xref: /openbmc/linux/drivers/dma/imx-sdma.c (revision f94059f8)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
10 //
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12 
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitfield.h>
18 #include <linux/bitops.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24 #include <linux/semaphore.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/firmware.h>
29 #include <linux/slab.h>
30 #include <linux/platform_device.h>
31 #include <linux/dmaengine.h>
32 #include <linux/of.h>
33 #include <linux/of_address.h>
34 #include <linux/of_device.h>
35 #include <linux/of_dma.h>
36 #include <linux/workqueue.h>
37 
38 #include <asm/irq.h>
39 #include <linux/dma/imx-dma.h>
40 #include <linux/regmap.h>
41 #include <linux/mfd/syscon.h>
42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
43 
44 #include "dmaengine.h"
45 #include "virt-dma.h"
46 
47 /* SDMA registers */
48 #define SDMA_H_C0PTR		0x000
49 #define SDMA_H_INTR		0x004
50 #define SDMA_H_STATSTOP		0x008
51 #define SDMA_H_START		0x00c
52 #define SDMA_H_EVTOVR		0x010
53 #define SDMA_H_DSPOVR		0x014
54 #define SDMA_H_HOSTOVR		0x018
55 #define SDMA_H_EVTPEND		0x01c
56 #define SDMA_H_DSPENBL		0x020
57 #define SDMA_H_RESET		0x024
58 #define SDMA_H_EVTERR		0x028
59 #define SDMA_H_INTRMSK		0x02c
60 #define SDMA_H_PSW		0x030
61 #define SDMA_H_EVTERRDBG	0x034
62 #define SDMA_H_CONFIG		0x038
63 #define SDMA_ONCE_ENB		0x040
64 #define SDMA_ONCE_DATA		0x044
65 #define SDMA_ONCE_INSTR		0x048
66 #define SDMA_ONCE_STAT		0x04c
67 #define SDMA_ONCE_CMD		0x050
68 #define SDMA_EVT_MIRROR		0x054
69 #define SDMA_ILLINSTADDR	0x058
70 #define SDMA_CHN0ADDR		0x05c
71 #define SDMA_ONCE_RTB		0x060
72 #define SDMA_XTRIG_CONF1	0x070
73 #define SDMA_XTRIG_CONF2	0x074
74 #define SDMA_CHNENBL0_IMX35	0x200
75 #define SDMA_CHNENBL0_IMX31	0x080
76 #define SDMA_CHNPRI_0		0x100
77 #define SDMA_DONE0_CONFIG	0x1000
78 
79 /*
80  * Buffer descriptor status values.
81  */
82 #define BD_DONE  0x01
83 #define BD_WRAP  0x02
84 #define BD_CONT  0x04
85 #define BD_INTR  0x08
86 #define BD_RROR  0x10
87 #define BD_LAST  0x20
88 #define BD_EXTD  0x80
89 
90 /*
91  * Data Node descriptor status values.
92  */
93 #define DND_END_OF_FRAME  0x80
94 #define DND_END_OF_XFER   0x40
95 #define DND_DONE          0x20
96 #define DND_UNUSED        0x01
97 
98 /*
99  * IPCV2 descriptor status values.
100  */
101 #define BD_IPCV2_END_OF_FRAME  0x40
102 
103 #define IPCV2_MAX_NODES        50
104 /*
105  * Error bit set in the CCB status field by the SDMA,
106  * in setbd routine, in case of a transfer error
107  */
108 #define DATA_ERROR  0x10000000
109 
110 /*
111  * Buffer descriptor commands.
112  */
113 #define C0_ADDR             0x01
114 #define C0_LOAD             0x02
115 #define C0_DUMP             0x03
116 #define C0_SETCTX           0x07
117 #define C0_GETCTX           0x03
118 #define C0_SETDM            0x01
119 #define C0_SETPM            0x04
120 #define C0_GETDM            0x02
121 #define C0_GETPM            0x08
122 /*
123  * Change endianness indicator in the BD command field
124  */
125 #define CHANGE_ENDIANNESS   0x80
126 
127 /*
128  *  p_2_p watermark_level description
129  *	Bits		Name			Description
130  *	0-7		Lower WML		Lower watermark level
131  *	8		PS			1: Pad Swallowing
132  *						0: No Pad Swallowing
133  *	9		PA			1: Pad Adding
134  *						0: No Pad Adding
135  *	10		SPDIF			If this bit is set both source
136  *						and destination are on SPBA
137  *	11		Source Bit(SP)		1: Source on SPBA
138  *						0: Source on AIPS
139  *	12		Destination Bit(DP)	1: Destination on SPBA
140  *						0: Destination on AIPS
141  *	13-15		---------		MUST BE 0
142  *	16-23		Higher WML		HWML
143  *	24-27		N			Total number of samples after
144  *						which Pad adding/Swallowing
145  *						must be done. It must be odd.
146  *	28		Lower WML Event(LWE)	SDMA events reg to check for
147  *						LWML event mask
148  *						0: LWE in EVENTS register
149  *						1: LWE in EVENTS2 register
150  *	29		Higher WML Event(HWE)	SDMA events reg to check for
151  *						HWML event mask
152  *						0: HWE in EVENTS register
153  *						1: HWE in EVENTS2 register
154  *	30		---------		MUST BE 0
155  *	31		CONT			1: Amount of samples to be
156  *						transferred is unknown and
157  *						script will keep on
158  *						transferring samples as long as
159  *						both events are detected and
160  *						script must be manually stopped
161  *						by the application
162  *						0: The amount of samples to be
163  *						transferred is equal to the
164  *						count field of mode word
165  */
166 #define SDMA_WATERMARK_LEVEL_LWML	0xFF
167 #define SDMA_WATERMARK_LEVEL_PS		BIT(8)
168 #define SDMA_WATERMARK_LEVEL_PA		BIT(9)
169 #define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
170 #define SDMA_WATERMARK_LEVEL_SP		BIT(11)
171 #define SDMA_WATERMARK_LEVEL_DP		BIT(12)
172 #define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
173 #define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
174 #define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
175 #define SDMA_WATERMARK_LEVEL_CONT	BIT(31)
176 
177 #define SDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
178 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
179 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
180 
181 #define SDMA_DMA_DIRECTIONS	(BIT(DMA_DEV_TO_MEM) | \
182 				 BIT(DMA_MEM_TO_DEV) | \
183 				 BIT(DMA_DEV_TO_DEV))
184 
185 #define SDMA_WATERMARK_LEVEL_N_FIFOS	GENMASK(15, 12)
186 #define SDMA_WATERMARK_LEVEL_SW_DONE	BIT(23)
187 
188 #define SDMA_DONE0_CONFIG_DONE_SEL	BIT(7)
189 #define SDMA_DONE0_CONFIG_DONE_DIS	BIT(6)
190 
191 /**
192  * struct sdma_script_start_addrs - SDMA script start pointers
193  *
194  * start addresses of the different functions in the physical
195  * address space of the SDMA engine.
196  */
197 struct sdma_script_start_addrs {
198 	s32 ap_2_ap_addr;
199 	s32 ap_2_bp_addr;
200 	s32 ap_2_ap_fixed_addr;
201 	s32 bp_2_ap_addr;
202 	s32 loopback_on_dsp_side_addr;
203 	s32 mcu_interrupt_only_addr;
204 	s32 firi_2_per_addr;
205 	s32 firi_2_mcu_addr;
206 	s32 per_2_firi_addr;
207 	s32 mcu_2_firi_addr;
208 	s32 uart_2_per_addr;
209 	s32 uart_2_mcu_addr;
210 	s32 per_2_app_addr;
211 	s32 mcu_2_app_addr;
212 	s32 per_2_per_addr;
213 	s32 uartsh_2_per_addr;
214 	s32 uartsh_2_mcu_addr;
215 	s32 per_2_shp_addr;
216 	s32 mcu_2_shp_addr;
217 	s32 ata_2_mcu_addr;
218 	s32 mcu_2_ata_addr;
219 	s32 app_2_per_addr;
220 	s32 app_2_mcu_addr;
221 	s32 shp_2_per_addr;
222 	s32 shp_2_mcu_addr;
223 	s32 mshc_2_mcu_addr;
224 	s32 mcu_2_mshc_addr;
225 	s32 spdif_2_mcu_addr;
226 	s32 mcu_2_spdif_addr;
227 	s32 asrc_2_mcu_addr;
228 	s32 ext_mem_2_ipu_addr;
229 	s32 descrambler_addr;
230 	s32 dptc_dvfs_addr;
231 	s32 utra_addr;
232 	s32 ram_code_start_addr;
233 	/* End of v1 array */
234 	s32 mcu_2_ssish_addr;
235 	s32 ssish_2_mcu_addr;
236 	s32 hdmi_dma_addr;
237 	/* End of v2 array */
238 	s32 zcanfd_2_mcu_addr;
239 	s32 zqspi_2_mcu_addr;
240 	s32 mcu_2_ecspi_addr;
241 	s32 mcu_2_sai_addr;
242 	s32 sai_2_mcu_addr;
243 	s32 uart_2_mcu_rom_addr;
244 	s32 uartsh_2_mcu_rom_addr;
245 	/* End of v3 array */
246 	s32 mcu_2_zqspi_addr;
247 	/* End of v4 array */
248 };
249 
250 /*
251  * Mode/Count of data node descriptors - IPCv2
252  */
253 struct sdma_mode_count {
254 #define SDMA_BD_MAX_CNT	0xffff
255 	u32 count   : 16; /* size of the buffer pointed by this BD */
256 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
257 	u32 command :  8; /* command mostly used for channel 0 */
258 };
259 
260 /*
261  * Buffer descriptor
262  */
263 struct sdma_buffer_descriptor {
264 	struct sdma_mode_count  mode;
265 	u32 buffer_addr;	/* address of the buffer described */
266 	u32 ext_buffer_addr;	/* extended buffer address */
267 } __attribute__ ((packed));
268 
269 /**
270  * struct sdma_channel_control - Channel control Block
271  *
272  * @current_bd_ptr:	current buffer descriptor processed
273  * @base_bd_ptr:	first element of buffer descriptor array
274  * @unused:		padding. The SDMA engine expects an array of 128 byte
275  *			control blocks
276  */
277 struct sdma_channel_control {
278 	u32 current_bd_ptr;
279 	u32 base_bd_ptr;
280 	u32 unused[2];
281 } __attribute__ ((packed));
282 
283 /**
284  * struct sdma_state_registers - SDMA context for a channel
285  *
286  * @pc:		program counter
287  * @unused1:	unused
288  * @t:		test bit: status of arithmetic & test instruction
289  * @rpc:	return program counter
290  * @unused0:	unused
291  * @sf:		source fault while loading data
292  * @spc:	loop start program counter
293  * @unused2:	unused
294  * @df:		destination fault while storing data
295  * @epc:	loop end program counter
296  * @lm:		loop mode
297  */
298 struct sdma_state_registers {
299 	u32 pc     :14;
300 	u32 unused1: 1;
301 	u32 t      : 1;
302 	u32 rpc    :14;
303 	u32 unused0: 1;
304 	u32 sf     : 1;
305 	u32 spc    :14;
306 	u32 unused2: 1;
307 	u32 df     : 1;
308 	u32 epc    :14;
309 	u32 lm     : 2;
310 } __attribute__ ((packed));
311 
312 /**
313  * struct sdma_context_data - sdma context specific to a channel
314  *
315  * @channel_state:	channel state bits
316  * @gReg:		general registers
317  * @mda:		burst dma destination address register
318  * @msa:		burst dma source address register
319  * @ms:			burst dma status register
320  * @md:			burst dma data register
321  * @pda:		peripheral dma destination address register
322  * @psa:		peripheral dma source address register
323  * @ps:			peripheral dma status register
324  * @pd:			peripheral dma data register
325  * @ca:			CRC polynomial register
326  * @cs:			CRC accumulator register
327  * @dda:		dedicated core destination address register
328  * @dsa:		dedicated core source address register
329  * @ds:			dedicated core status register
330  * @dd:			dedicated core data register
331  * @scratch0:		1st word of dedicated ram for context switch
332  * @scratch1:		2nd word of dedicated ram for context switch
333  * @scratch2:		3rd word of dedicated ram for context switch
334  * @scratch3:		4th word of dedicated ram for context switch
335  * @scratch4:		5th word of dedicated ram for context switch
336  * @scratch5:		6th word of dedicated ram for context switch
337  * @scratch6:		7th word of dedicated ram for context switch
338  * @scratch7:		8th word of dedicated ram for context switch
339  */
340 struct sdma_context_data {
341 	struct sdma_state_registers  channel_state;
342 	u32  gReg[8];
343 	u32  mda;
344 	u32  msa;
345 	u32  ms;
346 	u32  md;
347 	u32  pda;
348 	u32  psa;
349 	u32  ps;
350 	u32  pd;
351 	u32  ca;
352 	u32  cs;
353 	u32  dda;
354 	u32  dsa;
355 	u32  ds;
356 	u32  dd;
357 	u32  scratch0;
358 	u32  scratch1;
359 	u32  scratch2;
360 	u32  scratch3;
361 	u32  scratch4;
362 	u32  scratch5;
363 	u32  scratch6;
364 	u32  scratch7;
365 } __attribute__ ((packed));
366 
367 
368 struct sdma_engine;
369 
370 /**
371  * struct sdma_desc - descriptor structor for one transfer
372  * @vd:			descriptor for virt dma
373  * @num_bd:		number of descriptors currently handling
374  * @bd_phys:		physical address of bd
375  * @buf_tail:		ID of the buffer that was processed
376  * @buf_ptail:		ID of the previous buffer that was processed
377  * @period_len:		period length, used in cyclic.
378  * @chn_real_count:	the real count updated from bd->mode.count
379  * @chn_count:		the transfer count set
380  * @sdmac:		sdma_channel pointer
381  * @bd:			pointer of allocate bd
382  */
383 struct sdma_desc {
384 	struct virt_dma_desc	vd;
385 	unsigned int		num_bd;
386 	dma_addr_t		bd_phys;
387 	unsigned int		buf_tail;
388 	unsigned int		buf_ptail;
389 	unsigned int		period_len;
390 	unsigned int		chn_real_count;
391 	unsigned int		chn_count;
392 	struct sdma_channel	*sdmac;
393 	struct sdma_buffer_descriptor *bd;
394 };
395 
396 /**
397  * struct sdma_channel - housekeeping for a SDMA channel
398  *
399  * @vc:			virt_dma base structure
400  * @desc:		sdma description including vd and other special member
401  * @sdma:		pointer to the SDMA engine for this channel
402  * @channel:		the channel number, matches dmaengine chan_id + 1
403  * @direction:		transfer type. Needed for setting SDMA script
404  * @slave_config:	Slave configuration
405  * @peripheral_type:	Peripheral type. Needed for setting SDMA script
406  * @event_id0:		aka dma request line
407  * @event_id1:		for channels that use 2 events
408  * @word_size:		peripheral access size
409  * @pc_from_device:	script address for those device_2_memory
410  * @pc_to_device:	script address for those memory_2_device
411  * @device_to_device:	script address for those device_2_device
412  * @pc_to_pc:		script address for those memory_2_memory
413  * @flags:		loop mode or not
414  * @per_address:	peripheral source or destination address in common case
415  *                      destination address in p_2_p case
416  * @per_address2:	peripheral source address in p_2_p case
417  * @event_mask:		event mask used in p_2_p script
418  * @watermark_level:	value for gReg[7], some script will extend it from
419  *			basic watermark such as p_2_p
420  * @shp_addr:		value for gReg[6]
421  * @per_addr:		value for gReg[2]
422  * @status:		status of dma channel
423  * @context_loaded:	ensure context is only loaded once
424  * @data:		specific sdma interface structure
425  * @bd_pool:		dma_pool for bd
426  * @terminate_worker:	used to call back into terminate work function
427  */
428 struct sdma_channel {
429 	struct virt_dma_chan		vc;
430 	struct sdma_desc		*desc;
431 	struct sdma_engine		*sdma;
432 	unsigned int			channel;
433 	enum dma_transfer_direction		direction;
434 	struct dma_slave_config		slave_config;
435 	enum sdma_peripheral_type	peripheral_type;
436 	unsigned int			event_id0;
437 	unsigned int			event_id1;
438 	enum dma_slave_buswidth		word_size;
439 	unsigned int			pc_from_device, pc_to_device;
440 	unsigned int			device_to_device;
441 	unsigned int                    pc_to_pc;
442 	unsigned long			flags;
443 	dma_addr_t			per_address, per_address2;
444 	unsigned long			event_mask[2];
445 	unsigned long			watermark_level;
446 	u32				shp_addr, per_addr;
447 	enum dma_status			status;
448 	struct imx_dma_data		data;
449 	struct work_struct		terminate_worker;
450 	struct list_head                terminated;
451 	bool				is_ram_script;
452 	unsigned int			n_fifos_src;
453 	unsigned int			n_fifos_dst;
454 	bool				sw_done;
455 };
456 
457 #define IMX_DMA_SG_LOOP		BIT(0)
458 
459 #define MAX_DMA_CHANNELS 32
460 #define MXC_SDMA_DEFAULT_PRIORITY 1
461 #define MXC_SDMA_MIN_PRIORITY 1
462 #define MXC_SDMA_MAX_PRIORITY 7
463 
464 #define SDMA_FIRMWARE_MAGIC 0x414d4453
465 
466 /**
467  * struct sdma_firmware_header - Layout of the firmware image
468  *
469  * @magic:		"SDMA"
470  * @version_major:	increased whenever layout of struct
471  *			sdma_script_start_addrs changes.
472  * @version_minor:	firmware minor version (for binary compatible changes)
473  * @script_addrs_start:	offset of struct sdma_script_start_addrs in this image
474  * @num_script_addrs:	Number of script addresses in this image
475  * @ram_code_start:	offset of SDMA ram image in this firmware image
476  * @ram_code_size:	size of SDMA ram image
477  * @script_addrs:	Stores the start address of the SDMA scripts
478  *			(in SDMA memory space)
479  */
480 struct sdma_firmware_header {
481 	u32	magic;
482 	u32	version_major;
483 	u32	version_minor;
484 	u32	script_addrs_start;
485 	u32	num_script_addrs;
486 	u32	ram_code_start;
487 	u32	ram_code_size;
488 };
489 
490 struct sdma_driver_data {
491 	int chnenbl0;
492 	int num_events;
493 	struct sdma_script_start_addrs	*script_addrs;
494 	bool check_ratio;
495 	/*
496 	 * ecspi ERR009165 fixed should be done in sdma script
497 	 * and it has been fixed in soc from i.mx6ul.
498 	 * please get more information from the below link:
499 	 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
500 	 */
501 	bool ecspi_fixed;
502 };
503 
504 struct sdma_engine {
505 	struct device			*dev;
506 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
507 	struct sdma_channel_control	*channel_control;
508 	void __iomem			*regs;
509 	struct sdma_context_data	*context;
510 	dma_addr_t			context_phys;
511 	struct dma_device		dma_device;
512 	struct clk			*clk_ipg;
513 	struct clk			*clk_ahb;
514 	spinlock_t			channel_0_lock;
515 	u32				script_number;
516 	struct sdma_script_start_addrs	*script_addrs;
517 	const struct sdma_driver_data	*drvdata;
518 	u32				spba_start_addr;
519 	u32				spba_end_addr;
520 	unsigned int			irq;
521 	dma_addr_t			bd0_phys;
522 	struct sdma_buffer_descriptor	*bd0;
523 	/* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
524 	bool				clk_ratio;
525 	bool                            fw_loaded;
526 };
527 
528 static int sdma_config_write(struct dma_chan *chan,
529 		       struct dma_slave_config *dmaengine_cfg,
530 		       enum dma_transfer_direction direction);
531 
532 static struct sdma_driver_data sdma_imx31 = {
533 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
534 	.num_events = 32,
535 };
536 
537 static struct sdma_script_start_addrs sdma_script_imx25 = {
538 	.ap_2_ap_addr = 729,
539 	.uart_2_mcu_addr = 904,
540 	.per_2_app_addr = 1255,
541 	.mcu_2_app_addr = 834,
542 	.uartsh_2_mcu_addr = 1120,
543 	.per_2_shp_addr = 1329,
544 	.mcu_2_shp_addr = 1048,
545 	.ata_2_mcu_addr = 1560,
546 	.mcu_2_ata_addr = 1479,
547 	.app_2_per_addr = 1189,
548 	.app_2_mcu_addr = 770,
549 	.shp_2_per_addr = 1407,
550 	.shp_2_mcu_addr = 979,
551 };
552 
553 static struct sdma_driver_data sdma_imx25 = {
554 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
555 	.num_events = 48,
556 	.script_addrs = &sdma_script_imx25,
557 };
558 
559 static struct sdma_driver_data sdma_imx35 = {
560 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
561 	.num_events = 48,
562 };
563 
564 static struct sdma_script_start_addrs sdma_script_imx51 = {
565 	.ap_2_ap_addr = 642,
566 	.uart_2_mcu_addr = 817,
567 	.mcu_2_app_addr = 747,
568 	.mcu_2_shp_addr = 961,
569 	.ata_2_mcu_addr = 1473,
570 	.mcu_2_ata_addr = 1392,
571 	.app_2_per_addr = 1033,
572 	.app_2_mcu_addr = 683,
573 	.shp_2_per_addr = 1251,
574 	.shp_2_mcu_addr = 892,
575 };
576 
577 static struct sdma_driver_data sdma_imx51 = {
578 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
579 	.num_events = 48,
580 	.script_addrs = &sdma_script_imx51,
581 };
582 
583 static struct sdma_script_start_addrs sdma_script_imx53 = {
584 	.ap_2_ap_addr = 642,
585 	.app_2_mcu_addr = 683,
586 	.mcu_2_app_addr = 747,
587 	.uart_2_mcu_addr = 817,
588 	.shp_2_mcu_addr = 891,
589 	.mcu_2_shp_addr = 960,
590 	.uartsh_2_mcu_addr = 1032,
591 	.spdif_2_mcu_addr = 1100,
592 	.mcu_2_spdif_addr = 1134,
593 	.firi_2_mcu_addr = 1193,
594 	.mcu_2_firi_addr = 1290,
595 };
596 
597 static struct sdma_driver_data sdma_imx53 = {
598 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
599 	.num_events = 48,
600 	.script_addrs = &sdma_script_imx53,
601 };
602 
603 static struct sdma_script_start_addrs sdma_script_imx6q = {
604 	.ap_2_ap_addr = 642,
605 	.uart_2_mcu_addr = 817,
606 	.mcu_2_app_addr = 747,
607 	.per_2_per_addr = 6331,
608 	.uartsh_2_mcu_addr = 1032,
609 	.mcu_2_shp_addr = 960,
610 	.app_2_mcu_addr = 683,
611 	.shp_2_mcu_addr = 891,
612 	.spdif_2_mcu_addr = 1100,
613 	.mcu_2_spdif_addr = 1134,
614 };
615 
616 static struct sdma_driver_data sdma_imx6q = {
617 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
618 	.num_events = 48,
619 	.script_addrs = &sdma_script_imx6q,
620 };
621 
622 static struct sdma_driver_data sdma_imx6ul = {
623 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
624 	.num_events = 48,
625 	.script_addrs = &sdma_script_imx6q,
626 	.ecspi_fixed = true,
627 };
628 
629 static struct sdma_script_start_addrs sdma_script_imx7d = {
630 	.ap_2_ap_addr = 644,
631 	.uart_2_mcu_addr = 819,
632 	.mcu_2_app_addr = 749,
633 	.uartsh_2_mcu_addr = 1034,
634 	.mcu_2_shp_addr = 962,
635 	.app_2_mcu_addr = 685,
636 	.shp_2_mcu_addr = 893,
637 	.spdif_2_mcu_addr = 1102,
638 	.mcu_2_spdif_addr = 1136,
639 };
640 
641 static struct sdma_driver_data sdma_imx7d = {
642 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
643 	.num_events = 48,
644 	.script_addrs = &sdma_script_imx7d,
645 };
646 
647 static struct sdma_driver_data sdma_imx8mq = {
648 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
649 	.num_events = 48,
650 	.script_addrs = &sdma_script_imx7d,
651 	.check_ratio = 1,
652 };
653 
654 static const struct of_device_id sdma_dt_ids[] = {
655 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
656 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
657 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
658 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
659 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
660 	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
661 	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
662 	{ .compatible = "fsl,imx6ul-sdma", .data = &sdma_imx6ul, },
663 	{ .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
664 	{ /* sentinel */ }
665 };
666 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
667 
668 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
669 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
670 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
671 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
672 
673 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
674 {
675 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
676 	return chnenbl0 + event * 4;
677 }
678 
679 static int sdma_config_ownership(struct sdma_channel *sdmac,
680 		bool event_override, bool mcu_override, bool dsp_override)
681 {
682 	struct sdma_engine *sdma = sdmac->sdma;
683 	int channel = sdmac->channel;
684 	unsigned long evt, mcu, dsp;
685 
686 	if (event_override && mcu_override && dsp_override)
687 		return -EINVAL;
688 
689 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
690 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
691 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
692 
693 	if (dsp_override)
694 		__clear_bit(channel, &dsp);
695 	else
696 		__set_bit(channel, &dsp);
697 
698 	if (event_override)
699 		__clear_bit(channel, &evt);
700 	else
701 		__set_bit(channel, &evt);
702 
703 	if (mcu_override)
704 		__clear_bit(channel, &mcu);
705 	else
706 		__set_bit(channel, &mcu);
707 
708 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
709 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
710 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
711 
712 	return 0;
713 }
714 
715 static int is_sdma_channel_enabled(struct sdma_engine *sdma, int channel)
716 {
717 	return !!(readl(sdma->regs + SDMA_H_STATSTOP) & BIT(channel));
718 }
719 
720 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
721 {
722 	writel(BIT(channel), sdma->regs + SDMA_H_START);
723 }
724 
725 /*
726  * sdma_run_channel0 - run a channel and wait till it's done
727  */
728 static int sdma_run_channel0(struct sdma_engine *sdma)
729 {
730 	int ret;
731 	u32 reg;
732 
733 	sdma_enable_channel(sdma, 0);
734 
735 	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
736 						reg, !(reg & 1), 1, 500);
737 	if (ret)
738 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
739 
740 	/* Set bits of CONFIG register with dynamic context switching */
741 	reg = readl(sdma->regs + SDMA_H_CONFIG);
742 	if ((reg & SDMA_H_CONFIG_CSM) == 0) {
743 		reg |= SDMA_H_CONFIG_CSM;
744 		writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
745 	}
746 
747 	return ret;
748 }
749 
750 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
751 		u32 address)
752 {
753 	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
754 	void *buf_virt;
755 	dma_addr_t buf_phys;
756 	int ret;
757 	unsigned long flags;
758 
759 	buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
760 	if (!buf_virt)
761 		return -ENOMEM;
762 
763 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
764 
765 	bd0->mode.command = C0_SETPM;
766 	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
767 	bd0->mode.count = size / 2;
768 	bd0->buffer_addr = buf_phys;
769 	bd0->ext_buffer_addr = address;
770 
771 	memcpy(buf_virt, buf, size);
772 
773 	ret = sdma_run_channel0(sdma);
774 
775 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
776 
777 	dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
778 
779 	return ret;
780 }
781 
782 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
783 {
784 	struct sdma_engine *sdma = sdmac->sdma;
785 	int channel = sdmac->channel;
786 	unsigned long val;
787 	u32 chnenbl = chnenbl_ofs(sdma, event);
788 
789 	val = readl_relaxed(sdma->regs + chnenbl);
790 	__set_bit(channel, &val);
791 	writel_relaxed(val, sdma->regs + chnenbl);
792 
793 	/* Set SDMA_DONEx_CONFIG is sw_done enabled */
794 	if (sdmac->sw_done) {
795 		val = readl_relaxed(sdma->regs + SDMA_DONE0_CONFIG);
796 		val |= SDMA_DONE0_CONFIG_DONE_SEL;
797 		val &= ~SDMA_DONE0_CONFIG_DONE_DIS;
798 		writel_relaxed(val, sdma->regs + SDMA_DONE0_CONFIG);
799 	}
800 }
801 
802 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
803 {
804 	struct sdma_engine *sdma = sdmac->sdma;
805 	int channel = sdmac->channel;
806 	u32 chnenbl = chnenbl_ofs(sdma, event);
807 	unsigned long val;
808 
809 	val = readl_relaxed(sdma->regs + chnenbl);
810 	__clear_bit(channel, &val);
811 	writel_relaxed(val, sdma->regs + chnenbl);
812 }
813 
814 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
815 {
816 	return container_of(t, struct sdma_desc, vd.tx);
817 }
818 
819 static void sdma_start_desc(struct sdma_channel *sdmac)
820 {
821 	struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
822 	struct sdma_desc *desc;
823 	struct sdma_engine *sdma = sdmac->sdma;
824 	int channel = sdmac->channel;
825 
826 	if (!vd) {
827 		sdmac->desc = NULL;
828 		return;
829 	}
830 	sdmac->desc = desc = to_sdma_desc(&vd->tx);
831 
832 	list_del(&vd->node);
833 
834 	sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
835 	sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
836 	sdma_enable_channel(sdma, sdmac->channel);
837 }
838 
839 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
840 {
841 	struct sdma_buffer_descriptor *bd;
842 	int error = 0;
843 	enum dma_status	old_status = sdmac->status;
844 
845 	/*
846 	 * loop mode. Iterate over descriptors, re-setup them and
847 	 * call callback function.
848 	 */
849 	while (sdmac->desc) {
850 		struct sdma_desc *desc = sdmac->desc;
851 
852 		bd = &desc->bd[desc->buf_tail];
853 
854 		if (bd->mode.status & BD_DONE)
855 			break;
856 
857 		if (bd->mode.status & BD_RROR) {
858 			bd->mode.status &= ~BD_RROR;
859 			sdmac->status = DMA_ERROR;
860 			error = -EIO;
861 		}
862 
863 	       /*
864 		* We use bd->mode.count to calculate the residue, since contains
865 		* the number of bytes present in the current buffer descriptor.
866 		*/
867 
868 		desc->chn_real_count = bd->mode.count;
869 		bd->mode.count = desc->period_len;
870 		desc->buf_ptail = desc->buf_tail;
871 		desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
872 
873 		/*
874 		 * The callback is called from the interrupt context in order
875 		 * to reduce latency and to avoid the risk of altering the
876 		 * SDMA transaction status by the time the client tasklet is
877 		 * executed.
878 		 */
879 		spin_unlock(&sdmac->vc.lock);
880 		dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
881 		spin_lock(&sdmac->vc.lock);
882 
883 		/* Assign buffer ownership to SDMA */
884 		bd->mode.status |= BD_DONE;
885 
886 		if (error)
887 			sdmac->status = old_status;
888 	}
889 
890 	/*
891 	 * SDMA stops cyclic channel when DMA request triggers a channel and no SDMA
892 	 * owned buffer is available (i.e. BD_DONE was set too late).
893 	 */
894 	if (!is_sdma_channel_enabled(sdmac->sdma, sdmac->channel)) {
895 		dev_warn(sdmac->sdma->dev, "restart cyclic channel %d\n", sdmac->channel);
896 		sdma_enable_channel(sdmac->sdma, sdmac->channel);
897 	}
898 }
899 
900 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
901 {
902 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
903 	struct sdma_buffer_descriptor *bd;
904 	int i, error = 0;
905 
906 	sdmac->desc->chn_real_count = 0;
907 	/*
908 	 * non loop mode. Iterate over all descriptors, collect
909 	 * errors and call callback function
910 	 */
911 	for (i = 0; i < sdmac->desc->num_bd; i++) {
912 		bd = &sdmac->desc->bd[i];
913 
914 		if (bd->mode.status & (BD_DONE | BD_RROR))
915 			error = -EIO;
916 		sdmac->desc->chn_real_count += bd->mode.count;
917 	}
918 
919 	if (error)
920 		sdmac->status = DMA_ERROR;
921 	else
922 		sdmac->status = DMA_COMPLETE;
923 }
924 
925 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
926 {
927 	struct sdma_engine *sdma = dev_id;
928 	unsigned long stat;
929 
930 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
931 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
932 	/* channel 0 is special and not handled here, see run_channel0() */
933 	stat &= ~1;
934 
935 	while (stat) {
936 		int channel = fls(stat) - 1;
937 		struct sdma_channel *sdmac = &sdma->channel[channel];
938 		struct sdma_desc *desc;
939 
940 		spin_lock(&sdmac->vc.lock);
941 		desc = sdmac->desc;
942 		if (desc) {
943 			if (sdmac->flags & IMX_DMA_SG_LOOP) {
944 				sdma_update_channel_loop(sdmac);
945 			} else {
946 				mxc_sdma_handle_channel_normal(sdmac);
947 				vchan_cookie_complete(&desc->vd);
948 				sdma_start_desc(sdmac);
949 			}
950 		}
951 
952 		spin_unlock(&sdmac->vc.lock);
953 		__clear_bit(channel, &stat);
954 	}
955 
956 	return IRQ_HANDLED;
957 }
958 
959 /*
960  * sets the pc of SDMA script according to the peripheral type
961  */
962 static int sdma_get_pc(struct sdma_channel *sdmac,
963 		enum sdma_peripheral_type peripheral_type)
964 {
965 	struct sdma_engine *sdma = sdmac->sdma;
966 	int per_2_emi = 0, emi_2_per = 0;
967 	/*
968 	 * These are needed once we start to support transfers between
969 	 * two peripherals or memory-to-memory transfers
970 	 */
971 	int per_2_per = 0, emi_2_emi = 0;
972 
973 	sdmac->pc_from_device = 0;
974 	sdmac->pc_to_device = 0;
975 	sdmac->device_to_device = 0;
976 	sdmac->pc_to_pc = 0;
977 	sdmac->is_ram_script = false;
978 
979 	switch (peripheral_type) {
980 	case IMX_DMATYPE_MEMORY:
981 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
982 		break;
983 	case IMX_DMATYPE_DSP:
984 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
985 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
986 		break;
987 	case IMX_DMATYPE_FIRI:
988 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
989 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
990 		break;
991 	case IMX_DMATYPE_UART:
992 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
993 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
994 		break;
995 	case IMX_DMATYPE_UART_SP:
996 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
997 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
998 		break;
999 	case IMX_DMATYPE_ATA:
1000 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
1001 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
1002 		break;
1003 	case IMX_DMATYPE_CSPI:
1004 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1005 
1006 		/* Use rom script mcu_2_app if ERR009165 fixed */
1007 		if (sdmac->sdma->drvdata->ecspi_fixed) {
1008 			emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1009 		} else {
1010 			emi_2_per = sdma->script_addrs->mcu_2_ecspi_addr;
1011 			sdmac->is_ram_script = true;
1012 		}
1013 
1014 		break;
1015 	case IMX_DMATYPE_EXT:
1016 	case IMX_DMATYPE_SSI:
1017 	case IMX_DMATYPE_SAI:
1018 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1019 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1020 		break;
1021 	case IMX_DMATYPE_SSI_DUAL:
1022 		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
1023 		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
1024 		sdmac->is_ram_script = true;
1025 		break;
1026 	case IMX_DMATYPE_SSI_SP:
1027 	case IMX_DMATYPE_MMC:
1028 	case IMX_DMATYPE_SDHC:
1029 	case IMX_DMATYPE_CSPI_SP:
1030 	case IMX_DMATYPE_ESAI:
1031 	case IMX_DMATYPE_MSHC_SP:
1032 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1033 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1034 		break;
1035 	case IMX_DMATYPE_ASRC:
1036 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
1037 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
1038 		per_2_per = sdma->script_addrs->per_2_per_addr;
1039 		sdmac->is_ram_script = true;
1040 		break;
1041 	case IMX_DMATYPE_ASRC_SP:
1042 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1043 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1044 		per_2_per = sdma->script_addrs->per_2_per_addr;
1045 		break;
1046 	case IMX_DMATYPE_MSHC:
1047 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
1048 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
1049 		break;
1050 	case IMX_DMATYPE_CCM:
1051 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
1052 		break;
1053 	case IMX_DMATYPE_SPDIF:
1054 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
1055 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
1056 		break;
1057 	case IMX_DMATYPE_IPU_MEMORY:
1058 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
1059 		break;
1060 	case IMX_DMATYPE_MULTI_SAI:
1061 		per_2_emi = sdma->script_addrs->sai_2_mcu_addr;
1062 		emi_2_per = sdma->script_addrs->mcu_2_sai_addr;
1063 		break;
1064 	default:
1065 		dev_err(sdma->dev, "Unsupported transfer type %d\n",
1066 			peripheral_type);
1067 		return -EINVAL;
1068 	}
1069 
1070 	sdmac->pc_from_device = per_2_emi;
1071 	sdmac->pc_to_device = emi_2_per;
1072 	sdmac->device_to_device = per_2_per;
1073 	sdmac->pc_to_pc = emi_2_emi;
1074 
1075 	return 0;
1076 }
1077 
1078 static int sdma_load_context(struct sdma_channel *sdmac)
1079 {
1080 	struct sdma_engine *sdma = sdmac->sdma;
1081 	int channel = sdmac->channel;
1082 	int load_address;
1083 	struct sdma_context_data *context = sdma->context;
1084 	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
1085 	int ret;
1086 	unsigned long flags;
1087 
1088 	if (sdmac->direction == DMA_DEV_TO_MEM)
1089 		load_address = sdmac->pc_from_device;
1090 	else if (sdmac->direction == DMA_DEV_TO_DEV)
1091 		load_address = sdmac->device_to_device;
1092 	else if (sdmac->direction == DMA_MEM_TO_MEM)
1093 		load_address = sdmac->pc_to_pc;
1094 	else
1095 		load_address = sdmac->pc_to_device;
1096 
1097 	if (load_address < 0)
1098 		return load_address;
1099 
1100 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1101 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1102 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1103 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1104 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1105 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1106 
1107 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
1108 
1109 	memset(context, 0, sizeof(*context));
1110 	context->channel_state.pc = load_address;
1111 
1112 	/* Send by context the event mask,base address for peripheral
1113 	 * and watermark level
1114 	 */
1115 	context->gReg[0] = sdmac->event_mask[1];
1116 	context->gReg[1] = sdmac->event_mask[0];
1117 	context->gReg[2] = sdmac->per_addr;
1118 	context->gReg[6] = sdmac->shp_addr;
1119 	context->gReg[7] = sdmac->watermark_level;
1120 
1121 	bd0->mode.command = C0_SETDM;
1122 	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1123 	bd0->mode.count = sizeof(*context) / 4;
1124 	bd0->buffer_addr = sdma->context_phys;
1125 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1126 	ret = sdma_run_channel0(sdma);
1127 
1128 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1129 
1130 	return ret;
1131 }
1132 
1133 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1134 {
1135 	return container_of(chan, struct sdma_channel, vc.chan);
1136 }
1137 
1138 static int sdma_disable_channel(struct dma_chan *chan)
1139 {
1140 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1141 	struct sdma_engine *sdma = sdmac->sdma;
1142 	int channel = sdmac->channel;
1143 
1144 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1145 	sdmac->status = DMA_ERROR;
1146 
1147 	return 0;
1148 }
1149 static void sdma_channel_terminate_work(struct work_struct *work)
1150 {
1151 	struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1152 						  terminate_worker);
1153 	/*
1154 	 * According to NXP R&D team a delay of one BD SDMA cost time
1155 	 * (maximum is 1ms) should be added after disable of the channel
1156 	 * bit, to ensure SDMA core has really been stopped after SDMA
1157 	 * clients call .device_terminate_all.
1158 	 */
1159 	usleep_range(1000, 2000);
1160 
1161 	vchan_dma_desc_free_list(&sdmac->vc, &sdmac->terminated);
1162 }
1163 
1164 static int sdma_terminate_all(struct dma_chan *chan)
1165 {
1166 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1167 	unsigned long flags;
1168 
1169 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1170 
1171 	sdma_disable_channel(chan);
1172 
1173 	if (sdmac->desc) {
1174 		vchan_terminate_vdesc(&sdmac->desc->vd);
1175 		/*
1176 		 * move out current descriptor into terminated list so that
1177 		 * it could be free in sdma_channel_terminate_work alone
1178 		 * later without potential involving next descriptor raised
1179 		 * up before the last descriptor terminated.
1180 		 */
1181 		vchan_get_all_descriptors(&sdmac->vc, &sdmac->terminated);
1182 		sdmac->desc = NULL;
1183 		schedule_work(&sdmac->terminate_worker);
1184 	}
1185 
1186 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1187 
1188 	return 0;
1189 }
1190 
1191 static void sdma_channel_synchronize(struct dma_chan *chan)
1192 {
1193 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1194 
1195 	vchan_synchronize(&sdmac->vc);
1196 
1197 	flush_work(&sdmac->terminate_worker);
1198 }
1199 
1200 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1201 {
1202 	struct sdma_engine *sdma = sdmac->sdma;
1203 
1204 	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1205 	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1206 
1207 	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1208 	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1209 
1210 	if (sdmac->event_id0 > 31)
1211 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1212 
1213 	if (sdmac->event_id1 > 31)
1214 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1215 
1216 	/*
1217 	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1218 	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1219 	 * r0(event_mask[1]) and r1(event_mask[0]).
1220 	 */
1221 	if (lwml > hwml) {
1222 		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1223 						SDMA_WATERMARK_LEVEL_HWML);
1224 		sdmac->watermark_level |= hwml;
1225 		sdmac->watermark_level |= lwml << 16;
1226 		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1227 	}
1228 
1229 	if (sdmac->per_address2 >= sdma->spba_start_addr &&
1230 			sdmac->per_address2 <= sdma->spba_end_addr)
1231 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1232 
1233 	if (sdmac->per_address >= sdma->spba_start_addr &&
1234 			sdmac->per_address <= sdma->spba_end_addr)
1235 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1236 
1237 	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1238 }
1239 
1240 static void sdma_set_watermarklevel_for_sais(struct sdma_channel *sdmac)
1241 {
1242 	unsigned int n_fifos;
1243 
1244 	if (sdmac->sw_done)
1245 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SW_DONE;
1246 
1247 	if (sdmac->direction == DMA_DEV_TO_MEM)
1248 		n_fifos = sdmac->n_fifos_src;
1249 	else
1250 		n_fifos = sdmac->n_fifos_dst;
1251 
1252 	sdmac->watermark_level |=
1253 			FIELD_PREP(SDMA_WATERMARK_LEVEL_N_FIFOS, n_fifos);
1254 }
1255 
1256 static int sdma_config_channel(struct dma_chan *chan)
1257 {
1258 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1259 	int ret;
1260 
1261 	sdma_disable_channel(chan);
1262 
1263 	sdmac->event_mask[0] = 0;
1264 	sdmac->event_mask[1] = 0;
1265 	sdmac->shp_addr = 0;
1266 	sdmac->per_addr = 0;
1267 
1268 	switch (sdmac->peripheral_type) {
1269 	case IMX_DMATYPE_DSP:
1270 		sdma_config_ownership(sdmac, false, true, true);
1271 		break;
1272 	case IMX_DMATYPE_MEMORY:
1273 		sdma_config_ownership(sdmac, false, true, false);
1274 		break;
1275 	default:
1276 		sdma_config_ownership(sdmac, true, true, false);
1277 		break;
1278 	}
1279 
1280 	ret = sdma_get_pc(sdmac, sdmac->peripheral_type);
1281 	if (ret)
1282 		return ret;
1283 
1284 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1285 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1286 		/* Handle multiple event channels differently */
1287 		if (sdmac->event_id1) {
1288 			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1289 			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1290 				sdma_set_watermarklevel_for_p2p(sdmac);
1291 		} else {
1292 			if (sdmac->peripheral_type ==
1293 					IMX_DMATYPE_MULTI_SAI)
1294 				sdma_set_watermarklevel_for_sais(sdmac);
1295 
1296 			__set_bit(sdmac->event_id0, sdmac->event_mask);
1297 		}
1298 
1299 		/* Address */
1300 		sdmac->shp_addr = sdmac->per_address;
1301 		sdmac->per_addr = sdmac->per_address2;
1302 	} else {
1303 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1304 	}
1305 
1306 	return 0;
1307 }
1308 
1309 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1310 				     unsigned int priority)
1311 {
1312 	struct sdma_engine *sdma = sdmac->sdma;
1313 	int channel = sdmac->channel;
1314 
1315 	if (priority < MXC_SDMA_MIN_PRIORITY
1316 	    || priority > MXC_SDMA_MAX_PRIORITY) {
1317 		return -EINVAL;
1318 	}
1319 
1320 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1321 
1322 	return 0;
1323 }
1324 
1325 static int sdma_request_channel0(struct sdma_engine *sdma)
1326 {
1327 	int ret = -EBUSY;
1328 
1329 	sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1330 				       GFP_NOWAIT);
1331 	if (!sdma->bd0) {
1332 		ret = -ENOMEM;
1333 		goto out;
1334 	}
1335 
1336 	sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1337 	sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1338 
1339 	sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1340 	return 0;
1341 out:
1342 
1343 	return ret;
1344 }
1345 
1346 
1347 static int sdma_alloc_bd(struct sdma_desc *desc)
1348 {
1349 	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1350 	int ret = 0;
1351 
1352 	desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1353 				      &desc->bd_phys, GFP_NOWAIT);
1354 	if (!desc->bd) {
1355 		ret = -ENOMEM;
1356 		goto out;
1357 	}
1358 out:
1359 	return ret;
1360 }
1361 
1362 static void sdma_free_bd(struct sdma_desc *desc)
1363 {
1364 	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1365 
1366 	dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1367 			  desc->bd_phys);
1368 }
1369 
1370 static void sdma_desc_free(struct virt_dma_desc *vd)
1371 {
1372 	struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1373 
1374 	sdma_free_bd(desc);
1375 	kfree(desc);
1376 }
1377 
1378 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1379 {
1380 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1381 	struct imx_dma_data *data = chan->private;
1382 	struct imx_dma_data mem_data;
1383 	int prio, ret;
1384 
1385 	/*
1386 	 * MEMCPY may never setup chan->private by filter function such as
1387 	 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1388 	 * Please note in any other slave case, you have to setup chan->private
1389 	 * with 'struct imx_dma_data' in your own filter function if you want to
1390 	 * request dma channel by dma_request_channel() rather than
1391 	 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1392 	 * to warn you to correct your filter function.
1393 	 */
1394 	if (!data) {
1395 		dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1396 		mem_data.priority = 2;
1397 		mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1398 		mem_data.dma_request = 0;
1399 		mem_data.dma_request2 = 0;
1400 		data = &mem_data;
1401 
1402 		ret = sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1403 		if (ret)
1404 			return ret;
1405 	}
1406 
1407 	switch (data->priority) {
1408 	case DMA_PRIO_HIGH:
1409 		prio = 3;
1410 		break;
1411 	case DMA_PRIO_MEDIUM:
1412 		prio = 2;
1413 		break;
1414 	case DMA_PRIO_LOW:
1415 	default:
1416 		prio = 1;
1417 		break;
1418 	}
1419 
1420 	sdmac->peripheral_type = data->peripheral_type;
1421 	sdmac->event_id0 = data->dma_request;
1422 	sdmac->event_id1 = data->dma_request2;
1423 
1424 	ret = clk_enable(sdmac->sdma->clk_ipg);
1425 	if (ret)
1426 		return ret;
1427 	ret = clk_enable(sdmac->sdma->clk_ahb);
1428 	if (ret)
1429 		goto disable_clk_ipg;
1430 
1431 	ret = sdma_set_channel_priority(sdmac, prio);
1432 	if (ret)
1433 		goto disable_clk_ahb;
1434 
1435 	return 0;
1436 
1437 disable_clk_ahb:
1438 	clk_disable(sdmac->sdma->clk_ahb);
1439 disable_clk_ipg:
1440 	clk_disable(sdmac->sdma->clk_ipg);
1441 	return ret;
1442 }
1443 
1444 static void sdma_free_chan_resources(struct dma_chan *chan)
1445 {
1446 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1447 	struct sdma_engine *sdma = sdmac->sdma;
1448 
1449 	sdma_terminate_all(chan);
1450 
1451 	sdma_channel_synchronize(chan);
1452 
1453 	sdma_event_disable(sdmac, sdmac->event_id0);
1454 	if (sdmac->event_id1)
1455 		sdma_event_disable(sdmac, sdmac->event_id1);
1456 
1457 	sdmac->event_id0 = 0;
1458 	sdmac->event_id1 = 0;
1459 
1460 	sdma_set_channel_priority(sdmac, 0);
1461 
1462 	clk_disable(sdma->clk_ipg);
1463 	clk_disable(sdma->clk_ahb);
1464 }
1465 
1466 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1467 				enum dma_transfer_direction direction, u32 bds)
1468 {
1469 	struct sdma_desc *desc;
1470 
1471 	if (!sdmac->sdma->fw_loaded && sdmac->is_ram_script) {
1472 		dev_warn_once(sdmac->sdma->dev, "sdma firmware not ready!\n");
1473 		goto err_out;
1474 	}
1475 
1476 	desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1477 	if (!desc)
1478 		goto err_out;
1479 
1480 	sdmac->status = DMA_IN_PROGRESS;
1481 	sdmac->direction = direction;
1482 	sdmac->flags = 0;
1483 
1484 	desc->chn_count = 0;
1485 	desc->chn_real_count = 0;
1486 	desc->buf_tail = 0;
1487 	desc->buf_ptail = 0;
1488 	desc->sdmac = sdmac;
1489 	desc->num_bd = bds;
1490 
1491 	if (sdma_alloc_bd(desc))
1492 		goto err_desc_out;
1493 
1494 	/* No slave_config called in MEMCPY case, so do here */
1495 	if (direction == DMA_MEM_TO_MEM)
1496 		sdma_config_ownership(sdmac, false, true, false);
1497 
1498 	if (sdma_load_context(sdmac))
1499 		goto err_desc_out;
1500 
1501 	return desc;
1502 
1503 err_desc_out:
1504 	kfree(desc);
1505 err_out:
1506 	return NULL;
1507 }
1508 
1509 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1510 		struct dma_chan *chan, dma_addr_t dma_dst,
1511 		dma_addr_t dma_src, size_t len, unsigned long flags)
1512 {
1513 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1514 	struct sdma_engine *sdma = sdmac->sdma;
1515 	int channel = sdmac->channel;
1516 	size_t count;
1517 	int i = 0, param;
1518 	struct sdma_buffer_descriptor *bd;
1519 	struct sdma_desc *desc;
1520 
1521 	if (!chan || !len)
1522 		return NULL;
1523 
1524 	dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1525 		&dma_src, &dma_dst, len, channel);
1526 
1527 	desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1528 					len / SDMA_BD_MAX_CNT + 1);
1529 	if (!desc)
1530 		return NULL;
1531 
1532 	do {
1533 		count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1534 		bd = &desc->bd[i];
1535 		bd->buffer_addr = dma_src;
1536 		bd->ext_buffer_addr = dma_dst;
1537 		bd->mode.count = count;
1538 		desc->chn_count += count;
1539 		bd->mode.command = 0;
1540 
1541 		dma_src += count;
1542 		dma_dst += count;
1543 		len -= count;
1544 		i++;
1545 
1546 		param = BD_DONE | BD_EXTD | BD_CONT;
1547 		/* last bd */
1548 		if (!len) {
1549 			param |= BD_INTR;
1550 			param |= BD_LAST;
1551 			param &= ~BD_CONT;
1552 		}
1553 
1554 		dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1555 				i, count, bd->buffer_addr,
1556 				param & BD_WRAP ? "wrap" : "",
1557 				param & BD_INTR ? " intr" : "");
1558 
1559 		bd->mode.status = param;
1560 	} while (len);
1561 
1562 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1563 }
1564 
1565 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1566 		struct dma_chan *chan, struct scatterlist *sgl,
1567 		unsigned int sg_len, enum dma_transfer_direction direction,
1568 		unsigned long flags, void *context)
1569 {
1570 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1571 	struct sdma_engine *sdma = sdmac->sdma;
1572 	int i, count;
1573 	int channel = sdmac->channel;
1574 	struct scatterlist *sg;
1575 	struct sdma_desc *desc;
1576 
1577 	sdma_config_write(chan, &sdmac->slave_config, direction);
1578 
1579 	desc = sdma_transfer_init(sdmac, direction, sg_len);
1580 	if (!desc)
1581 		goto err_out;
1582 
1583 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1584 			sg_len, channel);
1585 
1586 	for_each_sg(sgl, sg, sg_len, i) {
1587 		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1588 		int param;
1589 
1590 		bd->buffer_addr = sg->dma_address;
1591 
1592 		count = sg_dma_len(sg);
1593 
1594 		if (count > SDMA_BD_MAX_CNT) {
1595 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1596 					channel, count, SDMA_BD_MAX_CNT);
1597 			goto err_bd_out;
1598 		}
1599 
1600 		bd->mode.count = count;
1601 		desc->chn_count += count;
1602 
1603 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1604 			goto err_bd_out;
1605 
1606 		switch (sdmac->word_size) {
1607 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1608 			bd->mode.command = 0;
1609 			if (count & 3 || sg->dma_address & 3)
1610 				goto err_bd_out;
1611 			break;
1612 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1613 			bd->mode.command = 2;
1614 			if (count & 1 || sg->dma_address & 1)
1615 				goto err_bd_out;
1616 			break;
1617 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1618 			bd->mode.command = 1;
1619 			break;
1620 		default:
1621 			goto err_bd_out;
1622 		}
1623 
1624 		param = BD_DONE | BD_EXTD | BD_CONT;
1625 
1626 		if (i + 1 == sg_len) {
1627 			param |= BD_INTR;
1628 			param |= BD_LAST;
1629 			param &= ~BD_CONT;
1630 		}
1631 
1632 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1633 				i, count, (u64)sg->dma_address,
1634 				param & BD_WRAP ? "wrap" : "",
1635 				param & BD_INTR ? " intr" : "");
1636 
1637 		bd->mode.status = param;
1638 	}
1639 
1640 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1641 err_bd_out:
1642 	sdma_free_bd(desc);
1643 	kfree(desc);
1644 err_out:
1645 	sdmac->status = DMA_ERROR;
1646 	return NULL;
1647 }
1648 
1649 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1650 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1651 		size_t period_len, enum dma_transfer_direction direction,
1652 		unsigned long flags)
1653 {
1654 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1655 	struct sdma_engine *sdma = sdmac->sdma;
1656 	int num_periods = buf_len / period_len;
1657 	int channel = sdmac->channel;
1658 	int i = 0, buf = 0;
1659 	struct sdma_desc *desc;
1660 
1661 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1662 
1663 	sdma_config_write(chan, &sdmac->slave_config, direction);
1664 
1665 	desc = sdma_transfer_init(sdmac, direction, num_periods);
1666 	if (!desc)
1667 		goto err_out;
1668 
1669 	desc->period_len = period_len;
1670 
1671 	sdmac->flags |= IMX_DMA_SG_LOOP;
1672 
1673 	if (period_len > SDMA_BD_MAX_CNT) {
1674 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1675 				channel, period_len, SDMA_BD_MAX_CNT);
1676 		goto err_bd_out;
1677 	}
1678 
1679 	while (buf < buf_len) {
1680 		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1681 		int param;
1682 
1683 		bd->buffer_addr = dma_addr;
1684 
1685 		bd->mode.count = period_len;
1686 
1687 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1688 			goto err_bd_out;
1689 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1690 			bd->mode.command = 0;
1691 		else
1692 			bd->mode.command = sdmac->word_size;
1693 
1694 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1695 		if (i + 1 == num_periods)
1696 			param |= BD_WRAP;
1697 
1698 		dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1699 				i, period_len, (u64)dma_addr,
1700 				param & BD_WRAP ? "wrap" : "",
1701 				param & BD_INTR ? " intr" : "");
1702 
1703 		bd->mode.status = param;
1704 
1705 		dma_addr += period_len;
1706 		buf += period_len;
1707 
1708 		i++;
1709 	}
1710 
1711 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1712 err_bd_out:
1713 	sdma_free_bd(desc);
1714 	kfree(desc);
1715 err_out:
1716 	sdmac->status = DMA_ERROR;
1717 	return NULL;
1718 }
1719 
1720 static int sdma_config_write(struct dma_chan *chan,
1721 		       struct dma_slave_config *dmaengine_cfg,
1722 		       enum dma_transfer_direction direction)
1723 {
1724 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1725 
1726 	if (direction == DMA_DEV_TO_MEM) {
1727 		sdmac->per_address = dmaengine_cfg->src_addr;
1728 		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1729 			dmaengine_cfg->src_addr_width;
1730 		sdmac->word_size = dmaengine_cfg->src_addr_width;
1731 	} else if (direction == DMA_DEV_TO_DEV) {
1732 		sdmac->per_address2 = dmaengine_cfg->src_addr;
1733 		sdmac->per_address = dmaengine_cfg->dst_addr;
1734 		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1735 			SDMA_WATERMARK_LEVEL_LWML;
1736 		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1737 			SDMA_WATERMARK_LEVEL_HWML;
1738 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1739 	} else {
1740 		sdmac->per_address = dmaengine_cfg->dst_addr;
1741 		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1742 			dmaengine_cfg->dst_addr_width;
1743 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1744 	}
1745 	sdmac->direction = direction;
1746 	return sdma_config_channel(chan);
1747 }
1748 
1749 static int sdma_config(struct dma_chan *chan,
1750 		       struct dma_slave_config *dmaengine_cfg)
1751 {
1752 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1753 	struct sdma_engine *sdma = sdmac->sdma;
1754 
1755 	memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1756 
1757 	if (dmaengine_cfg->peripheral_config) {
1758 		struct sdma_peripheral_config *sdmacfg = dmaengine_cfg->peripheral_config;
1759 		if (dmaengine_cfg->peripheral_size != sizeof(struct sdma_peripheral_config)) {
1760 			dev_err(sdma->dev, "Invalid peripheral size %zu, expected %zu\n",
1761 				dmaengine_cfg->peripheral_size,
1762 				sizeof(struct sdma_peripheral_config));
1763 			return -EINVAL;
1764 		}
1765 		sdmac->n_fifos_src = sdmacfg->n_fifos_src;
1766 		sdmac->n_fifos_dst = sdmacfg->n_fifos_dst;
1767 		sdmac->sw_done = sdmacfg->sw_done;
1768 	}
1769 
1770 	/* Set ENBLn earlier to make sure dma request triggered after that */
1771 	if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1772 		return -EINVAL;
1773 	sdma_event_enable(sdmac, sdmac->event_id0);
1774 
1775 	if (sdmac->event_id1) {
1776 		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1777 			return -EINVAL;
1778 		sdma_event_enable(sdmac, sdmac->event_id1);
1779 	}
1780 
1781 	return 0;
1782 }
1783 
1784 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1785 				      dma_cookie_t cookie,
1786 				      struct dma_tx_state *txstate)
1787 {
1788 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1789 	struct sdma_desc *desc = NULL;
1790 	u32 residue;
1791 	struct virt_dma_desc *vd;
1792 	enum dma_status ret;
1793 	unsigned long flags;
1794 
1795 	ret = dma_cookie_status(chan, cookie, txstate);
1796 	if (ret == DMA_COMPLETE || !txstate)
1797 		return ret;
1798 
1799 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1800 
1801 	vd = vchan_find_desc(&sdmac->vc, cookie);
1802 	if (vd)
1803 		desc = to_sdma_desc(&vd->tx);
1804 	else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1805 		desc = sdmac->desc;
1806 
1807 	if (desc) {
1808 		if (sdmac->flags & IMX_DMA_SG_LOOP)
1809 			residue = (desc->num_bd - desc->buf_ptail) *
1810 				desc->period_len - desc->chn_real_count;
1811 		else
1812 			residue = desc->chn_count - desc->chn_real_count;
1813 	} else {
1814 		residue = 0;
1815 	}
1816 
1817 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1818 
1819 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1820 			 residue);
1821 
1822 	return sdmac->status;
1823 }
1824 
1825 static void sdma_issue_pending(struct dma_chan *chan)
1826 {
1827 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1828 	unsigned long flags;
1829 
1830 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1831 	if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1832 		sdma_start_desc(sdmac);
1833 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1834 }
1835 
1836 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1837 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1838 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	45
1839 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4	46
1840 
1841 static void sdma_add_scripts(struct sdma_engine *sdma,
1842 			     const struct sdma_script_start_addrs *addr)
1843 {
1844 	s32 *addr_arr = (u32 *)addr;
1845 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1846 	int i;
1847 
1848 	/* use the default firmware in ROM if missing external firmware */
1849 	if (!sdma->script_number)
1850 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1851 
1852 	if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1853 				  / sizeof(s32)) {
1854 		dev_err(sdma->dev,
1855 			"SDMA script number %d not match with firmware.\n",
1856 			sdma->script_number);
1857 		return;
1858 	}
1859 
1860 	for (i = 0; i < sdma->script_number; i++)
1861 		if (addr_arr[i] > 0)
1862 			saddr_arr[i] = addr_arr[i];
1863 
1864 	/*
1865 	 * For compatibility with NXP internal legacy kernel before 4.19 which
1866 	 * is based on uart ram script and mainline kernel based on uart rom
1867 	 * script, both uart ram/rom scripts are present in newer sdma
1868 	 * firmware. Use the rom versions if they are present (V3 or newer).
1869 	 */
1870 	if (sdma->script_number >= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3) {
1871 		if (addr->uart_2_mcu_rom_addr)
1872 			sdma->script_addrs->uart_2_mcu_addr = addr->uart_2_mcu_rom_addr;
1873 		if (addr->uartsh_2_mcu_rom_addr)
1874 			sdma->script_addrs->uartsh_2_mcu_addr = addr->uartsh_2_mcu_rom_addr;
1875 	}
1876 }
1877 
1878 static void sdma_load_firmware(const struct firmware *fw, void *context)
1879 {
1880 	struct sdma_engine *sdma = context;
1881 	const struct sdma_firmware_header *header;
1882 	const struct sdma_script_start_addrs *addr;
1883 	unsigned short *ram_code;
1884 
1885 	if (!fw) {
1886 		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1887 		/* In this case we just use the ROM firmware. */
1888 		return;
1889 	}
1890 
1891 	if (fw->size < sizeof(*header))
1892 		goto err_firmware;
1893 
1894 	header = (struct sdma_firmware_header *)fw->data;
1895 
1896 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1897 		goto err_firmware;
1898 	if (header->ram_code_start + header->ram_code_size > fw->size)
1899 		goto err_firmware;
1900 	switch (header->version_major) {
1901 	case 1:
1902 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1903 		break;
1904 	case 2:
1905 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1906 		break;
1907 	case 3:
1908 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1909 		break;
1910 	case 4:
1911 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1912 		break;
1913 	default:
1914 		dev_err(sdma->dev, "unknown firmware version\n");
1915 		goto err_firmware;
1916 	}
1917 
1918 	addr = (void *)header + header->script_addrs_start;
1919 	ram_code = (void *)header + header->ram_code_start;
1920 
1921 	clk_enable(sdma->clk_ipg);
1922 	clk_enable(sdma->clk_ahb);
1923 	/* download the RAM image for SDMA */
1924 	sdma_load_script(sdma, ram_code,
1925 			 header->ram_code_size,
1926 			 addr->ram_code_start_addr);
1927 	clk_disable(sdma->clk_ipg);
1928 	clk_disable(sdma->clk_ahb);
1929 
1930 	sdma_add_scripts(sdma, addr);
1931 
1932 	sdma->fw_loaded = true;
1933 
1934 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1935 		 header->version_major,
1936 		 header->version_minor);
1937 
1938 err_firmware:
1939 	release_firmware(fw);
1940 }
1941 
1942 #define EVENT_REMAP_CELLS 3
1943 
1944 static int sdma_event_remap(struct sdma_engine *sdma)
1945 {
1946 	struct device_node *np = sdma->dev->of_node;
1947 	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1948 	struct property *event_remap;
1949 	struct regmap *gpr;
1950 	char propname[] = "fsl,sdma-event-remap";
1951 	u32 reg, val, shift, num_map, i;
1952 	int ret = 0;
1953 
1954 	if (IS_ERR(np) || !gpr_np)
1955 		goto out;
1956 
1957 	event_remap = of_find_property(np, propname, NULL);
1958 	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1959 	if (!num_map) {
1960 		dev_dbg(sdma->dev, "no event needs to be remapped\n");
1961 		goto out;
1962 	} else if (num_map % EVENT_REMAP_CELLS) {
1963 		dev_err(sdma->dev, "the property %s must modulo %d\n",
1964 				propname, EVENT_REMAP_CELLS);
1965 		ret = -EINVAL;
1966 		goto out;
1967 	}
1968 
1969 	gpr = syscon_node_to_regmap(gpr_np);
1970 	if (IS_ERR(gpr)) {
1971 		dev_err(sdma->dev, "failed to get gpr regmap\n");
1972 		ret = PTR_ERR(gpr);
1973 		goto out;
1974 	}
1975 
1976 	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1977 		ret = of_property_read_u32_index(np, propname, i, &reg);
1978 		if (ret) {
1979 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1980 					propname, i);
1981 			goto out;
1982 		}
1983 
1984 		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1985 		if (ret) {
1986 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1987 					propname, i + 1);
1988 			goto out;
1989 		}
1990 
1991 		ret = of_property_read_u32_index(np, propname, i + 2, &val);
1992 		if (ret) {
1993 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1994 					propname, i + 2);
1995 			goto out;
1996 		}
1997 
1998 		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1999 	}
2000 
2001 out:
2002 	if (gpr_np)
2003 		of_node_put(gpr_np);
2004 
2005 	return ret;
2006 }
2007 
2008 static int sdma_get_firmware(struct sdma_engine *sdma,
2009 		const char *fw_name)
2010 {
2011 	int ret;
2012 
2013 	ret = request_firmware_nowait(THIS_MODULE,
2014 			FW_ACTION_UEVENT, fw_name, sdma->dev,
2015 			GFP_KERNEL, sdma, sdma_load_firmware);
2016 
2017 	return ret;
2018 }
2019 
2020 static int sdma_init(struct sdma_engine *sdma)
2021 {
2022 	int i, ret;
2023 	dma_addr_t ccb_phys;
2024 
2025 	ret = clk_enable(sdma->clk_ipg);
2026 	if (ret)
2027 		return ret;
2028 	ret = clk_enable(sdma->clk_ahb);
2029 	if (ret)
2030 		goto disable_clk_ipg;
2031 
2032 	if (sdma->drvdata->check_ratio &&
2033 	    (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
2034 		sdma->clk_ratio = 1;
2035 
2036 	/* Be sure SDMA has not started yet */
2037 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
2038 
2039 	sdma->channel_control = dma_alloc_coherent(sdma->dev,
2040 			MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control) +
2041 			sizeof(struct sdma_context_data),
2042 			&ccb_phys, GFP_KERNEL);
2043 
2044 	if (!sdma->channel_control) {
2045 		ret = -ENOMEM;
2046 		goto err_dma_alloc;
2047 	}
2048 
2049 	sdma->context = (void *)sdma->channel_control +
2050 		MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2051 	sdma->context_phys = ccb_phys +
2052 		MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2053 
2054 	/* disable all channels */
2055 	for (i = 0; i < sdma->drvdata->num_events; i++)
2056 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
2057 
2058 	/* All channels have priority 0 */
2059 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
2060 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
2061 
2062 	ret = sdma_request_channel0(sdma);
2063 	if (ret)
2064 		goto err_dma_alloc;
2065 
2066 	sdma_config_ownership(&sdma->channel[0], false, true, false);
2067 
2068 	/* Set Command Channel (Channel Zero) */
2069 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
2070 
2071 	/* Set bits of CONFIG register but with static context switching */
2072 	if (sdma->clk_ratio)
2073 		writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
2074 	else
2075 		writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
2076 
2077 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
2078 
2079 	/* Initializes channel's priorities */
2080 	sdma_set_channel_priority(&sdma->channel[0], 7);
2081 
2082 	clk_disable(sdma->clk_ipg);
2083 	clk_disable(sdma->clk_ahb);
2084 
2085 	return 0;
2086 
2087 err_dma_alloc:
2088 	clk_disable(sdma->clk_ahb);
2089 disable_clk_ipg:
2090 	clk_disable(sdma->clk_ipg);
2091 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
2092 	return ret;
2093 }
2094 
2095 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
2096 {
2097 	struct sdma_channel *sdmac = to_sdma_chan(chan);
2098 	struct imx_dma_data *data = fn_param;
2099 
2100 	if (!imx_dma_is_general_purpose(chan))
2101 		return false;
2102 
2103 	sdmac->data = *data;
2104 	chan->private = &sdmac->data;
2105 
2106 	return true;
2107 }
2108 
2109 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
2110 				   struct of_dma *ofdma)
2111 {
2112 	struct sdma_engine *sdma = ofdma->of_dma_data;
2113 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
2114 	struct imx_dma_data data;
2115 
2116 	if (dma_spec->args_count != 3)
2117 		return NULL;
2118 
2119 	data.dma_request = dma_spec->args[0];
2120 	data.peripheral_type = dma_spec->args[1];
2121 	data.priority = dma_spec->args[2];
2122 	/*
2123 	 * init dma_request2 to zero, which is not used by the dts.
2124 	 * For P2P, dma_request2 is init from dma_request_channel(),
2125 	 * chan->private will point to the imx_dma_data, and in
2126 	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
2127 	 * be set to sdmac->event_id1.
2128 	 */
2129 	data.dma_request2 = 0;
2130 
2131 	return __dma_request_channel(&mask, sdma_filter_fn, &data,
2132 				     ofdma->of_node);
2133 }
2134 
2135 static int sdma_probe(struct platform_device *pdev)
2136 {
2137 	struct device_node *np = pdev->dev.of_node;
2138 	struct device_node *spba_bus;
2139 	const char *fw_name;
2140 	int ret;
2141 	int irq;
2142 	struct resource *iores;
2143 	struct resource spba_res;
2144 	int i;
2145 	struct sdma_engine *sdma;
2146 	s32 *saddr_arr;
2147 
2148 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2149 	if (ret)
2150 		return ret;
2151 
2152 	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2153 	if (!sdma)
2154 		return -ENOMEM;
2155 
2156 	spin_lock_init(&sdma->channel_0_lock);
2157 
2158 	sdma->dev = &pdev->dev;
2159 	sdma->drvdata = of_device_get_match_data(sdma->dev);
2160 
2161 	irq = platform_get_irq(pdev, 0);
2162 	if (irq < 0)
2163 		return irq;
2164 
2165 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2166 	sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
2167 	if (IS_ERR(sdma->regs))
2168 		return PTR_ERR(sdma->regs);
2169 
2170 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2171 	if (IS_ERR(sdma->clk_ipg))
2172 		return PTR_ERR(sdma->clk_ipg);
2173 
2174 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2175 	if (IS_ERR(sdma->clk_ahb))
2176 		return PTR_ERR(sdma->clk_ahb);
2177 
2178 	ret = clk_prepare(sdma->clk_ipg);
2179 	if (ret)
2180 		return ret;
2181 
2182 	ret = clk_prepare(sdma->clk_ahb);
2183 	if (ret)
2184 		goto err_clk;
2185 
2186 	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
2187 			       sdma);
2188 	if (ret)
2189 		goto err_irq;
2190 
2191 	sdma->irq = irq;
2192 
2193 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2194 	if (!sdma->script_addrs) {
2195 		ret = -ENOMEM;
2196 		goto err_irq;
2197 	}
2198 
2199 	/* initially no scripts available */
2200 	saddr_arr = (s32 *)sdma->script_addrs;
2201 	for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2202 		saddr_arr[i] = -EINVAL;
2203 
2204 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2205 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2206 	dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2207 
2208 	INIT_LIST_HEAD(&sdma->dma_device.channels);
2209 	/* Initialize channel parameters */
2210 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2211 		struct sdma_channel *sdmac = &sdma->channel[i];
2212 
2213 		sdmac->sdma = sdma;
2214 
2215 		sdmac->channel = i;
2216 		sdmac->vc.desc_free = sdma_desc_free;
2217 		INIT_LIST_HEAD(&sdmac->terminated);
2218 		INIT_WORK(&sdmac->terminate_worker,
2219 				sdma_channel_terminate_work);
2220 		/*
2221 		 * Add the channel to the DMAC list. Do not add channel 0 though
2222 		 * because we need it internally in the SDMA driver. This also means
2223 		 * that channel 0 in dmaengine counting matches sdma channel 1.
2224 		 */
2225 		if (i)
2226 			vchan_init(&sdmac->vc, &sdma->dma_device);
2227 	}
2228 
2229 	ret = sdma_init(sdma);
2230 	if (ret)
2231 		goto err_init;
2232 
2233 	ret = sdma_event_remap(sdma);
2234 	if (ret)
2235 		goto err_init;
2236 
2237 	if (sdma->drvdata->script_addrs)
2238 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2239 
2240 	sdma->dma_device.dev = &pdev->dev;
2241 
2242 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2243 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2244 	sdma->dma_device.device_tx_status = sdma_tx_status;
2245 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2246 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2247 	sdma->dma_device.device_config = sdma_config;
2248 	sdma->dma_device.device_terminate_all = sdma_terminate_all;
2249 	sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2250 	sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2251 	sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2252 	sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2253 	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2254 	sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2255 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
2256 	sdma->dma_device.copy_align = 2;
2257 	dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2258 
2259 	platform_set_drvdata(pdev, sdma);
2260 
2261 	ret = dma_async_device_register(&sdma->dma_device);
2262 	if (ret) {
2263 		dev_err(&pdev->dev, "unable to register\n");
2264 		goto err_init;
2265 	}
2266 
2267 	if (np) {
2268 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
2269 		if (ret) {
2270 			dev_err(&pdev->dev, "failed to register controller\n");
2271 			goto err_register;
2272 		}
2273 
2274 		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2275 		ret = of_address_to_resource(spba_bus, 0, &spba_res);
2276 		if (!ret) {
2277 			sdma->spba_start_addr = spba_res.start;
2278 			sdma->spba_end_addr = spba_res.end;
2279 		}
2280 		of_node_put(spba_bus);
2281 	}
2282 
2283 	/*
2284 	 * Because that device tree does not encode ROM script address,
2285 	 * the RAM script in firmware is mandatory for device tree
2286 	 * probe, otherwise it fails.
2287 	 */
2288 	ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2289 				      &fw_name);
2290 	if (ret) {
2291 		dev_warn(&pdev->dev, "failed to get firmware name\n");
2292 	} else {
2293 		ret = sdma_get_firmware(sdma, fw_name);
2294 		if (ret)
2295 			dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2296 	}
2297 
2298 	return 0;
2299 
2300 err_register:
2301 	dma_async_device_unregister(&sdma->dma_device);
2302 err_init:
2303 	kfree(sdma->script_addrs);
2304 err_irq:
2305 	clk_unprepare(sdma->clk_ahb);
2306 err_clk:
2307 	clk_unprepare(sdma->clk_ipg);
2308 	return ret;
2309 }
2310 
2311 static int sdma_remove(struct platform_device *pdev)
2312 {
2313 	struct sdma_engine *sdma = platform_get_drvdata(pdev);
2314 	int i;
2315 
2316 	devm_free_irq(&pdev->dev, sdma->irq, sdma);
2317 	dma_async_device_unregister(&sdma->dma_device);
2318 	kfree(sdma->script_addrs);
2319 	clk_unprepare(sdma->clk_ahb);
2320 	clk_unprepare(sdma->clk_ipg);
2321 	/* Kill the tasklet */
2322 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2323 		struct sdma_channel *sdmac = &sdma->channel[i];
2324 
2325 		tasklet_kill(&sdmac->vc.task);
2326 		sdma_free_chan_resources(&sdmac->vc.chan);
2327 	}
2328 
2329 	platform_set_drvdata(pdev, NULL);
2330 	return 0;
2331 }
2332 
2333 static struct platform_driver sdma_driver = {
2334 	.driver		= {
2335 		.name	= "imx-sdma",
2336 		.of_match_table = sdma_dt_ids,
2337 	},
2338 	.remove		= sdma_remove,
2339 	.probe		= sdma_probe,
2340 };
2341 
2342 module_platform_driver(sdma_driver);
2343 
2344 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2345 MODULE_DESCRIPTION("i.MX SDMA driver");
2346 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2347 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2348 #endif
2349 #if IS_ENABLED(CONFIG_SOC_IMX7D)
2350 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2351 #endif
2352 MODULE_LICENSE("GPL");
2353