xref: /openbmc/linux/drivers/dma/imx-sdma.c (revision e3b9f1e8)
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19 
20 #include <linux/init.h>
21 #include <linux/iopoll.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/bitops.h>
25 #include <linux/mm.h>
26 #include <linux/interrupt.h>
27 #include <linux/clk.h>
28 #include <linux/delay.h>
29 #include <linux/sched.h>
30 #include <linux/semaphore.h>
31 #include <linux/spinlock.h>
32 #include <linux/device.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/firmware.h>
35 #include <linux/slab.h>
36 #include <linux/platform_device.h>
37 #include <linux/dmaengine.h>
38 #include <linux/of.h>
39 #include <linux/of_address.h>
40 #include <linux/of_device.h>
41 #include <linux/of_dma.h>
42 
43 #include <asm/irq.h>
44 #include <linux/platform_data/dma-imx-sdma.h>
45 #include <linux/platform_data/dma-imx.h>
46 #include <linux/regmap.h>
47 #include <linux/mfd/syscon.h>
48 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
49 
50 #include "dmaengine.h"
51 
52 /* SDMA registers */
53 #define SDMA_H_C0PTR		0x000
54 #define SDMA_H_INTR		0x004
55 #define SDMA_H_STATSTOP		0x008
56 #define SDMA_H_START		0x00c
57 #define SDMA_H_EVTOVR		0x010
58 #define SDMA_H_DSPOVR		0x014
59 #define SDMA_H_HOSTOVR		0x018
60 #define SDMA_H_EVTPEND		0x01c
61 #define SDMA_H_DSPENBL		0x020
62 #define SDMA_H_RESET		0x024
63 #define SDMA_H_EVTERR		0x028
64 #define SDMA_H_INTRMSK		0x02c
65 #define SDMA_H_PSW		0x030
66 #define SDMA_H_EVTERRDBG	0x034
67 #define SDMA_H_CONFIG		0x038
68 #define SDMA_ONCE_ENB		0x040
69 #define SDMA_ONCE_DATA		0x044
70 #define SDMA_ONCE_INSTR		0x048
71 #define SDMA_ONCE_STAT		0x04c
72 #define SDMA_ONCE_CMD		0x050
73 #define SDMA_EVT_MIRROR		0x054
74 #define SDMA_ILLINSTADDR	0x058
75 #define SDMA_CHN0ADDR		0x05c
76 #define SDMA_ONCE_RTB		0x060
77 #define SDMA_XTRIG_CONF1	0x070
78 #define SDMA_XTRIG_CONF2	0x074
79 #define SDMA_CHNENBL0_IMX35	0x200
80 #define SDMA_CHNENBL0_IMX31	0x080
81 #define SDMA_CHNPRI_0		0x100
82 
83 /*
84  * Buffer descriptor status values.
85  */
86 #define BD_DONE  0x01
87 #define BD_WRAP  0x02
88 #define BD_CONT  0x04
89 #define BD_INTR  0x08
90 #define BD_RROR  0x10
91 #define BD_LAST  0x20
92 #define BD_EXTD  0x80
93 
94 /*
95  * Data Node descriptor status values.
96  */
97 #define DND_END_OF_FRAME  0x80
98 #define DND_END_OF_XFER   0x40
99 #define DND_DONE          0x20
100 #define DND_UNUSED        0x01
101 
102 /*
103  * IPCV2 descriptor status values.
104  */
105 #define BD_IPCV2_END_OF_FRAME  0x40
106 
107 #define IPCV2_MAX_NODES        50
108 /*
109  * Error bit set in the CCB status field by the SDMA,
110  * in setbd routine, in case of a transfer error
111  */
112 #define DATA_ERROR  0x10000000
113 
114 /*
115  * Buffer descriptor commands.
116  */
117 #define C0_ADDR             0x01
118 #define C0_LOAD             0x02
119 #define C0_DUMP             0x03
120 #define C0_SETCTX           0x07
121 #define C0_GETCTX           0x03
122 #define C0_SETDM            0x01
123 #define C0_SETPM            0x04
124 #define C0_GETDM            0x02
125 #define C0_GETPM            0x08
126 /*
127  * Change endianness indicator in the BD command field
128  */
129 #define CHANGE_ENDIANNESS   0x80
130 
131 /*
132  *  p_2_p watermark_level description
133  *	Bits		Name			Description
134  *	0-7		Lower WML		Lower watermark level
135  *	8		PS			1: Pad Swallowing
136  *						0: No Pad Swallowing
137  *	9		PA			1: Pad Adding
138  *						0: No Pad Adding
139  *	10		SPDIF			If this bit is set both source
140  *						and destination are on SPBA
141  *	11		Source Bit(SP)		1: Source on SPBA
142  *						0: Source on AIPS
143  *	12		Destination Bit(DP)	1: Destination on SPBA
144  *						0: Destination on AIPS
145  *	13-15		---------		MUST BE 0
146  *	16-23		Higher WML		HWML
147  *	24-27		N			Total number of samples after
148  *						which Pad adding/Swallowing
149  *						must be done. It must be odd.
150  *	28		Lower WML Event(LWE)	SDMA events reg to check for
151  *						LWML event mask
152  *						0: LWE in EVENTS register
153  *						1: LWE in EVENTS2 register
154  *	29		Higher WML Event(HWE)	SDMA events reg to check for
155  *						HWML event mask
156  *						0: HWE in EVENTS register
157  *						1: HWE in EVENTS2 register
158  *	30		---------		MUST BE 0
159  *	31		CONT			1: Amount of samples to be
160  *						transferred is unknown and
161  *						script will keep on
162  *						transferring samples as long as
163  *						both events are detected and
164  *						script must be manually stopped
165  *						by the application
166  *						0: The amount of samples to be
167  *						transferred is equal to the
168  *						count field of mode word
169  */
170 #define SDMA_WATERMARK_LEVEL_LWML	0xFF
171 #define SDMA_WATERMARK_LEVEL_PS		BIT(8)
172 #define SDMA_WATERMARK_LEVEL_PA		BIT(9)
173 #define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
174 #define SDMA_WATERMARK_LEVEL_SP		BIT(11)
175 #define SDMA_WATERMARK_LEVEL_DP		BIT(12)
176 #define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
177 #define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
178 #define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
179 #define SDMA_WATERMARK_LEVEL_CONT	BIT(31)
180 
181 #define SDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
182 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
183 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
184 
185 #define SDMA_DMA_DIRECTIONS	(BIT(DMA_DEV_TO_MEM) | \
186 				 BIT(DMA_MEM_TO_DEV) | \
187 				 BIT(DMA_DEV_TO_DEV))
188 
189 /*
190  * Mode/Count of data node descriptors - IPCv2
191  */
192 struct sdma_mode_count {
193 	u32 count   : 16; /* size of the buffer pointed by this BD */
194 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
195 	u32 command :  8; /* command mostly used for channel 0 */
196 };
197 
198 /*
199  * Buffer descriptor
200  */
201 struct sdma_buffer_descriptor {
202 	struct sdma_mode_count  mode;
203 	u32 buffer_addr;	/* address of the buffer described */
204 	u32 ext_buffer_addr;	/* extended buffer address */
205 } __attribute__ ((packed));
206 
207 /**
208  * struct sdma_channel_control - Channel control Block
209  *
210  * @current_bd_ptr	current buffer descriptor processed
211  * @base_bd_ptr		first element of buffer descriptor array
212  * @unused		padding. The SDMA engine expects an array of 128 byte
213  *			control blocks
214  */
215 struct sdma_channel_control {
216 	u32 current_bd_ptr;
217 	u32 base_bd_ptr;
218 	u32 unused[2];
219 } __attribute__ ((packed));
220 
221 /**
222  * struct sdma_state_registers - SDMA context for a channel
223  *
224  * @pc:		program counter
225  * @t:		test bit: status of arithmetic & test instruction
226  * @rpc:	return program counter
227  * @sf:		source fault while loading data
228  * @spc:	loop start program counter
229  * @df:		destination fault while storing data
230  * @epc:	loop end program counter
231  * @lm:		loop mode
232  */
233 struct sdma_state_registers {
234 	u32 pc     :14;
235 	u32 unused1: 1;
236 	u32 t      : 1;
237 	u32 rpc    :14;
238 	u32 unused0: 1;
239 	u32 sf     : 1;
240 	u32 spc    :14;
241 	u32 unused2: 1;
242 	u32 df     : 1;
243 	u32 epc    :14;
244 	u32 lm     : 2;
245 } __attribute__ ((packed));
246 
247 /**
248  * struct sdma_context_data - sdma context specific to a channel
249  *
250  * @channel_state:	channel state bits
251  * @gReg:		general registers
252  * @mda:		burst dma destination address register
253  * @msa:		burst dma source address register
254  * @ms:			burst dma status register
255  * @md:			burst dma data register
256  * @pda:		peripheral dma destination address register
257  * @psa:		peripheral dma source address register
258  * @ps:			peripheral dma status register
259  * @pd:			peripheral dma data register
260  * @ca:			CRC polynomial register
261  * @cs:			CRC accumulator register
262  * @dda:		dedicated core destination address register
263  * @dsa:		dedicated core source address register
264  * @ds:			dedicated core status register
265  * @dd:			dedicated core data register
266  */
267 struct sdma_context_data {
268 	struct sdma_state_registers  channel_state;
269 	u32  gReg[8];
270 	u32  mda;
271 	u32  msa;
272 	u32  ms;
273 	u32  md;
274 	u32  pda;
275 	u32  psa;
276 	u32  ps;
277 	u32  pd;
278 	u32  ca;
279 	u32  cs;
280 	u32  dda;
281 	u32  dsa;
282 	u32  ds;
283 	u32  dd;
284 	u32  scratch0;
285 	u32  scratch1;
286 	u32  scratch2;
287 	u32  scratch3;
288 	u32  scratch4;
289 	u32  scratch5;
290 	u32  scratch6;
291 	u32  scratch7;
292 } __attribute__ ((packed));
293 
294 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
295 
296 struct sdma_engine;
297 
298 /**
299  * struct sdma_channel - housekeeping for a SDMA channel
300  *
301  * @sdma		pointer to the SDMA engine for this channel
302  * @channel		the channel number, matches dmaengine chan_id + 1
303  * @direction		transfer type. Needed for setting SDMA script
304  * @peripheral_type	Peripheral type. Needed for setting SDMA script
305  * @event_id0		aka dma request line
306  * @event_id1		for channels that use 2 events
307  * @word_size		peripheral access size
308  * @buf_tail		ID of the buffer that was processed
309  * @buf_ptail		ID of the previous buffer that was processed
310  * @num_bd		max NUM_BD. number of descriptors currently handling
311  */
312 struct sdma_channel {
313 	struct sdma_engine		*sdma;
314 	unsigned int			channel;
315 	enum dma_transfer_direction		direction;
316 	enum sdma_peripheral_type	peripheral_type;
317 	unsigned int			event_id0;
318 	unsigned int			event_id1;
319 	enum dma_slave_buswidth		word_size;
320 	unsigned int			buf_tail;
321 	unsigned int			buf_ptail;
322 	unsigned int			num_bd;
323 	unsigned int			period_len;
324 	struct sdma_buffer_descriptor	*bd;
325 	dma_addr_t			bd_phys;
326 	unsigned int			pc_from_device, pc_to_device;
327 	unsigned int			device_to_device;
328 	unsigned long			flags;
329 	dma_addr_t			per_address, per_address2;
330 	unsigned long			event_mask[2];
331 	unsigned long			watermark_level;
332 	u32				shp_addr, per_addr;
333 	struct dma_chan			chan;
334 	spinlock_t			lock;
335 	struct dma_async_tx_descriptor	desc;
336 	enum dma_status			status;
337 	unsigned int			chn_count;
338 	unsigned int			chn_real_count;
339 	struct tasklet_struct		tasklet;
340 	struct imx_dma_data		data;
341 };
342 
343 #define IMX_DMA_SG_LOOP		BIT(0)
344 
345 #define MAX_DMA_CHANNELS 32
346 #define MXC_SDMA_DEFAULT_PRIORITY 1
347 #define MXC_SDMA_MIN_PRIORITY 1
348 #define MXC_SDMA_MAX_PRIORITY 7
349 
350 #define SDMA_FIRMWARE_MAGIC 0x414d4453
351 
352 /**
353  * struct sdma_firmware_header - Layout of the firmware image
354  *
355  * @magic		"SDMA"
356  * @version_major	increased whenever layout of struct sdma_script_start_addrs
357  *			changes.
358  * @version_minor	firmware minor version (for binary compatible changes)
359  * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
360  * @num_script_addrs	Number of script addresses in this image
361  * @ram_code_start	offset of SDMA ram image in this firmware image
362  * @ram_code_size	size of SDMA ram image
363  * @script_addrs	Stores the start address of the SDMA scripts
364  *			(in SDMA memory space)
365  */
366 struct sdma_firmware_header {
367 	u32	magic;
368 	u32	version_major;
369 	u32	version_minor;
370 	u32	script_addrs_start;
371 	u32	num_script_addrs;
372 	u32	ram_code_start;
373 	u32	ram_code_size;
374 };
375 
376 struct sdma_driver_data {
377 	int chnenbl0;
378 	int num_events;
379 	struct sdma_script_start_addrs	*script_addrs;
380 };
381 
382 struct sdma_engine {
383 	struct device			*dev;
384 	struct device_dma_parameters	dma_parms;
385 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
386 	struct sdma_channel_control	*channel_control;
387 	void __iomem			*regs;
388 	struct sdma_context_data	*context;
389 	dma_addr_t			context_phys;
390 	struct dma_device		dma_device;
391 	struct clk			*clk_ipg;
392 	struct clk			*clk_ahb;
393 	spinlock_t			channel_0_lock;
394 	u32				script_number;
395 	struct sdma_script_start_addrs	*script_addrs;
396 	const struct sdma_driver_data	*drvdata;
397 	u32				spba_start_addr;
398 	u32				spba_end_addr;
399 	unsigned int			irq;
400 };
401 
402 static struct sdma_driver_data sdma_imx31 = {
403 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
404 	.num_events = 32,
405 };
406 
407 static struct sdma_script_start_addrs sdma_script_imx25 = {
408 	.ap_2_ap_addr = 729,
409 	.uart_2_mcu_addr = 904,
410 	.per_2_app_addr = 1255,
411 	.mcu_2_app_addr = 834,
412 	.uartsh_2_mcu_addr = 1120,
413 	.per_2_shp_addr = 1329,
414 	.mcu_2_shp_addr = 1048,
415 	.ata_2_mcu_addr = 1560,
416 	.mcu_2_ata_addr = 1479,
417 	.app_2_per_addr = 1189,
418 	.app_2_mcu_addr = 770,
419 	.shp_2_per_addr = 1407,
420 	.shp_2_mcu_addr = 979,
421 };
422 
423 static struct sdma_driver_data sdma_imx25 = {
424 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
425 	.num_events = 48,
426 	.script_addrs = &sdma_script_imx25,
427 };
428 
429 static struct sdma_driver_data sdma_imx35 = {
430 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
431 	.num_events = 48,
432 };
433 
434 static struct sdma_script_start_addrs sdma_script_imx51 = {
435 	.ap_2_ap_addr = 642,
436 	.uart_2_mcu_addr = 817,
437 	.mcu_2_app_addr = 747,
438 	.mcu_2_shp_addr = 961,
439 	.ata_2_mcu_addr = 1473,
440 	.mcu_2_ata_addr = 1392,
441 	.app_2_per_addr = 1033,
442 	.app_2_mcu_addr = 683,
443 	.shp_2_per_addr = 1251,
444 	.shp_2_mcu_addr = 892,
445 };
446 
447 static struct sdma_driver_data sdma_imx51 = {
448 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
449 	.num_events = 48,
450 	.script_addrs = &sdma_script_imx51,
451 };
452 
453 static struct sdma_script_start_addrs sdma_script_imx53 = {
454 	.ap_2_ap_addr = 642,
455 	.app_2_mcu_addr = 683,
456 	.mcu_2_app_addr = 747,
457 	.uart_2_mcu_addr = 817,
458 	.shp_2_mcu_addr = 891,
459 	.mcu_2_shp_addr = 960,
460 	.uartsh_2_mcu_addr = 1032,
461 	.spdif_2_mcu_addr = 1100,
462 	.mcu_2_spdif_addr = 1134,
463 	.firi_2_mcu_addr = 1193,
464 	.mcu_2_firi_addr = 1290,
465 };
466 
467 static struct sdma_driver_data sdma_imx53 = {
468 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
469 	.num_events = 48,
470 	.script_addrs = &sdma_script_imx53,
471 };
472 
473 static struct sdma_script_start_addrs sdma_script_imx6q = {
474 	.ap_2_ap_addr = 642,
475 	.uart_2_mcu_addr = 817,
476 	.mcu_2_app_addr = 747,
477 	.per_2_per_addr = 6331,
478 	.uartsh_2_mcu_addr = 1032,
479 	.mcu_2_shp_addr = 960,
480 	.app_2_mcu_addr = 683,
481 	.shp_2_mcu_addr = 891,
482 	.spdif_2_mcu_addr = 1100,
483 	.mcu_2_spdif_addr = 1134,
484 };
485 
486 static struct sdma_driver_data sdma_imx6q = {
487 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
488 	.num_events = 48,
489 	.script_addrs = &sdma_script_imx6q,
490 };
491 
492 static struct sdma_script_start_addrs sdma_script_imx7d = {
493 	.ap_2_ap_addr = 644,
494 	.uart_2_mcu_addr = 819,
495 	.mcu_2_app_addr = 749,
496 	.uartsh_2_mcu_addr = 1034,
497 	.mcu_2_shp_addr = 962,
498 	.app_2_mcu_addr = 685,
499 	.shp_2_mcu_addr = 893,
500 	.spdif_2_mcu_addr = 1102,
501 	.mcu_2_spdif_addr = 1136,
502 };
503 
504 static struct sdma_driver_data sdma_imx7d = {
505 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
506 	.num_events = 48,
507 	.script_addrs = &sdma_script_imx7d,
508 };
509 
510 static const struct platform_device_id sdma_devtypes[] = {
511 	{
512 		.name = "imx25-sdma",
513 		.driver_data = (unsigned long)&sdma_imx25,
514 	}, {
515 		.name = "imx31-sdma",
516 		.driver_data = (unsigned long)&sdma_imx31,
517 	}, {
518 		.name = "imx35-sdma",
519 		.driver_data = (unsigned long)&sdma_imx35,
520 	}, {
521 		.name = "imx51-sdma",
522 		.driver_data = (unsigned long)&sdma_imx51,
523 	}, {
524 		.name = "imx53-sdma",
525 		.driver_data = (unsigned long)&sdma_imx53,
526 	}, {
527 		.name = "imx6q-sdma",
528 		.driver_data = (unsigned long)&sdma_imx6q,
529 	}, {
530 		.name = "imx7d-sdma",
531 		.driver_data = (unsigned long)&sdma_imx7d,
532 	}, {
533 		/* sentinel */
534 	}
535 };
536 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
537 
538 static const struct of_device_id sdma_dt_ids[] = {
539 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
540 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
541 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
542 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
543 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
544 	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
545 	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
546 	{ /* sentinel */ }
547 };
548 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
549 
550 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
551 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
552 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
553 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
554 
555 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
556 {
557 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
558 	return chnenbl0 + event * 4;
559 }
560 
561 static int sdma_config_ownership(struct sdma_channel *sdmac,
562 		bool event_override, bool mcu_override, bool dsp_override)
563 {
564 	struct sdma_engine *sdma = sdmac->sdma;
565 	int channel = sdmac->channel;
566 	unsigned long evt, mcu, dsp;
567 
568 	if (event_override && mcu_override && dsp_override)
569 		return -EINVAL;
570 
571 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
572 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
573 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
574 
575 	if (dsp_override)
576 		__clear_bit(channel, &dsp);
577 	else
578 		__set_bit(channel, &dsp);
579 
580 	if (event_override)
581 		__clear_bit(channel, &evt);
582 	else
583 		__set_bit(channel, &evt);
584 
585 	if (mcu_override)
586 		__clear_bit(channel, &mcu);
587 	else
588 		__set_bit(channel, &mcu);
589 
590 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
591 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
592 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
593 
594 	return 0;
595 }
596 
597 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
598 {
599 	writel(BIT(channel), sdma->regs + SDMA_H_START);
600 }
601 
602 /*
603  * sdma_run_channel0 - run a channel and wait till it's done
604  */
605 static int sdma_run_channel0(struct sdma_engine *sdma)
606 {
607 	int ret;
608 	u32 reg;
609 
610 	sdma_enable_channel(sdma, 0);
611 
612 	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
613 						reg, !(reg & 1), 1, 500);
614 	if (ret)
615 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
616 
617 	/* Set bits of CONFIG register with dynamic context switching */
618 	if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
619 		writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
620 
621 	return ret;
622 }
623 
624 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
625 		u32 address)
626 {
627 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
628 	void *buf_virt;
629 	dma_addr_t buf_phys;
630 	int ret;
631 	unsigned long flags;
632 
633 	buf_virt = dma_alloc_coherent(NULL,
634 			size,
635 			&buf_phys, GFP_KERNEL);
636 	if (!buf_virt) {
637 		return -ENOMEM;
638 	}
639 
640 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
641 
642 	bd0->mode.command = C0_SETPM;
643 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
644 	bd0->mode.count = size / 2;
645 	bd0->buffer_addr = buf_phys;
646 	bd0->ext_buffer_addr = address;
647 
648 	memcpy(buf_virt, buf, size);
649 
650 	ret = sdma_run_channel0(sdma);
651 
652 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
653 
654 	dma_free_coherent(NULL, size, buf_virt, buf_phys);
655 
656 	return ret;
657 }
658 
659 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
660 {
661 	struct sdma_engine *sdma = sdmac->sdma;
662 	int channel = sdmac->channel;
663 	unsigned long val;
664 	u32 chnenbl = chnenbl_ofs(sdma, event);
665 
666 	val = readl_relaxed(sdma->regs + chnenbl);
667 	__set_bit(channel, &val);
668 	writel_relaxed(val, sdma->regs + chnenbl);
669 }
670 
671 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
672 {
673 	struct sdma_engine *sdma = sdmac->sdma;
674 	int channel = sdmac->channel;
675 	u32 chnenbl = chnenbl_ofs(sdma, event);
676 	unsigned long val;
677 
678 	val = readl_relaxed(sdma->regs + chnenbl);
679 	__clear_bit(channel, &val);
680 	writel_relaxed(val, sdma->regs + chnenbl);
681 }
682 
683 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
684 {
685 	struct sdma_buffer_descriptor *bd;
686 	int error = 0;
687 	enum dma_status	old_status = sdmac->status;
688 
689 	/*
690 	 * loop mode. Iterate over descriptors, re-setup them and
691 	 * call callback function.
692 	 */
693 	while (1) {
694 		bd = &sdmac->bd[sdmac->buf_tail];
695 
696 		if (bd->mode.status & BD_DONE)
697 			break;
698 
699 		if (bd->mode.status & BD_RROR) {
700 			bd->mode.status &= ~BD_RROR;
701 			sdmac->status = DMA_ERROR;
702 			error = -EIO;
703 		}
704 
705 	       /*
706 		* We use bd->mode.count to calculate the residue, since contains
707 		* the number of bytes present in the current buffer descriptor.
708 		*/
709 
710 		sdmac->chn_real_count = bd->mode.count;
711 		bd->mode.status |= BD_DONE;
712 		bd->mode.count = sdmac->period_len;
713 		sdmac->buf_ptail = sdmac->buf_tail;
714 		sdmac->buf_tail = (sdmac->buf_tail + 1) % sdmac->num_bd;
715 
716 		/*
717 		 * The callback is called from the interrupt context in order
718 		 * to reduce latency and to avoid the risk of altering the
719 		 * SDMA transaction status by the time the client tasklet is
720 		 * executed.
721 		 */
722 
723 		dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
724 
725 		if (error)
726 			sdmac->status = old_status;
727 	}
728 }
729 
730 static void mxc_sdma_handle_channel_normal(unsigned long data)
731 {
732 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
733 	struct sdma_buffer_descriptor *bd;
734 	int i, error = 0;
735 
736 	sdmac->chn_real_count = 0;
737 	/*
738 	 * non loop mode. Iterate over all descriptors, collect
739 	 * errors and call callback function
740 	 */
741 	for (i = 0; i < sdmac->num_bd; i++) {
742 		bd = &sdmac->bd[i];
743 
744 		 if (bd->mode.status & (BD_DONE | BD_RROR))
745 			error = -EIO;
746 		 sdmac->chn_real_count += bd->mode.count;
747 	}
748 
749 	if (error)
750 		sdmac->status = DMA_ERROR;
751 	else
752 		sdmac->status = DMA_COMPLETE;
753 
754 	dma_cookie_complete(&sdmac->desc);
755 
756 	dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
757 }
758 
759 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
760 {
761 	struct sdma_engine *sdma = dev_id;
762 	unsigned long stat;
763 
764 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
765 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
766 	/* channel 0 is special and not handled here, see run_channel0() */
767 	stat &= ~1;
768 
769 	while (stat) {
770 		int channel = fls(stat) - 1;
771 		struct sdma_channel *sdmac = &sdma->channel[channel];
772 
773 		if (sdmac->flags & IMX_DMA_SG_LOOP)
774 			sdma_update_channel_loop(sdmac);
775 		else
776 			tasklet_schedule(&sdmac->tasklet);
777 
778 		__clear_bit(channel, &stat);
779 	}
780 
781 	return IRQ_HANDLED;
782 }
783 
784 /*
785  * sets the pc of SDMA script according to the peripheral type
786  */
787 static void sdma_get_pc(struct sdma_channel *sdmac,
788 		enum sdma_peripheral_type peripheral_type)
789 {
790 	struct sdma_engine *sdma = sdmac->sdma;
791 	int per_2_emi = 0, emi_2_per = 0;
792 	/*
793 	 * These are needed once we start to support transfers between
794 	 * two peripherals or memory-to-memory transfers
795 	 */
796 	int per_2_per = 0;
797 
798 	sdmac->pc_from_device = 0;
799 	sdmac->pc_to_device = 0;
800 	sdmac->device_to_device = 0;
801 
802 	switch (peripheral_type) {
803 	case IMX_DMATYPE_MEMORY:
804 		break;
805 	case IMX_DMATYPE_DSP:
806 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
807 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
808 		break;
809 	case IMX_DMATYPE_FIRI:
810 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
811 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
812 		break;
813 	case IMX_DMATYPE_UART:
814 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
815 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
816 		break;
817 	case IMX_DMATYPE_UART_SP:
818 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
819 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
820 		break;
821 	case IMX_DMATYPE_ATA:
822 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
823 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
824 		break;
825 	case IMX_DMATYPE_CSPI:
826 	case IMX_DMATYPE_EXT:
827 	case IMX_DMATYPE_SSI:
828 	case IMX_DMATYPE_SAI:
829 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
830 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
831 		break;
832 	case IMX_DMATYPE_SSI_DUAL:
833 		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
834 		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
835 		break;
836 	case IMX_DMATYPE_SSI_SP:
837 	case IMX_DMATYPE_MMC:
838 	case IMX_DMATYPE_SDHC:
839 	case IMX_DMATYPE_CSPI_SP:
840 	case IMX_DMATYPE_ESAI:
841 	case IMX_DMATYPE_MSHC_SP:
842 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
843 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
844 		break;
845 	case IMX_DMATYPE_ASRC:
846 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
847 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
848 		per_2_per = sdma->script_addrs->per_2_per_addr;
849 		break;
850 	case IMX_DMATYPE_ASRC_SP:
851 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
852 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
853 		per_2_per = sdma->script_addrs->per_2_per_addr;
854 		break;
855 	case IMX_DMATYPE_MSHC:
856 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
857 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
858 		break;
859 	case IMX_DMATYPE_CCM:
860 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
861 		break;
862 	case IMX_DMATYPE_SPDIF:
863 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
864 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
865 		break;
866 	case IMX_DMATYPE_IPU_MEMORY:
867 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
868 		break;
869 	default:
870 		break;
871 	}
872 
873 	sdmac->pc_from_device = per_2_emi;
874 	sdmac->pc_to_device = emi_2_per;
875 	sdmac->device_to_device = per_2_per;
876 }
877 
878 static int sdma_load_context(struct sdma_channel *sdmac)
879 {
880 	struct sdma_engine *sdma = sdmac->sdma;
881 	int channel = sdmac->channel;
882 	int load_address;
883 	struct sdma_context_data *context = sdma->context;
884 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
885 	int ret;
886 	unsigned long flags;
887 
888 	if (sdmac->direction == DMA_DEV_TO_MEM)
889 		load_address = sdmac->pc_from_device;
890 	else if (sdmac->direction == DMA_DEV_TO_DEV)
891 		load_address = sdmac->device_to_device;
892 	else
893 		load_address = sdmac->pc_to_device;
894 
895 	if (load_address < 0)
896 		return load_address;
897 
898 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
899 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
900 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
901 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
902 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
903 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
904 
905 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
906 
907 	memset(context, 0, sizeof(*context));
908 	context->channel_state.pc = load_address;
909 
910 	/* Send by context the event mask,base address for peripheral
911 	 * and watermark level
912 	 */
913 	context->gReg[0] = sdmac->event_mask[1];
914 	context->gReg[1] = sdmac->event_mask[0];
915 	context->gReg[2] = sdmac->per_addr;
916 	context->gReg[6] = sdmac->shp_addr;
917 	context->gReg[7] = sdmac->watermark_level;
918 
919 	bd0->mode.command = C0_SETDM;
920 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
921 	bd0->mode.count = sizeof(*context) / 4;
922 	bd0->buffer_addr = sdma->context_phys;
923 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
924 	ret = sdma_run_channel0(sdma);
925 
926 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
927 
928 	return ret;
929 }
930 
931 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
932 {
933 	return container_of(chan, struct sdma_channel, chan);
934 }
935 
936 static int sdma_disable_channel(struct dma_chan *chan)
937 {
938 	struct sdma_channel *sdmac = to_sdma_chan(chan);
939 	struct sdma_engine *sdma = sdmac->sdma;
940 	int channel = sdmac->channel;
941 
942 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
943 	sdmac->status = DMA_ERROR;
944 
945 	return 0;
946 }
947 
948 static int sdma_disable_channel_with_delay(struct dma_chan *chan)
949 {
950 	sdma_disable_channel(chan);
951 
952 	/*
953 	 * According to NXP R&D team a delay of one BD SDMA cost time
954 	 * (maximum is 1ms) should be added after disable of the channel
955 	 * bit, to ensure SDMA core has really been stopped after SDMA
956 	 * clients call .device_terminate_all.
957 	 */
958 	mdelay(1);
959 
960 	return 0;
961 }
962 
963 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
964 {
965 	struct sdma_engine *sdma = sdmac->sdma;
966 
967 	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
968 	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
969 
970 	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
971 	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
972 
973 	if (sdmac->event_id0 > 31)
974 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
975 
976 	if (sdmac->event_id1 > 31)
977 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
978 
979 	/*
980 	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
981 	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
982 	 * r0(event_mask[1]) and r1(event_mask[0]).
983 	 */
984 	if (lwml > hwml) {
985 		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
986 						SDMA_WATERMARK_LEVEL_HWML);
987 		sdmac->watermark_level |= hwml;
988 		sdmac->watermark_level |= lwml << 16;
989 		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
990 	}
991 
992 	if (sdmac->per_address2 >= sdma->spba_start_addr &&
993 			sdmac->per_address2 <= sdma->spba_end_addr)
994 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
995 
996 	if (sdmac->per_address >= sdma->spba_start_addr &&
997 			sdmac->per_address <= sdma->spba_end_addr)
998 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
999 
1000 	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1001 }
1002 
1003 static int sdma_config_channel(struct dma_chan *chan)
1004 {
1005 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1006 	int ret;
1007 
1008 	sdma_disable_channel(chan);
1009 
1010 	sdmac->event_mask[0] = 0;
1011 	sdmac->event_mask[1] = 0;
1012 	sdmac->shp_addr = 0;
1013 	sdmac->per_addr = 0;
1014 
1015 	if (sdmac->event_id0) {
1016 		if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1017 			return -EINVAL;
1018 		sdma_event_enable(sdmac, sdmac->event_id0);
1019 	}
1020 
1021 	if (sdmac->event_id1) {
1022 		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1023 			return -EINVAL;
1024 		sdma_event_enable(sdmac, sdmac->event_id1);
1025 	}
1026 
1027 	switch (sdmac->peripheral_type) {
1028 	case IMX_DMATYPE_DSP:
1029 		sdma_config_ownership(sdmac, false, true, true);
1030 		break;
1031 	case IMX_DMATYPE_MEMORY:
1032 		sdma_config_ownership(sdmac, false, true, false);
1033 		break;
1034 	default:
1035 		sdma_config_ownership(sdmac, true, true, false);
1036 		break;
1037 	}
1038 
1039 	sdma_get_pc(sdmac, sdmac->peripheral_type);
1040 
1041 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1042 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1043 		/* Handle multiple event channels differently */
1044 		if (sdmac->event_id1) {
1045 			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1046 			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1047 				sdma_set_watermarklevel_for_p2p(sdmac);
1048 		} else
1049 			__set_bit(sdmac->event_id0, sdmac->event_mask);
1050 
1051 		/* Address */
1052 		sdmac->shp_addr = sdmac->per_address;
1053 		sdmac->per_addr = sdmac->per_address2;
1054 	} else {
1055 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1056 	}
1057 
1058 	ret = sdma_load_context(sdmac);
1059 
1060 	return ret;
1061 }
1062 
1063 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1064 		unsigned int priority)
1065 {
1066 	struct sdma_engine *sdma = sdmac->sdma;
1067 	int channel = sdmac->channel;
1068 
1069 	if (priority < MXC_SDMA_MIN_PRIORITY
1070 	    || priority > MXC_SDMA_MAX_PRIORITY) {
1071 		return -EINVAL;
1072 	}
1073 
1074 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1075 
1076 	return 0;
1077 }
1078 
1079 static int sdma_request_channel(struct sdma_channel *sdmac)
1080 {
1081 	struct sdma_engine *sdma = sdmac->sdma;
1082 	int channel = sdmac->channel;
1083 	int ret = -EBUSY;
1084 
1085 	sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
1086 					GFP_KERNEL);
1087 	if (!sdmac->bd) {
1088 		ret = -ENOMEM;
1089 		goto out;
1090 	}
1091 
1092 	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
1093 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1094 
1095 	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
1096 	return 0;
1097 out:
1098 
1099 	return ret;
1100 }
1101 
1102 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
1103 {
1104 	unsigned long flags;
1105 	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
1106 	dma_cookie_t cookie;
1107 
1108 	spin_lock_irqsave(&sdmac->lock, flags);
1109 
1110 	cookie = dma_cookie_assign(tx);
1111 
1112 	spin_unlock_irqrestore(&sdmac->lock, flags);
1113 
1114 	return cookie;
1115 }
1116 
1117 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1118 {
1119 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1120 	struct imx_dma_data *data = chan->private;
1121 	int prio, ret;
1122 
1123 	if (!data)
1124 		return -EINVAL;
1125 
1126 	switch (data->priority) {
1127 	case DMA_PRIO_HIGH:
1128 		prio = 3;
1129 		break;
1130 	case DMA_PRIO_MEDIUM:
1131 		prio = 2;
1132 		break;
1133 	case DMA_PRIO_LOW:
1134 	default:
1135 		prio = 1;
1136 		break;
1137 	}
1138 
1139 	sdmac->peripheral_type = data->peripheral_type;
1140 	sdmac->event_id0 = data->dma_request;
1141 	sdmac->event_id1 = data->dma_request2;
1142 
1143 	ret = clk_enable(sdmac->sdma->clk_ipg);
1144 	if (ret)
1145 		return ret;
1146 	ret = clk_enable(sdmac->sdma->clk_ahb);
1147 	if (ret)
1148 		goto disable_clk_ipg;
1149 
1150 	ret = sdma_request_channel(sdmac);
1151 	if (ret)
1152 		goto disable_clk_ahb;
1153 
1154 	ret = sdma_set_channel_priority(sdmac, prio);
1155 	if (ret)
1156 		goto disable_clk_ahb;
1157 
1158 	dma_async_tx_descriptor_init(&sdmac->desc, chan);
1159 	sdmac->desc.tx_submit = sdma_tx_submit;
1160 	/* txd.flags will be overwritten in prep funcs */
1161 	sdmac->desc.flags = DMA_CTRL_ACK;
1162 
1163 	return 0;
1164 
1165 disable_clk_ahb:
1166 	clk_disable(sdmac->sdma->clk_ahb);
1167 disable_clk_ipg:
1168 	clk_disable(sdmac->sdma->clk_ipg);
1169 	return ret;
1170 }
1171 
1172 static void sdma_free_chan_resources(struct dma_chan *chan)
1173 {
1174 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1175 	struct sdma_engine *sdma = sdmac->sdma;
1176 
1177 	sdma_disable_channel(chan);
1178 
1179 	if (sdmac->event_id0)
1180 		sdma_event_disable(sdmac, sdmac->event_id0);
1181 	if (sdmac->event_id1)
1182 		sdma_event_disable(sdmac, sdmac->event_id1);
1183 
1184 	sdmac->event_id0 = 0;
1185 	sdmac->event_id1 = 0;
1186 
1187 	sdma_set_channel_priority(sdmac, 0);
1188 
1189 	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1190 
1191 	clk_disable(sdma->clk_ipg);
1192 	clk_disable(sdma->clk_ahb);
1193 }
1194 
1195 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1196 		struct dma_chan *chan, struct scatterlist *sgl,
1197 		unsigned int sg_len, enum dma_transfer_direction direction,
1198 		unsigned long flags, void *context)
1199 {
1200 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1201 	struct sdma_engine *sdma = sdmac->sdma;
1202 	int ret, i, count;
1203 	int channel = sdmac->channel;
1204 	struct scatterlist *sg;
1205 
1206 	if (sdmac->status == DMA_IN_PROGRESS)
1207 		return NULL;
1208 	sdmac->status = DMA_IN_PROGRESS;
1209 
1210 	sdmac->flags = 0;
1211 
1212 	sdmac->buf_tail = 0;
1213 	sdmac->buf_ptail = 0;
1214 	sdmac->chn_real_count = 0;
1215 
1216 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1217 			sg_len, channel);
1218 
1219 	sdmac->direction = direction;
1220 	ret = sdma_load_context(sdmac);
1221 	if (ret)
1222 		goto err_out;
1223 
1224 	if (sg_len > NUM_BD) {
1225 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1226 				channel, sg_len, NUM_BD);
1227 		ret = -EINVAL;
1228 		goto err_out;
1229 	}
1230 
1231 	sdmac->chn_count = 0;
1232 	for_each_sg(sgl, sg, sg_len, i) {
1233 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1234 		int param;
1235 
1236 		bd->buffer_addr = sg->dma_address;
1237 
1238 		count = sg_dma_len(sg);
1239 
1240 		if (count > 0xffff) {
1241 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1242 					channel, count, 0xffff);
1243 			ret = -EINVAL;
1244 			goto err_out;
1245 		}
1246 
1247 		bd->mode.count = count;
1248 		sdmac->chn_count += count;
1249 
1250 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1251 			ret =  -EINVAL;
1252 			goto err_out;
1253 		}
1254 
1255 		switch (sdmac->word_size) {
1256 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1257 			bd->mode.command = 0;
1258 			if (count & 3 || sg->dma_address & 3)
1259 				return NULL;
1260 			break;
1261 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1262 			bd->mode.command = 2;
1263 			if (count & 1 || sg->dma_address & 1)
1264 				return NULL;
1265 			break;
1266 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1267 			bd->mode.command = 1;
1268 			break;
1269 		default:
1270 			return NULL;
1271 		}
1272 
1273 		param = BD_DONE | BD_EXTD | BD_CONT;
1274 
1275 		if (i + 1 == sg_len) {
1276 			param |= BD_INTR;
1277 			param |= BD_LAST;
1278 			param &= ~BD_CONT;
1279 		}
1280 
1281 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1282 				i, count, (u64)sg->dma_address,
1283 				param & BD_WRAP ? "wrap" : "",
1284 				param & BD_INTR ? " intr" : "");
1285 
1286 		bd->mode.status = param;
1287 	}
1288 
1289 	sdmac->num_bd = sg_len;
1290 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1291 
1292 	return &sdmac->desc;
1293 err_out:
1294 	sdmac->status = DMA_ERROR;
1295 	return NULL;
1296 }
1297 
1298 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1299 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1300 		size_t period_len, enum dma_transfer_direction direction,
1301 		unsigned long flags)
1302 {
1303 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1304 	struct sdma_engine *sdma = sdmac->sdma;
1305 	int num_periods = buf_len / period_len;
1306 	int channel = sdmac->channel;
1307 	int ret, i = 0, buf = 0;
1308 
1309 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1310 
1311 	if (sdmac->status == DMA_IN_PROGRESS)
1312 		return NULL;
1313 
1314 	sdmac->status = DMA_IN_PROGRESS;
1315 
1316 	sdmac->buf_tail = 0;
1317 	sdmac->buf_ptail = 0;
1318 	sdmac->chn_real_count = 0;
1319 	sdmac->period_len = period_len;
1320 
1321 	sdmac->flags |= IMX_DMA_SG_LOOP;
1322 	sdmac->direction = direction;
1323 	ret = sdma_load_context(sdmac);
1324 	if (ret)
1325 		goto err_out;
1326 
1327 	if (num_periods > NUM_BD) {
1328 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1329 				channel, num_periods, NUM_BD);
1330 		goto err_out;
1331 	}
1332 
1333 	if (period_len > 0xffff) {
1334 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1335 				channel, period_len, 0xffff);
1336 		goto err_out;
1337 	}
1338 
1339 	while (buf < buf_len) {
1340 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1341 		int param;
1342 
1343 		bd->buffer_addr = dma_addr;
1344 
1345 		bd->mode.count = period_len;
1346 
1347 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1348 			goto err_out;
1349 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1350 			bd->mode.command = 0;
1351 		else
1352 			bd->mode.command = sdmac->word_size;
1353 
1354 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1355 		if (i + 1 == num_periods)
1356 			param |= BD_WRAP;
1357 
1358 		dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1359 				i, period_len, (u64)dma_addr,
1360 				param & BD_WRAP ? "wrap" : "",
1361 				param & BD_INTR ? " intr" : "");
1362 
1363 		bd->mode.status = param;
1364 
1365 		dma_addr += period_len;
1366 		buf += period_len;
1367 
1368 		i++;
1369 	}
1370 
1371 	sdmac->num_bd = num_periods;
1372 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1373 
1374 	return &sdmac->desc;
1375 err_out:
1376 	sdmac->status = DMA_ERROR;
1377 	return NULL;
1378 }
1379 
1380 static int sdma_config(struct dma_chan *chan,
1381 		       struct dma_slave_config *dmaengine_cfg)
1382 {
1383 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1384 
1385 	if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1386 		sdmac->per_address = dmaengine_cfg->src_addr;
1387 		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1388 			dmaengine_cfg->src_addr_width;
1389 		sdmac->word_size = dmaengine_cfg->src_addr_width;
1390 	} else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
1391 		sdmac->per_address2 = dmaengine_cfg->src_addr;
1392 		sdmac->per_address = dmaengine_cfg->dst_addr;
1393 		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1394 			SDMA_WATERMARK_LEVEL_LWML;
1395 		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1396 			SDMA_WATERMARK_LEVEL_HWML;
1397 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1398 	} else {
1399 		sdmac->per_address = dmaengine_cfg->dst_addr;
1400 		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1401 			dmaengine_cfg->dst_addr_width;
1402 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1403 	}
1404 	sdmac->direction = dmaengine_cfg->direction;
1405 	return sdma_config_channel(chan);
1406 }
1407 
1408 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1409 				      dma_cookie_t cookie,
1410 				      struct dma_tx_state *txstate)
1411 {
1412 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1413 	u32 residue;
1414 
1415 	if (sdmac->flags & IMX_DMA_SG_LOOP)
1416 		residue = (sdmac->num_bd - sdmac->buf_ptail) *
1417 			   sdmac->period_len - sdmac->chn_real_count;
1418 	else
1419 		residue = sdmac->chn_count - sdmac->chn_real_count;
1420 
1421 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1422 			 residue);
1423 
1424 	return sdmac->status;
1425 }
1426 
1427 static void sdma_issue_pending(struct dma_chan *chan)
1428 {
1429 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1430 	struct sdma_engine *sdma = sdmac->sdma;
1431 
1432 	if (sdmac->status == DMA_IN_PROGRESS)
1433 		sdma_enable_channel(sdma, sdmac->channel);
1434 }
1435 
1436 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1437 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1438 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	41
1439 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4	42
1440 
1441 static void sdma_add_scripts(struct sdma_engine *sdma,
1442 		const struct sdma_script_start_addrs *addr)
1443 {
1444 	s32 *addr_arr = (u32 *)addr;
1445 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1446 	int i;
1447 
1448 	/* use the default firmware in ROM if missing external firmware */
1449 	if (!sdma->script_number)
1450 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1451 
1452 	for (i = 0; i < sdma->script_number; i++)
1453 		if (addr_arr[i] > 0)
1454 			saddr_arr[i] = addr_arr[i];
1455 }
1456 
1457 static void sdma_load_firmware(const struct firmware *fw, void *context)
1458 {
1459 	struct sdma_engine *sdma = context;
1460 	const struct sdma_firmware_header *header;
1461 	const struct sdma_script_start_addrs *addr;
1462 	unsigned short *ram_code;
1463 
1464 	if (!fw) {
1465 		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1466 		/* In this case we just use the ROM firmware. */
1467 		return;
1468 	}
1469 
1470 	if (fw->size < sizeof(*header))
1471 		goto err_firmware;
1472 
1473 	header = (struct sdma_firmware_header *)fw->data;
1474 
1475 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1476 		goto err_firmware;
1477 	if (header->ram_code_start + header->ram_code_size > fw->size)
1478 		goto err_firmware;
1479 	switch (header->version_major) {
1480 	case 1:
1481 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1482 		break;
1483 	case 2:
1484 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1485 		break;
1486 	case 3:
1487 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1488 		break;
1489 	case 4:
1490 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1491 		break;
1492 	default:
1493 		dev_err(sdma->dev, "unknown firmware version\n");
1494 		goto err_firmware;
1495 	}
1496 
1497 	addr = (void *)header + header->script_addrs_start;
1498 	ram_code = (void *)header + header->ram_code_start;
1499 
1500 	clk_enable(sdma->clk_ipg);
1501 	clk_enable(sdma->clk_ahb);
1502 	/* download the RAM image for SDMA */
1503 	sdma_load_script(sdma, ram_code,
1504 			header->ram_code_size,
1505 			addr->ram_code_start_addr);
1506 	clk_disable(sdma->clk_ipg);
1507 	clk_disable(sdma->clk_ahb);
1508 
1509 	sdma_add_scripts(sdma, addr);
1510 
1511 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1512 			header->version_major,
1513 			header->version_minor);
1514 
1515 err_firmware:
1516 	release_firmware(fw);
1517 }
1518 
1519 #define EVENT_REMAP_CELLS 3
1520 
1521 static int sdma_event_remap(struct sdma_engine *sdma)
1522 {
1523 	struct device_node *np = sdma->dev->of_node;
1524 	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1525 	struct property *event_remap;
1526 	struct regmap *gpr;
1527 	char propname[] = "fsl,sdma-event-remap";
1528 	u32 reg, val, shift, num_map, i;
1529 	int ret = 0;
1530 
1531 	if (IS_ERR(np) || IS_ERR(gpr_np))
1532 		goto out;
1533 
1534 	event_remap = of_find_property(np, propname, NULL);
1535 	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1536 	if (!num_map) {
1537 		dev_dbg(sdma->dev, "no event needs to be remapped\n");
1538 		goto out;
1539 	} else if (num_map % EVENT_REMAP_CELLS) {
1540 		dev_err(sdma->dev, "the property %s must modulo %d\n",
1541 				propname, EVENT_REMAP_CELLS);
1542 		ret = -EINVAL;
1543 		goto out;
1544 	}
1545 
1546 	gpr = syscon_node_to_regmap(gpr_np);
1547 	if (IS_ERR(gpr)) {
1548 		dev_err(sdma->dev, "failed to get gpr regmap\n");
1549 		ret = PTR_ERR(gpr);
1550 		goto out;
1551 	}
1552 
1553 	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1554 		ret = of_property_read_u32_index(np, propname, i, &reg);
1555 		if (ret) {
1556 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1557 					propname, i);
1558 			goto out;
1559 		}
1560 
1561 		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1562 		if (ret) {
1563 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1564 					propname, i + 1);
1565 			goto out;
1566 		}
1567 
1568 		ret = of_property_read_u32_index(np, propname, i + 2, &val);
1569 		if (ret) {
1570 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1571 					propname, i + 2);
1572 			goto out;
1573 		}
1574 
1575 		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1576 	}
1577 
1578 out:
1579 	if (!IS_ERR(gpr_np))
1580 		of_node_put(gpr_np);
1581 
1582 	return ret;
1583 }
1584 
1585 static int sdma_get_firmware(struct sdma_engine *sdma,
1586 		const char *fw_name)
1587 {
1588 	int ret;
1589 
1590 	ret = request_firmware_nowait(THIS_MODULE,
1591 			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1592 			GFP_KERNEL, sdma, sdma_load_firmware);
1593 
1594 	return ret;
1595 }
1596 
1597 static int sdma_init(struct sdma_engine *sdma)
1598 {
1599 	int i, ret;
1600 	dma_addr_t ccb_phys;
1601 
1602 	ret = clk_enable(sdma->clk_ipg);
1603 	if (ret)
1604 		return ret;
1605 	ret = clk_enable(sdma->clk_ahb);
1606 	if (ret)
1607 		goto disable_clk_ipg;
1608 
1609 	/* Be sure SDMA has not started yet */
1610 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1611 
1612 	sdma->channel_control = dma_alloc_coherent(NULL,
1613 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1614 			sizeof(struct sdma_context_data),
1615 			&ccb_phys, GFP_KERNEL);
1616 
1617 	if (!sdma->channel_control) {
1618 		ret = -ENOMEM;
1619 		goto err_dma_alloc;
1620 	}
1621 
1622 	sdma->context = (void *)sdma->channel_control +
1623 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1624 	sdma->context_phys = ccb_phys +
1625 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1626 
1627 	/* Zero-out the CCB structures array just allocated */
1628 	memset(sdma->channel_control, 0,
1629 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1630 
1631 	/* disable all channels */
1632 	for (i = 0; i < sdma->drvdata->num_events; i++)
1633 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1634 
1635 	/* All channels have priority 0 */
1636 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1637 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1638 
1639 	ret = sdma_request_channel(&sdma->channel[0]);
1640 	if (ret)
1641 		goto err_dma_alloc;
1642 
1643 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1644 
1645 	/* Set Command Channel (Channel Zero) */
1646 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1647 
1648 	/* Set bits of CONFIG register but with static context switching */
1649 	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1650 	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1651 
1652 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1653 
1654 	/* Initializes channel's priorities */
1655 	sdma_set_channel_priority(&sdma->channel[0], 7);
1656 
1657 	clk_disable(sdma->clk_ipg);
1658 	clk_disable(sdma->clk_ahb);
1659 
1660 	return 0;
1661 
1662 err_dma_alloc:
1663 	clk_disable(sdma->clk_ahb);
1664 disable_clk_ipg:
1665 	clk_disable(sdma->clk_ipg);
1666 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1667 	return ret;
1668 }
1669 
1670 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1671 {
1672 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1673 	struct imx_dma_data *data = fn_param;
1674 
1675 	if (!imx_dma_is_general_purpose(chan))
1676 		return false;
1677 
1678 	sdmac->data = *data;
1679 	chan->private = &sdmac->data;
1680 
1681 	return true;
1682 }
1683 
1684 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1685 				   struct of_dma *ofdma)
1686 {
1687 	struct sdma_engine *sdma = ofdma->of_dma_data;
1688 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1689 	struct imx_dma_data data;
1690 
1691 	if (dma_spec->args_count != 3)
1692 		return NULL;
1693 
1694 	data.dma_request = dma_spec->args[0];
1695 	data.peripheral_type = dma_spec->args[1];
1696 	data.priority = dma_spec->args[2];
1697 	/*
1698 	 * init dma_request2 to zero, which is not used by the dts.
1699 	 * For P2P, dma_request2 is init from dma_request_channel(),
1700 	 * chan->private will point to the imx_dma_data, and in
1701 	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1702 	 * be set to sdmac->event_id1.
1703 	 */
1704 	data.dma_request2 = 0;
1705 
1706 	return dma_request_channel(mask, sdma_filter_fn, &data);
1707 }
1708 
1709 static int sdma_probe(struct platform_device *pdev)
1710 {
1711 	const struct of_device_id *of_id =
1712 			of_match_device(sdma_dt_ids, &pdev->dev);
1713 	struct device_node *np = pdev->dev.of_node;
1714 	struct device_node *spba_bus;
1715 	const char *fw_name;
1716 	int ret;
1717 	int irq;
1718 	struct resource *iores;
1719 	struct resource spba_res;
1720 	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1721 	int i;
1722 	struct sdma_engine *sdma;
1723 	s32 *saddr_arr;
1724 	const struct sdma_driver_data *drvdata = NULL;
1725 
1726 	if (of_id)
1727 		drvdata = of_id->data;
1728 	else if (pdev->id_entry)
1729 		drvdata = (void *)pdev->id_entry->driver_data;
1730 
1731 	if (!drvdata) {
1732 		dev_err(&pdev->dev, "unable to find driver data\n");
1733 		return -EINVAL;
1734 	}
1735 
1736 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1737 	if (ret)
1738 		return ret;
1739 
1740 	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1741 	if (!sdma)
1742 		return -ENOMEM;
1743 
1744 	spin_lock_init(&sdma->channel_0_lock);
1745 
1746 	sdma->dev = &pdev->dev;
1747 	sdma->drvdata = drvdata;
1748 
1749 	irq = platform_get_irq(pdev, 0);
1750 	if (irq < 0)
1751 		return irq;
1752 
1753 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1754 	sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1755 	if (IS_ERR(sdma->regs))
1756 		return PTR_ERR(sdma->regs);
1757 
1758 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1759 	if (IS_ERR(sdma->clk_ipg))
1760 		return PTR_ERR(sdma->clk_ipg);
1761 
1762 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1763 	if (IS_ERR(sdma->clk_ahb))
1764 		return PTR_ERR(sdma->clk_ahb);
1765 
1766 	ret = clk_prepare(sdma->clk_ipg);
1767 	if (ret)
1768 		return ret;
1769 
1770 	ret = clk_prepare(sdma->clk_ahb);
1771 	if (ret)
1772 		goto err_clk;
1773 
1774 	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
1775 			       sdma);
1776 	if (ret)
1777 		goto err_irq;
1778 
1779 	sdma->irq = irq;
1780 
1781 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1782 	if (!sdma->script_addrs) {
1783 		ret = -ENOMEM;
1784 		goto err_irq;
1785 	}
1786 
1787 	/* initially no scripts available */
1788 	saddr_arr = (s32 *)sdma->script_addrs;
1789 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1790 		saddr_arr[i] = -EINVAL;
1791 
1792 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1793 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1794 
1795 	INIT_LIST_HEAD(&sdma->dma_device.channels);
1796 	/* Initialize channel parameters */
1797 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1798 		struct sdma_channel *sdmac = &sdma->channel[i];
1799 
1800 		sdmac->sdma = sdma;
1801 		spin_lock_init(&sdmac->lock);
1802 
1803 		sdmac->chan.device = &sdma->dma_device;
1804 		dma_cookie_init(&sdmac->chan);
1805 		sdmac->channel = i;
1806 
1807 		tasklet_init(&sdmac->tasklet, mxc_sdma_handle_channel_normal,
1808 			     (unsigned long) sdmac);
1809 		/*
1810 		 * Add the channel to the DMAC list. Do not add channel 0 though
1811 		 * because we need it internally in the SDMA driver. This also means
1812 		 * that channel 0 in dmaengine counting matches sdma channel 1.
1813 		 */
1814 		if (i)
1815 			list_add_tail(&sdmac->chan.device_node,
1816 					&sdma->dma_device.channels);
1817 	}
1818 
1819 	ret = sdma_init(sdma);
1820 	if (ret)
1821 		goto err_init;
1822 
1823 	ret = sdma_event_remap(sdma);
1824 	if (ret)
1825 		goto err_init;
1826 
1827 	if (sdma->drvdata->script_addrs)
1828 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1829 	if (pdata && pdata->script_addrs)
1830 		sdma_add_scripts(sdma, pdata->script_addrs);
1831 
1832 	if (pdata) {
1833 		ret = sdma_get_firmware(sdma, pdata->fw_name);
1834 		if (ret)
1835 			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1836 	} else {
1837 		/*
1838 		 * Because that device tree does not encode ROM script address,
1839 		 * the RAM script in firmware is mandatory for device tree
1840 		 * probe, otherwise it fails.
1841 		 */
1842 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1843 					      &fw_name);
1844 		if (ret)
1845 			dev_warn(&pdev->dev, "failed to get firmware name\n");
1846 		else {
1847 			ret = sdma_get_firmware(sdma, fw_name);
1848 			if (ret)
1849 				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1850 		}
1851 	}
1852 
1853 	sdma->dma_device.dev = &pdev->dev;
1854 
1855 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1856 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1857 	sdma->dma_device.device_tx_status = sdma_tx_status;
1858 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1859 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1860 	sdma->dma_device.device_config = sdma_config;
1861 	sdma->dma_device.device_terminate_all = sdma_disable_channel_with_delay;
1862 	sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
1863 	sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
1864 	sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
1865 	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
1866 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1867 	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1868 	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1869 
1870 	platform_set_drvdata(pdev, sdma);
1871 
1872 	ret = dma_async_device_register(&sdma->dma_device);
1873 	if (ret) {
1874 		dev_err(&pdev->dev, "unable to register\n");
1875 		goto err_init;
1876 	}
1877 
1878 	if (np) {
1879 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
1880 		if (ret) {
1881 			dev_err(&pdev->dev, "failed to register controller\n");
1882 			goto err_register;
1883 		}
1884 
1885 		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
1886 		ret = of_address_to_resource(spba_bus, 0, &spba_res);
1887 		if (!ret) {
1888 			sdma->spba_start_addr = spba_res.start;
1889 			sdma->spba_end_addr = spba_res.end;
1890 		}
1891 		of_node_put(spba_bus);
1892 	}
1893 
1894 	return 0;
1895 
1896 err_register:
1897 	dma_async_device_unregister(&sdma->dma_device);
1898 err_init:
1899 	kfree(sdma->script_addrs);
1900 err_irq:
1901 	clk_unprepare(sdma->clk_ahb);
1902 err_clk:
1903 	clk_unprepare(sdma->clk_ipg);
1904 	return ret;
1905 }
1906 
1907 static int sdma_remove(struct platform_device *pdev)
1908 {
1909 	struct sdma_engine *sdma = platform_get_drvdata(pdev);
1910 	int i;
1911 
1912 	devm_free_irq(&pdev->dev, sdma->irq, sdma);
1913 	dma_async_device_unregister(&sdma->dma_device);
1914 	kfree(sdma->script_addrs);
1915 	clk_unprepare(sdma->clk_ahb);
1916 	clk_unprepare(sdma->clk_ipg);
1917 	/* Kill the tasklet */
1918 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1919 		struct sdma_channel *sdmac = &sdma->channel[i];
1920 
1921 		tasklet_kill(&sdmac->tasklet);
1922 	}
1923 
1924 	platform_set_drvdata(pdev, NULL);
1925 	return 0;
1926 }
1927 
1928 static struct platform_driver sdma_driver = {
1929 	.driver		= {
1930 		.name	= "imx-sdma",
1931 		.of_match_table = sdma_dt_ids,
1932 	},
1933 	.id_table	= sdma_devtypes,
1934 	.remove		= sdma_remove,
1935 	.probe		= sdma_probe,
1936 };
1937 
1938 module_platform_driver(sdma_driver);
1939 
1940 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1941 MODULE_DESCRIPTION("i.MX SDMA driver");
1942 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
1943 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
1944 #endif
1945 #if IS_ENABLED(CONFIG_SOC_IMX7D)
1946 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
1947 #endif
1948 MODULE_LICENSE("GPL");
1949