT(1)) 36 /* tx left size >= vff thre */ 37 #define VFF_TX_INT_EN_B BIT(0) 38 #define VFF_WARM_RST_B BIT(0) 39 #define VFF_RX_INT_CLR_B (BIT(0) | BIT(1)) 40 #define VFF_TX_INT_CLR_B 0 41 #define VFF_STOP_CLR_B 0 42 #define VFF_EN_CLR_B 0 43 #define VFF_INT_EN_CLR_B 0 44 #define VFF_4G_SUPPORT_CLR_B 0 45 46 /* 47 * interrupt trigger level for tx 48 * if threshold is n, no polling is required to start tx. 49 * otherwise need polling VFF_FLUSH. 50 */ 51 #define VFF_TX_THRE(n) (n) 52 /* interrupt trigger level for rx */ 53 #define VFF_RX_THRE(n) ((n) * 3 / 4) 54 55 #define VFF_RING_SIZE 0xffff 56 /* invert this bit when wrap ring head again */ 57 #define VFF_RING_WRAP 0x10000 58 59 #define VFF_INT_FLAG 0x00 60 #define VFF_INT_EN 0x04 61 #define VFF_EN 0x08 62 #define VFF_RST 0x0c 63 #define VFF_STOP 0x10 64 #define VFF_FLUSH 0x14 65 #define VFF_ADDR 0x1c 66 #define VFF_LEN 0x24 67 #define VFF_THRE 0x28 68 #define VFF_WPT 0x2c 69 #define VFF_RPT 0x30 70 /* TX: the buffer size HW can read. RX: the buffer size SW can read. */ 71 #define VFF_VALID_SIZE 0x3c 72 /* TX: the buffer size SW can write. RX: the buffer size HW can write. */ 73 #define VFF_LEFT_SIZE 0x40 74 #define VFF_DEBUG_STATUS 0x50 75 #define VFF_4G_SUPPORT 0x54 76 77 struct mtk_uart_apdmadev { 78 struct dma_device ddev; 79 struct clk *clk; 80 bool support_33bits; 81 unsigned int dma_requests; 82 }; 83 84 struct mtk_uart_apdma_desc { 85 struct virt_dma_desc vd; 86 87 dma_addr_t addr; 88 unsigned int avail_len; 89 }; 90 91 struct mtk_chan { 92 struct virt_dma_chan vc; 93 struct dma_slave_config cfg; 94 struct mtk_uart_apdma_desc *desc; 95 enum dma_transfer_direction dir; 96 97 void __iomem *base; 98 unsigned int irq; 99 100 unsigned int rx_status; 101 }; 102 103 static inline struct mtk_uart_apdmadev * 104 to_mtk_uart_apdma_dev(struct dma_device *d) 105 { 106 return container_of(d, struct mtk_uart_apdmadev, ddev); 107 } 108 109 static inline struct mtk_chan *to_mtk_uart_apdma_chan(struct dma_chan *c) 110 { 111 return container_of(c, struct mtk_chan, vc.chan); 112 } 113 114 static inline struct mtk_uart_apdma_desc *to_mtk_uart_apdma_desc 115 (struct dma_async_tx_descriptor *t) 116 { 117 return container_of(t, struct mtk_uart_apdma_desc, vd.tx); 118 } 119 120 static void mtk_uart_apdma_write(struct mtk_chan *c, 121 unsigned int reg, unsigned int val) 122 { 123 writel(val, c->base + reg); 124 } 125 126 static unsigned int mtk_uart_apdma_read(struct mtk_chan *c, unsigned int reg) 127 { 128 return readl(c->base + reg); 129 } 130 131 static void mtk_uart_apdma_desc_free(struct virt_dma_desc *vd) 132 { 133 kfree(container_of(vd, struct mtk_uart_apdma_desc, vd)); 134 } 135 136 static void mtk_uart_apdma_start_tx(struct mtk_chan *c) 137 { 138 struct mtk_uart_apdmadev *mtkd = 139 to_mtk_uart_apdma_dev(c->vc.chan.device); 140 struct mtk_uart_apdma_desc *d = c->desc; 141 unsigned int wpt, vff_sz; 142 143 vff_sz = c->cfg.dst_port_window_size; 144 if (!mtk_uart_apdma_read(c, VFF_LEN)) { 145 mtk_uart_apdma_write(c, VFF_ADDR, d->addr); 146 mtk_uart_apdma_write(c, VFF_LEN, vff_sz); 147 mtk_uart_apdma_write(c, VFF_THRE, VFF_TX_THRE(vff_sz)); 148 mtk_uart_apdma_write(c, VFF_WPT, 0); 149 mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_TX_INT_CLR_B); 150 151 if (mtkd->support_33bits) 152 mtk_uart_apdma_write(c, VFF_4G_SUPPORT, VFF_4G_EN_B); 153 } 154 155 mtk_uart_apdma_write(c, VFF_EN, VFF_EN_B); 156 if (mtk_uart_apdma_read(c, VFF_EN) != VFF_EN_B) 157 dev_err(c->vc.chan.device->dev, "Enable TX fail\n"); 158 159 if (!mtk_uart_apdma_read(c, VFF_LEFT_SIZE)) { 160 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_TX_INT_EN_B); 161 return; 162 } 163 164 wpt = mtk_uart_apdma_read(c, VFF_WPT); 165 166 wpt += c->desc->avail_len; 167 if ((wpt & VFF_RING_SIZE) == vff_sz) 168 wpt = (wpt & VFF_RING_WRAP) ^ VFF_RING_WRAP; 169 170 /* Let DMA start moving data */ 171 mtk_uart_apdma_write(c, VFF_WPT, wpt); 172 173 /* HW auto set to 0 when left size >= threshold */ 174 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_TX_INT_EN_B); 175 if (!mtk_uart_apdma_read(c, VFF_FLUSH)) 176 mtk_uart_apdma_write(c, VFF_FLUSH, VFF_FLUSH_B); 177 } 178 179 static void mtk_uart_apdma_start_rx(struct mtk_chan *c) 180 { 181 struct mtk_uart_apdmadev *mtkd = 182 to_mtk_uart_apdma_dev(c->vc.chan.device); 183 struct mtk_uart_apdma_desc *d = c->desc; 184 unsigned int vff_sz; 185 186 vff_sz = c->cfg.src_port_window_size; 187 if (!mtk_uart_apdma_read(c, VFF_LEN)) { 188 mtk_uart_apdma_write(c, VFF_ADDR, d->addr); 189 mtk_uart_apdma_write(c, VFF_LEN, vff_sz); 190 mtk_uart_apdma_write(c, VFF_THRE, VFF_RX_THRE(vff_sz)); 191 mtk_uart_apdma_write(c, VFF_RPT, 0); 192 mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_RX_INT_CLR_B); 193 194 if (mtkd->support_33bits) 195 mtk_uart_apdma_write(c, VFF_4G_SUPPORT, VFF_4G_EN_B); 196 } 197 198 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_RX_INT_EN_B); 199 mtk_uart_apdma_write(c, VFF_EN, VFF_EN_B); 200 if (mtk_uart_apdma_read(c, VFF_EN) != VFF_EN_B) 201 dev_err(c->vc.chan.device->dev, "Enable RX fail\n"); 202 } 203 204 static void mtk_uart_apdma_tx_handler(struct mtk_chan *c) 205 { 206 mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_TX_INT_CLR_B); 207 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B); 208 mtk_uart_apdma_write(c, VFF_EN, VFF_EN_CLR_B); 209 } 210 211 static void mtk_uart_apdma_rx_handler(struct mtk_chan *c) 212 { 213 struct mtk_uart_apdma_desc *d = c->desc; 214 unsigned int len, wg, rg; 215 int cnt; 216 217 mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_RX_INT_CLR_B); 218 219 if (!mtk_uart_apdma_read(c, VFF_VALID_SIZE)) 220 return; 221 222 mtk_uart_apdma_write(c, VFF_EN, VFF_EN_CLR_B); 223 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B); 224 225 len = c->cfg.src_port_window_size; 226 rg = mtk_uart_apdma_read(c, VFF_RPT); 227 wg = mtk_uart_apdma_read(c, VFF_WPT); 228 cnt = (wg & VFF_RING_SIZE) - (rg & VFF_RING_SIZE); 229 230 /* 231 * The buffer is ring buffer. If wrap bit different, 232 * represents the start of the next cycle for WPT 233 */ 234 if ((rg ^ wg) & VFF_RING_WRAP) 235 cnt += len; 236 237 c->rx_status = d->avail_len - cnt; 238 mtk_uart_apdma_write(c, VFF_RPT, wg); 239 } 240 241 static void mtk_uart_apdma_chan_complete_handler(struct mtk_chan *c) 242 { 243 struct mtk_uart_apdma_desc *d = c->desc; 244 245 if (d) { 246 list_del(&d->vd.node); 247 vchan_cookie_complete(&d->vd); 248 c->desc = NULL; 249 } 250 } 251 252 static irqreturn_t mtk_uart_apdma_irq_handler(int irq, void *dev_id) 253 { 254 struct dma_chan *chan = (struct dma_chan *)dev_id; 255 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan); 256 unsigned long flags; 257 258 spin_lock_irqsave(&c->vc.lock, flags); 259 if (c->dir == DMA_DEV_TO_MEM) 260 mtk_uart_apdma_rx_handler(c); 261 else if (c->dir == DMA_MEM_TO_DEV) 262 mtk_uart_apdma_tx_handler(c); 263 mtk_uart_apdma_chan_complete_handler(c); 264 spin_unlock_irqrestore(&c->vc.lock, flags); 265 266 return IRQ_HANDLED; 267 } 268 269 static int mtk_uart_apdma_alloc_chan_resources(struct dma_chan *chan) 270 { 271 struct mtk_uart_apdmadev *mtkd = to_mtk_uart_apdma_dev(chan->device); 272 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan); 273 unsigned int status; 274 int ret; 275 276 ret = pm_runtime_resume_and_get(mtkd->ddev.dev); 277 if (ret < 0) { 278 pm_runtime_put_noidle(chan->device->dev); 279 return ret; 280 } 281 282 mtk_uart_apdma_write(c, VFF_ADDR, 0); 283 mtk_uart_apdma_write(c, VFF_THRE, 0); 284 mtk_uart_apdma_write(c, VFF_LEN, 0); 285 mtk_uart_apdma_write(c, VFF_RST, VFF_WARM_RST_B); 286 287 ret = readx_poll_timeout(readl, c->base + VFF_EN, 288 status, !status, 10, 100); 289 if (ret) 290 goto err_pm; 291 292 ret = request_irq(c->irq, mtk_uart_apdma_irq_handler, 293 IRQF_TRIGGER_NONE, KBUILD_MODNAME, chan); 294 if (ret < 0) { 295 dev_err(chan->device->dev, "Can't request dma IRQ\n"); 296 ret = -EINVAL; 297 goto err_pm; 298 } 299 300 if (mtkd->support_33bits) 301 mtk_uart_apdma_write(c, VFF_4G_SUPPORT, VFF_4G_SUPPORT_CLR_B); 302 303 err_pm: 304 pm_runtime_put_noidle(mtkd->ddev.dev); 305 return ret; 306 } 307 308 static void mtk_uart_apdma_free_chan_resources(struct dma_chan *chan) 309 { 310 struct mtk_uart_apdmadev *mtkd = to_mtk_uart_apdma_dev(chan->device); 311 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan); 312 313 free_irq(c->irq, chan); 314 315 tasklet_kill(&c->vc.task); 316 317 vchan_free_chan_resources(&c->vc); 318 319 pm_runtime_put_sync(mtkd->ddev.dev); 320 } 321 322 static enum dma_status mtk_uart_apdma_tx_status(struct dma_chan *chan, 323 dma_cookie_t cookie, 324 struct dma_tx_state *txstate) 325 { 326 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan); 327 enum dma_status ret; 328 329 ret = dma_cookie_status(chan, cookie, txstate); 330 if (!txstate) 331 return ret; 332 333 dma_set_residue(txstate, c->rx_status); 334 335 return ret; 336 } 337 338 /* 339 * dmaengine_prep_slave_single will call the function. and sglen is 1. 340 * 8250 uart using one ring buffer, and deal with one sg. 341 */ 342 static struct dma_async_tx_descriptor *mtk_uart_apdma_prep_slave_sg 343 (struct dma_chan *chan, struct scatterlist *sgl, 344 unsigned int sglen, enum dma_transfer_direction dir, 345 unsigned long tx_flags, void *context) 346 { 347 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan); 348 struct mtk_uart_apdma_desc *d; 349 350 if (!is_slave_direction(dir) || sglen != 1) 351 return NULL; 352 353 /* Now allocate and setup the descriptor */ 354 d = kzalloc(sizeof(*d), GFP_NOWAIT); 355 if (!d) 356 return NULL; 357 358 d->avail_len = sg_dma_len(sgl); 359 d->addr = sg_dma_address(sgl); 360 c->dir = dir; 361 362 return vchan_tx_prep(&c->vc, &d->vd, tx_flags); 363 } 364 365 static void mtk_uart_apdma_issue_pending(struct dma_chan *chan) 366 { 367 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan); 368 struct virt_dma_desc *vd; 369 unsigned long flags; 370 371 spin_lock_irqsave(&c->vc.lock, flags); 372 if (vchan_issue_pending(&c->vc) && !c->desc) { 373 vd = vchan_next_desc(&c->vc); 374 c->desc = to_mtk_uart_apdma_desc(&vd->tx); 375 376 if (c->dir == DMA_DEV_TO_MEM) 377 mtk_uart_apdma_start_rx(c); 378 else if (c->dir == DMA_MEM_TO_DEV) 379 mtk_uart_apdma_start_tx(c); 380 } 381 382 spin_unlock_irqrestore(&c->vc.lock, flags); 383 } 384 385 static int mtk_uart_apdma_slave_config(struct dma_chan *chan, 386 struct dma_slave_config *config) 387 { 388 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan); 389 390 memcpy(&c->cfg, config, sizeof(*config)); 391 392 return 0; 393 } 394 395 static int mtk_uart_apdma_terminate_all(struct dma_chan *chan) 396 { 397 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan); 398 unsigned long flags; 399 unsigned int status; 400 LIST_HEAD(head); 401 int ret; 402 403 mtk_uart_apdma_write(c, VFF_FLUSH, VFF_FLUSH_B); 404 405 ret = readx_poll_timeout(readl, c->base + VFF_FLUSH, 406 status, status != VFF_FLUSH_B, 10, 100); 407 if (ret) 408 dev_err(c->vc.chan.device->dev, "flush: fail, status=0x%x\n", 409 mtk_uart_apdma_read(c, VFF_DEBUG_STATUS)); 410 411 /* 412 * Stop need 3 steps. 413 * 1. set stop to 1 414 * 2. wait en to 0 415 * 3. set stop as 0 416 */ 417 mtk_uart_apdma_write(c, VFF_STOP, VFF_STOP_B); 418 ret = readx_poll_timeout(readl, c->base + VFF_EN, 419 status, !status, 10, 100); 420 if (ret) 421 dev_err(c->vc.chan.device->dev, "stop: fail, status=0x%x\n", 422 mtk_uart_apdma_read(c, VFF_DEBUG_STATUS)); 423 424 mtk_uart_apdma_write(c, VFF_STOP, VFF_STOP_CLR_B); 425 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B); 426 427 if (c->dir == DMA_DEV_TO_MEM) 428 mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_RX_INT_CLR_B); 429 else if (c->dir == DMA_MEM_TO_DEV) 430 mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_TX_INT_CLR_B); 431 432 synchronize_irq(c->irq); 433 434 spin_lock_irqsave(&c->vc.lock, flags); 435 vchan_get_all_descriptors(&c->vc, &head); 436 spin_unlock_irqrestore(&c->vc.lock, flags); 437 438 vchan_dma_desc_free_list(&c->vc, &head); 439 440 return 0; 441 } 442 443 static int mtk_uart_apdma_device_pause(struct dma_chan *chan) 444 { 445 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan); 446 unsigned long flags; 447 448 spin_lock_irqsave(&c->vc.lock, flags); 449 450 mtk_uart_apdma_write(c, VFF_EN, VFF_EN_CLR_B); 451 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B); 452 453 spin_unlock_irqrestore(&c->vc.lock, flags); 454 synchronize_irq(c->irq); 455 456 return 0; 457 } 458 459 static void mtk_uart_apdma_free(struct mtk_uart_apdmadev *mtkd) 460 { 461 while (!list_empty(&mtkd->ddev.channels)) { 462 struct mtk_chan *c = list_first_entry(&mtkd->ddev.channels, 463 struct mtk_chan, vc.chan.device_node); 464 465 list_del(&c->vc.chan.device_node); 466 tasklet_kill(&c->vc.task); 467 } 468 } 469 470 static const struct of_device_id mtk_uart_apdma_match[] = { 471 { .compatible = "mediatek,mt6577-uart-dma", }, 472 { /* sentinel */ }, 473 }; 474 MODULE_DEVICE_TABLE(of, mtk_uart_apdma_match); 475 476 static int mtk_uart_apdma_probe(struct platform_device *pdev) 477 { 478 struct device_node *np = pdev->dev.of_node; 479 struct mtk_uart_apdmadev *mtkd; 480 int bit_mask = 32, rc; 481 struct mtk_chan *c; 482 unsigned int i; 483 484 mtkd = devm_kzalloc(&pdev->dev, sizeof(*mtkd), GFP_KERNEL); 485 if (!mtkd) 486 return -ENOMEM; 487 488 mtkd->clk = devm_clk_get(&pdev->dev, NULL); 489 if (IS_ERR(mtkd->clk)) { 490 dev_err(&pdev->dev, "No clock specified\n"); 491 rc = PTR_ERR(mtkd->clk); 492 return rc; 493 } 494 495 if (of_property_read_bool(np, "mediatek,dma-33bits")) 496 mtkd->support_33bits = true; 497 498 if (mtkd->support_33bits) 499 bit_mask = 33; 500 501 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(bit_mask)); 502 if (rc) 503 return rc; 504 505 dma_cap_set(DMA_SLAVE, mtkd->ddev.cap_mask); 506 mtkd->ddev.device_alloc_chan_resources = 507 mtk_uart_apdma_alloc_chan_resources; 508 mtkd->ddev.device_free_chan_resources = 509 mtk_uart_apdma_free_chan_resources; 510 mtkd->ddev.device_tx_status = mtk_uart_apdma_tx_status; 511 mtkd->ddev.device_issue_pending = mtk_uart_apdma_issue_pending; 512 mtkd->ddev.device_prep_slave_sg = mtk_uart_apdma_prep_slave_sg; 513 mtkd->ddev.device_config = mtk_uart_apdma_slave_config; 514 mtkd->ddev.device_pause = mtk_uart_apdma_device_pause; 515 mtkd->ddev.device_terminate_all = mtk_uart_apdma_terminate_all; 516 mtkd->ddev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE); 517 mtkd->ddev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE); 518 mtkd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 519 mtkd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; 520 mtkd->ddev.dev = &pdev->dev; 521 INIT_LIST_HEAD(&mtkd->ddev.channels); 522 523 mtkd->dma_requests = MTK_UART_APDMA_NR_VCHANS; 524 if (of_property_read_u32(np, "dma-requests", &mtkd->dma_requests)) { 525 dev_info(&pdev->dev, 526 "Using %u as missing dma-requests property\n", 527 MTK_UART_APDMA_NR_VCHANS); 528 } 529 530 for (i = 0; i < mtkd->dma_requests; i++) { 531 c = devm_kzalloc(mtkd->ddev.dev, sizeof(*c), GFP_KERNEL); 532 if (!c) { 533 rc = -ENODEV; 534 goto err_no_dma; 535 } 536 537 c->base = devm_platform_ioremap_resource(pdev, i); 538 if (IS_ERR(c->base)) { 539 rc = PTR_ERR(c->base); 540 goto err_no_dma; 541 } 542 c->vc.desc_free = mtk_uart_apdma_desc_free; 543 vchan_init(&c->vc, &mtkd->ddev); 544 545 rc = platform_get_irq(pdev, i); 546 if (rc < 0) 547 goto err_no_dma; 548 c->irq = rc; 549 } 550 551 pm_runtime_enable(&pdev->dev); 552 553 rc = dma_async_device_register(&mtkd->ddev); 554 if (rc) 555 goto rpm_disable; 556 557 platform_set_drvdata(pdev, mtkd); 558 559 /* Device-tree DMA controller registration */ 560 rc = of_dma_controller_register(np, of_dma_xlate_by_chan_id, mtkd); 561 if (rc) 562 goto dma_remove; 563 564 return rc; 565 566 dma_remove: 567 dma_async_device_unregister(&mtkd->ddev); 568 rpm_disable: 569 pm_runtime_disable(&pdev->dev); 570 err_no_dma: 571 mtk_uart_apdma_free(mtkd); 572 return rc; 573 } 574 575 static int mtk_uart_apdma_remove(struct platform_device *pdev) 576 { 577 struct mtk_uart_apdmadev *mtkd = platform_get_drvdata(pdev); 578 579 of_dma_controller_free(pdev->dev.of_node); 580 581 mtk_uart_apdma_free(mtkd); 582 583 dma_async_device_unregister(&mtkd->ddev); 584 585 pm_runtime_disable(&pdev->dev); 586 587 return 0; 588 } 589 590 #ifdef CONFIG_PM_SLEEP 591 static int mtk_uart_apdma_suspend(struct device *dev) 592 { 593 struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev); 594 595 if (!pm_runtime_suspended(dev)) 596 clk_disable_unprepare(mtkd->clk); 597 598 return 0; 599 } 600 601 static int mtk_uart_apdma_resume(struct device *dev) 602 { 603 int ret; 604 struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev); 605 606 if (!pm_runtime_suspended(dev)) { 607 ret = clk_prepare_enable(mtkd->clk); 608 if (ret) 609 return ret; 610 } 611 612 return 0; 613 } 614 #endif /* CONFIG_PM_SLEEP */ 615 616 #ifdef CONFIG_PM 617 static int mtk_uart_apdma_runtime_suspend(struct device *dev) 618 { 619 struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev); 620 621 clk_disable_unprepare(mtkd->clk); 622 623 return 0; 624 } 625 626 static int mtk_uart_apdma_runtime_resume(struct device *dev) 627 { 628 struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev); 629 630 return clk_prepare_enable(mtkd->clk); 631 } 632 #endif /* CONFIG_PM */ 633 634 static const struct dev_pm_ops mtk_uart_apdma_pm_ops = { 635 SET_SYSTEM_SLEEP_PM_OPS(mtk_uart_apdma_suspend, mtk_uart_apdma_resume) 636 SET_RUNTIME_PM_OPS(mtk_uart_apdma_runtime_suspend, 637 mtk_uart_apdma_runtime_resume, NULL) 638 }; 639 640 static struct platform_driver mtk_uart_apdma_driver = { 641 .probe = mtk_uart_apdma_probe, 642 .remove = mtk_uart_apdma_remove, 643 .driver = { 644 .name = KBUILD_MODNAME, 645 .pm = &mtk_uart_apdma_pm_ops, 646 .of_match_table = of_match_ptr(mtk_uart_apdma_match), 647 }, 648 }; 649 650 module_platform_driver(mtk_uart_apdma_driver); 651 652 MODULE_DESCRIPTION("MediaTek UART APDMA Controller Driver"); 653 MODULE_AUTHOR("Long Cheng <long.cheng@mediatek.com>"); 654 MODULE_LICENSE("GPL v2"); 655