xref: /openbmc/linux/drivers/dma/imx-sdma.c (revision e290ed81)
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19 
20 #include <linux/init.h>
21 #include <linux/types.h>
22 #include <linux/mm.h>
23 #include <linux/interrupt.h>
24 #include <linux/clk.h>
25 #include <linux/wait.h>
26 #include <linux/sched.h>
27 #include <linux/semaphore.h>
28 #include <linux/spinlock.h>
29 #include <linux/device.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/firmware.h>
32 #include <linux/slab.h>
33 #include <linux/platform_device.h>
34 #include <linux/dmaengine.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37 
38 #include <asm/irq.h>
39 #include <mach/sdma.h>
40 #include <mach/dma.h>
41 #include <mach/hardware.h>
42 
43 /* SDMA registers */
44 #define SDMA_H_C0PTR		0x000
45 #define SDMA_H_INTR		0x004
46 #define SDMA_H_STATSTOP		0x008
47 #define SDMA_H_START		0x00c
48 #define SDMA_H_EVTOVR		0x010
49 #define SDMA_H_DSPOVR		0x014
50 #define SDMA_H_HOSTOVR		0x018
51 #define SDMA_H_EVTPEND		0x01c
52 #define SDMA_H_DSPENBL		0x020
53 #define SDMA_H_RESET		0x024
54 #define SDMA_H_EVTERR		0x028
55 #define SDMA_H_INTRMSK		0x02c
56 #define SDMA_H_PSW		0x030
57 #define SDMA_H_EVTERRDBG	0x034
58 #define SDMA_H_CONFIG		0x038
59 #define SDMA_ONCE_ENB		0x040
60 #define SDMA_ONCE_DATA		0x044
61 #define SDMA_ONCE_INSTR		0x048
62 #define SDMA_ONCE_STAT		0x04c
63 #define SDMA_ONCE_CMD		0x050
64 #define SDMA_EVT_MIRROR		0x054
65 #define SDMA_ILLINSTADDR	0x058
66 #define SDMA_CHN0ADDR		0x05c
67 #define SDMA_ONCE_RTB		0x060
68 #define SDMA_XTRIG_CONF1	0x070
69 #define SDMA_XTRIG_CONF2	0x074
70 #define SDMA_CHNENBL0_IMX35	0x200
71 #define SDMA_CHNENBL0_IMX31	0x080
72 #define SDMA_CHNPRI_0		0x100
73 
74 /*
75  * Buffer descriptor status values.
76  */
77 #define BD_DONE  0x01
78 #define BD_WRAP  0x02
79 #define BD_CONT  0x04
80 #define BD_INTR  0x08
81 #define BD_RROR  0x10
82 #define BD_LAST  0x20
83 #define BD_EXTD  0x80
84 
85 /*
86  * Data Node descriptor status values.
87  */
88 #define DND_END_OF_FRAME  0x80
89 #define DND_END_OF_XFER   0x40
90 #define DND_DONE          0x20
91 #define DND_UNUSED        0x01
92 
93 /*
94  * IPCV2 descriptor status values.
95  */
96 #define BD_IPCV2_END_OF_FRAME  0x40
97 
98 #define IPCV2_MAX_NODES        50
99 /*
100  * Error bit set in the CCB status field by the SDMA,
101  * in setbd routine, in case of a transfer error
102  */
103 #define DATA_ERROR  0x10000000
104 
105 /*
106  * Buffer descriptor commands.
107  */
108 #define C0_ADDR             0x01
109 #define C0_LOAD             0x02
110 #define C0_DUMP             0x03
111 #define C0_SETCTX           0x07
112 #define C0_GETCTX           0x03
113 #define C0_SETDM            0x01
114 #define C0_SETPM            0x04
115 #define C0_GETDM            0x02
116 #define C0_GETPM            0x08
117 /*
118  * Change endianness indicator in the BD command field
119  */
120 #define CHANGE_ENDIANNESS   0x80
121 
122 /*
123  * Mode/Count of data node descriptors - IPCv2
124  */
125 struct sdma_mode_count {
126 	u32 count   : 16; /* size of the buffer pointed by this BD */
127 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
128 	u32 command :  8; /* command mostlky used for channel 0 */
129 };
130 
131 /*
132  * Buffer descriptor
133  */
134 struct sdma_buffer_descriptor {
135 	struct sdma_mode_count  mode;
136 	u32 buffer_addr;	/* address of the buffer described */
137 	u32 ext_buffer_addr;	/* extended buffer address */
138 } __attribute__ ((packed));
139 
140 /**
141  * struct sdma_channel_control - Channel control Block
142  *
143  * @current_bd_ptr	current buffer descriptor processed
144  * @base_bd_ptr		first element of buffer descriptor array
145  * @unused		padding. The SDMA engine expects an array of 128 byte
146  *			control blocks
147  */
148 struct sdma_channel_control {
149 	u32 current_bd_ptr;
150 	u32 base_bd_ptr;
151 	u32 unused[2];
152 } __attribute__ ((packed));
153 
154 /**
155  * struct sdma_state_registers - SDMA context for a channel
156  *
157  * @pc:		program counter
158  * @t:		test bit: status of arithmetic & test instruction
159  * @rpc:	return program counter
160  * @sf:		source fault while loading data
161  * @spc:	loop start program counter
162  * @df:		destination fault while storing data
163  * @epc:	loop end program counter
164  * @lm:		loop mode
165  */
166 struct sdma_state_registers {
167 	u32 pc     :14;
168 	u32 unused1: 1;
169 	u32 t      : 1;
170 	u32 rpc    :14;
171 	u32 unused0: 1;
172 	u32 sf     : 1;
173 	u32 spc    :14;
174 	u32 unused2: 1;
175 	u32 df     : 1;
176 	u32 epc    :14;
177 	u32 lm     : 2;
178 } __attribute__ ((packed));
179 
180 /**
181  * struct sdma_context_data - sdma context specific to a channel
182  *
183  * @channel_state:	channel state bits
184  * @gReg:		general registers
185  * @mda:		burst dma destination address register
186  * @msa:		burst dma source address register
187  * @ms:			burst dma status register
188  * @md:			burst dma data register
189  * @pda:		peripheral dma destination address register
190  * @psa:		peripheral dma source address register
191  * @ps:			peripheral dma status register
192  * @pd:			peripheral dma data register
193  * @ca:			CRC polynomial register
194  * @cs:			CRC accumulator register
195  * @dda:		dedicated core destination address register
196  * @dsa:		dedicated core source address register
197  * @ds:			dedicated core status register
198  * @dd:			dedicated core data register
199  */
200 struct sdma_context_data {
201 	struct sdma_state_registers  channel_state;
202 	u32  gReg[8];
203 	u32  mda;
204 	u32  msa;
205 	u32  ms;
206 	u32  md;
207 	u32  pda;
208 	u32  psa;
209 	u32  ps;
210 	u32  pd;
211 	u32  ca;
212 	u32  cs;
213 	u32  dda;
214 	u32  dsa;
215 	u32  ds;
216 	u32  dd;
217 	u32  scratch0;
218 	u32  scratch1;
219 	u32  scratch2;
220 	u32  scratch3;
221 	u32  scratch4;
222 	u32  scratch5;
223 	u32  scratch6;
224 	u32  scratch7;
225 } __attribute__ ((packed));
226 
227 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
228 
229 struct sdma_engine;
230 
231 /**
232  * struct sdma_channel - housekeeping for a SDMA channel
233  *
234  * @sdma		pointer to the SDMA engine for this channel
235  * @channel		the channel number, matches dmaengine chan_id + 1
236  * @direction		transfer type. Needed for setting SDMA script
237  * @peripheral_type	Peripheral type. Needed for setting SDMA script
238  * @event_id0		aka dma request line
239  * @event_id1		for channels that use 2 events
240  * @word_size		peripheral access size
241  * @buf_tail		ID of the buffer that was processed
242  * @done		channel completion
243  * @num_bd		max NUM_BD. number of descriptors currently handling
244  */
245 struct sdma_channel {
246 	struct sdma_engine		*sdma;
247 	unsigned int			channel;
248 	enum dma_data_direction		direction;
249 	enum sdma_peripheral_type	peripheral_type;
250 	unsigned int			event_id0;
251 	unsigned int			event_id1;
252 	enum dma_slave_buswidth		word_size;
253 	unsigned int			buf_tail;
254 	struct completion		done;
255 	unsigned int			num_bd;
256 	struct sdma_buffer_descriptor	*bd;
257 	dma_addr_t			bd_phys;
258 	unsigned int			pc_from_device, pc_to_device;
259 	unsigned long			flags;
260 	dma_addr_t			per_address;
261 	u32				event_mask0, event_mask1;
262 	u32				watermark_level;
263 	u32				shp_addr, per_addr;
264 	struct dma_chan			chan;
265 	spinlock_t			lock;
266 	struct dma_async_tx_descriptor	desc;
267 	dma_cookie_t			last_completed;
268 	enum dma_status			status;
269 };
270 
271 #define IMX_DMA_SG_LOOP		(1 << 0)
272 
273 #define MAX_DMA_CHANNELS 32
274 #define MXC_SDMA_DEFAULT_PRIORITY 1
275 #define MXC_SDMA_MIN_PRIORITY 1
276 #define MXC_SDMA_MAX_PRIORITY 7
277 
278 #define SDMA_FIRMWARE_MAGIC 0x414d4453
279 
280 /**
281  * struct sdma_firmware_header - Layout of the firmware image
282  *
283  * @magic		"SDMA"
284  * @version_major	increased whenever layout of struct sdma_script_start_addrs
285  *			changes.
286  * @version_minor	firmware minor version (for binary compatible changes)
287  * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
288  * @num_script_addrs	Number of script addresses in this image
289  * @ram_code_start	offset of SDMA ram image in this firmware image
290  * @ram_code_size	size of SDMA ram image
291  * @script_addrs	Stores the start address of the SDMA scripts
292  *			(in SDMA memory space)
293  */
294 struct sdma_firmware_header {
295 	u32	magic;
296 	u32	version_major;
297 	u32	version_minor;
298 	u32	script_addrs_start;
299 	u32	num_script_addrs;
300 	u32	ram_code_start;
301 	u32	ram_code_size;
302 };
303 
304 enum sdma_devtype {
305 	IMX31_SDMA,	/* runs on i.mx31 */
306 	IMX35_SDMA,	/* runs on i.mx35 and later */
307 };
308 
309 struct sdma_engine {
310 	struct device			*dev;
311 	struct device_dma_parameters	dma_parms;
312 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
313 	struct sdma_channel_control	*channel_control;
314 	void __iomem			*regs;
315 	enum sdma_devtype		devtype;
316 	unsigned int			num_events;
317 	struct sdma_context_data	*context;
318 	dma_addr_t			context_phys;
319 	struct dma_device		dma_device;
320 	struct clk			*clk;
321 	struct sdma_script_start_addrs	*script_addrs;
322 };
323 
324 static struct platform_device_id sdma_devtypes[] = {
325 	{
326 		.name = "imx31-sdma",
327 		.driver_data = IMX31_SDMA,
328 	}, {
329 		.name = "imx35-sdma",
330 		.driver_data = IMX35_SDMA,
331 	}, {
332 		/* sentinel */
333 	}
334 };
335 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
336 
337 static const struct of_device_id sdma_dt_ids[] = {
338 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
339 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
340 	{ /* sentinel */ }
341 };
342 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
343 
344 #define SDMA_H_CONFIG_DSPDMA	(1 << 12) /* indicates if the DSPDMA is used */
345 #define SDMA_H_CONFIG_RTD_PINS	(1 << 11) /* indicates if Real-Time Debug pins are enabled */
346 #define SDMA_H_CONFIG_ACR	(1 << 4)  /* indicates if AHB freq /core freq = 2 or 1 */
347 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
348 
349 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
350 {
351 	u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
352 						      SDMA_CHNENBL0_IMX35);
353 	return chnenbl0 + event * 4;
354 }
355 
356 static int sdma_config_ownership(struct sdma_channel *sdmac,
357 		bool event_override, bool mcu_override, bool dsp_override)
358 {
359 	struct sdma_engine *sdma = sdmac->sdma;
360 	int channel = sdmac->channel;
361 	u32 evt, mcu, dsp;
362 
363 	if (event_override && mcu_override && dsp_override)
364 		return -EINVAL;
365 
366 	evt = __raw_readl(sdma->regs + SDMA_H_EVTOVR);
367 	mcu = __raw_readl(sdma->regs + SDMA_H_HOSTOVR);
368 	dsp = __raw_readl(sdma->regs + SDMA_H_DSPOVR);
369 
370 	if (dsp_override)
371 		dsp &= ~(1 << channel);
372 	else
373 		dsp |= (1 << channel);
374 
375 	if (event_override)
376 		evt &= ~(1 << channel);
377 	else
378 		evt |= (1 << channel);
379 
380 	if (mcu_override)
381 		mcu &= ~(1 << channel);
382 	else
383 		mcu |= (1 << channel);
384 
385 	__raw_writel(evt, sdma->regs + SDMA_H_EVTOVR);
386 	__raw_writel(mcu, sdma->regs + SDMA_H_HOSTOVR);
387 	__raw_writel(dsp, sdma->regs + SDMA_H_DSPOVR);
388 
389 	return 0;
390 }
391 
392 /*
393  * sdma_run_channel - run a channel and wait till it's done
394  */
395 static int sdma_run_channel(struct sdma_channel *sdmac)
396 {
397 	struct sdma_engine *sdma = sdmac->sdma;
398 	int channel = sdmac->channel;
399 	int ret;
400 
401 	init_completion(&sdmac->done);
402 
403 	__raw_writel(1 << channel, sdma->regs + SDMA_H_START);
404 
405 	ret = wait_for_completion_timeout(&sdmac->done, HZ);
406 
407 	return ret ? 0 : -ETIMEDOUT;
408 }
409 
410 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
411 		u32 address)
412 {
413 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
414 	void *buf_virt;
415 	dma_addr_t buf_phys;
416 	int ret;
417 
418 	buf_virt = dma_alloc_coherent(NULL,
419 			size,
420 			&buf_phys, GFP_KERNEL);
421 	if (!buf_virt)
422 		return -ENOMEM;
423 
424 	bd0->mode.command = C0_SETPM;
425 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
426 	bd0->mode.count = size / 2;
427 	bd0->buffer_addr = buf_phys;
428 	bd0->ext_buffer_addr = address;
429 
430 	memcpy(buf_virt, buf, size);
431 
432 	ret = sdma_run_channel(&sdma->channel[0]);
433 
434 	dma_free_coherent(NULL, size, buf_virt, buf_phys);
435 
436 	return ret;
437 }
438 
439 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
440 {
441 	struct sdma_engine *sdma = sdmac->sdma;
442 	int channel = sdmac->channel;
443 	u32 val;
444 	u32 chnenbl = chnenbl_ofs(sdma, event);
445 
446 	val = __raw_readl(sdma->regs + chnenbl);
447 	val |= (1 << channel);
448 	__raw_writel(val, sdma->regs + chnenbl);
449 }
450 
451 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
452 {
453 	struct sdma_engine *sdma = sdmac->sdma;
454 	int channel = sdmac->channel;
455 	u32 chnenbl = chnenbl_ofs(sdma, event);
456 	u32 val;
457 
458 	val = __raw_readl(sdma->regs + chnenbl);
459 	val &= ~(1 << channel);
460 	__raw_writel(val, sdma->regs + chnenbl);
461 }
462 
463 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
464 {
465 	struct sdma_buffer_descriptor *bd;
466 
467 	/*
468 	 * loop mode. Iterate over descriptors, re-setup them and
469 	 * call callback function.
470 	 */
471 	while (1) {
472 		bd = &sdmac->bd[sdmac->buf_tail];
473 
474 		if (bd->mode.status & BD_DONE)
475 			break;
476 
477 		if (bd->mode.status & BD_RROR)
478 			sdmac->status = DMA_ERROR;
479 		else
480 			sdmac->status = DMA_IN_PROGRESS;
481 
482 		bd->mode.status |= BD_DONE;
483 		sdmac->buf_tail++;
484 		sdmac->buf_tail %= sdmac->num_bd;
485 
486 		if (sdmac->desc.callback)
487 			sdmac->desc.callback(sdmac->desc.callback_param);
488 	}
489 }
490 
491 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
492 {
493 	struct sdma_buffer_descriptor *bd;
494 	int i, error = 0;
495 
496 	/*
497 	 * non loop mode. Iterate over all descriptors, collect
498 	 * errors and call callback function
499 	 */
500 	for (i = 0; i < sdmac->num_bd; i++) {
501 		bd = &sdmac->bd[i];
502 
503 		 if (bd->mode.status & (BD_DONE | BD_RROR))
504 			error = -EIO;
505 	}
506 
507 	if (error)
508 		sdmac->status = DMA_ERROR;
509 	else
510 		sdmac->status = DMA_SUCCESS;
511 
512 	if (sdmac->desc.callback)
513 		sdmac->desc.callback(sdmac->desc.callback_param);
514 	sdmac->last_completed = sdmac->desc.cookie;
515 }
516 
517 static void mxc_sdma_handle_channel(struct sdma_channel *sdmac)
518 {
519 	complete(&sdmac->done);
520 
521 	/* not interested in channel 0 interrupts */
522 	if (sdmac->channel == 0)
523 		return;
524 
525 	if (sdmac->flags & IMX_DMA_SG_LOOP)
526 		sdma_handle_channel_loop(sdmac);
527 	else
528 		mxc_sdma_handle_channel_normal(sdmac);
529 }
530 
531 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
532 {
533 	struct sdma_engine *sdma = dev_id;
534 	u32 stat;
535 
536 	stat = __raw_readl(sdma->regs + SDMA_H_INTR);
537 	__raw_writel(stat, sdma->regs + SDMA_H_INTR);
538 
539 	while (stat) {
540 		int channel = fls(stat) - 1;
541 		struct sdma_channel *sdmac = &sdma->channel[channel];
542 
543 		mxc_sdma_handle_channel(sdmac);
544 
545 		stat &= ~(1 << channel);
546 	}
547 
548 	return IRQ_HANDLED;
549 }
550 
551 /*
552  * sets the pc of SDMA script according to the peripheral type
553  */
554 static void sdma_get_pc(struct sdma_channel *sdmac,
555 		enum sdma_peripheral_type peripheral_type)
556 {
557 	struct sdma_engine *sdma = sdmac->sdma;
558 	int per_2_emi = 0, emi_2_per = 0;
559 	/*
560 	 * These are needed once we start to support transfers between
561 	 * two peripherals or memory-to-memory transfers
562 	 */
563 	int per_2_per = 0, emi_2_emi = 0;
564 
565 	sdmac->pc_from_device = 0;
566 	sdmac->pc_to_device = 0;
567 
568 	switch (peripheral_type) {
569 	case IMX_DMATYPE_MEMORY:
570 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
571 		break;
572 	case IMX_DMATYPE_DSP:
573 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
574 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
575 		break;
576 	case IMX_DMATYPE_FIRI:
577 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
578 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
579 		break;
580 	case IMX_DMATYPE_UART:
581 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
582 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
583 		break;
584 	case IMX_DMATYPE_UART_SP:
585 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
586 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
587 		break;
588 	case IMX_DMATYPE_ATA:
589 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
590 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
591 		break;
592 	case IMX_DMATYPE_CSPI:
593 	case IMX_DMATYPE_EXT:
594 	case IMX_DMATYPE_SSI:
595 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
596 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
597 		break;
598 	case IMX_DMATYPE_SSI_SP:
599 	case IMX_DMATYPE_MMC:
600 	case IMX_DMATYPE_SDHC:
601 	case IMX_DMATYPE_CSPI_SP:
602 	case IMX_DMATYPE_ESAI:
603 	case IMX_DMATYPE_MSHC_SP:
604 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
605 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
606 		break;
607 	case IMX_DMATYPE_ASRC:
608 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
609 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
610 		per_2_per = sdma->script_addrs->per_2_per_addr;
611 		break;
612 	case IMX_DMATYPE_MSHC:
613 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
614 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
615 		break;
616 	case IMX_DMATYPE_CCM:
617 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
618 		break;
619 	case IMX_DMATYPE_SPDIF:
620 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
621 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
622 		break;
623 	case IMX_DMATYPE_IPU_MEMORY:
624 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
625 		break;
626 	default:
627 		break;
628 	}
629 
630 	sdmac->pc_from_device = per_2_emi;
631 	sdmac->pc_to_device = emi_2_per;
632 }
633 
634 static int sdma_load_context(struct sdma_channel *sdmac)
635 {
636 	struct sdma_engine *sdma = sdmac->sdma;
637 	int channel = sdmac->channel;
638 	int load_address;
639 	struct sdma_context_data *context = sdma->context;
640 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
641 	int ret;
642 
643 	if (sdmac->direction == DMA_FROM_DEVICE) {
644 		load_address = sdmac->pc_from_device;
645 	} else {
646 		load_address = sdmac->pc_to_device;
647 	}
648 
649 	if (load_address < 0)
650 		return load_address;
651 
652 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
653 	dev_dbg(sdma->dev, "wml = 0x%08x\n", sdmac->watermark_level);
654 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
655 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
656 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", sdmac->event_mask0);
657 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", sdmac->event_mask1);
658 
659 	memset(context, 0, sizeof(*context));
660 	context->channel_state.pc = load_address;
661 
662 	/* Send by context the event mask,base address for peripheral
663 	 * and watermark level
664 	 */
665 	context->gReg[0] = sdmac->event_mask1;
666 	context->gReg[1] = sdmac->event_mask0;
667 	context->gReg[2] = sdmac->per_addr;
668 	context->gReg[6] = sdmac->shp_addr;
669 	context->gReg[7] = sdmac->watermark_level;
670 
671 	bd0->mode.command = C0_SETDM;
672 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
673 	bd0->mode.count = sizeof(*context) / 4;
674 	bd0->buffer_addr = sdma->context_phys;
675 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
676 
677 	ret = sdma_run_channel(&sdma->channel[0]);
678 
679 	return ret;
680 }
681 
682 static void sdma_disable_channel(struct sdma_channel *sdmac)
683 {
684 	struct sdma_engine *sdma = sdmac->sdma;
685 	int channel = sdmac->channel;
686 
687 	__raw_writel(1 << channel, sdma->regs + SDMA_H_STATSTOP);
688 	sdmac->status = DMA_ERROR;
689 }
690 
691 static int sdma_config_channel(struct sdma_channel *sdmac)
692 {
693 	int ret;
694 
695 	sdma_disable_channel(sdmac);
696 
697 	sdmac->event_mask0 = 0;
698 	sdmac->event_mask1 = 0;
699 	sdmac->shp_addr = 0;
700 	sdmac->per_addr = 0;
701 
702 	if (sdmac->event_id0) {
703 		if (sdmac->event_id0 > 32)
704 			return -EINVAL;
705 		sdma_event_enable(sdmac, sdmac->event_id0);
706 	}
707 
708 	switch (sdmac->peripheral_type) {
709 	case IMX_DMATYPE_DSP:
710 		sdma_config_ownership(sdmac, false, true, true);
711 		break;
712 	case IMX_DMATYPE_MEMORY:
713 		sdma_config_ownership(sdmac, false, true, false);
714 		break;
715 	default:
716 		sdma_config_ownership(sdmac, true, true, false);
717 		break;
718 	}
719 
720 	sdma_get_pc(sdmac, sdmac->peripheral_type);
721 
722 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
723 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
724 		/* Handle multiple event channels differently */
725 		if (sdmac->event_id1) {
726 			sdmac->event_mask1 = 1 << (sdmac->event_id1 % 32);
727 			if (sdmac->event_id1 > 31)
728 				sdmac->watermark_level |= 1 << 31;
729 			sdmac->event_mask0 = 1 << (sdmac->event_id0 % 32);
730 			if (sdmac->event_id0 > 31)
731 				sdmac->watermark_level |= 1 << 30;
732 		} else {
733 			sdmac->event_mask0 = 1 << sdmac->event_id0;
734 			sdmac->event_mask1 = 1 << (sdmac->event_id0 - 32);
735 		}
736 		/* Watermark Level */
737 		sdmac->watermark_level |= sdmac->watermark_level;
738 		/* Address */
739 		sdmac->shp_addr = sdmac->per_address;
740 	} else {
741 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
742 	}
743 
744 	ret = sdma_load_context(sdmac);
745 
746 	return ret;
747 }
748 
749 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
750 		unsigned int priority)
751 {
752 	struct sdma_engine *sdma = sdmac->sdma;
753 	int channel = sdmac->channel;
754 
755 	if (priority < MXC_SDMA_MIN_PRIORITY
756 	    || priority > MXC_SDMA_MAX_PRIORITY) {
757 		return -EINVAL;
758 	}
759 
760 	__raw_writel(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
761 
762 	return 0;
763 }
764 
765 static int sdma_request_channel(struct sdma_channel *sdmac)
766 {
767 	struct sdma_engine *sdma = sdmac->sdma;
768 	int channel = sdmac->channel;
769 	int ret = -EBUSY;
770 
771 	sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
772 	if (!sdmac->bd) {
773 		ret = -ENOMEM;
774 		goto out;
775 	}
776 
777 	memset(sdmac->bd, 0, PAGE_SIZE);
778 
779 	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
780 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
781 
782 	clk_enable(sdma->clk);
783 
784 	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
785 
786 	init_completion(&sdmac->done);
787 
788 	sdmac->buf_tail = 0;
789 
790 	return 0;
791 out:
792 
793 	return ret;
794 }
795 
796 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
797 {
798 	__raw_writel(1 << channel, sdma->regs + SDMA_H_START);
799 }
800 
801 static dma_cookie_t sdma_assign_cookie(struct sdma_channel *sdmac)
802 {
803 	dma_cookie_t cookie = sdmac->chan.cookie;
804 
805 	if (++cookie < 0)
806 		cookie = 1;
807 
808 	sdmac->chan.cookie = cookie;
809 	sdmac->desc.cookie = cookie;
810 
811 	return cookie;
812 }
813 
814 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
815 {
816 	return container_of(chan, struct sdma_channel, chan);
817 }
818 
819 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
820 {
821 	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
822 	struct sdma_engine *sdma = sdmac->sdma;
823 	dma_cookie_t cookie;
824 
825 	spin_lock_irq(&sdmac->lock);
826 
827 	cookie = sdma_assign_cookie(sdmac);
828 
829 	sdma_enable_channel(sdma, sdmac->channel);
830 
831 	spin_unlock_irq(&sdmac->lock);
832 
833 	return cookie;
834 }
835 
836 static int sdma_alloc_chan_resources(struct dma_chan *chan)
837 {
838 	struct sdma_channel *sdmac = to_sdma_chan(chan);
839 	struct imx_dma_data *data = chan->private;
840 	int prio, ret;
841 
842 	if (!data)
843 		return -EINVAL;
844 
845 	switch (data->priority) {
846 	case DMA_PRIO_HIGH:
847 		prio = 3;
848 		break;
849 	case DMA_PRIO_MEDIUM:
850 		prio = 2;
851 		break;
852 	case DMA_PRIO_LOW:
853 	default:
854 		prio = 1;
855 		break;
856 	}
857 
858 	sdmac->peripheral_type = data->peripheral_type;
859 	sdmac->event_id0 = data->dma_request;
860 	ret = sdma_set_channel_priority(sdmac, prio);
861 	if (ret)
862 		return ret;
863 
864 	ret = sdma_request_channel(sdmac);
865 	if (ret)
866 		return ret;
867 
868 	dma_async_tx_descriptor_init(&sdmac->desc, chan);
869 	sdmac->desc.tx_submit = sdma_tx_submit;
870 	/* txd.flags will be overwritten in prep funcs */
871 	sdmac->desc.flags = DMA_CTRL_ACK;
872 
873 	return 0;
874 }
875 
876 static void sdma_free_chan_resources(struct dma_chan *chan)
877 {
878 	struct sdma_channel *sdmac = to_sdma_chan(chan);
879 	struct sdma_engine *sdma = sdmac->sdma;
880 
881 	sdma_disable_channel(sdmac);
882 
883 	if (sdmac->event_id0)
884 		sdma_event_disable(sdmac, sdmac->event_id0);
885 	if (sdmac->event_id1)
886 		sdma_event_disable(sdmac, sdmac->event_id1);
887 
888 	sdmac->event_id0 = 0;
889 	sdmac->event_id1 = 0;
890 
891 	sdma_set_channel_priority(sdmac, 0);
892 
893 	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
894 
895 	clk_disable(sdma->clk);
896 }
897 
898 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
899 		struct dma_chan *chan, struct scatterlist *sgl,
900 		unsigned int sg_len, enum dma_data_direction direction,
901 		unsigned long flags)
902 {
903 	struct sdma_channel *sdmac = to_sdma_chan(chan);
904 	struct sdma_engine *sdma = sdmac->sdma;
905 	int ret, i, count;
906 	int channel = sdmac->channel;
907 	struct scatterlist *sg;
908 
909 	if (sdmac->status == DMA_IN_PROGRESS)
910 		return NULL;
911 	sdmac->status = DMA_IN_PROGRESS;
912 
913 	sdmac->flags = 0;
914 
915 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
916 			sg_len, channel);
917 
918 	sdmac->direction = direction;
919 	ret = sdma_load_context(sdmac);
920 	if (ret)
921 		goto err_out;
922 
923 	if (sg_len > NUM_BD) {
924 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
925 				channel, sg_len, NUM_BD);
926 		ret = -EINVAL;
927 		goto err_out;
928 	}
929 
930 	for_each_sg(sgl, sg, sg_len, i) {
931 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
932 		int param;
933 
934 		bd->buffer_addr = sg->dma_address;
935 
936 		count = sg->length;
937 
938 		if (count > 0xffff) {
939 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
940 					channel, count, 0xffff);
941 			ret = -EINVAL;
942 			goto err_out;
943 		}
944 
945 		bd->mode.count = count;
946 
947 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
948 			ret =  -EINVAL;
949 			goto err_out;
950 		}
951 
952 		switch (sdmac->word_size) {
953 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
954 			bd->mode.command = 0;
955 			if (count & 3 || sg->dma_address & 3)
956 				return NULL;
957 			break;
958 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
959 			bd->mode.command = 2;
960 			if (count & 1 || sg->dma_address & 1)
961 				return NULL;
962 			break;
963 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
964 			bd->mode.command = 1;
965 			break;
966 		default:
967 			return NULL;
968 		}
969 
970 		param = BD_DONE | BD_EXTD | BD_CONT;
971 
972 		if (i + 1 == sg_len) {
973 			param |= BD_INTR;
974 			param |= BD_LAST;
975 			param &= ~BD_CONT;
976 		}
977 
978 		dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
979 				i, count, sg->dma_address,
980 				param & BD_WRAP ? "wrap" : "",
981 				param & BD_INTR ? " intr" : "");
982 
983 		bd->mode.status = param;
984 	}
985 
986 	sdmac->num_bd = sg_len;
987 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
988 
989 	return &sdmac->desc;
990 err_out:
991 	sdmac->status = DMA_ERROR;
992 	return NULL;
993 }
994 
995 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
996 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
997 		size_t period_len, enum dma_data_direction direction)
998 {
999 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1000 	struct sdma_engine *sdma = sdmac->sdma;
1001 	int num_periods = buf_len / period_len;
1002 	int channel = sdmac->channel;
1003 	int ret, i = 0, buf = 0;
1004 
1005 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1006 
1007 	if (sdmac->status == DMA_IN_PROGRESS)
1008 		return NULL;
1009 
1010 	sdmac->status = DMA_IN_PROGRESS;
1011 
1012 	sdmac->flags |= IMX_DMA_SG_LOOP;
1013 	sdmac->direction = direction;
1014 	ret = sdma_load_context(sdmac);
1015 	if (ret)
1016 		goto err_out;
1017 
1018 	if (num_periods > NUM_BD) {
1019 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1020 				channel, num_periods, NUM_BD);
1021 		goto err_out;
1022 	}
1023 
1024 	if (period_len > 0xffff) {
1025 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1026 				channel, period_len, 0xffff);
1027 		goto err_out;
1028 	}
1029 
1030 	while (buf < buf_len) {
1031 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1032 		int param;
1033 
1034 		bd->buffer_addr = dma_addr;
1035 
1036 		bd->mode.count = period_len;
1037 
1038 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1039 			goto err_out;
1040 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1041 			bd->mode.command = 0;
1042 		else
1043 			bd->mode.command = sdmac->word_size;
1044 
1045 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1046 		if (i + 1 == num_periods)
1047 			param |= BD_WRAP;
1048 
1049 		dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1050 				i, period_len, dma_addr,
1051 				param & BD_WRAP ? "wrap" : "",
1052 				param & BD_INTR ? " intr" : "");
1053 
1054 		bd->mode.status = param;
1055 
1056 		dma_addr += period_len;
1057 		buf += period_len;
1058 
1059 		i++;
1060 	}
1061 
1062 	sdmac->num_bd = num_periods;
1063 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1064 
1065 	return &sdmac->desc;
1066 err_out:
1067 	sdmac->status = DMA_ERROR;
1068 	return NULL;
1069 }
1070 
1071 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1072 		unsigned long arg)
1073 {
1074 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1075 	struct dma_slave_config *dmaengine_cfg = (void *)arg;
1076 
1077 	switch (cmd) {
1078 	case DMA_TERMINATE_ALL:
1079 		sdma_disable_channel(sdmac);
1080 		return 0;
1081 	case DMA_SLAVE_CONFIG:
1082 		if (dmaengine_cfg->direction == DMA_FROM_DEVICE) {
1083 			sdmac->per_address = dmaengine_cfg->src_addr;
1084 			sdmac->watermark_level = dmaengine_cfg->src_maxburst;
1085 			sdmac->word_size = dmaengine_cfg->src_addr_width;
1086 		} else {
1087 			sdmac->per_address = dmaengine_cfg->dst_addr;
1088 			sdmac->watermark_level = dmaengine_cfg->dst_maxburst;
1089 			sdmac->word_size = dmaengine_cfg->dst_addr_width;
1090 		}
1091 		return sdma_config_channel(sdmac);
1092 	default:
1093 		return -ENOSYS;
1094 	}
1095 
1096 	return -EINVAL;
1097 }
1098 
1099 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1100 					    dma_cookie_t cookie,
1101 					    struct dma_tx_state *txstate)
1102 {
1103 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1104 	dma_cookie_t last_used;
1105 
1106 	last_used = chan->cookie;
1107 
1108 	dma_set_tx_state(txstate, sdmac->last_completed, last_used, 0);
1109 
1110 	return sdmac->status;
1111 }
1112 
1113 static void sdma_issue_pending(struct dma_chan *chan)
1114 {
1115 	/*
1116 	 * Nothing to do. We only have a single descriptor
1117 	 */
1118 }
1119 
1120 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1121 
1122 static void sdma_add_scripts(struct sdma_engine *sdma,
1123 		const struct sdma_script_start_addrs *addr)
1124 {
1125 	s32 *addr_arr = (u32 *)addr;
1126 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1127 	int i;
1128 
1129 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1130 		if (addr_arr[i] > 0)
1131 			saddr_arr[i] = addr_arr[i];
1132 }
1133 
1134 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1135 		const char *fw_name)
1136 {
1137 	const struct firmware *fw;
1138 	const struct sdma_firmware_header *header;
1139 	int ret;
1140 	const struct sdma_script_start_addrs *addr;
1141 	unsigned short *ram_code;
1142 
1143 	ret = request_firmware(&fw, fw_name, sdma->dev);
1144 	if (ret)
1145 		return ret;
1146 
1147 	if (fw->size < sizeof(*header))
1148 		goto err_firmware;
1149 
1150 	header = (struct sdma_firmware_header *)fw->data;
1151 
1152 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1153 		goto err_firmware;
1154 	if (header->ram_code_start + header->ram_code_size > fw->size)
1155 		goto err_firmware;
1156 
1157 	addr = (void *)header + header->script_addrs_start;
1158 	ram_code = (void *)header + header->ram_code_start;
1159 
1160 	clk_enable(sdma->clk);
1161 	/* download the RAM image for SDMA */
1162 	sdma_load_script(sdma, ram_code,
1163 			header->ram_code_size,
1164 			addr->ram_code_start_addr);
1165 	clk_disable(sdma->clk);
1166 
1167 	sdma_add_scripts(sdma, addr);
1168 
1169 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1170 			header->version_major,
1171 			header->version_minor);
1172 
1173 err_firmware:
1174 	release_firmware(fw);
1175 
1176 	return ret;
1177 }
1178 
1179 static int __init sdma_init(struct sdma_engine *sdma)
1180 {
1181 	int i, ret;
1182 	dma_addr_t ccb_phys;
1183 
1184 	switch (sdma->devtype) {
1185 	case IMX31_SDMA:
1186 		sdma->num_events = 32;
1187 		break;
1188 	case IMX35_SDMA:
1189 		sdma->num_events = 48;
1190 		break;
1191 	default:
1192 		dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
1193 			sdma->devtype);
1194 		return -ENODEV;
1195 	}
1196 
1197 	clk_enable(sdma->clk);
1198 
1199 	/* Be sure SDMA has not started yet */
1200 	__raw_writel(0, sdma->regs + SDMA_H_C0PTR);
1201 
1202 	sdma->channel_control = dma_alloc_coherent(NULL,
1203 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1204 			sizeof(struct sdma_context_data),
1205 			&ccb_phys, GFP_KERNEL);
1206 
1207 	if (!sdma->channel_control) {
1208 		ret = -ENOMEM;
1209 		goto err_dma_alloc;
1210 	}
1211 
1212 	sdma->context = (void *)sdma->channel_control +
1213 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1214 	sdma->context_phys = ccb_phys +
1215 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1216 
1217 	/* Zero-out the CCB structures array just allocated */
1218 	memset(sdma->channel_control, 0,
1219 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1220 
1221 	/* disable all channels */
1222 	for (i = 0; i < sdma->num_events; i++)
1223 		__raw_writel(0, sdma->regs + chnenbl_ofs(sdma, i));
1224 
1225 	/* All channels have priority 0 */
1226 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1227 		__raw_writel(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1228 
1229 	ret = sdma_request_channel(&sdma->channel[0]);
1230 	if (ret)
1231 		goto err_dma_alloc;
1232 
1233 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1234 
1235 	/* Set Command Channel (Channel Zero) */
1236 	__raw_writel(0x4050, sdma->regs + SDMA_CHN0ADDR);
1237 
1238 	/* Set bits of CONFIG register but with static context switching */
1239 	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1240 	__raw_writel(0, sdma->regs + SDMA_H_CONFIG);
1241 
1242 	__raw_writel(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1243 
1244 	/* Set bits of CONFIG register with given context switching mode */
1245 	__raw_writel(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1246 
1247 	/* Initializes channel's priorities */
1248 	sdma_set_channel_priority(&sdma->channel[0], 7);
1249 
1250 	clk_disable(sdma->clk);
1251 
1252 	return 0;
1253 
1254 err_dma_alloc:
1255 	clk_disable(sdma->clk);
1256 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1257 	return ret;
1258 }
1259 
1260 static int __init sdma_probe(struct platform_device *pdev)
1261 {
1262 	const struct of_device_id *of_id =
1263 			of_match_device(sdma_dt_ids, &pdev->dev);
1264 	struct device_node *np = pdev->dev.of_node;
1265 	const char *fw_name;
1266 	int ret;
1267 	int irq;
1268 	struct resource *iores;
1269 	struct sdma_platform_data *pdata = pdev->dev.platform_data;
1270 	int i;
1271 	struct sdma_engine *sdma;
1272 
1273 	sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1274 	if (!sdma)
1275 		return -ENOMEM;
1276 
1277 	sdma->dev = &pdev->dev;
1278 
1279 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1280 	irq = platform_get_irq(pdev, 0);
1281 	if (!iores || irq < 0) {
1282 		ret = -EINVAL;
1283 		goto err_irq;
1284 	}
1285 
1286 	if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1287 		ret = -EBUSY;
1288 		goto err_request_region;
1289 	}
1290 
1291 	sdma->clk = clk_get(&pdev->dev, NULL);
1292 	if (IS_ERR(sdma->clk)) {
1293 		ret = PTR_ERR(sdma->clk);
1294 		goto err_clk;
1295 	}
1296 
1297 	sdma->regs = ioremap(iores->start, resource_size(iores));
1298 	if (!sdma->regs) {
1299 		ret = -ENOMEM;
1300 		goto err_ioremap;
1301 	}
1302 
1303 	ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1304 	if (ret)
1305 		goto err_request_irq;
1306 
1307 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1308 	if (!sdma->script_addrs) {
1309 		ret = -ENOMEM;
1310 		goto err_alloc;
1311 	}
1312 
1313 	if (of_id)
1314 		pdev->id_entry = of_id->data;
1315 	sdma->devtype = pdev->id_entry->driver_data;
1316 
1317 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1318 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1319 
1320 	INIT_LIST_HEAD(&sdma->dma_device.channels);
1321 	/* Initialize channel parameters */
1322 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1323 		struct sdma_channel *sdmac = &sdma->channel[i];
1324 
1325 		sdmac->sdma = sdma;
1326 		spin_lock_init(&sdmac->lock);
1327 
1328 		sdmac->chan.device = &sdma->dma_device;
1329 		sdmac->channel = i;
1330 
1331 		/*
1332 		 * Add the channel to the DMAC list. Do not add channel 0 though
1333 		 * because we need it internally in the SDMA driver. This also means
1334 		 * that channel 0 in dmaengine counting matches sdma channel 1.
1335 		 */
1336 		if (i)
1337 			list_add_tail(&sdmac->chan.device_node,
1338 					&sdma->dma_device.channels);
1339 	}
1340 
1341 	ret = sdma_init(sdma);
1342 	if (ret)
1343 		goto err_init;
1344 
1345 	if (pdata && pdata->script_addrs)
1346 		sdma_add_scripts(sdma, pdata->script_addrs);
1347 
1348 	if (pdata) {
1349 		sdma_get_firmware(sdma, pdata->fw_name);
1350 	} else {
1351 		/*
1352 		 * Because that device tree does not encode ROM script address,
1353 		 * the RAM script in firmware is mandatory for device tree
1354 		 * probe, otherwise it fails.
1355 		 */
1356 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1357 					      &fw_name);
1358 		if (ret) {
1359 			dev_err(&pdev->dev, "failed to get firmware name\n");
1360 			goto err_init;
1361 		}
1362 
1363 		ret = sdma_get_firmware(sdma, fw_name);
1364 		if (ret) {
1365 			dev_err(&pdev->dev, "failed to get firmware\n");
1366 			goto err_init;
1367 		}
1368 	}
1369 
1370 	sdma->dma_device.dev = &pdev->dev;
1371 
1372 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1373 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1374 	sdma->dma_device.device_tx_status = sdma_tx_status;
1375 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1376 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1377 	sdma->dma_device.device_control = sdma_control;
1378 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1379 	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1380 	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1381 
1382 	ret = dma_async_device_register(&sdma->dma_device);
1383 	if (ret) {
1384 		dev_err(&pdev->dev, "unable to register\n");
1385 		goto err_init;
1386 	}
1387 
1388 	dev_info(sdma->dev, "initialized\n");
1389 
1390 	return 0;
1391 
1392 err_init:
1393 	kfree(sdma->script_addrs);
1394 err_alloc:
1395 	free_irq(irq, sdma);
1396 err_request_irq:
1397 	iounmap(sdma->regs);
1398 err_ioremap:
1399 	clk_put(sdma->clk);
1400 err_clk:
1401 	release_mem_region(iores->start, resource_size(iores));
1402 err_request_region:
1403 err_irq:
1404 	kfree(sdma);
1405 	return ret;
1406 }
1407 
1408 static int __exit sdma_remove(struct platform_device *pdev)
1409 {
1410 	return -EBUSY;
1411 }
1412 
1413 static struct platform_driver sdma_driver = {
1414 	.driver		= {
1415 		.name	= "imx-sdma",
1416 		.of_match_table = sdma_dt_ids,
1417 	},
1418 	.id_table	= sdma_devtypes,
1419 	.remove		= __exit_p(sdma_remove),
1420 };
1421 
1422 static int __init sdma_module_init(void)
1423 {
1424 	return platform_driver_probe(&sdma_driver, sdma_probe);
1425 }
1426 module_init(sdma_module_init);
1427 
1428 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1429 MODULE_DESCRIPTION("i.MX SDMA driver");
1430 MODULE_LICENSE("GPL");
1431