1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * MediaTek UART APDMA driver. 4 * 5 * Copyright (c) 2019 MediaTek Inc. 6 * Author: Long Cheng <long.cheng@mediatek.com> 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/dmaengine.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/err.h> 13 #include <linux/init.h> 14 #include <linux/interrupt.h> 15 #include <linux/iopoll.h> 16 #include <linux/kernel.h> 17 #include <linux/list.h> 18 #include <linux/module.h> 19 #include <linux/of_device.h> 20 #include <linux/of_dma.h> 21 #include <linux/platform_device.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/slab.h> 24 #include <linux/spinlock.h> 25 26 #include "../virt-dma.h" 27 28 /* The default number of virtual channel */ 29 #define MTK_UART_APDMA_NR_VCHANS 8 30 31 #define VFF_EN_B BIT(0) 32 #define VFF_STOP_B BIT(0) 33 #define VFF_FLUSH_B BIT(0) 34 #define VFF_4G_EN_B BIT(0) 35 /* rx valid size >= vff thre */ 36 #define VFF_RX_INT_EN_B (BIT(0) | BIT(1)) 37 /* tx left size >= vff thre */ 38 #define VFF_TX_INT_EN_B BIT(0) 39 #define VFF_WARM_RST_B BIT(0) 40 #define VFF_RX_INT_CLR_B (BIT(0) | BIT(1)) 41 #define VFF_TX_INT_CLR_B 0 42 #define VFF_STOP_CLR_B 0 43 #define VFF_EN_CLR_B 0 44 #define VFF_INT_EN_CLR_B 0 45 #define VFF_4G_SUPPORT_CLR_B 0 46 47 /* 48 * interrupt trigger level for tx 49 * if threshold is n, no polling is required to start tx. 50 * otherwise need polling VFF_FLUSH. 51 */ 52 #define VFF_TX_THRE(n) (n) 53 /* interrupt trigger level for rx */ 54 #define VFF_RX_THRE(n) ((n) * 3 / 4) 55 56 #define VFF_RING_SIZE 0xffff 57 /* invert this bit when wrap ring head again */ 58 #define VFF_RING_WRAP 0x10000 59 60 #define VFF_INT_FLAG 0x00 61 #define VFF_INT_EN 0x04 62 #define VFF_EN 0x08 63 #define VFF_RST 0x0c 64 #define VFF_STOP 0x10 65 #define VFF_FLUSH 0x14 66 #define VFF_ADDR 0x1c 67 #define VFF_LEN 0x24 68 #define VFF_THRE 0x28 69 #define VFF_WPT 0x2c 70 #define VFF_RPT 0x30 71 /* TX: the buffer size HW can read. RX: the buffer size SW can read. */ 72 #define VFF_VALID_SIZE 0x3c 73 /* TX: the buffer size SW can write. RX: the buffer size HW can write. */ 74 #define VFF_LEFT_SIZE 0x40 75 #define VFF_DEBUG_STATUS 0x50 76 #define VFF_4G_SUPPORT 0x54 77 78 struct mtk_uart_apdmadev { 79 struct dma_device ddev; 80 struct clk *clk; 81 bool support_33bits; 82 unsigned int dma_requests; 83 }; 84 85 struct mtk_uart_apdma_desc { 86 struct virt_dma_desc vd; 87 88 dma_addr_t addr; 89 unsigned int avail_len; 90 }; 91 92 struct mtk_chan { 93 struct virt_dma_chan vc; 94 struct dma_slave_config cfg; 95 struct mtk_uart_apdma_desc *desc; 96 enum dma_transfer_direction dir; 97 98 void __iomem *base; 99 unsigned int irq; 100 101 unsigned int rx_status; 102 }; 103 104 static inline struct mtk_uart_apdmadev * 105 to_mtk_uart_apdma_dev(struct dma_device *d) 106 { 107 return container_of(d, struct mtk_uart_apdmadev, ddev); 108 } 109 110 static inline struct mtk_chan *to_mtk_uart_apdma_chan(struct dma_chan *c) 111 { 112 return container_of(c, struct mtk_chan, vc.chan); 113 } 114 115 static inline struct mtk_uart_apdma_desc *to_mtk_uart_apdma_desc 116 (struct dma_async_tx_descriptor *t) 117 { 118 return container_of(t, struct mtk_uart_apdma_desc, vd.tx); 119 } 120 121 static void mtk_uart_apdma_write(struct mtk_chan *c, 122 unsigned int reg, unsigned int val) 123 { 124 writel(val, c->base + reg); 125 } 126 127 static unsigned int mtk_uart_apdma_read(struct mtk_chan *c, unsigned int reg) 128 { 129 return readl(c->base + reg); 130 } 131 132 static void mtk_uart_apdma_desc_free(struct virt_dma_desc *vd) 133 { 134 struct dma_chan *chan = vd->tx.chan; 135 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan); 136 137 kfree(c->desc); 138 } 139 140 static void mtk_uart_apdma_start_tx(struct mtk_chan *c) 141 { 142 struct mtk_uart_apdmadev *mtkd = 143 to_mtk_uart_apdma_dev(c->vc.chan.device); 144 struct mtk_uart_apdma_desc *d = c->desc; 145 unsigned int wpt, vff_sz; 146 147 vff_sz = c->cfg.dst_port_window_size; 148 if (!mtk_uart_apdma_read(c, VFF_LEN)) { 149 mtk_uart_apdma_write(c, VFF_ADDR, d->addr); 150 mtk_uart_apdma_write(c, VFF_LEN, vff_sz); 151 mtk_uart_apdma_write(c, VFF_THRE, VFF_TX_THRE(vff_sz)); 152 mtk_uart_apdma_write(c, VFF_WPT, 0); 153 mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_TX_INT_CLR_B); 154 155 if (mtkd->support_33bits) 156 mtk_uart_apdma_write(c, VFF_4G_SUPPORT, VFF_4G_EN_B); 157 } 158 159 mtk_uart_apdma_write(c, VFF_EN, VFF_EN_B); 160 if (mtk_uart_apdma_read(c, VFF_EN) != VFF_EN_B) 161 dev_err(c->vc.chan.device->dev, "Enable TX fail\n"); 162 163 if (!mtk_uart_apdma_read(c, VFF_LEFT_SIZE)) { 164 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_TX_INT_EN_B); 165 return; 166 } 167 168 wpt = mtk_uart_apdma_read(c, VFF_WPT); 169 170 wpt += c->desc->avail_len; 171 if ((wpt & VFF_RING_SIZE) == vff_sz) 172 wpt = (wpt & VFF_RING_WRAP) ^ VFF_RING_WRAP; 173 174 /* Let DMA start moving data */ 175 mtk_uart_apdma_write(c, VFF_WPT, wpt); 176 177 /* HW auto set to 0 when left size >= threshold */ 178 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_TX_INT_EN_B); 179 if (!mtk_uart_apdma_read(c, VFF_FLUSH)) 180 mtk_uart_apdma_write(c, VFF_FLUSH, VFF_FLUSH_B); 181 } 182 183 static void mtk_uart_apdma_start_rx(struct mtk_chan *c) 184 { 185 struct mtk_uart_apdmadev *mtkd = 186 to_mtk_uart_apdma_dev(c->vc.chan.device); 187 struct mtk_uart_apdma_desc *d = c->desc; 188 unsigned int vff_sz; 189 190 vff_sz = c->cfg.src_port_window_size; 191 if (!mtk_uart_apdma_read(c, VFF_LEN)) { 192 mtk_uart_apdma_write(c, VFF_ADDR, d->addr); 193 mtk_uart_apdma_write(c, VFF_LEN, vff_sz); 194 mtk_uart_apdma_write(c, VFF_THRE, VFF_RX_THRE(vff_sz)); 195 mtk_uart_apdma_write(c, VFF_RPT, 0); 196 mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_RX_INT_CLR_B); 197 198 if (mtkd->support_33bits) 199 mtk_uart_apdma_write(c, VFF_4G_SUPPORT, VFF_4G_EN_B); 200 } 201 202 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_RX_INT_EN_B); 203 mtk_uart_apdma_write(c, VFF_EN, VFF_EN_B); 204 if (mtk_uart_apdma_read(c, VFF_EN) != VFF_EN_B) 205 dev_err(c->vc.chan.device->dev, "Enable RX fail\n"); 206 } 207 208 static void mtk_uart_apdma_tx_handler(struct mtk_chan *c) 209 { 210 struct mtk_uart_apdma_desc *d = c->desc; 211 212 mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_TX_INT_CLR_B); 213 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B); 214 mtk_uart_apdma_write(c, VFF_EN, VFF_EN_CLR_B); 215 216 list_del(&d->vd.node); 217 vchan_cookie_complete(&d->vd); 218 } 219 220 static void mtk_uart_apdma_rx_handler(struct mtk_chan *c) 221 { 222 struct mtk_uart_apdma_desc *d = c->desc; 223 unsigned int len, wg, rg; 224 int cnt; 225 226 mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_RX_INT_CLR_B); 227 228 if (!mtk_uart_apdma_read(c, VFF_VALID_SIZE)) 229 return; 230 231 mtk_uart_apdma_write(c, VFF_EN, VFF_EN_CLR_B); 232 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B); 233 234 len = c->cfg.src_port_window_size; 235 rg = mtk_uart_apdma_read(c, VFF_RPT); 236 wg = mtk_uart_apdma_read(c, VFF_WPT); 237 cnt = (wg & VFF_RING_SIZE) - (rg & VFF_RING_SIZE); 238 239 /* 240 * The buffer is ring buffer. If wrap bit different, 241 * represents the start of the next cycle for WPT 242 */ 243 if ((rg ^ wg) & VFF_RING_WRAP) 244 cnt += len; 245 246 c->rx_status = d->avail_len - cnt; 247 mtk_uart_apdma_write(c, VFF_RPT, wg); 248 249 list_del(&d->vd.node); 250 vchan_cookie_complete(&d->vd); 251 } 252 253 static irqreturn_t mtk_uart_apdma_irq_handler(int irq, void *dev_id) 254 { 255 struct dma_chan *chan = (struct dma_chan *)dev_id; 256 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan); 257 unsigned long flags; 258 259 spin_lock_irqsave(&c->vc.lock, flags); 260 if (c->dir == DMA_DEV_TO_MEM) 261 mtk_uart_apdma_rx_handler(c); 262 else if (c->dir == DMA_MEM_TO_DEV) 263 mtk_uart_apdma_tx_handler(c); 264 spin_unlock_irqrestore(&c->vc.lock, flags); 265 266 return IRQ_HANDLED; 267 } 268 269 static int mtk_uart_apdma_alloc_chan_resources(struct dma_chan *chan) 270 { 271 struct mtk_uart_apdmadev *mtkd = to_mtk_uart_apdma_dev(chan->device); 272 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan); 273 unsigned int status; 274 int ret; 275 276 ret = pm_runtime_get_sync(mtkd->ddev.dev); 277 if (ret < 0) { 278 pm_runtime_put_noidle(chan->device->dev); 279 return ret; 280 } 281 282 mtk_uart_apdma_write(c, VFF_ADDR, 0); 283 mtk_uart_apdma_write(c, VFF_THRE, 0); 284 mtk_uart_apdma_write(c, VFF_LEN, 0); 285 mtk_uart_apdma_write(c, VFF_RST, VFF_WARM_RST_B); 286 287 ret = readx_poll_timeout(readl, c->base + VFF_EN, 288 status, !status, 10, 100); 289 if (ret) 290 return ret; 291 292 ret = request_irq(c->irq, mtk_uart_apdma_irq_handler, 293 IRQF_TRIGGER_NONE, KBUILD_MODNAME, chan); 294 if (ret < 0) { 295 dev_err(chan->device->dev, "Can't request dma IRQ\n"); 296 return -EINVAL; 297 } 298 299 if (mtkd->support_33bits) 300 mtk_uart_apdma_write(c, VFF_4G_SUPPORT, VFF_4G_SUPPORT_CLR_B); 301 302 return ret; 303 } 304 305 static void mtk_uart_apdma_free_chan_resources(struct dma_chan *chan) 306 { 307 struct mtk_uart_apdmadev *mtkd = to_mtk_uart_apdma_dev(chan->device); 308 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan); 309 310 free_irq(c->irq, chan); 311 312 tasklet_kill(&c->vc.task); 313 314 vchan_free_chan_resources(&c->vc); 315 316 pm_runtime_put_sync(mtkd->ddev.dev); 317 } 318 319 static enum dma_status mtk_uart_apdma_tx_status(struct dma_chan *chan, 320 dma_cookie_t cookie, 321 struct dma_tx_state *txstate) 322 { 323 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan); 324 enum dma_status ret; 325 326 ret = dma_cookie_status(chan, cookie, txstate); 327 if (!txstate) 328 return ret; 329 330 dma_set_residue(txstate, c->rx_status); 331 332 return ret; 333 } 334 335 /* 336 * dmaengine_prep_slave_single will call the function. and sglen is 1. 337 * 8250 uart using one ring buffer, and deal with one sg. 338 */ 339 static struct dma_async_tx_descriptor *mtk_uart_apdma_prep_slave_sg 340 (struct dma_chan *chan, struct scatterlist *sgl, 341 unsigned int sglen, enum dma_transfer_direction dir, 342 unsigned long tx_flags, void *context) 343 { 344 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan); 345 struct mtk_uart_apdma_desc *d; 346 347 if (!is_slave_direction(dir) || sglen != 1) 348 return NULL; 349 350 /* Now allocate and setup the descriptor */ 351 d = kzalloc(sizeof(*d), GFP_ATOMIC); 352 if (!d) 353 return NULL; 354 355 d->avail_len = sg_dma_len(sgl); 356 d->addr = sg_dma_address(sgl); 357 c->dir = dir; 358 359 return vchan_tx_prep(&c->vc, &d->vd, tx_flags); 360 } 361 362 static void mtk_uart_apdma_issue_pending(struct dma_chan *chan) 363 { 364 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan); 365 struct virt_dma_desc *vd; 366 unsigned long flags; 367 368 spin_lock_irqsave(&c->vc.lock, flags); 369 if (vchan_issue_pending(&c->vc)) { 370 vd = vchan_next_desc(&c->vc); 371 c->desc = to_mtk_uart_apdma_desc(&vd->tx); 372 373 if (c->dir == DMA_DEV_TO_MEM) 374 mtk_uart_apdma_start_rx(c); 375 else if (c->dir == DMA_MEM_TO_DEV) 376 mtk_uart_apdma_start_tx(c); 377 } 378 379 spin_unlock_irqrestore(&c->vc.lock, flags); 380 } 381 382 static int mtk_uart_apdma_slave_config(struct dma_chan *chan, 383 struct dma_slave_config *config) 384 { 385 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan); 386 387 memcpy(&c->cfg, config, sizeof(*config)); 388 389 return 0; 390 } 391 392 static int mtk_uart_apdma_terminate_all(struct dma_chan *chan) 393 { 394 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan); 395 unsigned long flags; 396 unsigned int status; 397 LIST_HEAD(head); 398 int ret; 399 400 mtk_uart_apdma_write(c, VFF_FLUSH, VFF_FLUSH_B); 401 402 ret = readx_poll_timeout(readl, c->base + VFF_FLUSH, 403 status, status != VFF_FLUSH_B, 10, 100); 404 if (ret) 405 dev_err(c->vc.chan.device->dev, "flush: fail, status=0x%x\n", 406 mtk_uart_apdma_read(c, VFF_DEBUG_STATUS)); 407 408 /* 409 * Stop need 3 steps. 410 * 1. set stop to 1 411 * 2. wait en to 0 412 * 3. set stop as 0 413 */ 414 mtk_uart_apdma_write(c, VFF_STOP, VFF_STOP_B); 415 ret = readx_poll_timeout(readl, c->base + VFF_EN, 416 status, !status, 10, 100); 417 if (ret) 418 dev_err(c->vc.chan.device->dev, "stop: fail, status=0x%x\n", 419 mtk_uart_apdma_read(c, VFF_DEBUG_STATUS)); 420 421 mtk_uart_apdma_write(c, VFF_STOP, VFF_STOP_CLR_B); 422 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B); 423 424 if (c->dir == DMA_DEV_TO_MEM) 425 mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_RX_INT_CLR_B); 426 else if (c->dir == DMA_MEM_TO_DEV) 427 mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_TX_INT_CLR_B); 428 429 synchronize_irq(c->irq); 430 431 spin_lock_irqsave(&c->vc.lock, flags); 432 vchan_get_all_descriptors(&c->vc, &head); 433 vchan_dma_desc_free_list(&c->vc, &head); 434 spin_unlock_irqrestore(&c->vc.lock, flags); 435 436 return 0; 437 } 438 439 static int mtk_uart_apdma_device_pause(struct dma_chan *chan) 440 { 441 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan); 442 unsigned long flags; 443 444 spin_lock_irqsave(&c->vc.lock, flags); 445 446 mtk_uart_apdma_write(c, VFF_EN, VFF_EN_CLR_B); 447 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B); 448 449 synchronize_irq(c->irq); 450 451 spin_unlock_irqrestore(&c->vc.lock, flags); 452 453 return 0; 454 } 455 456 static void mtk_uart_apdma_free(struct mtk_uart_apdmadev *mtkd) 457 { 458 while (!list_empty(&mtkd->ddev.channels)) { 459 struct mtk_chan *c = list_first_entry(&mtkd->ddev.channels, 460 struct mtk_chan, vc.chan.device_node); 461 462 list_del(&c->vc.chan.device_node); 463 tasklet_kill(&c->vc.task); 464 } 465 } 466 467 static const struct of_device_id mtk_uart_apdma_match[] = { 468 { .compatible = "mediatek,mt6577-uart-dma", }, 469 { /* sentinel */ }, 470 }; 471 MODULE_DEVICE_TABLE(of, mtk_uart_apdma_match); 472 473 static int mtk_uart_apdma_probe(struct platform_device *pdev) 474 { 475 struct device_node *np = pdev->dev.of_node; 476 struct mtk_uart_apdmadev *mtkd; 477 int bit_mask = 32, rc; 478 struct resource *res; 479 struct mtk_chan *c; 480 unsigned int i; 481 482 mtkd = devm_kzalloc(&pdev->dev, sizeof(*mtkd), GFP_KERNEL); 483 if (!mtkd) 484 return -ENOMEM; 485 486 mtkd->clk = devm_clk_get(&pdev->dev, NULL); 487 if (IS_ERR(mtkd->clk)) { 488 dev_err(&pdev->dev, "No clock specified\n"); 489 rc = PTR_ERR(mtkd->clk); 490 return rc; 491 } 492 493 if (of_property_read_bool(np, "mediatek,dma-33bits")) 494 mtkd->support_33bits = true; 495 496 if (mtkd->support_33bits) 497 bit_mask = 33; 498 499 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(bit_mask)); 500 if (rc) 501 return rc; 502 503 dma_cap_set(DMA_SLAVE, mtkd->ddev.cap_mask); 504 mtkd->ddev.device_alloc_chan_resources = 505 mtk_uart_apdma_alloc_chan_resources; 506 mtkd->ddev.device_free_chan_resources = 507 mtk_uart_apdma_free_chan_resources; 508 mtkd->ddev.device_tx_status = mtk_uart_apdma_tx_status; 509 mtkd->ddev.device_issue_pending = mtk_uart_apdma_issue_pending; 510 mtkd->ddev.device_prep_slave_sg = mtk_uart_apdma_prep_slave_sg; 511 mtkd->ddev.device_config = mtk_uart_apdma_slave_config; 512 mtkd->ddev.device_pause = mtk_uart_apdma_device_pause; 513 mtkd->ddev.device_terminate_all = mtk_uart_apdma_terminate_all; 514 mtkd->ddev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE); 515 mtkd->ddev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE); 516 mtkd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 517 mtkd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; 518 mtkd->ddev.dev = &pdev->dev; 519 INIT_LIST_HEAD(&mtkd->ddev.channels); 520 521 mtkd->dma_requests = MTK_UART_APDMA_NR_VCHANS; 522 if (of_property_read_u32(np, "dma-requests", &mtkd->dma_requests)) { 523 dev_info(&pdev->dev, 524 "Using %u as missing dma-requests property\n", 525 MTK_UART_APDMA_NR_VCHANS); 526 } 527 528 for (i = 0; i < mtkd->dma_requests; i++) { 529 c = devm_kzalloc(mtkd->ddev.dev, sizeof(*c), GFP_KERNEL); 530 if (!c) { 531 rc = -ENODEV; 532 goto err_no_dma; 533 } 534 535 res = platform_get_resource(pdev, IORESOURCE_MEM, i); 536 if (!res) { 537 rc = -ENODEV; 538 goto err_no_dma; 539 } 540 541 c->base = devm_ioremap_resource(&pdev->dev, res); 542 if (IS_ERR(c->base)) { 543 rc = PTR_ERR(c->base); 544 goto err_no_dma; 545 } 546 c->vc.desc_free = mtk_uart_apdma_desc_free; 547 vchan_init(&c->vc, &mtkd->ddev); 548 549 rc = platform_get_irq(pdev, i); 550 if (rc < 0) { 551 dev_err(&pdev->dev, "failed to get IRQ[%d]\n", i); 552 goto err_no_dma; 553 } 554 c->irq = rc; 555 } 556 557 pm_runtime_enable(&pdev->dev); 558 pm_runtime_set_active(&pdev->dev); 559 560 rc = dma_async_device_register(&mtkd->ddev); 561 if (rc) 562 goto rpm_disable; 563 564 platform_set_drvdata(pdev, mtkd); 565 566 /* Device-tree DMA controller registration */ 567 rc = of_dma_controller_register(np, of_dma_xlate_by_chan_id, mtkd); 568 if (rc) 569 goto dma_remove; 570 571 return rc; 572 573 dma_remove: 574 dma_async_device_unregister(&mtkd->ddev); 575 rpm_disable: 576 pm_runtime_disable(&pdev->dev); 577 err_no_dma: 578 mtk_uart_apdma_free(mtkd); 579 return rc; 580 } 581 582 static int mtk_uart_apdma_remove(struct platform_device *pdev) 583 { 584 struct mtk_uart_apdmadev *mtkd = platform_get_drvdata(pdev); 585 586 of_dma_controller_free(pdev->dev.of_node); 587 588 mtk_uart_apdma_free(mtkd); 589 590 dma_async_device_unregister(&mtkd->ddev); 591 592 pm_runtime_disable(&pdev->dev); 593 594 return 0; 595 } 596 597 #ifdef CONFIG_PM_SLEEP 598 static int mtk_uart_apdma_suspend(struct device *dev) 599 { 600 struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev); 601 602 if (!pm_runtime_suspended(dev)) 603 clk_disable_unprepare(mtkd->clk); 604 605 return 0; 606 } 607 608 static int mtk_uart_apdma_resume(struct device *dev) 609 { 610 int ret; 611 struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev); 612 613 if (!pm_runtime_suspended(dev)) { 614 ret = clk_prepare_enable(mtkd->clk); 615 if (ret) 616 return ret; 617 } 618 619 return 0; 620 } 621 #endif /* CONFIG_PM_SLEEP */ 622 623 #ifdef CONFIG_PM 624 static int mtk_uart_apdma_runtime_suspend(struct device *dev) 625 { 626 struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev); 627 628 clk_disable_unprepare(mtkd->clk); 629 630 return 0; 631 } 632 633 static int mtk_uart_apdma_runtime_resume(struct device *dev) 634 { 635 int ret; 636 struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev); 637 638 ret = clk_prepare_enable(mtkd->clk); 639 if (ret) 640 return ret; 641 642 return 0; 643 } 644 #endif /* CONFIG_PM */ 645 646 static const struct dev_pm_ops mtk_uart_apdma_pm_ops = { 647 SET_SYSTEM_SLEEP_PM_OPS(mtk_uart_apdma_suspend, mtk_uart_apdma_resume) 648 SET_RUNTIME_PM_OPS(mtk_uart_apdma_runtime_suspend, 649 mtk_uart_apdma_runtime_resume, NULL) 650 }; 651 652 static struct platform_driver mtk_uart_apdma_driver = { 653 .probe = mtk_uart_apdma_probe, 654 .remove = mtk_uart_apdma_remove, 655 .driver = { 656 .name = KBUILD_MODNAME, 657 .pm = &mtk_uart_apdma_pm_ops, 658 .of_match_table = of_match_ptr(mtk_uart_apdma_match), 659 }, 660 }; 661 662 module_platform_driver(mtk_uart_apdma_driver); 663 664 MODULE_DESCRIPTION("MediaTek UART APDMA Controller Driver"); 665 MODULE_AUTHOR("Long Cheng <long.cheng@mediatek.com>"); 666 MODULE_LICENSE("GPL v2"); 667