xref: /openbmc/linux/drivers/dma/lgm/lgm-dma.c (revision fd54349d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Lightning Mountain centralized DMA controller driver
4  *
5  * Copyright (c) 2016 - 2020 Intel Corporation.
6  */
7 
8 #include <linux/bitfield.h>
9 #include <linux/clk.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmapool.h>
12 #include <linux/err.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/iopoll.h>
17 #include <linux/of_dma.h>
18 #include <linux/of_irq.h>
19 #include <linux/platform_device.h>
20 #include <linux/reset.h>
21 
22 #include "../dmaengine.h"
23 #include "../virt-dma.h"
24 
25 #define DRIVER_NAME			"lgm-dma"
26 
27 #define DMA_ID				0x0008
28 #define DMA_ID_REV			GENMASK(7, 0)
29 #define DMA_ID_PNR			GENMASK(19, 16)
30 #define DMA_ID_CHNR			GENMASK(26, 20)
31 #define DMA_ID_DW_128B			BIT(27)
32 #define DMA_ID_AW_36B			BIT(28)
33 #define DMA_VER32			0x32
34 #define DMA_VER31			0x31
35 #define DMA_VER22			0x0A
36 
37 #define DMA_CTRL			0x0010
38 #define DMA_CTRL_RST			BIT(0)
39 #define DMA_CTRL_DSRAM_PATH		BIT(1)
40 #define DMA_CTRL_DBURST_WR		BIT(3)
41 #define DMA_CTRL_VLD_DF_ACK		BIT(4)
42 #define DMA_CTRL_CH_FL			BIT(6)
43 #define DMA_CTRL_DS_FOD			BIT(7)
44 #define DMA_CTRL_DRB			BIT(8)
45 #define DMA_CTRL_ENBE			BIT(9)
46 #define DMA_CTRL_DESC_TMOUT_CNT_V31	GENMASK(27, 16)
47 #define DMA_CTRL_DESC_TMOUT_EN_V31	BIT(30)
48 #define DMA_CTRL_PKTARB			BIT(31)
49 
50 #define DMA_CPOLL			0x0014
51 #define DMA_CPOLL_CNT			GENMASK(15, 4)
52 #define DMA_CPOLL_EN			BIT(31)
53 
54 #define DMA_CS				0x0018
55 #define DMA_CS_MASK			GENMASK(5, 0)
56 
57 #define DMA_CCTRL			0x001C
58 #define DMA_CCTRL_ON			BIT(0)
59 #define DMA_CCTRL_RST			BIT(1)
60 #define DMA_CCTRL_CH_POLL_EN		BIT(2)
61 #define DMA_CCTRL_CH_ABC		BIT(3) /* Adaptive Burst Chop */
62 #define DMA_CDBA_MSB			GENMASK(7, 4)
63 #define DMA_CCTRL_DIR_TX		BIT(8)
64 #define DMA_CCTRL_CLASS			GENMASK(11, 9)
65 #define DMA_CCTRL_CLASSH		GENMASK(19, 18)
66 #define DMA_CCTRL_WR_NP_EN		BIT(21)
67 #define DMA_CCTRL_PDEN			BIT(23)
68 #define DMA_MAX_CLASS			(SZ_32 - 1)
69 
70 #define DMA_CDBA			0x0020
71 #define DMA_CDLEN			0x0024
72 #define DMA_CIS				0x0028
73 #define DMA_CIE				0x002C
74 #define DMA_CI_EOP			BIT(1)
75 #define DMA_CI_DUR			BIT(2)
76 #define DMA_CI_DESCPT			BIT(3)
77 #define DMA_CI_CHOFF			BIT(4)
78 #define DMA_CI_RDERR			BIT(5)
79 #define DMA_CI_ALL							\
80 	(DMA_CI_EOP | DMA_CI_DUR | DMA_CI_DESCPT | DMA_CI_CHOFF | DMA_CI_RDERR)
81 
82 #define DMA_PS				0x0040
83 #define DMA_PCTRL			0x0044
84 #define DMA_PCTRL_RXBL16		BIT(0)
85 #define DMA_PCTRL_TXBL16		BIT(1)
86 #define DMA_PCTRL_RXBL			GENMASK(3, 2)
87 #define DMA_PCTRL_RXBL_8		3
88 #define DMA_PCTRL_TXBL			GENMASK(5, 4)
89 #define DMA_PCTRL_TXBL_8		3
90 #define DMA_PCTRL_PDEN			BIT(6)
91 #define DMA_PCTRL_RXBL32		BIT(7)
92 #define DMA_PCTRL_RXENDI		GENMASK(9, 8)
93 #define DMA_PCTRL_TXENDI		GENMASK(11, 10)
94 #define DMA_PCTRL_TXBL32		BIT(15)
95 #define DMA_PCTRL_MEM_FLUSH		BIT(16)
96 
97 #define DMA_IRNEN1			0x00E8
98 #define DMA_IRNCR1			0x00EC
99 #define DMA_IRNEN			0x00F4
100 #define DMA_IRNCR			0x00F8
101 #define DMA_C_DP_TICK			0x100
102 #define DMA_C_DP_TICK_TIKNARB		GENMASK(15, 0)
103 #define DMA_C_DP_TICK_TIKARB		GENMASK(31, 16)
104 
105 #define DMA_C_HDRM			0x110
106 /*
107  * If header mode is set in DMA descriptor,
108  *   If bit 30 is disabled, HDR_LEN must be configured according to channel
109  *     requirement.
110  *   If bit 30 is enabled(checksum with heade mode), HDR_LEN has no need to
111  *     be configured. It will enable check sum for switch
112  * If header mode is not set in DMA descriptor,
113  *   This register setting doesn't matter
114  */
115 #define DMA_C_HDRM_HDR_SUM		BIT(30)
116 
117 #define DMA_C_BOFF			0x120
118 #define DMA_C_BOFF_BOF_LEN		GENMASK(7, 0)
119 #define DMA_C_BOFF_EN			BIT(31)
120 
121 #define DMA_ORRC			0x190
122 #define DMA_ORRC_ORRCNT			GENMASK(8, 4)
123 #define DMA_ORRC_EN			BIT(31)
124 
125 #define DMA_C_ENDIAN			0x200
126 #define DMA_C_END_DATAENDI		GENMASK(1, 0)
127 #define DMA_C_END_DE_EN			BIT(7)
128 #define DMA_C_END_DESENDI		GENMASK(9, 8)
129 #define DMA_C_END_DES_EN		BIT(16)
130 
131 /* DMA controller capability */
132 #define DMA_ADDR_36BIT			BIT(0)
133 #define DMA_DATA_128BIT			BIT(1)
134 #define DMA_CHAN_FLOW_CTL		BIT(2)
135 #define DMA_DESC_FOD			BIT(3)
136 #define DMA_DESC_IN_SRAM		BIT(4)
137 #define DMA_EN_BYTE_EN			BIT(5)
138 #define DMA_DBURST_WR			BIT(6)
139 #define DMA_VALID_DESC_FETCH_ACK	BIT(7)
140 #define DMA_DFT_DRB			BIT(8)
141 
142 #define DMA_ORRC_MAX_CNT		(SZ_32 - 1)
143 #define DMA_DFT_POLL_CNT		SZ_4
144 #define DMA_DFT_BURST_V22		SZ_2
145 #define DMA_BURSTL_8DW			SZ_8
146 #define DMA_BURSTL_16DW			SZ_16
147 #define DMA_BURSTL_32DW			SZ_32
148 #define DMA_DFT_BURST			DMA_BURSTL_16DW
149 #define DMA_MAX_DESC_NUM		(SZ_8K - 1)
150 #define DMA_CHAN_BOFF_MAX		(SZ_256 - 1)
151 #define DMA_DFT_ENDIAN			0
152 
153 #define DMA_DFT_DESC_TCNT		50
154 #define DMA_HDR_LEN_MAX			(SZ_16K - 1)
155 
156 /* DMA flags */
157 #define DMA_TX_CH			BIT(0)
158 #define DMA_RX_CH			BIT(1)
159 #define DEVICE_ALLOC_DESC		BIT(2)
160 #define CHAN_IN_USE			BIT(3)
161 #define DMA_HW_DESC			BIT(4)
162 
163 /* Descriptor fields */
164 #define DESC_DATA_LEN			GENMASK(15, 0)
165 #define DESC_BYTE_OFF			GENMASK(25, 23)
166 #define DESC_EOP			BIT(28)
167 #define DESC_SOP			BIT(29)
168 #define DESC_C				BIT(30)
169 #define DESC_OWN			BIT(31)
170 
171 #define DMA_CHAN_RST			1
172 #define DMA_MAX_SIZE			(BIT(16) - 1)
173 #define MAX_LOWER_CHANS			32
174 #define MASK_LOWER_CHANS		GENMASK(4, 0)
175 #define DMA_OWN				1
176 #define HIGH_4_BITS			GENMASK(3, 0)
177 #define DMA_DFT_DESC_NUM		1
178 #define DMA_PKT_DROP_DIS		0
179 
180 enum ldma_chan_on_off {
181 	DMA_CH_OFF = 0,
182 	DMA_CH_ON = 1,
183 };
184 
185 enum {
186 	DMA_TYPE_TX = 0,
187 	DMA_TYPE_RX,
188 	DMA_TYPE_MCPY,
189 };
190 
191 struct ldma_dev;
192 struct ldma_port;
193 
194 struct ldma_chan {
195 	struct virt_dma_chan	vchan;
196 	struct ldma_port	*port; /* back pointer */
197 	char			name[8]; /* Channel name */
198 	int			nr; /* Channel id in hardware */
199 	u32			flags; /* central way or channel based way */
200 	enum ldma_chan_on_off	onoff;
201 	dma_addr_t		desc_phys;
202 	void			*desc_base; /* Virtual address */
203 	u32			desc_cnt; /* Number of descriptors */
204 	int			rst;
205 	u32			hdrm_len;
206 	bool			hdrm_csum;
207 	u32			boff_len;
208 	u32			data_endian;
209 	u32			desc_endian;
210 	bool			pden;
211 	bool			desc_rx_np;
212 	bool			data_endian_en;
213 	bool			desc_endian_en;
214 	bool			abc_en;
215 	bool			desc_init;
216 	struct dma_pool		*desc_pool; /* Descriptors pool */
217 	u32			desc_num;
218 	struct dw2_desc_sw	*ds;
219 	struct work_struct	work;
220 	struct dma_slave_config config;
221 };
222 
223 struct ldma_port {
224 	struct ldma_dev		*ldev; /* back pointer */
225 	u32			portid;
226 	u32			rxbl;
227 	u32			txbl;
228 	u32			rxendi;
229 	u32			txendi;
230 	u32			pkt_drop;
231 };
232 
233 /* Instance specific data */
234 struct ldma_inst_data {
235 	bool			desc_in_sram;
236 	bool			chan_fc;
237 	bool			desc_fod; /* Fetch On Demand */
238 	bool			valid_desc_fetch_ack;
239 	u32			orrc; /* Outstanding read count */
240 	const char		*name;
241 	u32			type;
242 };
243 
244 struct ldma_dev {
245 	struct device		*dev;
246 	void __iomem		*base;
247 	struct reset_control	*rst;
248 	struct clk		*core_clk;
249 	struct dma_device	dma_dev;
250 	u32			ver;
251 	int			irq;
252 	struct ldma_port	*ports;
253 	struct ldma_chan	*chans; /* channel list on this DMA or port */
254 	spinlock_t		dev_lock; /* Controller register exclusive */
255 	u32			chan_nrs;
256 	u32			port_nrs;
257 	u32			channels_mask;
258 	u32			flags;
259 	u32			pollcnt;
260 	const struct ldma_inst_data *inst;
261 	struct workqueue_struct	*wq;
262 };
263 
264 struct dw2_desc {
265 	u32 field;
266 	u32 addr;
267 } __packed __aligned(8);
268 
269 struct dw2_desc_sw {
270 	struct virt_dma_desc	vdesc;
271 	struct ldma_chan	*chan;
272 	dma_addr_t		desc_phys;
273 	size_t			desc_cnt;
274 	size_t			size;
275 	struct dw2_desc		*desc_hw;
276 };
277 
278 static inline void
279 ldma_update_bits(struct ldma_dev *d, u32 mask, u32 val, u32 ofs)
280 {
281 	u32 old_val, new_val;
282 
283 	old_val = readl(d->base +  ofs);
284 	new_val = (old_val & ~mask) | (val & mask);
285 
286 	if (new_val != old_val)
287 		writel(new_val, d->base + ofs);
288 }
289 
290 static inline struct ldma_chan *to_ldma_chan(struct dma_chan *chan)
291 {
292 	return container_of(chan, struct ldma_chan, vchan.chan);
293 }
294 
295 static inline struct ldma_dev *to_ldma_dev(struct dma_device *dma_dev)
296 {
297 	return container_of(dma_dev, struct ldma_dev, dma_dev);
298 }
299 
300 static inline struct dw2_desc_sw *to_lgm_dma_desc(struct virt_dma_desc *vdesc)
301 {
302 	return container_of(vdesc, struct dw2_desc_sw, vdesc);
303 }
304 
305 static inline bool ldma_chan_tx(struct ldma_chan *c)
306 {
307 	return !!(c->flags & DMA_TX_CH);
308 }
309 
310 static inline bool ldma_chan_is_hw_desc(struct ldma_chan *c)
311 {
312 	return !!(c->flags & DMA_HW_DESC);
313 }
314 
315 static void ldma_dev_reset(struct ldma_dev *d)
316 
317 {
318 	unsigned long flags;
319 
320 	spin_lock_irqsave(&d->dev_lock, flags);
321 	ldma_update_bits(d, DMA_CTRL_RST, DMA_CTRL_RST, DMA_CTRL);
322 	spin_unlock_irqrestore(&d->dev_lock, flags);
323 }
324 
325 static void ldma_dev_pkt_arb_cfg(struct ldma_dev *d, bool enable)
326 {
327 	unsigned long flags;
328 	u32 mask = DMA_CTRL_PKTARB;
329 	u32 val = enable ? DMA_CTRL_PKTARB : 0;
330 
331 	spin_lock_irqsave(&d->dev_lock, flags);
332 	ldma_update_bits(d, mask, val, DMA_CTRL);
333 	spin_unlock_irqrestore(&d->dev_lock, flags);
334 }
335 
336 static void ldma_dev_sram_desc_cfg(struct ldma_dev *d, bool enable)
337 {
338 	unsigned long flags;
339 	u32 mask = DMA_CTRL_DSRAM_PATH;
340 	u32 val = enable ? DMA_CTRL_DSRAM_PATH : 0;
341 
342 	spin_lock_irqsave(&d->dev_lock, flags);
343 	ldma_update_bits(d, mask, val, DMA_CTRL);
344 	spin_unlock_irqrestore(&d->dev_lock, flags);
345 }
346 
347 static void ldma_dev_chan_flow_ctl_cfg(struct ldma_dev *d, bool enable)
348 {
349 	unsigned long flags;
350 	u32 mask, val;
351 
352 	if (d->inst->type != DMA_TYPE_TX)
353 		return;
354 
355 	mask = DMA_CTRL_CH_FL;
356 	val = enable ? DMA_CTRL_CH_FL : 0;
357 
358 	spin_lock_irqsave(&d->dev_lock, flags);
359 	ldma_update_bits(d, mask, val, DMA_CTRL);
360 	spin_unlock_irqrestore(&d->dev_lock, flags);
361 }
362 
363 static void ldma_dev_global_polling_enable(struct ldma_dev *d)
364 {
365 	unsigned long flags;
366 	u32 mask = DMA_CPOLL_EN | DMA_CPOLL_CNT;
367 	u32 val = DMA_CPOLL_EN;
368 
369 	val |= FIELD_PREP(DMA_CPOLL_CNT, d->pollcnt);
370 
371 	spin_lock_irqsave(&d->dev_lock, flags);
372 	ldma_update_bits(d, mask, val, DMA_CPOLL);
373 	spin_unlock_irqrestore(&d->dev_lock, flags);
374 }
375 
376 static void ldma_dev_desc_fetch_on_demand_cfg(struct ldma_dev *d, bool enable)
377 {
378 	unsigned long flags;
379 	u32 mask, val;
380 
381 	if (d->inst->type == DMA_TYPE_MCPY)
382 		return;
383 
384 	mask = DMA_CTRL_DS_FOD;
385 	val = enable ? DMA_CTRL_DS_FOD : 0;
386 
387 	spin_lock_irqsave(&d->dev_lock, flags);
388 	ldma_update_bits(d, mask, val, DMA_CTRL);
389 	spin_unlock_irqrestore(&d->dev_lock, flags);
390 }
391 
392 static void ldma_dev_byte_enable_cfg(struct ldma_dev *d, bool enable)
393 {
394 	unsigned long flags;
395 	u32 mask = DMA_CTRL_ENBE;
396 	u32 val = enable ? DMA_CTRL_ENBE : 0;
397 
398 	spin_lock_irqsave(&d->dev_lock, flags);
399 	ldma_update_bits(d, mask, val, DMA_CTRL);
400 	spin_unlock_irqrestore(&d->dev_lock, flags);
401 }
402 
403 static void ldma_dev_orrc_cfg(struct ldma_dev *d)
404 {
405 	unsigned long flags;
406 	u32 val = 0;
407 	u32 mask;
408 
409 	if (d->inst->type == DMA_TYPE_RX)
410 		return;
411 
412 	mask = DMA_ORRC_EN | DMA_ORRC_ORRCNT;
413 	if (d->inst->orrc > 0 && d->inst->orrc <= DMA_ORRC_MAX_CNT)
414 		val = DMA_ORRC_EN | FIELD_PREP(DMA_ORRC_ORRCNT, d->inst->orrc);
415 
416 	spin_lock_irqsave(&d->dev_lock, flags);
417 	ldma_update_bits(d, mask, val, DMA_ORRC);
418 	spin_unlock_irqrestore(&d->dev_lock, flags);
419 }
420 
421 static void ldma_dev_df_tout_cfg(struct ldma_dev *d, bool enable, int tcnt)
422 {
423 	u32 mask = DMA_CTRL_DESC_TMOUT_CNT_V31;
424 	unsigned long flags;
425 	u32 val;
426 
427 	if (enable)
428 		val = DMA_CTRL_DESC_TMOUT_EN_V31 | FIELD_PREP(DMA_CTRL_DESC_TMOUT_CNT_V31, tcnt);
429 	else
430 		val = 0;
431 
432 	spin_lock_irqsave(&d->dev_lock, flags);
433 	ldma_update_bits(d, mask, val, DMA_CTRL);
434 	spin_unlock_irqrestore(&d->dev_lock, flags);
435 }
436 
437 static void ldma_dev_dburst_wr_cfg(struct ldma_dev *d, bool enable)
438 {
439 	unsigned long flags;
440 	u32 mask, val;
441 
442 	if (d->inst->type != DMA_TYPE_RX && d->inst->type != DMA_TYPE_MCPY)
443 		return;
444 
445 	mask = DMA_CTRL_DBURST_WR;
446 	val = enable ? DMA_CTRL_DBURST_WR : 0;
447 
448 	spin_lock_irqsave(&d->dev_lock, flags);
449 	ldma_update_bits(d, mask, val, DMA_CTRL);
450 	spin_unlock_irqrestore(&d->dev_lock, flags);
451 }
452 
453 static void ldma_dev_vld_fetch_ack_cfg(struct ldma_dev *d, bool enable)
454 {
455 	unsigned long flags;
456 	u32 mask, val;
457 
458 	if (d->inst->type != DMA_TYPE_TX)
459 		return;
460 
461 	mask = DMA_CTRL_VLD_DF_ACK;
462 	val = enable ? DMA_CTRL_VLD_DF_ACK : 0;
463 
464 	spin_lock_irqsave(&d->dev_lock, flags);
465 	ldma_update_bits(d, mask, val, DMA_CTRL);
466 	spin_unlock_irqrestore(&d->dev_lock, flags);
467 }
468 
469 static void ldma_dev_drb_cfg(struct ldma_dev *d, int enable)
470 {
471 	unsigned long flags;
472 	u32 mask = DMA_CTRL_DRB;
473 	u32 val = enable ? DMA_CTRL_DRB : 0;
474 
475 	spin_lock_irqsave(&d->dev_lock, flags);
476 	ldma_update_bits(d, mask, val, DMA_CTRL);
477 	spin_unlock_irqrestore(&d->dev_lock, flags);
478 }
479 
480 static int ldma_dev_cfg(struct ldma_dev *d)
481 {
482 	bool enable;
483 
484 	ldma_dev_pkt_arb_cfg(d, true);
485 	ldma_dev_global_polling_enable(d);
486 
487 	enable = !!(d->flags & DMA_DFT_DRB);
488 	ldma_dev_drb_cfg(d, enable);
489 
490 	enable = !!(d->flags & DMA_EN_BYTE_EN);
491 	ldma_dev_byte_enable_cfg(d, enable);
492 
493 	enable = !!(d->flags & DMA_CHAN_FLOW_CTL);
494 	ldma_dev_chan_flow_ctl_cfg(d, enable);
495 
496 	enable = !!(d->flags & DMA_DESC_FOD);
497 	ldma_dev_desc_fetch_on_demand_cfg(d, enable);
498 
499 	enable = !!(d->flags & DMA_DESC_IN_SRAM);
500 	ldma_dev_sram_desc_cfg(d, enable);
501 
502 	enable = !!(d->flags & DMA_DBURST_WR);
503 	ldma_dev_dburst_wr_cfg(d, enable);
504 
505 	enable = !!(d->flags & DMA_VALID_DESC_FETCH_ACK);
506 	ldma_dev_vld_fetch_ack_cfg(d, enable);
507 
508 	if (d->ver > DMA_VER22) {
509 		ldma_dev_orrc_cfg(d);
510 		ldma_dev_df_tout_cfg(d, true, DMA_DFT_DESC_TCNT);
511 	}
512 
513 	dev_dbg(d->dev, "%s Controller 0x%08x configuration done\n",
514 		d->inst->name, readl(d->base + DMA_CTRL));
515 
516 	return 0;
517 }
518 
519 static int ldma_chan_cctrl_cfg(struct ldma_chan *c, u32 val)
520 {
521 	struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
522 	u32 class_low, class_high;
523 	unsigned long flags;
524 	u32 reg;
525 
526 	spin_lock_irqsave(&d->dev_lock, flags);
527 	ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
528 	reg = readl(d->base + DMA_CCTRL);
529 	/* Read from hardware */
530 	if (reg & DMA_CCTRL_DIR_TX)
531 		c->flags |= DMA_TX_CH;
532 	else
533 		c->flags |= DMA_RX_CH;
534 
535 	/* Keep the class value unchanged */
536 	class_low = FIELD_GET(DMA_CCTRL_CLASS, reg);
537 	class_high = FIELD_GET(DMA_CCTRL_CLASSH, reg);
538 	val &= ~DMA_CCTRL_CLASS;
539 	val |= FIELD_PREP(DMA_CCTRL_CLASS, class_low);
540 	val &= ~DMA_CCTRL_CLASSH;
541 	val |= FIELD_PREP(DMA_CCTRL_CLASSH, class_high);
542 	writel(val, d->base + DMA_CCTRL);
543 	spin_unlock_irqrestore(&d->dev_lock, flags);
544 
545 	return 0;
546 }
547 
548 static void ldma_chan_irq_init(struct ldma_chan *c)
549 {
550 	struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
551 	unsigned long flags;
552 	u32 enofs, crofs;
553 	u32 cn_bit;
554 
555 	if (c->nr < MAX_LOWER_CHANS) {
556 		enofs = DMA_IRNEN;
557 		crofs = DMA_IRNCR;
558 	} else {
559 		enofs = DMA_IRNEN1;
560 		crofs = DMA_IRNCR1;
561 	}
562 
563 	cn_bit = BIT(c->nr & MASK_LOWER_CHANS);
564 	spin_lock_irqsave(&d->dev_lock, flags);
565 	ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
566 
567 	/* Clear all interrupts and disabled it */
568 	writel(0, d->base + DMA_CIE);
569 	writel(DMA_CI_ALL, d->base + DMA_CIS);
570 
571 	ldma_update_bits(d, cn_bit, 0, enofs);
572 	writel(cn_bit, d->base + crofs);
573 	spin_unlock_irqrestore(&d->dev_lock, flags);
574 }
575 
576 static void ldma_chan_set_class(struct ldma_chan *c, u32 val)
577 {
578 	struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
579 	u32 class_val;
580 
581 	if (d->inst->type == DMA_TYPE_MCPY || val > DMA_MAX_CLASS)
582 		return;
583 
584 	/* 3 bits low */
585 	class_val = FIELD_PREP(DMA_CCTRL_CLASS, val & 0x7);
586 	/* 2 bits high */
587 	class_val |= FIELD_PREP(DMA_CCTRL_CLASSH, (val >> 3) & 0x3);
588 
589 	ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
590 	ldma_update_bits(d, DMA_CCTRL_CLASS | DMA_CCTRL_CLASSH, class_val,
591 			 DMA_CCTRL);
592 }
593 
594 static int ldma_chan_on(struct ldma_chan *c)
595 {
596 	struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
597 	unsigned long flags;
598 
599 	/* If descriptors not configured, not allow to turn on channel */
600 	if (WARN_ON(!c->desc_init))
601 		return -EINVAL;
602 
603 	spin_lock_irqsave(&d->dev_lock, flags);
604 	ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
605 	ldma_update_bits(d, DMA_CCTRL_ON, DMA_CCTRL_ON, DMA_CCTRL);
606 	spin_unlock_irqrestore(&d->dev_lock, flags);
607 
608 	c->onoff = DMA_CH_ON;
609 
610 	return 0;
611 }
612 
613 static int ldma_chan_off(struct ldma_chan *c)
614 {
615 	struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
616 	unsigned long flags;
617 	u32 val;
618 	int ret;
619 
620 	spin_lock_irqsave(&d->dev_lock, flags);
621 	ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
622 	ldma_update_bits(d, DMA_CCTRL_ON, 0, DMA_CCTRL);
623 	spin_unlock_irqrestore(&d->dev_lock, flags);
624 
625 	ret = readl_poll_timeout_atomic(d->base + DMA_CCTRL, val,
626 					!(val & DMA_CCTRL_ON), 0, 10000);
627 	if (ret)
628 		return ret;
629 
630 	c->onoff = DMA_CH_OFF;
631 
632 	return 0;
633 }
634 
635 static void ldma_chan_desc_hw_cfg(struct ldma_chan *c, dma_addr_t desc_base,
636 				  int desc_num)
637 {
638 	struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
639 	unsigned long flags;
640 
641 	spin_lock_irqsave(&d->dev_lock, flags);
642 	ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
643 	writel(lower_32_bits(desc_base), d->base + DMA_CDBA);
644 
645 	/* Higher 4 bits of 36 bit addressing */
646 	if (IS_ENABLED(CONFIG_64BIT)) {
647 		u32 hi = upper_32_bits(desc_base) & HIGH_4_BITS;
648 
649 		ldma_update_bits(d, DMA_CDBA_MSB,
650 				 FIELD_PREP(DMA_CDBA_MSB, hi), DMA_CCTRL);
651 	}
652 	writel(desc_num, d->base + DMA_CDLEN);
653 	spin_unlock_irqrestore(&d->dev_lock, flags);
654 
655 	c->desc_init = true;
656 }
657 
658 static struct dma_async_tx_descriptor *
659 ldma_chan_desc_cfg(struct dma_chan *chan, dma_addr_t desc_base, int desc_num)
660 {
661 	struct ldma_chan *c = to_ldma_chan(chan);
662 	struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
663 	struct dma_async_tx_descriptor *tx;
664 	struct dw2_desc_sw *ds;
665 
666 	if (!desc_num) {
667 		dev_err(d->dev, "Channel %d must allocate descriptor first\n",
668 			c->nr);
669 		return NULL;
670 	}
671 
672 	if (desc_num > DMA_MAX_DESC_NUM) {
673 		dev_err(d->dev, "Channel %d descriptor number out of range %d\n",
674 			c->nr, desc_num);
675 		return NULL;
676 	}
677 
678 	ldma_chan_desc_hw_cfg(c, desc_base, desc_num);
679 
680 	c->flags |= DMA_HW_DESC;
681 	c->desc_cnt = desc_num;
682 	c->desc_phys = desc_base;
683 
684 	ds = kzalloc(sizeof(*ds), GFP_NOWAIT);
685 	if (!ds)
686 		return NULL;
687 
688 	tx = &ds->vdesc.tx;
689 	dma_async_tx_descriptor_init(tx, chan);
690 
691 	return tx;
692 }
693 
694 static int ldma_chan_reset(struct ldma_chan *c)
695 {
696 	struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
697 	unsigned long flags;
698 	u32 val;
699 	int ret;
700 
701 	ret = ldma_chan_off(c);
702 	if (ret)
703 		return ret;
704 
705 	spin_lock_irqsave(&d->dev_lock, flags);
706 	ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
707 	ldma_update_bits(d, DMA_CCTRL_RST, DMA_CCTRL_RST, DMA_CCTRL);
708 	spin_unlock_irqrestore(&d->dev_lock, flags);
709 
710 	ret = readl_poll_timeout_atomic(d->base + DMA_CCTRL, val,
711 					!(val & DMA_CCTRL_RST), 0, 10000);
712 	if (ret)
713 		return ret;
714 
715 	c->rst = 1;
716 	c->desc_init = false;
717 
718 	return 0;
719 }
720 
721 static void ldma_chan_byte_offset_cfg(struct ldma_chan *c, u32 boff_len)
722 {
723 	struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
724 	u32 mask = DMA_C_BOFF_EN | DMA_C_BOFF_BOF_LEN;
725 	u32 val;
726 
727 	if (boff_len > 0 && boff_len <= DMA_CHAN_BOFF_MAX)
728 		val = FIELD_PREP(DMA_C_BOFF_BOF_LEN, boff_len) | DMA_C_BOFF_EN;
729 	else
730 		val = 0;
731 
732 	ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
733 	ldma_update_bits(d, mask, val, DMA_C_BOFF);
734 }
735 
736 static void ldma_chan_data_endian_cfg(struct ldma_chan *c, bool enable,
737 				      u32 endian_type)
738 {
739 	struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
740 	u32 mask = DMA_C_END_DE_EN | DMA_C_END_DATAENDI;
741 	u32 val;
742 
743 	if (enable)
744 		val = DMA_C_END_DE_EN | FIELD_PREP(DMA_C_END_DATAENDI, endian_type);
745 	else
746 		val = 0;
747 
748 	ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
749 	ldma_update_bits(d, mask, val, DMA_C_ENDIAN);
750 }
751 
752 static void ldma_chan_desc_endian_cfg(struct ldma_chan *c, bool enable,
753 				      u32 endian_type)
754 {
755 	struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
756 	u32 mask = DMA_C_END_DES_EN | DMA_C_END_DESENDI;
757 	u32 val;
758 
759 	if (enable)
760 		val = DMA_C_END_DES_EN | FIELD_PREP(DMA_C_END_DESENDI, endian_type);
761 	else
762 		val = 0;
763 
764 	ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
765 	ldma_update_bits(d, mask, val, DMA_C_ENDIAN);
766 }
767 
768 static void ldma_chan_hdr_mode_cfg(struct ldma_chan *c, u32 hdr_len, bool csum)
769 {
770 	struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
771 	u32 mask, val;
772 
773 	/* NB, csum disabled, hdr length must be provided */
774 	if (!csum && (!hdr_len || hdr_len > DMA_HDR_LEN_MAX))
775 		return;
776 
777 	mask = DMA_C_HDRM_HDR_SUM;
778 	val = DMA_C_HDRM_HDR_SUM;
779 
780 	if (!csum && hdr_len)
781 		val = hdr_len;
782 
783 	ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
784 	ldma_update_bits(d, mask, val, DMA_C_HDRM);
785 }
786 
787 static void ldma_chan_rxwr_np_cfg(struct ldma_chan *c, bool enable)
788 {
789 	struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
790 	u32 mask, val;
791 
792 	/* Only valid for RX channel */
793 	if (ldma_chan_tx(c))
794 		return;
795 
796 	mask = DMA_CCTRL_WR_NP_EN;
797 	val = enable ? DMA_CCTRL_WR_NP_EN : 0;
798 
799 	ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
800 	ldma_update_bits(d, mask, val, DMA_CCTRL);
801 }
802 
803 static void ldma_chan_abc_cfg(struct ldma_chan *c, bool enable)
804 {
805 	struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
806 	u32 mask, val;
807 
808 	if (d->ver < DMA_VER32 || ldma_chan_tx(c))
809 		return;
810 
811 	mask = DMA_CCTRL_CH_ABC;
812 	val = enable ? DMA_CCTRL_CH_ABC : 0;
813 
814 	ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS);
815 	ldma_update_bits(d, mask, val, DMA_CCTRL);
816 }
817 
818 static int ldma_port_cfg(struct ldma_port *p)
819 {
820 	unsigned long flags;
821 	struct ldma_dev *d;
822 	u32 reg;
823 
824 	d = p->ldev;
825 	reg = FIELD_PREP(DMA_PCTRL_TXENDI, p->txendi);
826 	reg |= FIELD_PREP(DMA_PCTRL_RXENDI, p->rxendi);
827 
828 	if (d->ver == DMA_VER22) {
829 		reg |= FIELD_PREP(DMA_PCTRL_TXBL, p->txbl);
830 		reg |= FIELD_PREP(DMA_PCTRL_RXBL, p->rxbl);
831 	} else {
832 		reg |= FIELD_PREP(DMA_PCTRL_PDEN, p->pkt_drop);
833 
834 		if (p->txbl == DMA_BURSTL_32DW)
835 			reg |= DMA_PCTRL_TXBL32;
836 		else if (p->txbl == DMA_BURSTL_16DW)
837 			reg |= DMA_PCTRL_TXBL16;
838 		else
839 			reg |= FIELD_PREP(DMA_PCTRL_TXBL, DMA_PCTRL_TXBL_8);
840 
841 		if (p->rxbl == DMA_BURSTL_32DW)
842 			reg |= DMA_PCTRL_RXBL32;
843 		else if (p->rxbl == DMA_BURSTL_16DW)
844 			reg |= DMA_PCTRL_RXBL16;
845 		else
846 			reg |= FIELD_PREP(DMA_PCTRL_RXBL, DMA_PCTRL_RXBL_8);
847 	}
848 
849 	spin_lock_irqsave(&d->dev_lock, flags);
850 	writel(p->portid, d->base + DMA_PS);
851 	writel(reg, d->base + DMA_PCTRL);
852 	spin_unlock_irqrestore(&d->dev_lock, flags);
853 
854 	reg = readl(d->base + DMA_PCTRL); /* read back */
855 	dev_dbg(d->dev, "Port Control 0x%08x configuration done\n", reg);
856 
857 	return 0;
858 }
859 
860 static int ldma_chan_cfg(struct ldma_chan *c)
861 {
862 	struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
863 	unsigned long flags;
864 	u32 reg;
865 
866 	reg = c->pden ? DMA_CCTRL_PDEN : 0;
867 	reg |= c->onoff ? DMA_CCTRL_ON : 0;
868 	reg |= c->rst ? DMA_CCTRL_RST : 0;
869 
870 	ldma_chan_cctrl_cfg(c, reg);
871 	ldma_chan_irq_init(c);
872 
873 	if (d->ver <= DMA_VER22)
874 		return 0;
875 
876 	spin_lock_irqsave(&d->dev_lock, flags);
877 	ldma_chan_set_class(c, c->nr);
878 	ldma_chan_byte_offset_cfg(c, c->boff_len);
879 	ldma_chan_data_endian_cfg(c, c->data_endian_en, c->data_endian);
880 	ldma_chan_desc_endian_cfg(c, c->desc_endian_en, c->desc_endian);
881 	ldma_chan_hdr_mode_cfg(c, c->hdrm_len, c->hdrm_csum);
882 	ldma_chan_rxwr_np_cfg(c, c->desc_rx_np);
883 	ldma_chan_abc_cfg(c, c->abc_en);
884 	spin_unlock_irqrestore(&d->dev_lock, flags);
885 
886 	if (ldma_chan_is_hw_desc(c))
887 		ldma_chan_desc_hw_cfg(c, c->desc_phys, c->desc_cnt);
888 
889 	return 0;
890 }
891 
892 static void ldma_dev_init(struct ldma_dev *d)
893 {
894 	unsigned long ch_mask = (unsigned long)d->channels_mask;
895 	struct ldma_port *p;
896 	struct ldma_chan *c;
897 	int i;
898 	u32 j;
899 
900 	spin_lock_init(&d->dev_lock);
901 	ldma_dev_reset(d);
902 	ldma_dev_cfg(d);
903 
904 	/* DMA port initialization */
905 	for (i = 0; i < d->port_nrs; i++) {
906 		p = &d->ports[i];
907 		ldma_port_cfg(p);
908 	}
909 
910 	/* DMA channel initialization */
911 	for_each_set_bit(j, &ch_mask, d->chan_nrs) {
912 		c = &d->chans[j];
913 		ldma_chan_cfg(c);
914 	}
915 }
916 
917 static int ldma_parse_dt(struct ldma_dev *d)
918 {
919 	struct fwnode_handle *fwnode = dev_fwnode(d->dev);
920 	struct ldma_port *p;
921 	int i;
922 
923 	if (fwnode_property_read_bool(fwnode, "intel,dma-byte-en"))
924 		d->flags |= DMA_EN_BYTE_EN;
925 
926 	if (fwnode_property_read_bool(fwnode, "intel,dma-dburst-wr"))
927 		d->flags |= DMA_DBURST_WR;
928 
929 	if (fwnode_property_read_bool(fwnode, "intel,dma-drb"))
930 		d->flags |= DMA_DFT_DRB;
931 
932 	if (fwnode_property_read_u32(fwnode, "intel,dma-poll-cnt",
933 				     &d->pollcnt))
934 		d->pollcnt = DMA_DFT_POLL_CNT;
935 
936 	if (d->inst->chan_fc)
937 		d->flags |= DMA_CHAN_FLOW_CTL;
938 
939 	if (d->inst->desc_fod)
940 		d->flags |= DMA_DESC_FOD;
941 
942 	if (d->inst->desc_in_sram)
943 		d->flags |= DMA_DESC_IN_SRAM;
944 
945 	if (d->inst->valid_desc_fetch_ack)
946 		d->flags |= DMA_VALID_DESC_FETCH_ACK;
947 
948 	if (d->ver > DMA_VER22) {
949 		if (!d->port_nrs)
950 			return -EINVAL;
951 
952 		for (i = 0; i < d->port_nrs; i++) {
953 			p = &d->ports[i];
954 			p->rxendi = DMA_DFT_ENDIAN;
955 			p->txendi = DMA_DFT_ENDIAN;
956 			p->rxbl = DMA_DFT_BURST;
957 			p->txbl = DMA_DFT_BURST;
958 			p->pkt_drop = DMA_PKT_DROP_DIS;
959 		}
960 	}
961 
962 	return 0;
963 }
964 
965 static void dma_free_desc_resource(struct virt_dma_desc *vdesc)
966 {
967 	struct dw2_desc_sw *ds = to_lgm_dma_desc(vdesc);
968 	struct ldma_chan *c = ds->chan;
969 
970 	dma_pool_free(c->desc_pool, ds->desc_hw, ds->desc_phys);
971 	kfree(ds);
972 }
973 
974 static struct dw2_desc_sw *
975 dma_alloc_desc_resource(int num, struct ldma_chan *c)
976 {
977 	struct device *dev = c->vchan.chan.device->dev;
978 	struct dw2_desc_sw *ds;
979 
980 	if (num > c->desc_num) {
981 		dev_err(dev, "sg num %d exceed max %d\n", num, c->desc_num);
982 		return NULL;
983 	}
984 
985 	ds = kzalloc(sizeof(*ds), GFP_NOWAIT);
986 	if (!ds)
987 		return NULL;
988 
989 	ds->chan = c;
990 	ds->desc_hw = dma_pool_zalloc(c->desc_pool, GFP_ATOMIC,
991 				      &ds->desc_phys);
992 	if (!ds->desc_hw) {
993 		dev_dbg(dev, "out of memory for link descriptor\n");
994 		kfree(ds);
995 		return NULL;
996 	}
997 	ds->desc_cnt = num;
998 
999 	return ds;
1000 }
1001 
1002 static void ldma_chan_irq_en(struct ldma_chan *c)
1003 {
1004 	struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
1005 	unsigned long flags;
1006 
1007 	spin_lock_irqsave(&d->dev_lock, flags);
1008 	writel(c->nr, d->base + DMA_CS);
1009 	writel(DMA_CI_EOP, d->base + DMA_CIE);
1010 	writel(BIT(c->nr), d->base + DMA_IRNEN);
1011 	spin_unlock_irqrestore(&d->dev_lock, flags);
1012 }
1013 
1014 static void ldma_issue_pending(struct dma_chan *chan)
1015 {
1016 	struct ldma_chan *c = to_ldma_chan(chan);
1017 	struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
1018 	unsigned long flags;
1019 
1020 	if (d->ver == DMA_VER22) {
1021 		spin_lock_irqsave(&c->vchan.lock, flags);
1022 		if (vchan_issue_pending(&c->vchan)) {
1023 			struct virt_dma_desc *vdesc;
1024 
1025 			/* Get the next descriptor */
1026 			vdesc = vchan_next_desc(&c->vchan);
1027 			if (!vdesc) {
1028 				c->ds = NULL;
1029 				spin_unlock_irqrestore(&c->vchan.lock, flags);
1030 				return;
1031 			}
1032 			list_del(&vdesc->node);
1033 			c->ds = to_lgm_dma_desc(vdesc);
1034 			ldma_chan_desc_hw_cfg(c, c->ds->desc_phys, c->ds->desc_cnt);
1035 			ldma_chan_irq_en(c);
1036 		}
1037 		spin_unlock_irqrestore(&c->vchan.lock, flags);
1038 	}
1039 	ldma_chan_on(c);
1040 }
1041 
1042 static void ldma_synchronize(struct dma_chan *chan)
1043 {
1044 	struct ldma_chan *c = to_ldma_chan(chan);
1045 
1046 	/*
1047 	 * clear any pending work if any. In that
1048 	 * case the resource needs to be free here.
1049 	 */
1050 	cancel_work_sync(&c->work);
1051 	vchan_synchronize(&c->vchan);
1052 	if (c->ds)
1053 		dma_free_desc_resource(&c->ds->vdesc);
1054 }
1055 
1056 static int ldma_terminate_all(struct dma_chan *chan)
1057 {
1058 	struct ldma_chan *c = to_ldma_chan(chan);
1059 	unsigned long flags;
1060 	LIST_HEAD(head);
1061 
1062 	spin_lock_irqsave(&c->vchan.lock, flags);
1063 	vchan_get_all_descriptors(&c->vchan, &head);
1064 	spin_unlock_irqrestore(&c->vchan.lock, flags);
1065 	vchan_dma_desc_free_list(&c->vchan, &head);
1066 
1067 	return ldma_chan_reset(c);
1068 }
1069 
1070 static int ldma_resume_chan(struct dma_chan *chan)
1071 {
1072 	struct ldma_chan *c = to_ldma_chan(chan);
1073 
1074 	ldma_chan_on(c);
1075 
1076 	return 0;
1077 }
1078 
1079 static int ldma_pause_chan(struct dma_chan *chan)
1080 {
1081 	struct ldma_chan *c = to_ldma_chan(chan);
1082 
1083 	return ldma_chan_off(c);
1084 }
1085 
1086 static enum dma_status
1087 ldma_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
1088 	       struct dma_tx_state *txstate)
1089 {
1090 	struct ldma_chan *c = to_ldma_chan(chan);
1091 	struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
1092 	enum dma_status status = DMA_COMPLETE;
1093 
1094 	if (d->ver == DMA_VER22)
1095 		status = dma_cookie_status(chan, cookie, txstate);
1096 
1097 	return status;
1098 }
1099 
1100 static void dma_chan_irq(int irq, void *data)
1101 {
1102 	struct ldma_chan *c = data;
1103 	struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
1104 	u32 stat;
1105 
1106 	/* Disable channel interrupts  */
1107 	writel(c->nr, d->base + DMA_CS);
1108 	stat = readl(d->base + DMA_CIS);
1109 	if (!stat)
1110 		return;
1111 
1112 	writel(readl(d->base + DMA_CIE) & ~DMA_CI_ALL, d->base + DMA_CIE);
1113 	writel(stat, d->base + DMA_CIS);
1114 	queue_work(d->wq, &c->work);
1115 }
1116 
1117 static irqreturn_t dma_interrupt(int irq, void *dev_id)
1118 {
1119 	struct ldma_dev *d = dev_id;
1120 	struct ldma_chan *c;
1121 	unsigned long irncr;
1122 	u32 cid;
1123 
1124 	irncr = readl(d->base + DMA_IRNCR);
1125 	if (!irncr) {
1126 		dev_err(d->dev, "dummy interrupt\n");
1127 		return IRQ_NONE;
1128 	}
1129 
1130 	for_each_set_bit(cid, &irncr, d->chan_nrs) {
1131 		/* Mask */
1132 		writel(readl(d->base + DMA_IRNEN) & ~BIT(cid), d->base + DMA_IRNEN);
1133 		/* Ack */
1134 		writel(readl(d->base + DMA_IRNCR) | BIT(cid), d->base + DMA_IRNCR);
1135 
1136 		c = &d->chans[cid];
1137 		dma_chan_irq(irq, c);
1138 	}
1139 
1140 	return IRQ_HANDLED;
1141 }
1142 
1143 static void prep_slave_burst_len(struct ldma_chan *c)
1144 {
1145 	struct ldma_port *p = c->port;
1146 	struct dma_slave_config *cfg = &c->config;
1147 
1148 	if (cfg->dst_maxburst)
1149 		cfg->src_maxburst = cfg->dst_maxburst;
1150 
1151 	/* TX and RX has the same burst length */
1152 	p->txbl = ilog2(cfg->src_maxburst);
1153 	p->rxbl = p->txbl;
1154 }
1155 
1156 static struct dma_async_tx_descriptor *
1157 ldma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1158 		   unsigned int sglen, enum dma_transfer_direction dir,
1159 		   unsigned long flags, void *context)
1160 {
1161 	struct ldma_chan *c = to_ldma_chan(chan);
1162 	struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
1163 	size_t len, avail, total = 0;
1164 	struct dw2_desc *hw_ds;
1165 	struct dw2_desc_sw *ds;
1166 	struct scatterlist *sg;
1167 	int num = sglen, i;
1168 	dma_addr_t addr;
1169 
1170 	if (!sgl)
1171 		return NULL;
1172 
1173 	if (d->ver > DMA_VER22)
1174 		return ldma_chan_desc_cfg(chan, sgl->dma_address, sglen);
1175 
1176 	for_each_sg(sgl, sg, sglen, i) {
1177 		avail = sg_dma_len(sg);
1178 		if (avail > DMA_MAX_SIZE)
1179 			num += DIV_ROUND_UP(avail, DMA_MAX_SIZE) - 1;
1180 	}
1181 
1182 	ds = dma_alloc_desc_resource(num, c);
1183 	if (!ds)
1184 		return NULL;
1185 
1186 	c->ds = ds;
1187 
1188 	num = 0;
1189 	/* sop and eop has to be handled nicely */
1190 	for_each_sg(sgl, sg, sglen, i) {
1191 		addr = sg_dma_address(sg);
1192 		avail = sg_dma_len(sg);
1193 		total += avail;
1194 
1195 		do {
1196 			len = min_t(size_t, avail, DMA_MAX_SIZE);
1197 
1198 			hw_ds = &ds->desc_hw[num];
1199 			switch (sglen) {
1200 			case 1:
1201 				hw_ds->field &= ~DESC_SOP;
1202 				hw_ds->field |= FIELD_PREP(DESC_SOP, 1);
1203 
1204 				hw_ds->field &= ~DESC_EOP;
1205 				hw_ds->field |= FIELD_PREP(DESC_EOP, 1);
1206 				break;
1207 			default:
1208 				if (num == 0) {
1209 					hw_ds->field &= ~DESC_SOP;
1210 					hw_ds->field |= FIELD_PREP(DESC_SOP, 1);
1211 
1212 					hw_ds->field &= ~DESC_EOP;
1213 					hw_ds->field |= FIELD_PREP(DESC_EOP, 0);
1214 				} else if (num == (sglen - 1)) {
1215 					hw_ds->field &= ~DESC_SOP;
1216 					hw_ds->field |= FIELD_PREP(DESC_SOP, 0);
1217 					hw_ds->field &= ~DESC_EOP;
1218 					hw_ds->field |= FIELD_PREP(DESC_EOP, 1);
1219 				} else {
1220 					hw_ds->field &= ~DESC_SOP;
1221 					hw_ds->field |= FIELD_PREP(DESC_SOP, 0);
1222 
1223 					hw_ds->field &= ~DESC_EOP;
1224 					hw_ds->field |= FIELD_PREP(DESC_EOP, 0);
1225 				}
1226 				break;
1227 			}
1228 			/* Only 32 bit address supported */
1229 			hw_ds->addr = (u32)addr;
1230 
1231 			hw_ds->field &= ~DESC_DATA_LEN;
1232 			hw_ds->field |= FIELD_PREP(DESC_DATA_LEN, len);
1233 
1234 			hw_ds->field &= ~DESC_C;
1235 			hw_ds->field |= FIELD_PREP(DESC_C, 0);
1236 
1237 			hw_ds->field &= ~DESC_BYTE_OFF;
1238 			hw_ds->field |= FIELD_PREP(DESC_BYTE_OFF, addr & 0x3);
1239 
1240 			/* Ensure data ready before ownership change */
1241 			wmb();
1242 			hw_ds->field &= ~DESC_OWN;
1243 			hw_ds->field |= FIELD_PREP(DESC_OWN, DMA_OWN);
1244 
1245 			/* Ensure ownership changed before moving forward */
1246 			wmb();
1247 			num++;
1248 			addr += len;
1249 			avail -= len;
1250 		} while (avail);
1251 	}
1252 
1253 	ds->size = total;
1254 	prep_slave_burst_len(c);
1255 
1256 	return vchan_tx_prep(&c->vchan, &ds->vdesc, DMA_CTRL_ACK);
1257 }
1258 
1259 static int
1260 ldma_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg)
1261 {
1262 	struct ldma_chan *c = to_ldma_chan(chan);
1263 
1264 	memcpy(&c->config, cfg, sizeof(c->config));
1265 
1266 	return 0;
1267 }
1268 
1269 static int ldma_alloc_chan_resources(struct dma_chan *chan)
1270 {
1271 	struct ldma_chan *c = to_ldma_chan(chan);
1272 	struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
1273 	struct device *dev = c->vchan.chan.device->dev;
1274 	size_t	desc_sz;
1275 
1276 	if (d->ver > DMA_VER22) {
1277 		c->flags |= CHAN_IN_USE;
1278 		return 0;
1279 	}
1280 
1281 	if (c->desc_pool)
1282 		return c->desc_num;
1283 
1284 	desc_sz = c->desc_num * sizeof(struct dw2_desc);
1285 	c->desc_pool = dma_pool_create(c->name, dev, desc_sz,
1286 				       __alignof__(struct dw2_desc), 0);
1287 
1288 	if (!c->desc_pool) {
1289 		dev_err(dev, "unable to allocate descriptor pool\n");
1290 		return -ENOMEM;
1291 	}
1292 
1293 	return c->desc_num;
1294 }
1295 
1296 static void ldma_free_chan_resources(struct dma_chan *chan)
1297 {
1298 	struct ldma_chan *c = to_ldma_chan(chan);
1299 	struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device);
1300 
1301 	if (d->ver == DMA_VER22) {
1302 		dma_pool_destroy(c->desc_pool);
1303 		c->desc_pool = NULL;
1304 		vchan_free_chan_resources(to_virt_chan(chan));
1305 		ldma_chan_reset(c);
1306 	} else {
1307 		c->flags &= ~CHAN_IN_USE;
1308 	}
1309 }
1310 
1311 static void dma_work(struct work_struct *work)
1312 {
1313 	struct ldma_chan *c = container_of(work, struct ldma_chan, work);
1314 	struct dma_async_tx_descriptor *tx = &c->ds->vdesc.tx;
1315 	struct virt_dma_chan *vc = &c->vchan;
1316 	struct dmaengine_desc_callback cb;
1317 	struct virt_dma_desc *vd, *_vd;
1318 	unsigned long flags;
1319 	LIST_HEAD(head);
1320 
1321 	spin_lock_irqsave(&c->vchan.lock, flags);
1322 	list_splice_tail_init(&vc->desc_completed, &head);
1323 	spin_unlock_irqrestore(&c->vchan.lock, flags);
1324 	dmaengine_desc_get_callback(tx, &cb);
1325 	dma_cookie_complete(tx);
1326 	dmaengine_desc_callback_invoke(&cb, NULL);
1327 
1328 	list_for_each_entry_safe(vd, _vd, &head, node) {
1329 		dmaengine_desc_get_callback(tx, &cb);
1330 		dma_cookie_complete(tx);
1331 		list_del(&vd->node);
1332 		dmaengine_desc_callback_invoke(&cb, NULL);
1333 
1334 		vchan_vdesc_fini(vd);
1335 	}
1336 	c->ds = NULL;
1337 }
1338 
1339 static void
1340 update_burst_len_v22(struct ldma_chan *c, struct ldma_port *p, u32 burst)
1341 {
1342 	if (ldma_chan_tx(c))
1343 		p->txbl = ilog2(burst);
1344 	else
1345 		p->rxbl = ilog2(burst);
1346 }
1347 
1348 static void
1349 update_burst_len_v3X(struct ldma_chan *c, struct ldma_port *p, u32 burst)
1350 {
1351 	if (ldma_chan_tx(c))
1352 		p->txbl = burst;
1353 	else
1354 		p->rxbl = burst;
1355 }
1356 
1357 static int
1358 update_client_configs(struct of_dma *ofdma, struct of_phandle_args *spec)
1359 {
1360 	struct ldma_dev *d = ofdma->of_dma_data;
1361 	u32 chan_id =  spec->args[0];
1362 	u32 port_id =  spec->args[1];
1363 	u32 burst = spec->args[2];
1364 	struct ldma_port *p;
1365 	struct ldma_chan *c;
1366 
1367 	if (chan_id >= d->chan_nrs || port_id >= d->port_nrs)
1368 		return 0;
1369 
1370 	p = &d->ports[port_id];
1371 	c = &d->chans[chan_id];
1372 	c->port = p;
1373 
1374 	if (d->ver == DMA_VER22)
1375 		update_burst_len_v22(c, p, burst);
1376 	else
1377 		update_burst_len_v3X(c, p, burst);
1378 
1379 	ldma_port_cfg(p);
1380 
1381 	return 1;
1382 }
1383 
1384 static struct dma_chan *ldma_xlate(struct of_phandle_args *spec,
1385 				   struct of_dma *ofdma)
1386 {
1387 	struct ldma_dev *d = ofdma->of_dma_data;
1388 	u32 chan_id =  spec->args[0];
1389 	int ret;
1390 
1391 	if (!spec->args_count)
1392 		return NULL;
1393 
1394 	/* if args_count is 1 driver use default settings */
1395 	if (spec->args_count > 1) {
1396 		ret = update_client_configs(ofdma, spec);
1397 		if (!ret)
1398 			return NULL;
1399 	}
1400 
1401 	return dma_get_slave_channel(&d->chans[chan_id].vchan.chan);
1402 }
1403 
1404 static void ldma_dma_init_v22(int i, struct ldma_dev *d)
1405 {
1406 	struct ldma_chan *c;
1407 
1408 	c = &d->chans[i];
1409 	c->nr = i; /* Real channel number */
1410 	c->rst = DMA_CHAN_RST;
1411 	c->desc_num = DMA_DFT_DESC_NUM;
1412 	snprintf(c->name, sizeof(c->name), "chan%d", c->nr);
1413 	INIT_WORK(&c->work, dma_work);
1414 	c->vchan.desc_free = dma_free_desc_resource;
1415 	vchan_init(&c->vchan, &d->dma_dev);
1416 }
1417 
1418 static void ldma_dma_init_v3X(int i, struct ldma_dev *d)
1419 {
1420 	struct ldma_chan *c;
1421 
1422 	c = &d->chans[i];
1423 	c->data_endian = DMA_DFT_ENDIAN;
1424 	c->desc_endian = DMA_DFT_ENDIAN;
1425 	c->data_endian_en = false;
1426 	c->desc_endian_en = false;
1427 	c->desc_rx_np = false;
1428 	c->flags |= DEVICE_ALLOC_DESC;
1429 	c->onoff = DMA_CH_OFF;
1430 	c->rst = DMA_CHAN_RST;
1431 	c->abc_en = true;
1432 	c->hdrm_csum = false;
1433 	c->boff_len = 0;
1434 	c->nr = i;
1435 	c->vchan.desc_free = dma_free_desc_resource;
1436 	vchan_init(&c->vchan, &d->dma_dev);
1437 }
1438 
1439 static int ldma_init_v22(struct ldma_dev *d, struct platform_device *pdev)
1440 {
1441 	int ret;
1442 
1443 	ret = device_property_read_u32(d->dev, "dma-channels", &d->chan_nrs);
1444 	if (ret < 0) {
1445 		dev_err(d->dev, "unable to read dma-channels property\n");
1446 		return ret;
1447 	}
1448 
1449 	d->irq = platform_get_irq(pdev, 0);
1450 	if (d->irq < 0)
1451 		return d->irq;
1452 
1453 	ret = devm_request_irq(&pdev->dev, d->irq, dma_interrupt, 0,
1454 			       DRIVER_NAME, d);
1455 	if (ret)
1456 		return ret;
1457 
1458 	d->wq = alloc_ordered_workqueue("dma_wq", WQ_MEM_RECLAIM |
1459 			WQ_HIGHPRI);
1460 	if (!d->wq)
1461 		return -ENOMEM;
1462 
1463 	return 0;
1464 }
1465 
1466 static void ldma_clk_disable(void *data)
1467 {
1468 	struct ldma_dev *d = data;
1469 
1470 	clk_disable_unprepare(d->core_clk);
1471 	reset_control_assert(d->rst);
1472 }
1473 
1474 static const struct ldma_inst_data dma0 = {
1475 	.name = "dma0",
1476 	.chan_fc = false,
1477 	.desc_fod = false,
1478 	.desc_in_sram = false,
1479 	.valid_desc_fetch_ack = false,
1480 };
1481 
1482 static const struct ldma_inst_data dma2tx = {
1483 	.name = "dma2tx",
1484 	.type = DMA_TYPE_TX,
1485 	.orrc = 16,
1486 	.chan_fc = true,
1487 	.desc_fod = true,
1488 	.desc_in_sram = true,
1489 	.valid_desc_fetch_ack = true,
1490 };
1491 
1492 static const struct ldma_inst_data dma1rx = {
1493 	.name = "dma1rx",
1494 	.type = DMA_TYPE_RX,
1495 	.orrc = 16,
1496 	.chan_fc = false,
1497 	.desc_fod = true,
1498 	.desc_in_sram = true,
1499 	.valid_desc_fetch_ack = false,
1500 };
1501 
1502 static const struct ldma_inst_data dma1tx = {
1503 	.name = "dma1tx",
1504 	.type = DMA_TYPE_TX,
1505 	.orrc = 16,
1506 	.chan_fc = true,
1507 	.desc_fod = true,
1508 	.desc_in_sram = true,
1509 	.valid_desc_fetch_ack = true,
1510 };
1511 
1512 static const struct ldma_inst_data dma0tx = {
1513 	.name = "dma0tx",
1514 	.type = DMA_TYPE_TX,
1515 	.orrc = 16,
1516 	.chan_fc = true,
1517 	.desc_fod = true,
1518 	.desc_in_sram = true,
1519 	.valid_desc_fetch_ack = true,
1520 };
1521 
1522 static const struct ldma_inst_data dma3 = {
1523 	.name = "dma3",
1524 	.type = DMA_TYPE_MCPY,
1525 	.orrc = 16,
1526 	.chan_fc = false,
1527 	.desc_fod = false,
1528 	.desc_in_sram = true,
1529 	.valid_desc_fetch_ack = false,
1530 };
1531 
1532 static const struct ldma_inst_data toe_dma30 = {
1533 	.name = "toe_dma30",
1534 	.type = DMA_TYPE_MCPY,
1535 	.orrc = 16,
1536 	.chan_fc = false,
1537 	.desc_fod = false,
1538 	.desc_in_sram = true,
1539 	.valid_desc_fetch_ack = true,
1540 };
1541 
1542 static const struct ldma_inst_data toe_dma31 = {
1543 	.name = "toe_dma31",
1544 	.type = DMA_TYPE_MCPY,
1545 	.orrc = 16,
1546 	.chan_fc = false,
1547 	.desc_fod = false,
1548 	.desc_in_sram = true,
1549 	.valid_desc_fetch_ack = true,
1550 };
1551 
1552 static const struct of_device_id intel_ldma_match[] = {
1553 	{ .compatible = "intel,lgm-cdma", .data = &dma0},
1554 	{ .compatible = "intel,lgm-dma2tx", .data = &dma2tx},
1555 	{ .compatible = "intel,lgm-dma1rx", .data = &dma1rx},
1556 	{ .compatible = "intel,lgm-dma1tx", .data = &dma1tx},
1557 	{ .compatible = "intel,lgm-dma0tx", .data = &dma0tx},
1558 	{ .compatible = "intel,lgm-dma3", .data = &dma3},
1559 	{ .compatible = "intel,lgm-toe-dma30", .data = &toe_dma30},
1560 	{ .compatible = "intel,lgm-toe-dma31", .data = &toe_dma31},
1561 	{}
1562 };
1563 
1564 static int intel_ldma_probe(struct platform_device *pdev)
1565 {
1566 	struct device *dev = &pdev->dev;
1567 	struct dma_device *dma_dev;
1568 	unsigned long ch_mask;
1569 	struct ldma_chan *c;
1570 	struct ldma_port *p;
1571 	struct ldma_dev *d;
1572 	u32 id, bitn = 32, j;
1573 	int i, ret;
1574 
1575 	d = devm_kzalloc(dev, sizeof(*d), GFP_KERNEL);
1576 	if (!d)
1577 		return -ENOMEM;
1578 
1579 	/* Link controller to platform device */
1580 	d->dev = &pdev->dev;
1581 
1582 	d->inst = device_get_match_data(dev);
1583 	if (!d->inst) {
1584 		dev_err(dev, "No device match found\n");
1585 		return -ENODEV;
1586 	}
1587 
1588 	d->base = devm_platform_ioremap_resource(pdev, 0);
1589 	if (IS_ERR(d->base))
1590 		return PTR_ERR(d->base);
1591 
1592 	/* Power up and reset the dma engine, some DMAs always on?? */
1593 	d->core_clk = devm_clk_get_optional(dev, NULL);
1594 	if (IS_ERR(d->core_clk))
1595 		return PTR_ERR(d->core_clk);
1596 
1597 	d->rst = devm_reset_control_get_optional(dev, NULL);
1598 	if (IS_ERR(d->rst))
1599 		return PTR_ERR(d->rst);
1600 
1601 	clk_prepare_enable(d->core_clk);
1602 	reset_control_deassert(d->rst);
1603 
1604 	ret = devm_add_action_or_reset(dev, ldma_clk_disable, d);
1605 	if (ret) {
1606 		dev_err(dev, "Failed to devm_add_action_or_reset, %d\n", ret);
1607 		return ret;
1608 	}
1609 
1610 	id = readl(d->base + DMA_ID);
1611 	d->chan_nrs = FIELD_GET(DMA_ID_CHNR, id);
1612 	d->port_nrs = FIELD_GET(DMA_ID_PNR, id);
1613 	d->ver = FIELD_GET(DMA_ID_REV, id);
1614 
1615 	if (id & DMA_ID_AW_36B)
1616 		d->flags |= DMA_ADDR_36BIT;
1617 
1618 	if (IS_ENABLED(CONFIG_64BIT) && (id & DMA_ID_AW_36B))
1619 		bitn = 36;
1620 
1621 	if (id & DMA_ID_DW_128B)
1622 		d->flags |= DMA_DATA_128BIT;
1623 
1624 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(bitn));
1625 	if (ret) {
1626 		dev_err(dev, "No usable DMA configuration\n");
1627 		return ret;
1628 	}
1629 
1630 	if (d->ver == DMA_VER22) {
1631 		ret = ldma_init_v22(d, pdev);
1632 		if (ret)
1633 			return ret;
1634 	}
1635 
1636 	ret = device_property_read_u32(dev, "dma-channel-mask", &d->channels_mask);
1637 	if (ret < 0)
1638 		d->channels_mask = GENMASK(d->chan_nrs - 1, 0);
1639 
1640 	dma_dev = &d->dma_dev;
1641 
1642 	dma_cap_zero(dma_dev->cap_mask);
1643 	dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1644 
1645 	/* Channel initializations */
1646 	INIT_LIST_HEAD(&dma_dev->channels);
1647 
1648 	/* Port Initializations */
1649 	d->ports = devm_kcalloc(dev, d->port_nrs, sizeof(*p), GFP_KERNEL);
1650 	if (!d->ports)
1651 		return -ENOMEM;
1652 
1653 	/* Channels Initializations */
1654 	d->chans = devm_kcalloc(d->dev, d->chan_nrs, sizeof(*c), GFP_KERNEL);
1655 	if (!d->chans)
1656 		return -ENOMEM;
1657 
1658 	for (i = 0; i < d->port_nrs; i++) {
1659 		p = &d->ports[i];
1660 		p->portid = i;
1661 		p->ldev = d;
1662 	}
1663 
1664 	dma_dev->dev = &pdev->dev;
1665 
1666 	ch_mask = (unsigned long)d->channels_mask;
1667 	for_each_set_bit(j, &ch_mask, d->chan_nrs) {
1668 		if (d->ver == DMA_VER22)
1669 			ldma_dma_init_v22(j, d);
1670 		else
1671 			ldma_dma_init_v3X(j, d);
1672 	}
1673 
1674 	ret = ldma_parse_dt(d);
1675 	if (ret)
1676 		return ret;
1677 
1678 	dma_dev->device_alloc_chan_resources = ldma_alloc_chan_resources;
1679 	dma_dev->device_free_chan_resources = ldma_free_chan_resources;
1680 	dma_dev->device_terminate_all = ldma_terminate_all;
1681 	dma_dev->device_issue_pending = ldma_issue_pending;
1682 	dma_dev->device_tx_status = ldma_tx_status;
1683 	dma_dev->device_resume = ldma_resume_chan;
1684 	dma_dev->device_pause = ldma_pause_chan;
1685 	dma_dev->device_prep_slave_sg = ldma_prep_slave_sg;
1686 
1687 	if (d->ver == DMA_VER22) {
1688 		dma_dev->device_config = ldma_slave_config;
1689 		dma_dev->device_synchronize = ldma_synchronize;
1690 		dma_dev->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1691 		dma_dev->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1692 		dma_dev->directions = BIT(DMA_MEM_TO_DEV) |
1693 				      BIT(DMA_DEV_TO_MEM);
1694 		dma_dev->residue_granularity =
1695 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1696 	}
1697 
1698 	platform_set_drvdata(pdev, d);
1699 
1700 	ldma_dev_init(d);
1701 
1702 	ret = dma_async_device_register(dma_dev);
1703 	if (ret) {
1704 		dev_err(dev, "Failed to register slave DMA engine device\n");
1705 		return ret;
1706 	}
1707 
1708 	ret = of_dma_controller_register(pdev->dev.of_node, ldma_xlate, d);
1709 	if (ret) {
1710 		dev_err(dev, "Failed to register of DMA controller\n");
1711 		dma_async_device_unregister(dma_dev);
1712 		return ret;
1713 	}
1714 
1715 	dev_info(dev, "Init done - rev: %x, ports: %d channels: %d\n", d->ver,
1716 		 d->port_nrs, d->chan_nrs);
1717 
1718 	return 0;
1719 }
1720 
1721 static struct platform_driver intel_ldma_driver = {
1722 	.probe = intel_ldma_probe,
1723 	.driver = {
1724 		.name = DRIVER_NAME,
1725 		.of_match_table = intel_ldma_match,
1726 	},
1727 };
1728 
1729 /*
1730  * Perform this driver as device_initcall to make sure initialization happens
1731  * before its DMA clients of some are platform specific and also to provide
1732  * registered DMA channels and DMA capabilities to clients before their
1733  * initialization.
1734  */
1735 static int __init intel_ldma_init(void)
1736 {
1737 	return platform_driver_register(&intel_ldma_driver);
1738 }
1739 
1740 device_initcall(intel_ldma_init);
1741