xref: /openbmc/linux/drivers/dma/imx-sdma.c (revision ed1666f6)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
10 //
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12 
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 #include <linux/semaphore.h>
24 #include <linux/spinlock.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/slab.h>
29 #include <linux/platform_device.h>
30 #include <linux/dmaengine.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_device.h>
34 #include <linux/of_dma.h>
35 #include <linux/workqueue.h>
36 
37 #include <asm/irq.h>
38 #include <linux/platform_data/dma-imx-sdma.h>
39 #include <linux/platform_data/dma-imx.h>
40 #include <linux/regmap.h>
41 #include <linux/mfd/syscon.h>
42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
43 
44 #include "dmaengine.h"
45 #include "virt-dma.h"
46 
47 /* SDMA registers */
48 #define SDMA_H_C0PTR		0x000
49 #define SDMA_H_INTR		0x004
50 #define SDMA_H_STATSTOP		0x008
51 #define SDMA_H_START		0x00c
52 #define SDMA_H_EVTOVR		0x010
53 #define SDMA_H_DSPOVR		0x014
54 #define SDMA_H_HOSTOVR		0x018
55 #define SDMA_H_EVTPEND		0x01c
56 #define SDMA_H_DSPENBL		0x020
57 #define SDMA_H_RESET		0x024
58 #define SDMA_H_EVTERR		0x028
59 #define SDMA_H_INTRMSK		0x02c
60 #define SDMA_H_PSW		0x030
61 #define SDMA_H_EVTERRDBG	0x034
62 #define SDMA_H_CONFIG		0x038
63 #define SDMA_ONCE_ENB		0x040
64 #define SDMA_ONCE_DATA		0x044
65 #define SDMA_ONCE_INSTR		0x048
66 #define SDMA_ONCE_STAT		0x04c
67 #define SDMA_ONCE_CMD		0x050
68 #define SDMA_EVT_MIRROR		0x054
69 #define SDMA_ILLINSTADDR	0x058
70 #define SDMA_CHN0ADDR		0x05c
71 #define SDMA_ONCE_RTB		0x060
72 #define SDMA_XTRIG_CONF1	0x070
73 #define SDMA_XTRIG_CONF2	0x074
74 #define SDMA_CHNENBL0_IMX35	0x200
75 #define SDMA_CHNENBL0_IMX31	0x080
76 #define SDMA_CHNPRI_0		0x100
77 
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88 
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96 
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101 
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108 
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125 
126 /*
127  *  p_2_p watermark_level description
128  *	Bits		Name			Description
129  *	0-7		Lower WML		Lower watermark level
130  *	8		PS			1: Pad Swallowing
131  *						0: No Pad Swallowing
132  *	9		PA			1: Pad Adding
133  *						0: No Pad Adding
134  *	10		SPDIF			If this bit is set both source
135  *						and destination are on SPBA
136  *	11		Source Bit(SP)		1: Source on SPBA
137  *						0: Source on AIPS
138  *	12		Destination Bit(DP)	1: Destination on SPBA
139  *						0: Destination on AIPS
140  *	13-15		---------		MUST BE 0
141  *	16-23		Higher WML		HWML
142  *	24-27		N			Total number of samples after
143  *						which Pad adding/Swallowing
144  *						must be done. It must be odd.
145  *	28		Lower WML Event(LWE)	SDMA events reg to check for
146  *						LWML event mask
147  *						0: LWE in EVENTS register
148  *						1: LWE in EVENTS2 register
149  *	29		Higher WML Event(HWE)	SDMA events reg to check for
150  *						HWML event mask
151  *						0: HWE in EVENTS register
152  *						1: HWE in EVENTS2 register
153  *	30		---------		MUST BE 0
154  *	31		CONT			1: Amount of samples to be
155  *						transferred is unknown and
156  *						script will keep on
157  *						transferring samples as long as
158  *						both events are detected and
159  *						script must be manually stopped
160  *						by the application
161  *						0: The amount of samples to be
162  *						transferred is equal to the
163  *						count field of mode word
164  */
165 #define SDMA_WATERMARK_LEVEL_LWML	0xFF
166 #define SDMA_WATERMARK_LEVEL_PS		BIT(8)
167 #define SDMA_WATERMARK_LEVEL_PA		BIT(9)
168 #define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
169 #define SDMA_WATERMARK_LEVEL_SP		BIT(11)
170 #define SDMA_WATERMARK_LEVEL_DP		BIT(12)
171 #define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
172 #define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
173 #define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
174 #define SDMA_WATERMARK_LEVEL_CONT	BIT(31)
175 
176 #define SDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
177 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
178 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
179 
180 #define SDMA_DMA_DIRECTIONS	(BIT(DMA_DEV_TO_MEM) | \
181 				 BIT(DMA_MEM_TO_DEV) | \
182 				 BIT(DMA_DEV_TO_DEV))
183 
184 /*
185  * Mode/Count of data node descriptors - IPCv2
186  */
187 struct sdma_mode_count {
188 #define SDMA_BD_MAX_CNT	0xffff
189 	u32 count   : 16; /* size of the buffer pointed by this BD */
190 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
191 	u32 command :  8; /* command mostly used for channel 0 */
192 };
193 
194 /*
195  * Buffer descriptor
196  */
197 struct sdma_buffer_descriptor {
198 	struct sdma_mode_count  mode;
199 	u32 buffer_addr;	/* address of the buffer described */
200 	u32 ext_buffer_addr;	/* extended buffer address */
201 } __attribute__ ((packed));
202 
203 /**
204  * struct sdma_channel_control - Channel control Block
205  *
206  * @current_bd_ptr:	current buffer descriptor processed
207  * @base_bd_ptr:	first element of buffer descriptor array
208  * @unused:		padding. The SDMA engine expects an array of 128 byte
209  *			control blocks
210  */
211 struct sdma_channel_control {
212 	u32 current_bd_ptr;
213 	u32 base_bd_ptr;
214 	u32 unused[2];
215 } __attribute__ ((packed));
216 
217 /**
218  * struct sdma_state_registers - SDMA context for a channel
219  *
220  * @pc:		program counter
221  * @unused1:	unused
222  * @t:		test bit: status of arithmetic & test instruction
223  * @rpc:	return program counter
224  * @unused0:	unused
225  * @sf:		source fault while loading data
226  * @spc:	loop start program counter
227  * @unused2:	unused
228  * @df:		destination fault while storing data
229  * @epc:	loop end program counter
230  * @lm:		loop mode
231  */
232 struct sdma_state_registers {
233 	u32 pc     :14;
234 	u32 unused1: 1;
235 	u32 t      : 1;
236 	u32 rpc    :14;
237 	u32 unused0: 1;
238 	u32 sf     : 1;
239 	u32 spc    :14;
240 	u32 unused2: 1;
241 	u32 df     : 1;
242 	u32 epc    :14;
243 	u32 lm     : 2;
244 } __attribute__ ((packed));
245 
246 /**
247  * struct sdma_context_data - sdma context specific to a channel
248  *
249  * @channel_state:	channel state bits
250  * @gReg:		general registers
251  * @mda:		burst dma destination address register
252  * @msa:		burst dma source address register
253  * @ms:			burst dma status register
254  * @md:			burst dma data register
255  * @pda:		peripheral dma destination address register
256  * @psa:		peripheral dma source address register
257  * @ps:			peripheral dma status register
258  * @pd:			peripheral dma data register
259  * @ca:			CRC polynomial register
260  * @cs:			CRC accumulator register
261  * @dda:		dedicated core destination address register
262  * @dsa:		dedicated core source address register
263  * @ds:			dedicated core status register
264  * @dd:			dedicated core data register
265  * @scratch0:		1st word of dedicated ram for context switch
266  * @scratch1:		2nd word of dedicated ram for context switch
267  * @scratch2:		3rd word of dedicated ram for context switch
268  * @scratch3:		4th word of dedicated ram for context switch
269  * @scratch4:		5th word of dedicated ram for context switch
270  * @scratch5:		6th word of dedicated ram for context switch
271  * @scratch6:		7th word of dedicated ram for context switch
272  * @scratch7:		8th word of dedicated ram for context switch
273  */
274 struct sdma_context_data {
275 	struct sdma_state_registers  channel_state;
276 	u32  gReg[8];
277 	u32  mda;
278 	u32  msa;
279 	u32  ms;
280 	u32  md;
281 	u32  pda;
282 	u32  psa;
283 	u32  ps;
284 	u32  pd;
285 	u32  ca;
286 	u32  cs;
287 	u32  dda;
288 	u32  dsa;
289 	u32  ds;
290 	u32  dd;
291 	u32  scratch0;
292 	u32  scratch1;
293 	u32  scratch2;
294 	u32  scratch3;
295 	u32  scratch4;
296 	u32  scratch5;
297 	u32  scratch6;
298 	u32  scratch7;
299 } __attribute__ ((packed));
300 
301 
302 struct sdma_engine;
303 
304 /**
305  * struct sdma_desc - descriptor structor for one transfer
306  * @vd:			descriptor for virt dma
307  * @num_bd:		number of descriptors currently handling
308  * @bd_phys:		physical address of bd
309  * @buf_tail:		ID of the buffer that was processed
310  * @buf_ptail:		ID of the previous buffer that was processed
311  * @period_len:		period length, used in cyclic.
312  * @chn_real_count:	the real count updated from bd->mode.count
313  * @chn_count:		the transfer count set
314  * @sdmac:		sdma_channel pointer
315  * @bd:			pointer of allocate bd
316  */
317 struct sdma_desc {
318 	struct virt_dma_desc	vd;
319 	unsigned int		num_bd;
320 	dma_addr_t		bd_phys;
321 	unsigned int		buf_tail;
322 	unsigned int		buf_ptail;
323 	unsigned int		period_len;
324 	unsigned int		chn_real_count;
325 	unsigned int		chn_count;
326 	struct sdma_channel	*sdmac;
327 	struct sdma_buffer_descriptor *bd;
328 };
329 
330 /**
331  * struct sdma_channel - housekeeping for a SDMA channel
332  *
333  * @vc:			virt_dma base structure
334  * @desc:		sdma description including vd and other special member
335  * @sdma:		pointer to the SDMA engine for this channel
336  * @channel:		the channel number, matches dmaengine chan_id + 1
337  * @direction:		transfer type. Needed for setting SDMA script
338  * @slave_config	Slave configuration
339  * @peripheral_type:	Peripheral type. Needed for setting SDMA script
340  * @event_id0:		aka dma request line
341  * @event_id1:		for channels that use 2 events
342  * @word_size:		peripheral access size
343  * @pc_from_device:	script address for those device_2_memory
344  * @pc_to_device:	script address for those memory_2_device
345  * @device_to_device:	script address for those device_2_device
346  * @pc_to_pc:		script address for those memory_2_memory
347  * @flags:		loop mode or not
348  * @per_address:	peripheral source or destination address in common case
349  *                      destination address in p_2_p case
350  * @per_address2:	peripheral source address in p_2_p case
351  * @event_mask:		event mask used in p_2_p script
352  * @watermark_level:	value for gReg[7], some script will extend it from
353  *			basic watermark such as p_2_p
354  * @shp_addr:		value for gReg[6]
355  * @per_addr:		value for gReg[2]
356  * @status:		status of dma channel
357  * @data:		specific sdma interface structure
358  * @bd_pool:		dma_pool for bd
359  */
360 struct sdma_channel {
361 	struct virt_dma_chan		vc;
362 	struct sdma_desc		*desc;
363 	struct sdma_engine		*sdma;
364 	unsigned int			channel;
365 	enum dma_transfer_direction		direction;
366 	struct dma_slave_config		slave_config;
367 	enum sdma_peripheral_type	peripheral_type;
368 	unsigned int			event_id0;
369 	unsigned int			event_id1;
370 	enum dma_slave_buswidth		word_size;
371 	unsigned int			pc_from_device, pc_to_device;
372 	unsigned int			device_to_device;
373 	unsigned int                    pc_to_pc;
374 	unsigned long			flags;
375 	dma_addr_t			per_address, per_address2;
376 	unsigned long			event_mask[2];
377 	unsigned long			watermark_level;
378 	u32				shp_addr, per_addr;
379 	enum dma_status			status;
380 	bool				context_loaded;
381 	struct imx_dma_data		data;
382 	struct work_struct		terminate_worker;
383 };
384 
385 #define IMX_DMA_SG_LOOP		BIT(0)
386 
387 #define MAX_DMA_CHANNELS 32
388 #define MXC_SDMA_DEFAULT_PRIORITY 1
389 #define MXC_SDMA_MIN_PRIORITY 1
390 #define MXC_SDMA_MAX_PRIORITY 7
391 
392 #define SDMA_FIRMWARE_MAGIC 0x414d4453
393 
394 /**
395  * struct sdma_firmware_header - Layout of the firmware image
396  *
397  * @magic:		"SDMA"
398  * @version_major:	increased whenever layout of struct
399  *			sdma_script_start_addrs changes.
400  * @version_minor:	firmware minor version (for binary compatible changes)
401  * @script_addrs_start:	offset of struct sdma_script_start_addrs in this image
402  * @num_script_addrs:	Number of script addresses in this image
403  * @ram_code_start:	offset of SDMA ram image in this firmware image
404  * @ram_code_size:	size of SDMA ram image
405  * @script_addrs:	Stores the start address of the SDMA scripts
406  *			(in SDMA memory space)
407  */
408 struct sdma_firmware_header {
409 	u32	magic;
410 	u32	version_major;
411 	u32	version_minor;
412 	u32	script_addrs_start;
413 	u32	num_script_addrs;
414 	u32	ram_code_start;
415 	u32	ram_code_size;
416 };
417 
418 struct sdma_driver_data {
419 	int chnenbl0;
420 	int num_events;
421 	struct sdma_script_start_addrs	*script_addrs;
422 };
423 
424 struct sdma_engine {
425 	struct device			*dev;
426 	struct device_dma_parameters	dma_parms;
427 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
428 	struct sdma_channel_control	*channel_control;
429 	void __iomem			*regs;
430 	struct sdma_context_data	*context;
431 	dma_addr_t			context_phys;
432 	struct dma_device		dma_device;
433 	struct clk			*clk_ipg;
434 	struct clk			*clk_ahb;
435 	spinlock_t			channel_0_lock;
436 	u32				script_number;
437 	struct sdma_script_start_addrs	*script_addrs;
438 	const struct sdma_driver_data	*drvdata;
439 	u32				spba_start_addr;
440 	u32				spba_end_addr;
441 	unsigned int			irq;
442 	dma_addr_t			bd0_phys;
443 	struct sdma_buffer_descriptor	*bd0;
444 	/* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
445 	bool				clk_ratio;
446 };
447 
448 static int sdma_config_write(struct dma_chan *chan,
449 		       struct dma_slave_config *dmaengine_cfg,
450 		       enum dma_transfer_direction direction);
451 
452 static struct sdma_driver_data sdma_imx31 = {
453 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
454 	.num_events = 32,
455 };
456 
457 static struct sdma_script_start_addrs sdma_script_imx25 = {
458 	.ap_2_ap_addr = 729,
459 	.uart_2_mcu_addr = 904,
460 	.per_2_app_addr = 1255,
461 	.mcu_2_app_addr = 834,
462 	.uartsh_2_mcu_addr = 1120,
463 	.per_2_shp_addr = 1329,
464 	.mcu_2_shp_addr = 1048,
465 	.ata_2_mcu_addr = 1560,
466 	.mcu_2_ata_addr = 1479,
467 	.app_2_per_addr = 1189,
468 	.app_2_mcu_addr = 770,
469 	.shp_2_per_addr = 1407,
470 	.shp_2_mcu_addr = 979,
471 };
472 
473 static struct sdma_driver_data sdma_imx25 = {
474 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
475 	.num_events = 48,
476 	.script_addrs = &sdma_script_imx25,
477 };
478 
479 static struct sdma_driver_data sdma_imx35 = {
480 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
481 	.num_events = 48,
482 };
483 
484 static struct sdma_script_start_addrs sdma_script_imx51 = {
485 	.ap_2_ap_addr = 642,
486 	.uart_2_mcu_addr = 817,
487 	.mcu_2_app_addr = 747,
488 	.mcu_2_shp_addr = 961,
489 	.ata_2_mcu_addr = 1473,
490 	.mcu_2_ata_addr = 1392,
491 	.app_2_per_addr = 1033,
492 	.app_2_mcu_addr = 683,
493 	.shp_2_per_addr = 1251,
494 	.shp_2_mcu_addr = 892,
495 };
496 
497 static struct sdma_driver_data sdma_imx51 = {
498 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
499 	.num_events = 48,
500 	.script_addrs = &sdma_script_imx51,
501 };
502 
503 static struct sdma_script_start_addrs sdma_script_imx53 = {
504 	.ap_2_ap_addr = 642,
505 	.app_2_mcu_addr = 683,
506 	.mcu_2_app_addr = 747,
507 	.uart_2_mcu_addr = 817,
508 	.shp_2_mcu_addr = 891,
509 	.mcu_2_shp_addr = 960,
510 	.uartsh_2_mcu_addr = 1032,
511 	.spdif_2_mcu_addr = 1100,
512 	.mcu_2_spdif_addr = 1134,
513 	.firi_2_mcu_addr = 1193,
514 	.mcu_2_firi_addr = 1290,
515 };
516 
517 static struct sdma_driver_data sdma_imx53 = {
518 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
519 	.num_events = 48,
520 	.script_addrs = &sdma_script_imx53,
521 };
522 
523 static struct sdma_script_start_addrs sdma_script_imx6q = {
524 	.ap_2_ap_addr = 642,
525 	.uart_2_mcu_addr = 817,
526 	.mcu_2_app_addr = 747,
527 	.per_2_per_addr = 6331,
528 	.uartsh_2_mcu_addr = 1032,
529 	.mcu_2_shp_addr = 960,
530 	.app_2_mcu_addr = 683,
531 	.shp_2_mcu_addr = 891,
532 	.spdif_2_mcu_addr = 1100,
533 	.mcu_2_spdif_addr = 1134,
534 };
535 
536 static struct sdma_driver_data sdma_imx6q = {
537 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
538 	.num_events = 48,
539 	.script_addrs = &sdma_script_imx6q,
540 };
541 
542 static struct sdma_script_start_addrs sdma_script_imx7d = {
543 	.ap_2_ap_addr = 644,
544 	.uart_2_mcu_addr = 819,
545 	.mcu_2_app_addr = 749,
546 	.uartsh_2_mcu_addr = 1034,
547 	.mcu_2_shp_addr = 962,
548 	.app_2_mcu_addr = 685,
549 	.shp_2_mcu_addr = 893,
550 	.spdif_2_mcu_addr = 1102,
551 	.mcu_2_spdif_addr = 1136,
552 };
553 
554 static struct sdma_driver_data sdma_imx7d = {
555 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
556 	.num_events = 48,
557 	.script_addrs = &sdma_script_imx7d,
558 };
559 
560 static const struct platform_device_id sdma_devtypes[] = {
561 	{
562 		.name = "imx25-sdma",
563 		.driver_data = (unsigned long)&sdma_imx25,
564 	}, {
565 		.name = "imx31-sdma",
566 		.driver_data = (unsigned long)&sdma_imx31,
567 	}, {
568 		.name = "imx35-sdma",
569 		.driver_data = (unsigned long)&sdma_imx35,
570 	}, {
571 		.name = "imx51-sdma",
572 		.driver_data = (unsigned long)&sdma_imx51,
573 	}, {
574 		.name = "imx53-sdma",
575 		.driver_data = (unsigned long)&sdma_imx53,
576 	}, {
577 		.name = "imx6q-sdma",
578 		.driver_data = (unsigned long)&sdma_imx6q,
579 	}, {
580 		.name = "imx7d-sdma",
581 		.driver_data = (unsigned long)&sdma_imx7d,
582 	}, {
583 		/* sentinel */
584 	}
585 };
586 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
587 
588 static const struct of_device_id sdma_dt_ids[] = {
589 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
590 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
591 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
592 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
593 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
594 	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
595 	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
596 	{ /* sentinel */ }
597 };
598 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
599 
600 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
601 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
602 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
603 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
604 
605 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
606 {
607 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
608 	return chnenbl0 + event * 4;
609 }
610 
611 static int sdma_config_ownership(struct sdma_channel *sdmac,
612 		bool event_override, bool mcu_override, bool dsp_override)
613 {
614 	struct sdma_engine *sdma = sdmac->sdma;
615 	int channel = sdmac->channel;
616 	unsigned long evt, mcu, dsp;
617 
618 	if (event_override && mcu_override && dsp_override)
619 		return -EINVAL;
620 
621 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
622 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
623 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
624 
625 	if (dsp_override)
626 		__clear_bit(channel, &dsp);
627 	else
628 		__set_bit(channel, &dsp);
629 
630 	if (event_override)
631 		__clear_bit(channel, &evt);
632 	else
633 		__set_bit(channel, &evt);
634 
635 	if (mcu_override)
636 		__clear_bit(channel, &mcu);
637 	else
638 		__set_bit(channel, &mcu);
639 
640 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
641 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
642 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
643 
644 	return 0;
645 }
646 
647 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
648 {
649 	writel(BIT(channel), sdma->regs + SDMA_H_START);
650 }
651 
652 /*
653  * sdma_run_channel0 - run a channel and wait till it's done
654  */
655 static int sdma_run_channel0(struct sdma_engine *sdma)
656 {
657 	int ret;
658 	u32 reg;
659 
660 	sdma_enable_channel(sdma, 0);
661 
662 	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
663 						reg, !(reg & 1), 1, 500);
664 	if (ret)
665 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
666 
667 	/* Set bits of CONFIG register with dynamic context switching */
668 	reg = readl(sdma->regs + SDMA_H_CONFIG);
669 	if ((reg & SDMA_H_CONFIG_CSM) == 0) {
670 		reg |= SDMA_H_CONFIG_CSM;
671 		writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
672 	}
673 
674 	return ret;
675 }
676 
677 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
678 		u32 address)
679 {
680 	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
681 	void *buf_virt;
682 	dma_addr_t buf_phys;
683 	int ret;
684 	unsigned long flags;
685 
686 	buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
687 	if (!buf_virt) {
688 		return -ENOMEM;
689 	}
690 
691 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
692 
693 	bd0->mode.command = C0_SETPM;
694 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
695 	bd0->mode.count = size / 2;
696 	bd0->buffer_addr = buf_phys;
697 	bd0->ext_buffer_addr = address;
698 
699 	memcpy(buf_virt, buf, size);
700 
701 	ret = sdma_run_channel0(sdma);
702 
703 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
704 
705 	dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
706 
707 	return ret;
708 }
709 
710 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
711 {
712 	struct sdma_engine *sdma = sdmac->sdma;
713 	int channel = sdmac->channel;
714 	unsigned long val;
715 	u32 chnenbl = chnenbl_ofs(sdma, event);
716 
717 	val = readl_relaxed(sdma->regs + chnenbl);
718 	__set_bit(channel, &val);
719 	writel_relaxed(val, sdma->regs + chnenbl);
720 }
721 
722 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
723 {
724 	struct sdma_engine *sdma = sdmac->sdma;
725 	int channel = sdmac->channel;
726 	u32 chnenbl = chnenbl_ofs(sdma, event);
727 	unsigned long val;
728 
729 	val = readl_relaxed(sdma->regs + chnenbl);
730 	__clear_bit(channel, &val);
731 	writel_relaxed(val, sdma->regs + chnenbl);
732 }
733 
734 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
735 {
736 	return container_of(t, struct sdma_desc, vd.tx);
737 }
738 
739 static void sdma_start_desc(struct sdma_channel *sdmac)
740 {
741 	struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
742 	struct sdma_desc *desc;
743 	struct sdma_engine *sdma = sdmac->sdma;
744 	int channel = sdmac->channel;
745 
746 	if (!vd) {
747 		sdmac->desc = NULL;
748 		return;
749 	}
750 	sdmac->desc = desc = to_sdma_desc(&vd->tx);
751 	/*
752 	 * Do not delete the node in desc_issued list in cyclic mode, otherwise
753 	 * the desc allocated will never be freed in vchan_dma_desc_free_list
754 	 */
755 	if (!(sdmac->flags & IMX_DMA_SG_LOOP))
756 		list_del(&vd->node);
757 
758 	sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
759 	sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
760 	sdma_enable_channel(sdma, sdmac->channel);
761 }
762 
763 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
764 {
765 	struct sdma_buffer_descriptor *bd;
766 	int error = 0;
767 	enum dma_status	old_status = sdmac->status;
768 
769 	/*
770 	 * loop mode. Iterate over descriptors, re-setup them and
771 	 * call callback function.
772 	 */
773 	while (sdmac->desc) {
774 		struct sdma_desc *desc = sdmac->desc;
775 
776 		bd = &desc->bd[desc->buf_tail];
777 
778 		if (bd->mode.status & BD_DONE)
779 			break;
780 
781 		if (bd->mode.status & BD_RROR) {
782 			bd->mode.status &= ~BD_RROR;
783 			sdmac->status = DMA_ERROR;
784 			error = -EIO;
785 		}
786 
787 	       /*
788 		* We use bd->mode.count to calculate the residue, since contains
789 		* the number of bytes present in the current buffer descriptor.
790 		*/
791 
792 		desc->chn_real_count = bd->mode.count;
793 		bd->mode.status |= BD_DONE;
794 		bd->mode.count = desc->period_len;
795 		desc->buf_ptail = desc->buf_tail;
796 		desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
797 
798 		/*
799 		 * The callback is called from the interrupt context in order
800 		 * to reduce latency and to avoid the risk of altering the
801 		 * SDMA transaction status by the time the client tasklet is
802 		 * executed.
803 		 */
804 		spin_unlock(&sdmac->vc.lock);
805 		dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
806 		spin_lock(&sdmac->vc.lock);
807 
808 		if (error)
809 			sdmac->status = old_status;
810 	}
811 }
812 
813 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
814 {
815 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
816 	struct sdma_buffer_descriptor *bd;
817 	int i, error = 0;
818 
819 	sdmac->desc->chn_real_count = 0;
820 	/*
821 	 * non loop mode. Iterate over all descriptors, collect
822 	 * errors and call callback function
823 	 */
824 	for (i = 0; i < sdmac->desc->num_bd; i++) {
825 		bd = &sdmac->desc->bd[i];
826 
827 		 if (bd->mode.status & (BD_DONE | BD_RROR))
828 			error = -EIO;
829 		 sdmac->desc->chn_real_count += bd->mode.count;
830 	}
831 
832 	if (error)
833 		sdmac->status = DMA_ERROR;
834 	else
835 		sdmac->status = DMA_COMPLETE;
836 }
837 
838 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
839 {
840 	struct sdma_engine *sdma = dev_id;
841 	unsigned long stat;
842 
843 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
844 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
845 	/* channel 0 is special and not handled here, see run_channel0() */
846 	stat &= ~1;
847 
848 	while (stat) {
849 		int channel = fls(stat) - 1;
850 		struct sdma_channel *sdmac = &sdma->channel[channel];
851 		struct sdma_desc *desc;
852 
853 		spin_lock(&sdmac->vc.lock);
854 		desc = sdmac->desc;
855 		if (desc) {
856 			if (sdmac->flags & IMX_DMA_SG_LOOP) {
857 				sdma_update_channel_loop(sdmac);
858 			} else {
859 				mxc_sdma_handle_channel_normal(sdmac);
860 				vchan_cookie_complete(&desc->vd);
861 				sdma_start_desc(sdmac);
862 			}
863 		}
864 
865 		spin_unlock(&sdmac->vc.lock);
866 		__clear_bit(channel, &stat);
867 	}
868 
869 	return IRQ_HANDLED;
870 }
871 
872 /*
873  * sets the pc of SDMA script according to the peripheral type
874  */
875 static void sdma_get_pc(struct sdma_channel *sdmac,
876 		enum sdma_peripheral_type peripheral_type)
877 {
878 	struct sdma_engine *sdma = sdmac->sdma;
879 	int per_2_emi = 0, emi_2_per = 0;
880 	/*
881 	 * These are needed once we start to support transfers between
882 	 * two peripherals or memory-to-memory transfers
883 	 */
884 	int per_2_per = 0, emi_2_emi = 0;
885 
886 	sdmac->pc_from_device = 0;
887 	sdmac->pc_to_device = 0;
888 	sdmac->device_to_device = 0;
889 	sdmac->pc_to_pc = 0;
890 
891 	switch (peripheral_type) {
892 	case IMX_DMATYPE_MEMORY:
893 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
894 		break;
895 	case IMX_DMATYPE_DSP:
896 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
897 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
898 		break;
899 	case IMX_DMATYPE_FIRI:
900 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
901 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
902 		break;
903 	case IMX_DMATYPE_UART:
904 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
905 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
906 		break;
907 	case IMX_DMATYPE_UART_SP:
908 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
909 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
910 		break;
911 	case IMX_DMATYPE_ATA:
912 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
913 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
914 		break;
915 	case IMX_DMATYPE_CSPI:
916 	case IMX_DMATYPE_EXT:
917 	case IMX_DMATYPE_SSI:
918 	case IMX_DMATYPE_SAI:
919 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
920 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
921 		break;
922 	case IMX_DMATYPE_SSI_DUAL:
923 		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
924 		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
925 		break;
926 	case IMX_DMATYPE_SSI_SP:
927 	case IMX_DMATYPE_MMC:
928 	case IMX_DMATYPE_SDHC:
929 	case IMX_DMATYPE_CSPI_SP:
930 	case IMX_DMATYPE_ESAI:
931 	case IMX_DMATYPE_MSHC_SP:
932 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
933 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
934 		break;
935 	case IMX_DMATYPE_ASRC:
936 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
937 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
938 		per_2_per = sdma->script_addrs->per_2_per_addr;
939 		break;
940 	case IMX_DMATYPE_ASRC_SP:
941 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
942 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
943 		per_2_per = sdma->script_addrs->per_2_per_addr;
944 		break;
945 	case IMX_DMATYPE_MSHC:
946 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
947 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
948 		break;
949 	case IMX_DMATYPE_CCM:
950 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
951 		break;
952 	case IMX_DMATYPE_SPDIF:
953 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
954 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
955 		break;
956 	case IMX_DMATYPE_IPU_MEMORY:
957 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
958 		break;
959 	default:
960 		break;
961 	}
962 
963 	sdmac->pc_from_device = per_2_emi;
964 	sdmac->pc_to_device = emi_2_per;
965 	sdmac->device_to_device = per_2_per;
966 	sdmac->pc_to_pc = emi_2_emi;
967 }
968 
969 static int sdma_load_context(struct sdma_channel *sdmac)
970 {
971 	struct sdma_engine *sdma = sdmac->sdma;
972 	int channel = sdmac->channel;
973 	int load_address;
974 	struct sdma_context_data *context = sdma->context;
975 	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
976 	int ret;
977 	unsigned long flags;
978 
979 	if (sdmac->context_loaded)
980 		return 0;
981 
982 	if (sdmac->direction == DMA_DEV_TO_MEM)
983 		load_address = sdmac->pc_from_device;
984 	else if (sdmac->direction == DMA_DEV_TO_DEV)
985 		load_address = sdmac->device_to_device;
986 	else if (sdmac->direction == DMA_MEM_TO_MEM)
987 		load_address = sdmac->pc_to_pc;
988 	else
989 		load_address = sdmac->pc_to_device;
990 
991 	if (load_address < 0)
992 		return load_address;
993 
994 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
995 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
996 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
997 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
998 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
999 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1000 
1001 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
1002 
1003 	memset(context, 0, sizeof(*context));
1004 	context->channel_state.pc = load_address;
1005 
1006 	/* Send by context the event mask,base address for peripheral
1007 	 * and watermark level
1008 	 */
1009 	context->gReg[0] = sdmac->event_mask[1];
1010 	context->gReg[1] = sdmac->event_mask[0];
1011 	context->gReg[2] = sdmac->per_addr;
1012 	context->gReg[6] = sdmac->shp_addr;
1013 	context->gReg[7] = sdmac->watermark_level;
1014 
1015 	bd0->mode.command = C0_SETDM;
1016 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
1017 	bd0->mode.count = sizeof(*context) / 4;
1018 	bd0->buffer_addr = sdma->context_phys;
1019 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1020 	ret = sdma_run_channel0(sdma);
1021 
1022 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1023 
1024 	sdmac->context_loaded = true;
1025 
1026 	return ret;
1027 }
1028 
1029 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1030 {
1031 	return container_of(chan, struct sdma_channel, vc.chan);
1032 }
1033 
1034 static int sdma_disable_channel(struct dma_chan *chan)
1035 {
1036 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1037 	struct sdma_engine *sdma = sdmac->sdma;
1038 	int channel = sdmac->channel;
1039 
1040 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1041 	sdmac->status = DMA_ERROR;
1042 
1043 	return 0;
1044 }
1045 static void sdma_channel_terminate_work(struct work_struct *work)
1046 {
1047 	struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1048 						  terminate_worker);
1049 	unsigned long flags;
1050 	LIST_HEAD(head);
1051 
1052 	/*
1053 	 * According to NXP R&D team a delay of one BD SDMA cost time
1054 	 * (maximum is 1ms) should be added after disable of the channel
1055 	 * bit, to ensure SDMA core has really been stopped after SDMA
1056 	 * clients call .device_terminate_all.
1057 	 */
1058 	usleep_range(1000, 2000);
1059 
1060 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1061 	vchan_get_all_descriptors(&sdmac->vc, &head);
1062 	sdmac->desc = NULL;
1063 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1064 	vchan_dma_desc_free_list(&sdmac->vc, &head);
1065 	sdmac->context_loaded = false;
1066 }
1067 
1068 static int sdma_disable_channel_async(struct dma_chan *chan)
1069 {
1070 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1071 
1072 	sdma_disable_channel(chan);
1073 
1074 	if (sdmac->desc)
1075 		schedule_work(&sdmac->terminate_worker);
1076 
1077 	return 0;
1078 }
1079 
1080 static void sdma_channel_synchronize(struct dma_chan *chan)
1081 {
1082 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1083 
1084 	vchan_synchronize(&sdmac->vc);
1085 
1086 	flush_work(&sdmac->terminate_worker);
1087 }
1088 
1089 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1090 {
1091 	struct sdma_engine *sdma = sdmac->sdma;
1092 
1093 	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1094 	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1095 
1096 	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1097 	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1098 
1099 	if (sdmac->event_id0 > 31)
1100 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1101 
1102 	if (sdmac->event_id1 > 31)
1103 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1104 
1105 	/*
1106 	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1107 	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1108 	 * r0(event_mask[1]) and r1(event_mask[0]).
1109 	 */
1110 	if (lwml > hwml) {
1111 		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1112 						SDMA_WATERMARK_LEVEL_HWML);
1113 		sdmac->watermark_level |= hwml;
1114 		sdmac->watermark_level |= lwml << 16;
1115 		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1116 	}
1117 
1118 	if (sdmac->per_address2 >= sdma->spba_start_addr &&
1119 			sdmac->per_address2 <= sdma->spba_end_addr)
1120 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1121 
1122 	if (sdmac->per_address >= sdma->spba_start_addr &&
1123 			sdmac->per_address <= sdma->spba_end_addr)
1124 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1125 
1126 	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1127 }
1128 
1129 static int sdma_config_channel(struct dma_chan *chan)
1130 {
1131 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1132 	int ret;
1133 
1134 	sdma_disable_channel(chan);
1135 
1136 	sdmac->event_mask[0] = 0;
1137 	sdmac->event_mask[1] = 0;
1138 	sdmac->shp_addr = 0;
1139 	sdmac->per_addr = 0;
1140 
1141 	switch (sdmac->peripheral_type) {
1142 	case IMX_DMATYPE_DSP:
1143 		sdma_config_ownership(sdmac, false, true, true);
1144 		break;
1145 	case IMX_DMATYPE_MEMORY:
1146 		sdma_config_ownership(sdmac, false, true, false);
1147 		break;
1148 	default:
1149 		sdma_config_ownership(sdmac, true, true, false);
1150 		break;
1151 	}
1152 
1153 	sdma_get_pc(sdmac, sdmac->peripheral_type);
1154 
1155 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1156 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1157 		/* Handle multiple event channels differently */
1158 		if (sdmac->event_id1) {
1159 			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1160 			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1161 				sdma_set_watermarklevel_for_p2p(sdmac);
1162 		} else
1163 			__set_bit(sdmac->event_id0, sdmac->event_mask);
1164 
1165 		/* Address */
1166 		sdmac->shp_addr = sdmac->per_address;
1167 		sdmac->per_addr = sdmac->per_address2;
1168 	} else {
1169 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1170 	}
1171 
1172 	ret = sdma_load_context(sdmac);
1173 
1174 	return ret;
1175 }
1176 
1177 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1178 		unsigned int priority)
1179 {
1180 	struct sdma_engine *sdma = sdmac->sdma;
1181 	int channel = sdmac->channel;
1182 
1183 	if (priority < MXC_SDMA_MIN_PRIORITY
1184 	    || priority > MXC_SDMA_MAX_PRIORITY) {
1185 		return -EINVAL;
1186 	}
1187 
1188 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1189 
1190 	return 0;
1191 }
1192 
1193 static int sdma_request_channel0(struct sdma_engine *sdma)
1194 {
1195 	int ret = -EBUSY;
1196 
1197 	sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1198 					GFP_NOWAIT);
1199 	if (!sdma->bd0) {
1200 		ret = -ENOMEM;
1201 		goto out;
1202 	}
1203 
1204 	sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1205 	sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1206 
1207 	sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1208 	return 0;
1209 out:
1210 
1211 	return ret;
1212 }
1213 
1214 
1215 static int sdma_alloc_bd(struct sdma_desc *desc)
1216 {
1217 	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1218 	int ret = 0;
1219 
1220 	desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1221 				       &desc->bd_phys, GFP_NOWAIT);
1222 	if (!desc->bd) {
1223 		ret = -ENOMEM;
1224 		goto out;
1225 	}
1226 out:
1227 	return ret;
1228 }
1229 
1230 static void sdma_free_bd(struct sdma_desc *desc)
1231 {
1232 	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1233 
1234 	dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1235 			  desc->bd_phys);
1236 }
1237 
1238 static void sdma_desc_free(struct virt_dma_desc *vd)
1239 {
1240 	struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1241 
1242 	sdma_free_bd(desc);
1243 	kfree(desc);
1244 }
1245 
1246 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1247 {
1248 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1249 	struct imx_dma_data *data = chan->private;
1250 	struct imx_dma_data mem_data;
1251 	int prio, ret;
1252 
1253 	/*
1254 	 * MEMCPY may never setup chan->private by filter function such as
1255 	 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1256 	 * Please note in any other slave case, you have to setup chan->private
1257 	 * with 'struct imx_dma_data' in your own filter function if you want to
1258 	 * request dma channel by dma_request_channel() rather than
1259 	 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1260 	 * to warn you to correct your filter function.
1261 	 */
1262 	if (!data) {
1263 		dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1264 		mem_data.priority = 2;
1265 		mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1266 		mem_data.dma_request = 0;
1267 		mem_data.dma_request2 = 0;
1268 		data = &mem_data;
1269 
1270 		sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1271 	}
1272 
1273 	switch (data->priority) {
1274 	case DMA_PRIO_HIGH:
1275 		prio = 3;
1276 		break;
1277 	case DMA_PRIO_MEDIUM:
1278 		prio = 2;
1279 		break;
1280 	case DMA_PRIO_LOW:
1281 	default:
1282 		prio = 1;
1283 		break;
1284 	}
1285 
1286 	sdmac->peripheral_type = data->peripheral_type;
1287 	sdmac->event_id0 = data->dma_request;
1288 	sdmac->event_id1 = data->dma_request2;
1289 
1290 	ret = clk_enable(sdmac->sdma->clk_ipg);
1291 	if (ret)
1292 		return ret;
1293 	ret = clk_enable(sdmac->sdma->clk_ahb);
1294 	if (ret)
1295 		goto disable_clk_ipg;
1296 
1297 	ret = sdma_set_channel_priority(sdmac, prio);
1298 	if (ret)
1299 		goto disable_clk_ahb;
1300 
1301 	return 0;
1302 
1303 disable_clk_ahb:
1304 	clk_disable(sdmac->sdma->clk_ahb);
1305 disable_clk_ipg:
1306 	clk_disable(sdmac->sdma->clk_ipg);
1307 	return ret;
1308 }
1309 
1310 static void sdma_free_chan_resources(struct dma_chan *chan)
1311 {
1312 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1313 	struct sdma_engine *sdma = sdmac->sdma;
1314 
1315 	sdma_disable_channel_async(chan);
1316 
1317 	sdma_channel_synchronize(chan);
1318 
1319 	if (sdmac->event_id0)
1320 		sdma_event_disable(sdmac, sdmac->event_id0);
1321 	if (sdmac->event_id1)
1322 		sdma_event_disable(sdmac, sdmac->event_id1);
1323 
1324 	sdmac->event_id0 = 0;
1325 	sdmac->event_id1 = 0;
1326 
1327 	sdma_set_channel_priority(sdmac, 0);
1328 
1329 	clk_disable(sdma->clk_ipg);
1330 	clk_disable(sdma->clk_ahb);
1331 }
1332 
1333 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1334 				enum dma_transfer_direction direction, u32 bds)
1335 {
1336 	struct sdma_desc *desc;
1337 
1338 	desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1339 	if (!desc)
1340 		goto err_out;
1341 
1342 	sdmac->status = DMA_IN_PROGRESS;
1343 	sdmac->direction = direction;
1344 	sdmac->flags = 0;
1345 
1346 	desc->chn_count = 0;
1347 	desc->chn_real_count = 0;
1348 	desc->buf_tail = 0;
1349 	desc->buf_ptail = 0;
1350 	desc->sdmac = sdmac;
1351 	desc->num_bd = bds;
1352 
1353 	if (sdma_alloc_bd(desc))
1354 		goto err_desc_out;
1355 
1356 	/* No slave_config called in MEMCPY case, so do here */
1357 	if (direction == DMA_MEM_TO_MEM)
1358 		sdma_config_ownership(sdmac, false, true, false);
1359 
1360 	if (sdma_load_context(sdmac))
1361 		goto err_desc_out;
1362 
1363 	return desc;
1364 
1365 err_desc_out:
1366 	kfree(desc);
1367 err_out:
1368 	return NULL;
1369 }
1370 
1371 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1372 		struct dma_chan *chan, dma_addr_t dma_dst,
1373 		dma_addr_t dma_src, size_t len, unsigned long flags)
1374 {
1375 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1376 	struct sdma_engine *sdma = sdmac->sdma;
1377 	int channel = sdmac->channel;
1378 	size_t count;
1379 	int i = 0, param;
1380 	struct sdma_buffer_descriptor *bd;
1381 	struct sdma_desc *desc;
1382 
1383 	if (!chan || !len)
1384 		return NULL;
1385 
1386 	dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1387 		&dma_src, &dma_dst, len, channel);
1388 
1389 	desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1390 					len / SDMA_BD_MAX_CNT + 1);
1391 	if (!desc)
1392 		return NULL;
1393 
1394 	do {
1395 		count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1396 		bd = &desc->bd[i];
1397 		bd->buffer_addr = dma_src;
1398 		bd->ext_buffer_addr = dma_dst;
1399 		bd->mode.count = count;
1400 		desc->chn_count += count;
1401 		bd->mode.command = 0;
1402 
1403 		dma_src += count;
1404 		dma_dst += count;
1405 		len -= count;
1406 		i++;
1407 
1408 		param = BD_DONE | BD_EXTD | BD_CONT;
1409 		/* last bd */
1410 		if (!len) {
1411 			param |= BD_INTR;
1412 			param |= BD_LAST;
1413 			param &= ~BD_CONT;
1414 		}
1415 
1416 		dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1417 				i, count, bd->buffer_addr,
1418 				param & BD_WRAP ? "wrap" : "",
1419 				param & BD_INTR ? " intr" : "");
1420 
1421 		bd->mode.status = param;
1422 	} while (len);
1423 
1424 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1425 }
1426 
1427 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1428 		struct dma_chan *chan, struct scatterlist *sgl,
1429 		unsigned int sg_len, enum dma_transfer_direction direction,
1430 		unsigned long flags, void *context)
1431 {
1432 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1433 	struct sdma_engine *sdma = sdmac->sdma;
1434 	int i, count;
1435 	int channel = sdmac->channel;
1436 	struct scatterlist *sg;
1437 	struct sdma_desc *desc;
1438 
1439 	sdma_config_write(chan, &sdmac->slave_config, direction);
1440 
1441 	desc = sdma_transfer_init(sdmac, direction, sg_len);
1442 	if (!desc)
1443 		goto err_out;
1444 
1445 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1446 			sg_len, channel);
1447 
1448 	for_each_sg(sgl, sg, sg_len, i) {
1449 		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1450 		int param;
1451 
1452 		bd->buffer_addr = sg->dma_address;
1453 
1454 		count = sg_dma_len(sg);
1455 
1456 		if (count > SDMA_BD_MAX_CNT) {
1457 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1458 					channel, count, SDMA_BD_MAX_CNT);
1459 			goto err_bd_out;
1460 		}
1461 
1462 		bd->mode.count = count;
1463 		desc->chn_count += count;
1464 
1465 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1466 			goto err_bd_out;
1467 
1468 		switch (sdmac->word_size) {
1469 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1470 			bd->mode.command = 0;
1471 			if (count & 3 || sg->dma_address & 3)
1472 				goto err_bd_out;
1473 			break;
1474 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1475 			bd->mode.command = 2;
1476 			if (count & 1 || sg->dma_address & 1)
1477 				goto err_bd_out;
1478 			break;
1479 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1480 			bd->mode.command = 1;
1481 			break;
1482 		default:
1483 			goto err_bd_out;
1484 		}
1485 
1486 		param = BD_DONE | BD_EXTD | BD_CONT;
1487 
1488 		if (i + 1 == sg_len) {
1489 			param |= BD_INTR;
1490 			param |= BD_LAST;
1491 			param &= ~BD_CONT;
1492 		}
1493 
1494 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1495 				i, count, (u64)sg->dma_address,
1496 				param & BD_WRAP ? "wrap" : "",
1497 				param & BD_INTR ? " intr" : "");
1498 
1499 		bd->mode.status = param;
1500 	}
1501 
1502 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1503 err_bd_out:
1504 	sdma_free_bd(desc);
1505 	kfree(desc);
1506 err_out:
1507 	sdmac->status = DMA_ERROR;
1508 	return NULL;
1509 }
1510 
1511 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1512 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1513 		size_t period_len, enum dma_transfer_direction direction,
1514 		unsigned long flags)
1515 {
1516 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1517 	struct sdma_engine *sdma = sdmac->sdma;
1518 	int num_periods = buf_len / period_len;
1519 	int channel = sdmac->channel;
1520 	int i = 0, buf = 0;
1521 	struct sdma_desc *desc;
1522 
1523 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1524 
1525 	sdma_config_write(chan, &sdmac->slave_config, direction);
1526 
1527 	desc = sdma_transfer_init(sdmac, direction, num_periods);
1528 	if (!desc)
1529 		goto err_out;
1530 
1531 	desc->period_len = period_len;
1532 
1533 	sdmac->flags |= IMX_DMA_SG_LOOP;
1534 
1535 	if (period_len > SDMA_BD_MAX_CNT) {
1536 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1537 				channel, period_len, SDMA_BD_MAX_CNT);
1538 		goto err_bd_out;
1539 	}
1540 
1541 	while (buf < buf_len) {
1542 		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1543 		int param;
1544 
1545 		bd->buffer_addr = dma_addr;
1546 
1547 		bd->mode.count = period_len;
1548 
1549 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1550 			goto err_bd_out;
1551 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1552 			bd->mode.command = 0;
1553 		else
1554 			bd->mode.command = sdmac->word_size;
1555 
1556 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1557 		if (i + 1 == num_periods)
1558 			param |= BD_WRAP;
1559 
1560 		dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1561 				i, period_len, (u64)dma_addr,
1562 				param & BD_WRAP ? "wrap" : "",
1563 				param & BD_INTR ? " intr" : "");
1564 
1565 		bd->mode.status = param;
1566 
1567 		dma_addr += period_len;
1568 		buf += period_len;
1569 
1570 		i++;
1571 	}
1572 
1573 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1574 err_bd_out:
1575 	sdma_free_bd(desc);
1576 	kfree(desc);
1577 err_out:
1578 	sdmac->status = DMA_ERROR;
1579 	return NULL;
1580 }
1581 
1582 static int sdma_config_write(struct dma_chan *chan,
1583 		       struct dma_slave_config *dmaengine_cfg,
1584 		       enum dma_transfer_direction direction)
1585 {
1586 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1587 
1588 	if (direction == DMA_DEV_TO_MEM) {
1589 		sdmac->per_address = dmaengine_cfg->src_addr;
1590 		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1591 			dmaengine_cfg->src_addr_width;
1592 		sdmac->word_size = dmaengine_cfg->src_addr_width;
1593 	} else if (direction == DMA_DEV_TO_DEV) {
1594 		sdmac->per_address2 = dmaengine_cfg->src_addr;
1595 		sdmac->per_address = dmaengine_cfg->dst_addr;
1596 		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1597 			SDMA_WATERMARK_LEVEL_LWML;
1598 		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1599 			SDMA_WATERMARK_LEVEL_HWML;
1600 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1601 	} else {
1602 		sdmac->per_address = dmaengine_cfg->dst_addr;
1603 		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1604 			dmaengine_cfg->dst_addr_width;
1605 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1606 	}
1607 	sdmac->direction = direction;
1608 	return sdma_config_channel(chan);
1609 }
1610 
1611 static int sdma_config(struct dma_chan *chan,
1612 		       struct dma_slave_config *dmaengine_cfg)
1613 {
1614 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1615 
1616 	memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1617 
1618 	/* Set ENBLn earlier to make sure dma request triggered after that */
1619 	if (sdmac->event_id0) {
1620 		if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1621 			return -EINVAL;
1622 		sdma_event_enable(sdmac, sdmac->event_id0);
1623 	}
1624 
1625 	if (sdmac->event_id1) {
1626 		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1627 			return -EINVAL;
1628 		sdma_event_enable(sdmac, sdmac->event_id1);
1629 	}
1630 
1631 	return 0;
1632 }
1633 
1634 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1635 				      dma_cookie_t cookie,
1636 				      struct dma_tx_state *txstate)
1637 {
1638 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1639 	struct sdma_desc *desc;
1640 	u32 residue;
1641 	struct virt_dma_desc *vd;
1642 	enum dma_status ret;
1643 	unsigned long flags;
1644 
1645 	ret = dma_cookie_status(chan, cookie, txstate);
1646 	if (ret == DMA_COMPLETE || !txstate)
1647 		return ret;
1648 
1649 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1650 	vd = vchan_find_desc(&sdmac->vc, cookie);
1651 	if (vd) {
1652 		desc = to_sdma_desc(&vd->tx);
1653 		if (sdmac->flags & IMX_DMA_SG_LOOP)
1654 			residue = (desc->num_bd - desc->buf_ptail) *
1655 				desc->period_len - desc->chn_real_count;
1656 		else
1657 			residue = desc->chn_count - desc->chn_real_count;
1658 	} else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie) {
1659 		residue = sdmac->desc->chn_count - sdmac->desc->chn_real_count;
1660 	} else {
1661 		residue = 0;
1662 	}
1663 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1664 
1665 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1666 			 residue);
1667 
1668 	return sdmac->status;
1669 }
1670 
1671 static void sdma_issue_pending(struct dma_chan *chan)
1672 {
1673 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1674 	unsigned long flags;
1675 
1676 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1677 	if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1678 		sdma_start_desc(sdmac);
1679 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1680 }
1681 
1682 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1683 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1684 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	41
1685 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4	42
1686 
1687 static void sdma_add_scripts(struct sdma_engine *sdma,
1688 		const struct sdma_script_start_addrs *addr)
1689 {
1690 	s32 *addr_arr = (u32 *)addr;
1691 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1692 	int i;
1693 
1694 	/* use the default firmware in ROM if missing external firmware */
1695 	if (!sdma->script_number)
1696 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1697 
1698 	for (i = 0; i < sdma->script_number; i++)
1699 		if (addr_arr[i] > 0)
1700 			saddr_arr[i] = addr_arr[i];
1701 }
1702 
1703 static void sdma_load_firmware(const struct firmware *fw, void *context)
1704 {
1705 	struct sdma_engine *sdma = context;
1706 	const struct sdma_firmware_header *header;
1707 	const struct sdma_script_start_addrs *addr;
1708 	unsigned short *ram_code;
1709 
1710 	if (!fw) {
1711 		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1712 		/* In this case we just use the ROM firmware. */
1713 		return;
1714 	}
1715 
1716 	if (fw->size < sizeof(*header))
1717 		goto err_firmware;
1718 
1719 	header = (struct sdma_firmware_header *)fw->data;
1720 
1721 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1722 		goto err_firmware;
1723 	if (header->ram_code_start + header->ram_code_size > fw->size)
1724 		goto err_firmware;
1725 	switch (header->version_major) {
1726 	case 1:
1727 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1728 		break;
1729 	case 2:
1730 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1731 		break;
1732 	case 3:
1733 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1734 		break;
1735 	case 4:
1736 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1737 		break;
1738 	default:
1739 		dev_err(sdma->dev, "unknown firmware version\n");
1740 		goto err_firmware;
1741 	}
1742 
1743 	addr = (void *)header + header->script_addrs_start;
1744 	ram_code = (void *)header + header->ram_code_start;
1745 
1746 	clk_enable(sdma->clk_ipg);
1747 	clk_enable(sdma->clk_ahb);
1748 	/* download the RAM image for SDMA */
1749 	sdma_load_script(sdma, ram_code,
1750 			header->ram_code_size,
1751 			addr->ram_code_start_addr);
1752 	clk_disable(sdma->clk_ipg);
1753 	clk_disable(sdma->clk_ahb);
1754 
1755 	sdma_add_scripts(sdma, addr);
1756 
1757 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1758 			header->version_major,
1759 			header->version_minor);
1760 
1761 err_firmware:
1762 	release_firmware(fw);
1763 }
1764 
1765 #define EVENT_REMAP_CELLS 3
1766 
1767 static int sdma_event_remap(struct sdma_engine *sdma)
1768 {
1769 	struct device_node *np = sdma->dev->of_node;
1770 	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1771 	struct property *event_remap;
1772 	struct regmap *gpr;
1773 	char propname[] = "fsl,sdma-event-remap";
1774 	u32 reg, val, shift, num_map, i;
1775 	int ret = 0;
1776 
1777 	if (IS_ERR(np) || IS_ERR(gpr_np))
1778 		goto out;
1779 
1780 	event_remap = of_find_property(np, propname, NULL);
1781 	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1782 	if (!num_map) {
1783 		dev_dbg(sdma->dev, "no event needs to be remapped\n");
1784 		goto out;
1785 	} else if (num_map % EVENT_REMAP_CELLS) {
1786 		dev_err(sdma->dev, "the property %s must modulo %d\n",
1787 				propname, EVENT_REMAP_CELLS);
1788 		ret = -EINVAL;
1789 		goto out;
1790 	}
1791 
1792 	gpr = syscon_node_to_regmap(gpr_np);
1793 	if (IS_ERR(gpr)) {
1794 		dev_err(sdma->dev, "failed to get gpr regmap\n");
1795 		ret = PTR_ERR(gpr);
1796 		goto out;
1797 	}
1798 
1799 	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1800 		ret = of_property_read_u32_index(np, propname, i, &reg);
1801 		if (ret) {
1802 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1803 					propname, i);
1804 			goto out;
1805 		}
1806 
1807 		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1808 		if (ret) {
1809 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1810 					propname, i + 1);
1811 			goto out;
1812 		}
1813 
1814 		ret = of_property_read_u32_index(np, propname, i + 2, &val);
1815 		if (ret) {
1816 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1817 					propname, i + 2);
1818 			goto out;
1819 		}
1820 
1821 		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1822 	}
1823 
1824 out:
1825 	if (!IS_ERR(gpr_np))
1826 		of_node_put(gpr_np);
1827 
1828 	return ret;
1829 }
1830 
1831 static int sdma_get_firmware(struct sdma_engine *sdma,
1832 		const char *fw_name)
1833 {
1834 	int ret;
1835 
1836 	ret = request_firmware_nowait(THIS_MODULE,
1837 			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1838 			GFP_KERNEL, sdma, sdma_load_firmware);
1839 
1840 	return ret;
1841 }
1842 
1843 static int sdma_init(struct sdma_engine *sdma)
1844 {
1845 	int i, ret;
1846 	dma_addr_t ccb_phys;
1847 
1848 	ret = clk_enable(sdma->clk_ipg);
1849 	if (ret)
1850 		return ret;
1851 	ret = clk_enable(sdma->clk_ahb);
1852 	if (ret)
1853 		goto disable_clk_ipg;
1854 
1855 	if (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg))
1856 		sdma->clk_ratio = 1;
1857 
1858 	/* Be sure SDMA has not started yet */
1859 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1860 
1861 	sdma->channel_control = dma_alloc_coherent(sdma->dev,
1862 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1863 			sizeof(struct sdma_context_data),
1864 			&ccb_phys, GFP_KERNEL);
1865 
1866 	if (!sdma->channel_control) {
1867 		ret = -ENOMEM;
1868 		goto err_dma_alloc;
1869 	}
1870 
1871 	sdma->context = (void *)sdma->channel_control +
1872 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1873 	sdma->context_phys = ccb_phys +
1874 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1875 
1876 	/* Zero-out the CCB structures array just allocated */
1877 	memset(sdma->channel_control, 0,
1878 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1879 
1880 	/* disable all channels */
1881 	for (i = 0; i < sdma->drvdata->num_events; i++)
1882 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1883 
1884 	/* All channels have priority 0 */
1885 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1886 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1887 
1888 	ret = sdma_request_channel0(sdma);
1889 	if (ret)
1890 		goto err_dma_alloc;
1891 
1892 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1893 
1894 	/* Set Command Channel (Channel Zero) */
1895 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1896 
1897 	/* Set bits of CONFIG register but with static context switching */
1898 	if (sdma->clk_ratio)
1899 		writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
1900 	else
1901 		writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1902 
1903 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1904 
1905 	/* Initializes channel's priorities */
1906 	sdma_set_channel_priority(&sdma->channel[0], 7);
1907 
1908 	clk_disable(sdma->clk_ipg);
1909 	clk_disable(sdma->clk_ahb);
1910 
1911 	return 0;
1912 
1913 err_dma_alloc:
1914 	clk_disable(sdma->clk_ahb);
1915 disable_clk_ipg:
1916 	clk_disable(sdma->clk_ipg);
1917 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1918 	return ret;
1919 }
1920 
1921 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1922 {
1923 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1924 	struct sdma_engine *sdma = sdmac->sdma;
1925 	struct imx_dma_data *data = fn_param;
1926 
1927 	if (!imx_dma_is_general_purpose(chan))
1928 		return false;
1929 
1930 	/* return false if it's not the right device */
1931 	if (sdma->dev->of_node != data->of_node)
1932 		return false;
1933 
1934 	sdmac->data = *data;
1935 	chan->private = &sdmac->data;
1936 
1937 	return true;
1938 }
1939 
1940 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1941 				   struct of_dma *ofdma)
1942 {
1943 	struct sdma_engine *sdma = ofdma->of_dma_data;
1944 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1945 	struct imx_dma_data data;
1946 
1947 	if (dma_spec->args_count != 3)
1948 		return NULL;
1949 
1950 	data.dma_request = dma_spec->args[0];
1951 	data.peripheral_type = dma_spec->args[1];
1952 	data.priority = dma_spec->args[2];
1953 	/*
1954 	 * init dma_request2 to zero, which is not used by the dts.
1955 	 * For P2P, dma_request2 is init from dma_request_channel(),
1956 	 * chan->private will point to the imx_dma_data, and in
1957 	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1958 	 * be set to sdmac->event_id1.
1959 	 */
1960 	data.dma_request2 = 0;
1961 	data.of_node = ofdma->of_node;
1962 
1963 	return dma_request_channel(mask, sdma_filter_fn, &data);
1964 }
1965 
1966 static int sdma_probe(struct platform_device *pdev)
1967 {
1968 	const struct of_device_id *of_id =
1969 			of_match_device(sdma_dt_ids, &pdev->dev);
1970 	struct device_node *np = pdev->dev.of_node;
1971 	struct device_node *spba_bus;
1972 	const char *fw_name;
1973 	int ret;
1974 	int irq;
1975 	struct resource *iores;
1976 	struct resource spba_res;
1977 	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1978 	int i;
1979 	struct sdma_engine *sdma;
1980 	s32 *saddr_arr;
1981 	const struct sdma_driver_data *drvdata = NULL;
1982 
1983 	if (of_id)
1984 		drvdata = of_id->data;
1985 	else if (pdev->id_entry)
1986 		drvdata = (void *)pdev->id_entry->driver_data;
1987 
1988 	if (!drvdata) {
1989 		dev_err(&pdev->dev, "unable to find driver data\n");
1990 		return -EINVAL;
1991 	}
1992 
1993 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1994 	if (ret)
1995 		return ret;
1996 
1997 	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1998 	if (!sdma)
1999 		return -ENOMEM;
2000 
2001 	spin_lock_init(&sdma->channel_0_lock);
2002 
2003 	sdma->dev = &pdev->dev;
2004 	sdma->drvdata = drvdata;
2005 
2006 	irq = platform_get_irq(pdev, 0);
2007 	if (irq < 0)
2008 		return irq;
2009 
2010 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2011 	sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
2012 	if (IS_ERR(sdma->regs))
2013 		return PTR_ERR(sdma->regs);
2014 
2015 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2016 	if (IS_ERR(sdma->clk_ipg))
2017 		return PTR_ERR(sdma->clk_ipg);
2018 
2019 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2020 	if (IS_ERR(sdma->clk_ahb))
2021 		return PTR_ERR(sdma->clk_ahb);
2022 
2023 	ret = clk_prepare(sdma->clk_ipg);
2024 	if (ret)
2025 		return ret;
2026 
2027 	ret = clk_prepare(sdma->clk_ahb);
2028 	if (ret)
2029 		goto err_clk;
2030 
2031 	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
2032 			       sdma);
2033 	if (ret)
2034 		goto err_irq;
2035 
2036 	sdma->irq = irq;
2037 
2038 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2039 	if (!sdma->script_addrs) {
2040 		ret = -ENOMEM;
2041 		goto err_irq;
2042 	}
2043 
2044 	/* initially no scripts available */
2045 	saddr_arr = (s32 *)sdma->script_addrs;
2046 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
2047 		saddr_arr[i] = -EINVAL;
2048 
2049 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2050 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2051 	dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2052 
2053 	INIT_LIST_HEAD(&sdma->dma_device.channels);
2054 	/* Initialize channel parameters */
2055 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2056 		struct sdma_channel *sdmac = &sdma->channel[i];
2057 
2058 		sdmac->sdma = sdma;
2059 
2060 		sdmac->channel = i;
2061 		sdmac->vc.desc_free = sdma_desc_free;
2062 		INIT_WORK(&sdmac->terminate_worker,
2063 				sdma_channel_terminate_work);
2064 		/*
2065 		 * Add the channel to the DMAC list. Do not add channel 0 though
2066 		 * because we need it internally in the SDMA driver. This also means
2067 		 * that channel 0 in dmaengine counting matches sdma channel 1.
2068 		 */
2069 		if (i)
2070 			vchan_init(&sdmac->vc, &sdma->dma_device);
2071 	}
2072 
2073 	ret = sdma_init(sdma);
2074 	if (ret)
2075 		goto err_init;
2076 
2077 	ret = sdma_event_remap(sdma);
2078 	if (ret)
2079 		goto err_init;
2080 
2081 	if (sdma->drvdata->script_addrs)
2082 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2083 	if (pdata && pdata->script_addrs)
2084 		sdma_add_scripts(sdma, pdata->script_addrs);
2085 
2086 	if (pdata) {
2087 		ret = sdma_get_firmware(sdma, pdata->fw_name);
2088 		if (ret)
2089 			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
2090 	} else {
2091 		/*
2092 		 * Because that device tree does not encode ROM script address,
2093 		 * the RAM script in firmware is mandatory for device tree
2094 		 * probe, otherwise it fails.
2095 		 */
2096 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2097 					      &fw_name);
2098 		if (ret)
2099 			dev_warn(&pdev->dev, "failed to get firmware name\n");
2100 		else {
2101 			ret = sdma_get_firmware(sdma, fw_name);
2102 			if (ret)
2103 				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2104 		}
2105 	}
2106 
2107 	sdma->dma_device.dev = &pdev->dev;
2108 
2109 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2110 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2111 	sdma->dma_device.device_tx_status = sdma_tx_status;
2112 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2113 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2114 	sdma->dma_device.device_config = sdma_config;
2115 	sdma->dma_device.device_terminate_all = sdma_disable_channel_async;
2116 	sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2117 	sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2118 	sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2119 	sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2120 	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2121 	sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2122 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
2123 	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
2124 	sdma->dma_device.copy_align = 2;
2125 	dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2126 
2127 	platform_set_drvdata(pdev, sdma);
2128 
2129 	ret = dma_async_device_register(&sdma->dma_device);
2130 	if (ret) {
2131 		dev_err(&pdev->dev, "unable to register\n");
2132 		goto err_init;
2133 	}
2134 
2135 	if (np) {
2136 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
2137 		if (ret) {
2138 			dev_err(&pdev->dev, "failed to register controller\n");
2139 			goto err_register;
2140 		}
2141 
2142 		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2143 		ret = of_address_to_resource(spba_bus, 0, &spba_res);
2144 		if (!ret) {
2145 			sdma->spba_start_addr = spba_res.start;
2146 			sdma->spba_end_addr = spba_res.end;
2147 		}
2148 		of_node_put(spba_bus);
2149 	}
2150 
2151 	return 0;
2152 
2153 err_register:
2154 	dma_async_device_unregister(&sdma->dma_device);
2155 err_init:
2156 	kfree(sdma->script_addrs);
2157 err_irq:
2158 	clk_unprepare(sdma->clk_ahb);
2159 err_clk:
2160 	clk_unprepare(sdma->clk_ipg);
2161 	return ret;
2162 }
2163 
2164 static int sdma_remove(struct platform_device *pdev)
2165 {
2166 	struct sdma_engine *sdma = platform_get_drvdata(pdev);
2167 	int i;
2168 
2169 	devm_free_irq(&pdev->dev, sdma->irq, sdma);
2170 	dma_async_device_unregister(&sdma->dma_device);
2171 	kfree(sdma->script_addrs);
2172 	clk_unprepare(sdma->clk_ahb);
2173 	clk_unprepare(sdma->clk_ipg);
2174 	/* Kill the tasklet */
2175 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2176 		struct sdma_channel *sdmac = &sdma->channel[i];
2177 
2178 		tasklet_kill(&sdmac->vc.task);
2179 		sdma_free_chan_resources(&sdmac->vc.chan);
2180 	}
2181 
2182 	platform_set_drvdata(pdev, NULL);
2183 	return 0;
2184 }
2185 
2186 static struct platform_driver sdma_driver = {
2187 	.driver		= {
2188 		.name	= "imx-sdma",
2189 		.of_match_table = sdma_dt_ids,
2190 	},
2191 	.id_table	= sdma_devtypes,
2192 	.remove		= sdma_remove,
2193 	.probe		= sdma_probe,
2194 };
2195 
2196 module_platform_driver(sdma_driver);
2197 
2198 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2199 MODULE_DESCRIPTION("i.MX SDMA driver");
2200 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2201 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2202 #endif
2203 #if IS_ENABLED(CONFIG_SOC_IMX7D)
2204 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2205 #endif
2206 MODULE_LICENSE("GPL");
2207