xref: /openbmc/linux/drivers/dma/imx-sdma.c (revision e23feb16)
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19 
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39 #include <linux/of_dma.h>
40 
41 #include <asm/irq.h>
42 #include <linux/platform_data/dma-imx-sdma.h>
43 #include <linux/platform_data/dma-imx.h>
44 
45 #include "dmaengine.h"
46 
47 /* SDMA registers */
48 #define SDMA_H_C0PTR		0x000
49 #define SDMA_H_INTR		0x004
50 #define SDMA_H_STATSTOP		0x008
51 #define SDMA_H_START		0x00c
52 #define SDMA_H_EVTOVR		0x010
53 #define SDMA_H_DSPOVR		0x014
54 #define SDMA_H_HOSTOVR		0x018
55 #define SDMA_H_EVTPEND		0x01c
56 #define SDMA_H_DSPENBL		0x020
57 #define SDMA_H_RESET		0x024
58 #define SDMA_H_EVTERR		0x028
59 #define SDMA_H_INTRMSK		0x02c
60 #define SDMA_H_PSW		0x030
61 #define SDMA_H_EVTERRDBG	0x034
62 #define SDMA_H_CONFIG		0x038
63 #define SDMA_ONCE_ENB		0x040
64 #define SDMA_ONCE_DATA		0x044
65 #define SDMA_ONCE_INSTR		0x048
66 #define SDMA_ONCE_STAT		0x04c
67 #define SDMA_ONCE_CMD		0x050
68 #define SDMA_EVT_MIRROR		0x054
69 #define SDMA_ILLINSTADDR	0x058
70 #define SDMA_CHN0ADDR		0x05c
71 #define SDMA_ONCE_RTB		0x060
72 #define SDMA_XTRIG_CONF1	0x070
73 #define SDMA_XTRIG_CONF2	0x074
74 #define SDMA_CHNENBL0_IMX35	0x200
75 #define SDMA_CHNENBL0_IMX31	0x080
76 #define SDMA_CHNPRI_0		0x100
77 
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88 
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96 
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101 
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108 
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125 
126 /*
127  * Mode/Count of data node descriptors - IPCv2
128  */
129 struct sdma_mode_count {
130 	u32 count   : 16; /* size of the buffer pointed by this BD */
131 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
132 	u32 command :  8; /* command mostlky used for channel 0 */
133 };
134 
135 /*
136  * Buffer descriptor
137  */
138 struct sdma_buffer_descriptor {
139 	struct sdma_mode_count  mode;
140 	u32 buffer_addr;	/* address of the buffer described */
141 	u32 ext_buffer_addr;	/* extended buffer address */
142 } __attribute__ ((packed));
143 
144 /**
145  * struct sdma_channel_control - Channel control Block
146  *
147  * @current_bd_ptr	current buffer descriptor processed
148  * @base_bd_ptr		first element of buffer descriptor array
149  * @unused		padding. The SDMA engine expects an array of 128 byte
150  *			control blocks
151  */
152 struct sdma_channel_control {
153 	u32 current_bd_ptr;
154 	u32 base_bd_ptr;
155 	u32 unused[2];
156 } __attribute__ ((packed));
157 
158 /**
159  * struct sdma_state_registers - SDMA context for a channel
160  *
161  * @pc:		program counter
162  * @t:		test bit: status of arithmetic & test instruction
163  * @rpc:	return program counter
164  * @sf:		source fault while loading data
165  * @spc:	loop start program counter
166  * @df:		destination fault while storing data
167  * @epc:	loop end program counter
168  * @lm:		loop mode
169  */
170 struct sdma_state_registers {
171 	u32 pc     :14;
172 	u32 unused1: 1;
173 	u32 t      : 1;
174 	u32 rpc    :14;
175 	u32 unused0: 1;
176 	u32 sf     : 1;
177 	u32 spc    :14;
178 	u32 unused2: 1;
179 	u32 df     : 1;
180 	u32 epc    :14;
181 	u32 lm     : 2;
182 } __attribute__ ((packed));
183 
184 /**
185  * struct sdma_context_data - sdma context specific to a channel
186  *
187  * @channel_state:	channel state bits
188  * @gReg:		general registers
189  * @mda:		burst dma destination address register
190  * @msa:		burst dma source address register
191  * @ms:			burst dma status register
192  * @md:			burst dma data register
193  * @pda:		peripheral dma destination address register
194  * @psa:		peripheral dma source address register
195  * @ps:			peripheral dma status register
196  * @pd:			peripheral dma data register
197  * @ca:			CRC polynomial register
198  * @cs:			CRC accumulator register
199  * @dda:		dedicated core destination address register
200  * @dsa:		dedicated core source address register
201  * @ds:			dedicated core status register
202  * @dd:			dedicated core data register
203  */
204 struct sdma_context_data {
205 	struct sdma_state_registers  channel_state;
206 	u32  gReg[8];
207 	u32  mda;
208 	u32  msa;
209 	u32  ms;
210 	u32  md;
211 	u32  pda;
212 	u32  psa;
213 	u32  ps;
214 	u32  pd;
215 	u32  ca;
216 	u32  cs;
217 	u32  dda;
218 	u32  dsa;
219 	u32  ds;
220 	u32  dd;
221 	u32  scratch0;
222 	u32  scratch1;
223 	u32  scratch2;
224 	u32  scratch3;
225 	u32  scratch4;
226 	u32  scratch5;
227 	u32  scratch6;
228 	u32  scratch7;
229 } __attribute__ ((packed));
230 
231 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
232 
233 struct sdma_engine;
234 
235 /**
236  * struct sdma_channel - housekeeping for a SDMA channel
237  *
238  * @sdma		pointer to the SDMA engine for this channel
239  * @channel		the channel number, matches dmaengine chan_id + 1
240  * @direction		transfer type. Needed for setting SDMA script
241  * @peripheral_type	Peripheral type. Needed for setting SDMA script
242  * @event_id0		aka dma request line
243  * @event_id1		for channels that use 2 events
244  * @word_size		peripheral access size
245  * @buf_tail		ID of the buffer that was processed
246  * @num_bd		max NUM_BD. number of descriptors currently handling
247  */
248 struct sdma_channel {
249 	struct sdma_engine		*sdma;
250 	unsigned int			channel;
251 	enum dma_transfer_direction		direction;
252 	enum sdma_peripheral_type	peripheral_type;
253 	unsigned int			event_id0;
254 	unsigned int			event_id1;
255 	enum dma_slave_buswidth		word_size;
256 	unsigned int			buf_tail;
257 	unsigned int			num_bd;
258 	struct sdma_buffer_descriptor	*bd;
259 	dma_addr_t			bd_phys;
260 	unsigned int			pc_from_device, pc_to_device;
261 	unsigned long			flags;
262 	dma_addr_t			per_address;
263 	unsigned long			event_mask[2];
264 	unsigned long			watermark_level;
265 	u32				shp_addr, per_addr;
266 	struct dma_chan			chan;
267 	spinlock_t			lock;
268 	struct dma_async_tx_descriptor	desc;
269 	enum dma_status			status;
270 	unsigned int			chn_count;
271 	unsigned int			chn_real_count;
272 	struct tasklet_struct		tasklet;
273 };
274 
275 #define IMX_DMA_SG_LOOP		BIT(0)
276 
277 #define MAX_DMA_CHANNELS 32
278 #define MXC_SDMA_DEFAULT_PRIORITY 1
279 #define MXC_SDMA_MIN_PRIORITY 1
280 #define MXC_SDMA_MAX_PRIORITY 7
281 
282 #define SDMA_FIRMWARE_MAGIC 0x414d4453
283 
284 /**
285  * struct sdma_firmware_header - Layout of the firmware image
286  *
287  * @magic		"SDMA"
288  * @version_major	increased whenever layout of struct sdma_script_start_addrs
289  *			changes.
290  * @version_minor	firmware minor version (for binary compatible changes)
291  * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
292  * @num_script_addrs	Number of script addresses in this image
293  * @ram_code_start	offset of SDMA ram image in this firmware image
294  * @ram_code_size	size of SDMA ram image
295  * @script_addrs	Stores the start address of the SDMA scripts
296  *			(in SDMA memory space)
297  */
298 struct sdma_firmware_header {
299 	u32	magic;
300 	u32	version_major;
301 	u32	version_minor;
302 	u32	script_addrs_start;
303 	u32	num_script_addrs;
304 	u32	ram_code_start;
305 	u32	ram_code_size;
306 };
307 
308 struct sdma_driver_data {
309 	int chnenbl0;
310 	int num_events;
311 	struct sdma_script_start_addrs	*script_addrs;
312 };
313 
314 struct sdma_engine {
315 	struct device			*dev;
316 	struct device_dma_parameters	dma_parms;
317 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
318 	struct sdma_channel_control	*channel_control;
319 	void __iomem			*regs;
320 	struct sdma_context_data	*context;
321 	dma_addr_t			context_phys;
322 	struct dma_device		dma_device;
323 	struct clk			*clk_ipg;
324 	struct clk			*clk_ahb;
325 	spinlock_t			channel_0_lock;
326 	struct sdma_script_start_addrs	*script_addrs;
327 	const struct sdma_driver_data	*drvdata;
328 };
329 
330 static struct sdma_driver_data sdma_imx31 = {
331 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
332 	.num_events = 32,
333 };
334 
335 static struct sdma_script_start_addrs sdma_script_imx25 = {
336 	.ap_2_ap_addr = 729,
337 	.uart_2_mcu_addr = 904,
338 	.per_2_app_addr = 1255,
339 	.mcu_2_app_addr = 834,
340 	.uartsh_2_mcu_addr = 1120,
341 	.per_2_shp_addr = 1329,
342 	.mcu_2_shp_addr = 1048,
343 	.ata_2_mcu_addr = 1560,
344 	.mcu_2_ata_addr = 1479,
345 	.app_2_per_addr = 1189,
346 	.app_2_mcu_addr = 770,
347 	.shp_2_per_addr = 1407,
348 	.shp_2_mcu_addr = 979,
349 };
350 
351 static struct sdma_driver_data sdma_imx25 = {
352 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
353 	.num_events = 48,
354 	.script_addrs = &sdma_script_imx25,
355 };
356 
357 static struct sdma_driver_data sdma_imx35 = {
358 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
359 	.num_events = 48,
360 };
361 
362 static struct sdma_script_start_addrs sdma_script_imx51 = {
363 	.ap_2_ap_addr = 642,
364 	.uart_2_mcu_addr = 817,
365 	.mcu_2_app_addr = 747,
366 	.mcu_2_shp_addr = 961,
367 	.ata_2_mcu_addr = 1473,
368 	.mcu_2_ata_addr = 1392,
369 	.app_2_per_addr = 1033,
370 	.app_2_mcu_addr = 683,
371 	.shp_2_per_addr = 1251,
372 	.shp_2_mcu_addr = 892,
373 };
374 
375 static struct sdma_driver_data sdma_imx51 = {
376 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
377 	.num_events = 48,
378 	.script_addrs = &sdma_script_imx51,
379 };
380 
381 static struct sdma_script_start_addrs sdma_script_imx53 = {
382 	.ap_2_ap_addr = 642,
383 	.app_2_mcu_addr = 683,
384 	.mcu_2_app_addr = 747,
385 	.uart_2_mcu_addr = 817,
386 	.shp_2_mcu_addr = 891,
387 	.mcu_2_shp_addr = 960,
388 	.uartsh_2_mcu_addr = 1032,
389 	.spdif_2_mcu_addr = 1100,
390 	.mcu_2_spdif_addr = 1134,
391 	.firi_2_mcu_addr = 1193,
392 	.mcu_2_firi_addr = 1290,
393 };
394 
395 static struct sdma_driver_data sdma_imx53 = {
396 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
397 	.num_events = 48,
398 	.script_addrs = &sdma_script_imx53,
399 };
400 
401 static struct sdma_script_start_addrs sdma_script_imx6q = {
402 	.ap_2_ap_addr = 642,
403 	.uart_2_mcu_addr = 817,
404 	.mcu_2_app_addr = 747,
405 	.per_2_per_addr = 6331,
406 	.uartsh_2_mcu_addr = 1032,
407 	.mcu_2_shp_addr = 960,
408 	.app_2_mcu_addr = 683,
409 	.shp_2_mcu_addr = 891,
410 	.spdif_2_mcu_addr = 1100,
411 	.mcu_2_spdif_addr = 1134,
412 };
413 
414 static struct sdma_driver_data sdma_imx6q = {
415 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
416 	.num_events = 48,
417 	.script_addrs = &sdma_script_imx6q,
418 };
419 
420 static struct platform_device_id sdma_devtypes[] = {
421 	{
422 		.name = "imx25-sdma",
423 		.driver_data = (unsigned long)&sdma_imx25,
424 	}, {
425 		.name = "imx31-sdma",
426 		.driver_data = (unsigned long)&sdma_imx31,
427 	}, {
428 		.name = "imx35-sdma",
429 		.driver_data = (unsigned long)&sdma_imx35,
430 	}, {
431 		.name = "imx51-sdma",
432 		.driver_data = (unsigned long)&sdma_imx51,
433 	}, {
434 		.name = "imx53-sdma",
435 		.driver_data = (unsigned long)&sdma_imx53,
436 	}, {
437 		.name = "imx6q-sdma",
438 		.driver_data = (unsigned long)&sdma_imx6q,
439 	}, {
440 		/* sentinel */
441 	}
442 };
443 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
444 
445 static const struct of_device_id sdma_dt_ids[] = {
446 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
447 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
448 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
449 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
450 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
451 	{ /* sentinel */ }
452 };
453 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
454 
455 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
456 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
457 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
458 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
459 
460 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
461 {
462 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
463 	return chnenbl0 + event * 4;
464 }
465 
466 static int sdma_config_ownership(struct sdma_channel *sdmac,
467 		bool event_override, bool mcu_override, bool dsp_override)
468 {
469 	struct sdma_engine *sdma = sdmac->sdma;
470 	int channel = sdmac->channel;
471 	unsigned long evt, mcu, dsp;
472 
473 	if (event_override && mcu_override && dsp_override)
474 		return -EINVAL;
475 
476 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
477 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
478 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
479 
480 	if (dsp_override)
481 		__clear_bit(channel, &dsp);
482 	else
483 		__set_bit(channel, &dsp);
484 
485 	if (event_override)
486 		__clear_bit(channel, &evt);
487 	else
488 		__set_bit(channel, &evt);
489 
490 	if (mcu_override)
491 		__clear_bit(channel, &mcu);
492 	else
493 		__set_bit(channel, &mcu);
494 
495 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
496 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
497 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
498 
499 	return 0;
500 }
501 
502 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
503 {
504 	writel(BIT(channel), sdma->regs + SDMA_H_START);
505 }
506 
507 /*
508  * sdma_run_channel0 - run a channel and wait till it's done
509  */
510 static int sdma_run_channel0(struct sdma_engine *sdma)
511 {
512 	int ret;
513 	unsigned long timeout = 500;
514 
515 	sdma_enable_channel(sdma, 0);
516 
517 	while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
518 		if (timeout-- <= 0)
519 			break;
520 		udelay(1);
521 	}
522 
523 	if (ret) {
524 		/* Clear the interrupt status */
525 		writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
526 	} else {
527 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
528 	}
529 
530 	return ret ? 0 : -ETIMEDOUT;
531 }
532 
533 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
534 		u32 address)
535 {
536 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
537 	void *buf_virt;
538 	dma_addr_t buf_phys;
539 	int ret;
540 	unsigned long flags;
541 
542 	buf_virt = dma_alloc_coherent(NULL,
543 			size,
544 			&buf_phys, GFP_KERNEL);
545 	if (!buf_virt) {
546 		return -ENOMEM;
547 	}
548 
549 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
550 
551 	bd0->mode.command = C0_SETPM;
552 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
553 	bd0->mode.count = size / 2;
554 	bd0->buffer_addr = buf_phys;
555 	bd0->ext_buffer_addr = address;
556 
557 	memcpy(buf_virt, buf, size);
558 
559 	ret = sdma_run_channel0(sdma);
560 
561 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
562 
563 	dma_free_coherent(NULL, size, buf_virt, buf_phys);
564 
565 	return ret;
566 }
567 
568 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
569 {
570 	struct sdma_engine *sdma = sdmac->sdma;
571 	int channel = sdmac->channel;
572 	unsigned long val;
573 	u32 chnenbl = chnenbl_ofs(sdma, event);
574 
575 	val = readl_relaxed(sdma->regs + chnenbl);
576 	__set_bit(channel, &val);
577 	writel_relaxed(val, sdma->regs + chnenbl);
578 }
579 
580 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
581 {
582 	struct sdma_engine *sdma = sdmac->sdma;
583 	int channel = sdmac->channel;
584 	u32 chnenbl = chnenbl_ofs(sdma, event);
585 	unsigned long val;
586 
587 	val = readl_relaxed(sdma->regs + chnenbl);
588 	__clear_bit(channel, &val);
589 	writel_relaxed(val, sdma->regs + chnenbl);
590 }
591 
592 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
593 {
594 	struct sdma_buffer_descriptor *bd;
595 
596 	/*
597 	 * loop mode. Iterate over descriptors, re-setup them and
598 	 * call callback function.
599 	 */
600 	while (1) {
601 		bd = &sdmac->bd[sdmac->buf_tail];
602 
603 		if (bd->mode.status & BD_DONE)
604 			break;
605 
606 		if (bd->mode.status & BD_RROR)
607 			sdmac->status = DMA_ERROR;
608 		else
609 			sdmac->status = DMA_IN_PROGRESS;
610 
611 		bd->mode.status |= BD_DONE;
612 		sdmac->buf_tail++;
613 		sdmac->buf_tail %= sdmac->num_bd;
614 
615 		if (sdmac->desc.callback)
616 			sdmac->desc.callback(sdmac->desc.callback_param);
617 	}
618 }
619 
620 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
621 {
622 	struct sdma_buffer_descriptor *bd;
623 	int i, error = 0;
624 
625 	sdmac->chn_real_count = 0;
626 	/*
627 	 * non loop mode. Iterate over all descriptors, collect
628 	 * errors and call callback function
629 	 */
630 	for (i = 0; i < sdmac->num_bd; i++) {
631 		bd = &sdmac->bd[i];
632 
633 		 if (bd->mode.status & (BD_DONE | BD_RROR))
634 			error = -EIO;
635 		 sdmac->chn_real_count += bd->mode.count;
636 	}
637 
638 	if (error)
639 		sdmac->status = DMA_ERROR;
640 	else
641 		sdmac->status = DMA_SUCCESS;
642 
643 	dma_cookie_complete(&sdmac->desc);
644 	if (sdmac->desc.callback)
645 		sdmac->desc.callback(sdmac->desc.callback_param);
646 }
647 
648 static void sdma_tasklet(unsigned long data)
649 {
650 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
651 
652 	if (sdmac->flags & IMX_DMA_SG_LOOP)
653 		sdma_handle_channel_loop(sdmac);
654 	else
655 		mxc_sdma_handle_channel_normal(sdmac);
656 }
657 
658 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
659 {
660 	struct sdma_engine *sdma = dev_id;
661 	unsigned long stat;
662 
663 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
664 	/* not interested in channel 0 interrupts */
665 	stat &= ~1;
666 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
667 
668 	while (stat) {
669 		int channel = fls(stat) - 1;
670 		struct sdma_channel *sdmac = &sdma->channel[channel];
671 
672 		tasklet_schedule(&sdmac->tasklet);
673 
674 		__clear_bit(channel, &stat);
675 	}
676 
677 	return IRQ_HANDLED;
678 }
679 
680 /*
681  * sets the pc of SDMA script according to the peripheral type
682  */
683 static void sdma_get_pc(struct sdma_channel *sdmac,
684 		enum sdma_peripheral_type peripheral_type)
685 {
686 	struct sdma_engine *sdma = sdmac->sdma;
687 	int per_2_emi = 0, emi_2_per = 0;
688 	/*
689 	 * These are needed once we start to support transfers between
690 	 * two peripherals or memory-to-memory transfers
691 	 */
692 	int per_2_per = 0, emi_2_emi = 0;
693 
694 	sdmac->pc_from_device = 0;
695 	sdmac->pc_to_device = 0;
696 
697 	switch (peripheral_type) {
698 	case IMX_DMATYPE_MEMORY:
699 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
700 		break;
701 	case IMX_DMATYPE_DSP:
702 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
703 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
704 		break;
705 	case IMX_DMATYPE_FIRI:
706 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
707 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
708 		break;
709 	case IMX_DMATYPE_UART:
710 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
711 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
712 		break;
713 	case IMX_DMATYPE_UART_SP:
714 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
715 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
716 		break;
717 	case IMX_DMATYPE_ATA:
718 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
719 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
720 		break;
721 	case IMX_DMATYPE_CSPI:
722 	case IMX_DMATYPE_EXT:
723 	case IMX_DMATYPE_SSI:
724 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
725 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
726 		break;
727 	case IMX_DMATYPE_SSI_SP:
728 	case IMX_DMATYPE_MMC:
729 	case IMX_DMATYPE_SDHC:
730 	case IMX_DMATYPE_CSPI_SP:
731 	case IMX_DMATYPE_ESAI:
732 	case IMX_DMATYPE_MSHC_SP:
733 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
734 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
735 		break;
736 	case IMX_DMATYPE_ASRC:
737 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
738 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
739 		per_2_per = sdma->script_addrs->per_2_per_addr;
740 		break;
741 	case IMX_DMATYPE_MSHC:
742 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
743 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
744 		break;
745 	case IMX_DMATYPE_CCM:
746 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
747 		break;
748 	case IMX_DMATYPE_SPDIF:
749 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
750 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
751 		break;
752 	case IMX_DMATYPE_IPU_MEMORY:
753 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
754 		break;
755 	default:
756 		break;
757 	}
758 
759 	sdmac->pc_from_device = per_2_emi;
760 	sdmac->pc_to_device = emi_2_per;
761 }
762 
763 static int sdma_load_context(struct sdma_channel *sdmac)
764 {
765 	struct sdma_engine *sdma = sdmac->sdma;
766 	int channel = sdmac->channel;
767 	int load_address;
768 	struct sdma_context_data *context = sdma->context;
769 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
770 	int ret;
771 	unsigned long flags;
772 
773 	if (sdmac->direction == DMA_DEV_TO_MEM) {
774 		load_address = sdmac->pc_from_device;
775 	} else {
776 		load_address = sdmac->pc_to_device;
777 	}
778 
779 	if (load_address < 0)
780 		return load_address;
781 
782 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
783 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
784 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
785 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
786 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
787 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
788 
789 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
790 
791 	memset(context, 0, sizeof(*context));
792 	context->channel_state.pc = load_address;
793 
794 	/* Send by context the event mask,base address for peripheral
795 	 * and watermark level
796 	 */
797 	context->gReg[0] = sdmac->event_mask[1];
798 	context->gReg[1] = sdmac->event_mask[0];
799 	context->gReg[2] = sdmac->per_addr;
800 	context->gReg[6] = sdmac->shp_addr;
801 	context->gReg[7] = sdmac->watermark_level;
802 
803 	bd0->mode.command = C0_SETDM;
804 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
805 	bd0->mode.count = sizeof(*context) / 4;
806 	bd0->buffer_addr = sdma->context_phys;
807 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
808 	ret = sdma_run_channel0(sdma);
809 
810 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
811 
812 	return ret;
813 }
814 
815 static void sdma_disable_channel(struct sdma_channel *sdmac)
816 {
817 	struct sdma_engine *sdma = sdmac->sdma;
818 	int channel = sdmac->channel;
819 
820 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
821 	sdmac->status = DMA_ERROR;
822 }
823 
824 static int sdma_config_channel(struct sdma_channel *sdmac)
825 {
826 	int ret;
827 
828 	sdma_disable_channel(sdmac);
829 
830 	sdmac->event_mask[0] = 0;
831 	sdmac->event_mask[1] = 0;
832 	sdmac->shp_addr = 0;
833 	sdmac->per_addr = 0;
834 
835 	if (sdmac->event_id0) {
836 		if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
837 			return -EINVAL;
838 		sdma_event_enable(sdmac, sdmac->event_id0);
839 	}
840 
841 	switch (sdmac->peripheral_type) {
842 	case IMX_DMATYPE_DSP:
843 		sdma_config_ownership(sdmac, false, true, true);
844 		break;
845 	case IMX_DMATYPE_MEMORY:
846 		sdma_config_ownership(sdmac, false, true, false);
847 		break;
848 	default:
849 		sdma_config_ownership(sdmac, true, true, false);
850 		break;
851 	}
852 
853 	sdma_get_pc(sdmac, sdmac->peripheral_type);
854 
855 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
856 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
857 		/* Handle multiple event channels differently */
858 		if (sdmac->event_id1) {
859 			sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
860 			if (sdmac->event_id1 > 31)
861 				__set_bit(31, &sdmac->watermark_level);
862 			sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
863 			if (sdmac->event_id0 > 31)
864 				__set_bit(30, &sdmac->watermark_level);
865 		} else {
866 			__set_bit(sdmac->event_id0, sdmac->event_mask);
867 		}
868 		/* Watermark Level */
869 		sdmac->watermark_level |= sdmac->watermark_level;
870 		/* Address */
871 		sdmac->shp_addr = sdmac->per_address;
872 	} else {
873 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
874 	}
875 
876 	ret = sdma_load_context(sdmac);
877 
878 	return ret;
879 }
880 
881 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
882 		unsigned int priority)
883 {
884 	struct sdma_engine *sdma = sdmac->sdma;
885 	int channel = sdmac->channel;
886 
887 	if (priority < MXC_SDMA_MIN_PRIORITY
888 	    || priority > MXC_SDMA_MAX_PRIORITY) {
889 		return -EINVAL;
890 	}
891 
892 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
893 
894 	return 0;
895 }
896 
897 static int sdma_request_channel(struct sdma_channel *sdmac)
898 {
899 	struct sdma_engine *sdma = sdmac->sdma;
900 	int channel = sdmac->channel;
901 	int ret = -EBUSY;
902 
903 	sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
904 	if (!sdmac->bd) {
905 		ret = -ENOMEM;
906 		goto out;
907 	}
908 
909 	memset(sdmac->bd, 0, PAGE_SIZE);
910 
911 	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
912 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
913 
914 	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
915 	return 0;
916 out:
917 
918 	return ret;
919 }
920 
921 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
922 {
923 	return container_of(chan, struct sdma_channel, chan);
924 }
925 
926 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
927 {
928 	unsigned long flags;
929 	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
930 	dma_cookie_t cookie;
931 
932 	spin_lock_irqsave(&sdmac->lock, flags);
933 
934 	cookie = dma_cookie_assign(tx);
935 
936 	spin_unlock_irqrestore(&sdmac->lock, flags);
937 
938 	return cookie;
939 }
940 
941 static int sdma_alloc_chan_resources(struct dma_chan *chan)
942 {
943 	struct sdma_channel *sdmac = to_sdma_chan(chan);
944 	struct imx_dma_data *data = chan->private;
945 	int prio, ret;
946 
947 	if (!data)
948 		return -EINVAL;
949 
950 	switch (data->priority) {
951 	case DMA_PRIO_HIGH:
952 		prio = 3;
953 		break;
954 	case DMA_PRIO_MEDIUM:
955 		prio = 2;
956 		break;
957 	case DMA_PRIO_LOW:
958 	default:
959 		prio = 1;
960 		break;
961 	}
962 
963 	sdmac->peripheral_type = data->peripheral_type;
964 	sdmac->event_id0 = data->dma_request;
965 
966 	clk_enable(sdmac->sdma->clk_ipg);
967 	clk_enable(sdmac->sdma->clk_ahb);
968 
969 	ret = sdma_request_channel(sdmac);
970 	if (ret)
971 		return ret;
972 
973 	ret = sdma_set_channel_priority(sdmac, prio);
974 	if (ret)
975 		return ret;
976 
977 	dma_async_tx_descriptor_init(&sdmac->desc, chan);
978 	sdmac->desc.tx_submit = sdma_tx_submit;
979 	/* txd.flags will be overwritten in prep funcs */
980 	sdmac->desc.flags = DMA_CTRL_ACK;
981 
982 	return 0;
983 }
984 
985 static void sdma_free_chan_resources(struct dma_chan *chan)
986 {
987 	struct sdma_channel *sdmac = to_sdma_chan(chan);
988 	struct sdma_engine *sdma = sdmac->sdma;
989 
990 	sdma_disable_channel(sdmac);
991 
992 	if (sdmac->event_id0)
993 		sdma_event_disable(sdmac, sdmac->event_id0);
994 	if (sdmac->event_id1)
995 		sdma_event_disable(sdmac, sdmac->event_id1);
996 
997 	sdmac->event_id0 = 0;
998 	sdmac->event_id1 = 0;
999 
1000 	sdma_set_channel_priority(sdmac, 0);
1001 
1002 	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1003 
1004 	clk_disable(sdma->clk_ipg);
1005 	clk_disable(sdma->clk_ahb);
1006 }
1007 
1008 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1009 		struct dma_chan *chan, struct scatterlist *sgl,
1010 		unsigned int sg_len, enum dma_transfer_direction direction,
1011 		unsigned long flags, void *context)
1012 {
1013 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1014 	struct sdma_engine *sdma = sdmac->sdma;
1015 	int ret, i, count;
1016 	int channel = sdmac->channel;
1017 	struct scatterlist *sg;
1018 
1019 	if (sdmac->status == DMA_IN_PROGRESS)
1020 		return NULL;
1021 	sdmac->status = DMA_IN_PROGRESS;
1022 
1023 	sdmac->flags = 0;
1024 
1025 	sdmac->buf_tail = 0;
1026 
1027 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1028 			sg_len, channel);
1029 
1030 	sdmac->direction = direction;
1031 	ret = sdma_load_context(sdmac);
1032 	if (ret)
1033 		goto err_out;
1034 
1035 	if (sg_len > NUM_BD) {
1036 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1037 				channel, sg_len, NUM_BD);
1038 		ret = -EINVAL;
1039 		goto err_out;
1040 	}
1041 
1042 	sdmac->chn_count = 0;
1043 	for_each_sg(sgl, sg, sg_len, i) {
1044 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1045 		int param;
1046 
1047 		bd->buffer_addr = sg->dma_address;
1048 
1049 		count = sg_dma_len(sg);
1050 
1051 		if (count > 0xffff) {
1052 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1053 					channel, count, 0xffff);
1054 			ret = -EINVAL;
1055 			goto err_out;
1056 		}
1057 
1058 		bd->mode.count = count;
1059 		sdmac->chn_count += count;
1060 
1061 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1062 			ret =  -EINVAL;
1063 			goto err_out;
1064 		}
1065 
1066 		switch (sdmac->word_size) {
1067 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1068 			bd->mode.command = 0;
1069 			if (count & 3 || sg->dma_address & 3)
1070 				return NULL;
1071 			break;
1072 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1073 			bd->mode.command = 2;
1074 			if (count & 1 || sg->dma_address & 1)
1075 				return NULL;
1076 			break;
1077 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1078 			bd->mode.command = 1;
1079 			break;
1080 		default:
1081 			return NULL;
1082 		}
1083 
1084 		param = BD_DONE | BD_EXTD | BD_CONT;
1085 
1086 		if (i + 1 == sg_len) {
1087 			param |= BD_INTR;
1088 			param |= BD_LAST;
1089 			param &= ~BD_CONT;
1090 		}
1091 
1092 		dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1093 				i, count, sg->dma_address,
1094 				param & BD_WRAP ? "wrap" : "",
1095 				param & BD_INTR ? " intr" : "");
1096 
1097 		bd->mode.status = param;
1098 	}
1099 
1100 	sdmac->num_bd = sg_len;
1101 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1102 
1103 	return &sdmac->desc;
1104 err_out:
1105 	sdmac->status = DMA_ERROR;
1106 	return NULL;
1107 }
1108 
1109 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1110 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1111 		size_t period_len, enum dma_transfer_direction direction,
1112 		unsigned long flags, void *context)
1113 {
1114 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1115 	struct sdma_engine *sdma = sdmac->sdma;
1116 	int num_periods = buf_len / period_len;
1117 	int channel = sdmac->channel;
1118 	int ret, i = 0, buf = 0;
1119 
1120 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1121 
1122 	if (sdmac->status == DMA_IN_PROGRESS)
1123 		return NULL;
1124 
1125 	sdmac->status = DMA_IN_PROGRESS;
1126 
1127 	sdmac->buf_tail = 0;
1128 
1129 	sdmac->flags |= IMX_DMA_SG_LOOP;
1130 	sdmac->direction = direction;
1131 	ret = sdma_load_context(sdmac);
1132 	if (ret)
1133 		goto err_out;
1134 
1135 	if (num_periods > NUM_BD) {
1136 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1137 				channel, num_periods, NUM_BD);
1138 		goto err_out;
1139 	}
1140 
1141 	if (period_len > 0xffff) {
1142 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1143 				channel, period_len, 0xffff);
1144 		goto err_out;
1145 	}
1146 
1147 	while (buf < buf_len) {
1148 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1149 		int param;
1150 
1151 		bd->buffer_addr = dma_addr;
1152 
1153 		bd->mode.count = period_len;
1154 
1155 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1156 			goto err_out;
1157 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1158 			bd->mode.command = 0;
1159 		else
1160 			bd->mode.command = sdmac->word_size;
1161 
1162 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1163 		if (i + 1 == num_periods)
1164 			param |= BD_WRAP;
1165 
1166 		dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1167 				i, period_len, dma_addr,
1168 				param & BD_WRAP ? "wrap" : "",
1169 				param & BD_INTR ? " intr" : "");
1170 
1171 		bd->mode.status = param;
1172 
1173 		dma_addr += period_len;
1174 		buf += period_len;
1175 
1176 		i++;
1177 	}
1178 
1179 	sdmac->num_bd = num_periods;
1180 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1181 
1182 	return &sdmac->desc;
1183 err_out:
1184 	sdmac->status = DMA_ERROR;
1185 	return NULL;
1186 }
1187 
1188 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1189 		unsigned long arg)
1190 {
1191 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1192 	struct dma_slave_config *dmaengine_cfg = (void *)arg;
1193 
1194 	switch (cmd) {
1195 	case DMA_TERMINATE_ALL:
1196 		sdma_disable_channel(sdmac);
1197 		return 0;
1198 	case DMA_SLAVE_CONFIG:
1199 		if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1200 			sdmac->per_address = dmaengine_cfg->src_addr;
1201 			sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1202 						dmaengine_cfg->src_addr_width;
1203 			sdmac->word_size = dmaengine_cfg->src_addr_width;
1204 		} else {
1205 			sdmac->per_address = dmaengine_cfg->dst_addr;
1206 			sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1207 						dmaengine_cfg->dst_addr_width;
1208 			sdmac->word_size = dmaengine_cfg->dst_addr_width;
1209 		}
1210 		sdmac->direction = dmaengine_cfg->direction;
1211 		return sdma_config_channel(sdmac);
1212 	default:
1213 		return -ENOSYS;
1214 	}
1215 
1216 	return -EINVAL;
1217 }
1218 
1219 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1220 				      dma_cookie_t cookie,
1221 				      struct dma_tx_state *txstate)
1222 {
1223 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1224 
1225 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1226 			sdmac->chn_count - sdmac->chn_real_count);
1227 
1228 	return sdmac->status;
1229 }
1230 
1231 static void sdma_issue_pending(struct dma_chan *chan)
1232 {
1233 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1234 	struct sdma_engine *sdma = sdmac->sdma;
1235 
1236 	if (sdmac->status == DMA_IN_PROGRESS)
1237 		sdma_enable_channel(sdma, sdmac->channel);
1238 }
1239 
1240 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1241 
1242 static void sdma_add_scripts(struct sdma_engine *sdma,
1243 		const struct sdma_script_start_addrs *addr)
1244 {
1245 	s32 *addr_arr = (u32 *)addr;
1246 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1247 	int i;
1248 
1249 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1250 		if (addr_arr[i] > 0)
1251 			saddr_arr[i] = addr_arr[i];
1252 }
1253 
1254 static void sdma_load_firmware(const struct firmware *fw, void *context)
1255 {
1256 	struct sdma_engine *sdma = context;
1257 	const struct sdma_firmware_header *header;
1258 	const struct sdma_script_start_addrs *addr;
1259 	unsigned short *ram_code;
1260 
1261 	if (!fw) {
1262 		dev_err(sdma->dev, "firmware not found\n");
1263 		return;
1264 	}
1265 
1266 	if (fw->size < sizeof(*header))
1267 		goto err_firmware;
1268 
1269 	header = (struct sdma_firmware_header *)fw->data;
1270 
1271 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1272 		goto err_firmware;
1273 	if (header->ram_code_start + header->ram_code_size > fw->size)
1274 		goto err_firmware;
1275 
1276 	addr = (void *)header + header->script_addrs_start;
1277 	ram_code = (void *)header + header->ram_code_start;
1278 
1279 	clk_enable(sdma->clk_ipg);
1280 	clk_enable(sdma->clk_ahb);
1281 	/* download the RAM image for SDMA */
1282 	sdma_load_script(sdma, ram_code,
1283 			header->ram_code_size,
1284 			addr->ram_code_start_addr);
1285 	clk_disable(sdma->clk_ipg);
1286 	clk_disable(sdma->clk_ahb);
1287 
1288 	sdma_add_scripts(sdma, addr);
1289 
1290 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1291 			header->version_major,
1292 			header->version_minor);
1293 
1294 err_firmware:
1295 	release_firmware(fw);
1296 }
1297 
1298 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1299 		const char *fw_name)
1300 {
1301 	int ret;
1302 
1303 	ret = request_firmware_nowait(THIS_MODULE,
1304 			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1305 			GFP_KERNEL, sdma, sdma_load_firmware);
1306 
1307 	return ret;
1308 }
1309 
1310 static int __init sdma_init(struct sdma_engine *sdma)
1311 {
1312 	int i, ret;
1313 	dma_addr_t ccb_phys;
1314 
1315 	clk_enable(sdma->clk_ipg);
1316 	clk_enable(sdma->clk_ahb);
1317 
1318 	/* Be sure SDMA has not started yet */
1319 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1320 
1321 	sdma->channel_control = dma_alloc_coherent(NULL,
1322 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1323 			sizeof(struct sdma_context_data),
1324 			&ccb_phys, GFP_KERNEL);
1325 
1326 	if (!sdma->channel_control) {
1327 		ret = -ENOMEM;
1328 		goto err_dma_alloc;
1329 	}
1330 
1331 	sdma->context = (void *)sdma->channel_control +
1332 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1333 	sdma->context_phys = ccb_phys +
1334 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1335 
1336 	/* Zero-out the CCB structures array just allocated */
1337 	memset(sdma->channel_control, 0,
1338 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1339 
1340 	/* disable all channels */
1341 	for (i = 0; i < sdma->drvdata->num_events; i++)
1342 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1343 
1344 	/* All channels have priority 0 */
1345 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1346 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1347 
1348 	ret = sdma_request_channel(&sdma->channel[0]);
1349 	if (ret)
1350 		goto err_dma_alloc;
1351 
1352 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1353 
1354 	/* Set Command Channel (Channel Zero) */
1355 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1356 
1357 	/* Set bits of CONFIG register but with static context switching */
1358 	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1359 	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1360 
1361 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1362 
1363 	/* Set bits of CONFIG register with given context switching mode */
1364 	writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1365 
1366 	/* Initializes channel's priorities */
1367 	sdma_set_channel_priority(&sdma->channel[0], 7);
1368 
1369 	clk_disable(sdma->clk_ipg);
1370 	clk_disable(sdma->clk_ahb);
1371 
1372 	return 0;
1373 
1374 err_dma_alloc:
1375 	clk_disable(sdma->clk_ipg);
1376 	clk_disable(sdma->clk_ahb);
1377 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1378 	return ret;
1379 }
1380 
1381 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1382 {
1383 	struct imx_dma_data *data = fn_param;
1384 
1385 	if (!imx_dma_is_general_purpose(chan))
1386 		return false;
1387 
1388 	chan->private = data;
1389 
1390 	return true;
1391 }
1392 
1393 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1394 				   struct of_dma *ofdma)
1395 {
1396 	struct sdma_engine *sdma = ofdma->of_dma_data;
1397 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1398 	struct imx_dma_data data;
1399 
1400 	if (dma_spec->args_count != 3)
1401 		return NULL;
1402 
1403 	data.dma_request = dma_spec->args[0];
1404 	data.peripheral_type = dma_spec->args[1];
1405 	data.priority = dma_spec->args[2];
1406 
1407 	return dma_request_channel(mask, sdma_filter_fn, &data);
1408 }
1409 
1410 static int __init sdma_probe(struct platform_device *pdev)
1411 {
1412 	const struct of_device_id *of_id =
1413 			of_match_device(sdma_dt_ids, &pdev->dev);
1414 	struct device_node *np = pdev->dev.of_node;
1415 	const char *fw_name;
1416 	int ret;
1417 	int irq;
1418 	struct resource *iores;
1419 	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1420 	int i;
1421 	struct sdma_engine *sdma;
1422 	s32 *saddr_arr;
1423 	const struct sdma_driver_data *drvdata = NULL;
1424 
1425 	if (of_id)
1426 		drvdata = of_id->data;
1427 	else if (pdev->id_entry)
1428 		drvdata = (void *)pdev->id_entry->driver_data;
1429 
1430 	if (!drvdata) {
1431 		dev_err(&pdev->dev, "unable to find driver data\n");
1432 		return -EINVAL;
1433 	}
1434 
1435 	sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1436 	if (!sdma)
1437 		return -ENOMEM;
1438 
1439 	spin_lock_init(&sdma->channel_0_lock);
1440 
1441 	sdma->dev = &pdev->dev;
1442 	sdma->drvdata = drvdata;
1443 
1444 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1445 	irq = platform_get_irq(pdev, 0);
1446 	if (!iores || irq < 0) {
1447 		ret = -EINVAL;
1448 		goto err_irq;
1449 	}
1450 
1451 	if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1452 		ret = -EBUSY;
1453 		goto err_request_region;
1454 	}
1455 
1456 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1457 	if (IS_ERR(sdma->clk_ipg)) {
1458 		ret = PTR_ERR(sdma->clk_ipg);
1459 		goto err_clk;
1460 	}
1461 
1462 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1463 	if (IS_ERR(sdma->clk_ahb)) {
1464 		ret = PTR_ERR(sdma->clk_ahb);
1465 		goto err_clk;
1466 	}
1467 
1468 	clk_prepare(sdma->clk_ipg);
1469 	clk_prepare(sdma->clk_ahb);
1470 
1471 	sdma->regs = ioremap(iores->start, resource_size(iores));
1472 	if (!sdma->regs) {
1473 		ret = -ENOMEM;
1474 		goto err_ioremap;
1475 	}
1476 
1477 	ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1478 	if (ret)
1479 		goto err_request_irq;
1480 
1481 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1482 	if (!sdma->script_addrs) {
1483 		ret = -ENOMEM;
1484 		goto err_alloc;
1485 	}
1486 
1487 	/* initially no scripts available */
1488 	saddr_arr = (s32 *)sdma->script_addrs;
1489 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1490 		saddr_arr[i] = -EINVAL;
1491 
1492 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1493 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1494 
1495 	INIT_LIST_HEAD(&sdma->dma_device.channels);
1496 	/* Initialize channel parameters */
1497 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1498 		struct sdma_channel *sdmac = &sdma->channel[i];
1499 
1500 		sdmac->sdma = sdma;
1501 		spin_lock_init(&sdmac->lock);
1502 
1503 		sdmac->chan.device = &sdma->dma_device;
1504 		dma_cookie_init(&sdmac->chan);
1505 		sdmac->channel = i;
1506 
1507 		tasklet_init(&sdmac->tasklet, sdma_tasklet,
1508 			     (unsigned long) sdmac);
1509 		/*
1510 		 * Add the channel to the DMAC list. Do not add channel 0 though
1511 		 * because we need it internally in the SDMA driver. This also means
1512 		 * that channel 0 in dmaengine counting matches sdma channel 1.
1513 		 */
1514 		if (i)
1515 			list_add_tail(&sdmac->chan.device_node,
1516 					&sdma->dma_device.channels);
1517 	}
1518 
1519 	ret = sdma_init(sdma);
1520 	if (ret)
1521 		goto err_init;
1522 
1523 	if (sdma->drvdata->script_addrs)
1524 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1525 	if (pdata && pdata->script_addrs)
1526 		sdma_add_scripts(sdma, pdata->script_addrs);
1527 
1528 	if (pdata) {
1529 		ret = sdma_get_firmware(sdma, pdata->fw_name);
1530 		if (ret)
1531 			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1532 	} else {
1533 		/*
1534 		 * Because that device tree does not encode ROM script address,
1535 		 * the RAM script in firmware is mandatory for device tree
1536 		 * probe, otherwise it fails.
1537 		 */
1538 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1539 					      &fw_name);
1540 		if (ret)
1541 			dev_warn(&pdev->dev, "failed to get firmware name\n");
1542 		else {
1543 			ret = sdma_get_firmware(sdma, fw_name);
1544 			if (ret)
1545 				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1546 		}
1547 	}
1548 
1549 	sdma->dma_device.dev = &pdev->dev;
1550 
1551 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1552 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1553 	sdma->dma_device.device_tx_status = sdma_tx_status;
1554 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1555 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1556 	sdma->dma_device.device_control = sdma_control;
1557 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1558 	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1559 	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1560 
1561 	ret = dma_async_device_register(&sdma->dma_device);
1562 	if (ret) {
1563 		dev_err(&pdev->dev, "unable to register\n");
1564 		goto err_init;
1565 	}
1566 
1567 	if (np) {
1568 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
1569 		if (ret) {
1570 			dev_err(&pdev->dev, "failed to register controller\n");
1571 			goto err_register;
1572 		}
1573 	}
1574 
1575 	dev_info(sdma->dev, "initialized\n");
1576 
1577 	return 0;
1578 
1579 err_register:
1580 	dma_async_device_unregister(&sdma->dma_device);
1581 err_init:
1582 	kfree(sdma->script_addrs);
1583 err_alloc:
1584 	free_irq(irq, sdma);
1585 err_request_irq:
1586 	iounmap(sdma->regs);
1587 err_ioremap:
1588 err_clk:
1589 	release_mem_region(iores->start, resource_size(iores));
1590 err_request_region:
1591 err_irq:
1592 	kfree(sdma);
1593 	return ret;
1594 }
1595 
1596 static int sdma_remove(struct platform_device *pdev)
1597 {
1598 	return -EBUSY;
1599 }
1600 
1601 static struct platform_driver sdma_driver = {
1602 	.driver		= {
1603 		.name	= "imx-sdma",
1604 		.of_match_table = sdma_dt_ids,
1605 	},
1606 	.id_table	= sdma_devtypes,
1607 	.remove		= sdma_remove,
1608 };
1609 
1610 static int __init sdma_module_init(void)
1611 {
1612 	return platform_driver_probe(&sdma_driver, sdma_probe);
1613 }
1614 module_init(sdma_module_init);
1615 
1616 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1617 MODULE_DESCRIPTION("i.MX SDMA driver");
1618 MODULE_LICENSE("GPL");
1619