xref: /openbmc/linux/drivers/dma/imx-sdma.c (revision d9fd5a71)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
10 //
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12 
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 #include <linux/semaphore.h>
24 #include <linux/spinlock.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/slab.h>
29 #include <linux/platform_device.h>
30 #include <linux/dmaengine.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_device.h>
34 #include <linux/of_dma.h>
35 #include <linux/workqueue.h>
36 
37 #include <asm/irq.h>
38 #include <linux/platform_data/dma-imx-sdma.h>
39 #include <linux/platform_data/dma-imx.h>
40 #include <linux/regmap.h>
41 #include <linux/mfd/syscon.h>
42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
43 
44 #include "dmaengine.h"
45 #include "virt-dma.h"
46 
47 /* SDMA registers */
48 #define SDMA_H_C0PTR		0x000
49 #define SDMA_H_INTR		0x004
50 #define SDMA_H_STATSTOP		0x008
51 #define SDMA_H_START		0x00c
52 #define SDMA_H_EVTOVR		0x010
53 #define SDMA_H_DSPOVR		0x014
54 #define SDMA_H_HOSTOVR		0x018
55 #define SDMA_H_EVTPEND		0x01c
56 #define SDMA_H_DSPENBL		0x020
57 #define SDMA_H_RESET		0x024
58 #define SDMA_H_EVTERR		0x028
59 #define SDMA_H_INTRMSK		0x02c
60 #define SDMA_H_PSW		0x030
61 #define SDMA_H_EVTERRDBG	0x034
62 #define SDMA_H_CONFIG		0x038
63 #define SDMA_ONCE_ENB		0x040
64 #define SDMA_ONCE_DATA		0x044
65 #define SDMA_ONCE_INSTR		0x048
66 #define SDMA_ONCE_STAT		0x04c
67 #define SDMA_ONCE_CMD		0x050
68 #define SDMA_EVT_MIRROR		0x054
69 #define SDMA_ILLINSTADDR	0x058
70 #define SDMA_CHN0ADDR		0x05c
71 #define SDMA_ONCE_RTB		0x060
72 #define SDMA_XTRIG_CONF1	0x070
73 #define SDMA_XTRIG_CONF2	0x074
74 #define SDMA_CHNENBL0_IMX35	0x200
75 #define SDMA_CHNENBL0_IMX31	0x080
76 #define SDMA_CHNPRI_0		0x100
77 
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88 
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96 
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101 
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108 
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125 
126 /*
127  *  p_2_p watermark_level description
128  *	Bits		Name			Description
129  *	0-7		Lower WML		Lower watermark level
130  *	8		PS			1: Pad Swallowing
131  *						0: No Pad Swallowing
132  *	9		PA			1: Pad Adding
133  *						0: No Pad Adding
134  *	10		SPDIF			If this bit is set both source
135  *						and destination are on SPBA
136  *	11		Source Bit(SP)		1: Source on SPBA
137  *						0: Source on AIPS
138  *	12		Destination Bit(DP)	1: Destination on SPBA
139  *						0: Destination on AIPS
140  *	13-15		---------		MUST BE 0
141  *	16-23		Higher WML		HWML
142  *	24-27		N			Total number of samples after
143  *						which Pad adding/Swallowing
144  *						must be done. It must be odd.
145  *	28		Lower WML Event(LWE)	SDMA events reg to check for
146  *						LWML event mask
147  *						0: LWE in EVENTS register
148  *						1: LWE in EVENTS2 register
149  *	29		Higher WML Event(HWE)	SDMA events reg to check for
150  *						HWML event mask
151  *						0: HWE in EVENTS register
152  *						1: HWE in EVENTS2 register
153  *	30		---------		MUST BE 0
154  *	31		CONT			1: Amount of samples to be
155  *						transferred is unknown and
156  *						script will keep on
157  *						transferring samples as long as
158  *						both events are detected and
159  *						script must be manually stopped
160  *						by the application
161  *						0: The amount of samples to be
162  *						transferred is equal to the
163  *						count field of mode word
164  */
165 #define SDMA_WATERMARK_LEVEL_LWML	0xFF
166 #define SDMA_WATERMARK_LEVEL_PS		BIT(8)
167 #define SDMA_WATERMARK_LEVEL_PA		BIT(9)
168 #define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
169 #define SDMA_WATERMARK_LEVEL_SP		BIT(11)
170 #define SDMA_WATERMARK_LEVEL_DP		BIT(12)
171 #define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
172 #define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
173 #define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
174 #define SDMA_WATERMARK_LEVEL_CONT	BIT(31)
175 
176 #define SDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
177 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
178 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
179 
180 #define SDMA_DMA_DIRECTIONS	(BIT(DMA_DEV_TO_MEM) | \
181 				 BIT(DMA_MEM_TO_DEV) | \
182 				 BIT(DMA_DEV_TO_DEV))
183 
184 /*
185  * Mode/Count of data node descriptors - IPCv2
186  */
187 struct sdma_mode_count {
188 #define SDMA_BD_MAX_CNT	0xffff
189 	u32 count   : 16; /* size of the buffer pointed by this BD */
190 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
191 	u32 command :  8; /* command mostly used for channel 0 */
192 };
193 
194 /*
195  * Buffer descriptor
196  */
197 struct sdma_buffer_descriptor {
198 	struct sdma_mode_count  mode;
199 	u32 buffer_addr;	/* address of the buffer described */
200 	u32 ext_buffer_addr;	/* extended buffer address */
201 } __attribute__ ((packed));
202 
203 /**
204  * struct sdma_channel_control - Channel control Block
205  *
206  * @current_bd_ptr:	current buffer descriptor processed
207  * @base_bd_ptr:	first element of buffer descriptor array
208  * @unused:		padding. The SDMA engine expects an array of 128 byte
209  *			control blocks
210  */
211 struct sdma_channel_control {
212 	u32 current_bd_ptr;
213 	u32 base_bd_ptr;
214 	u32 unused[2];
215 } __attribute__ ((packed));
216 
217 /**
218  * struct sdma_state_registers - SDMA context for a channel
219  *
220  * @pc:		program counter
221  * @unused1:	unused
222  * @t:		test bit: status of arithmetic & test instruction
223  * @rpc:	return program counter
224  * @unused0:	unused
225  * @sf:		source fault while loading data
226  * @spc:	loop start program counter
227  * @unused2:	unused
228  * @df:		destination fault while storing data
229  * @epc:	loop end program counter
230  * @lm:		loop mode
231  */
232 struct sdma_state_registers {
233 	u32 pc     :14;
234 	u32 unused1: 1;
235 	u32 t      : 1;
236 	u32 rpc    :14;
237 	u32 unused0: 1;
238 	u32 sf     : 1;
239 	u32 spc    :14;
240 	u32 unused2: 1;
241 	u32 df     : 1;
242 	u32 epc    :14;
243 	u32 lm     : 2;
244 } __attribute__ ((packed));
245 
246 /**
247  * struct sdma_context_data - sdma context specific to a channel
248  *
249  * @channel_state:	channel state bits
250  * @gReg:		general registers
251  * @mda:		burst dma destination address register
252  * @msa:		burst dma source address register
253  * @ms:			burst dma status register
254  * @md:			burst dma data register
255  * @pda:		peripheral dma destination address register
256  * @psa:		peripheral dma source address register
257  * @ps:			peripheral dma status register
258  * @pd:			peripheral dma data register
259  * @ca:			CRC polynomial register
260  * @cs:			CRC accumulator register
261  * @dda:		dedicated core destination address register
262  * @dsa:		dedicated core source address register
263  * @ds:			dedicated core status register
264  * @dd:			dedicated core data register
265  * @scratch0:		1st word of dedicated ram for context switch
266  * @scratch1:		2nd word of dedicated ram for context switch
267  * @scratch2:		3rd word of dedicated ram for context switch
268  * @scratch3:		4th word of dedicated ram for context switch
269  * @scratch4:		5th word of dedicated ram for context switch
270  * @scratch5:		6th word of dedicated ram for context switch
271  * @scratch6:		7th word of dedicated ram for context switch
272  * @scratch7:		8th word of dedicated ram for context switch
273  */
274 struct sdma_context_data {
275 	struct sdma_state_registers  channel_state;
276 	u32  gReg[8];
277 	u32  mda;
278 	u32  msa;
279 	u32  ms;
280 	u32  md;
281 	u32  pda;
282 	u32  psa;
283 	u32  ps;
284 	u32  pd;
285 	u32  ca;
286 	u32  cs;
287 	u32  dda;
288 	u32  dsa;
289 	u32  ds;
290 	u32  dd;
291 	u32  scratch0;
292 	u32  scratch1;
293 	u32  scratch2;
294 	u32  scratch3;
295 	u32  scratch4;
296 	u32  scratch5;
297 	u32  scratch6;
298 	u32  scratch7;
299 } __attribute__ ((packed));
300 
301 
302 struct sdma_engine;
303 
304 /**
305  * struct sdma_desc - descriptor structor for one transfer
306  * @vd:			descriptor for virt dma
307  * @num_bd:		number of descriptors currently handling
308  * @bd_phys:		physical address of bd
309  * @buf_tail:		ID of the buffer that was processed
310  * @buf_ptail:		ID of the previous buffer that was processed
311  * @period_len:		period length, used in cyclic.
312  * @chn_real_count:	the real count updated from bd->mode.count
313  * @chn_count:		the transfer count set
314  * @sdmac:		sdma_channel pointer
315  * @bd:			pointer of allocate bd
316  */
317 struct sdma_desc {
318 	struct virt_dma_desc	vd;
319 	unsigned int		num_bd;
320 	dma_addr_t		bd_phys;
321 	unsigned int		buf_tail;
322 	unsigned int		buf_ptail;
323 	unsigned int		period_len;
324 	unsigned int		chn_real_count;
325 	unsigned int		chn_count;
326 	struct sdma_channel	*sdmac;
327 	struct sdma_buffer_descriptor *bd;
328 };
329 
330 /**
331  * struct sdma_channel - housekeeping for a SDMA channel
332  *
333  * @vc:			virt_dma base structure
334  * @desc:		sdma description including vd and other special member
335  * @sdma:		pointer to the SDMA engine for this channel
336  * @channel:		the channel number, matches dmaengine chan_id + 1
337  * @direction:		transfer type. Needed for setting SDMA script
338  * @slave_config:	Slave configuration
339  * @peripheral_type:	Peripheral type. Needed for setting SDMA script
340  * @event_id0:		aka dma request line
341  * @event_id1:		for channels that use 2 events
342  * @word_size:		peripheral access size
343  * @pc_from_device:	script address for those device_2_memory
344  * @pc_to_device:	script address for those memory_2_device
345  * @device_to_device:	script address for those device_2_device
346  * @pc_to_pc:		script address for those memory_2_memory
347  * @flags:		loop mode or not
348  * @per_address:	peripheral source or destination address in common case
349  *                      destination address in p_2_p case
350  * @per_address2:	peripheral source address in p_2_p case
351  * @event_mask:		event mask used in p_2_p script
352  * @watermark_level:	value for gReg[7], some script will extend it from
353  *			basic watermark such as p_2_p
354  * @shp_addr:		value for gReg[6]
355  * @per_addr:		value for gReg[2]
356  * @status:		status of dma channel
357  * @context_loaded:	ensure context is only loaded once
358  * @data:		specific sdma interface structure
359  * @bd_pool:		dma_pool for bd
360  * @terminate_worker:	used to call back into terminate work function
361  */
362 struct sdma_channel {
363 	struct virt_dma_chan		vc;
364 	struct sdma_desc		*desc;
365 	struct sdma_engine		*sdma;
366 	unsigned int			channel;
367 	enum dma_transfer_direction		direction;
368 	struct dma_slave_config		slave_config;
369 	enum sdma_peripheral_type	peripheral_type;
370 	unsigned int			event_id0;
371 	unsigned int			event_id1;
372 	enum dma_slave_buswidth		word_size;
373 	unsigned int			pc_from_device, pc_to_device;
374 	unsigned int			device_to_device;
375 	unsigned int                    pc_to_pc;
376 	unsigned long			flags;
377 	dma_addr_t			per_address, per_address2;
378 	unsigned long			event_mask[2];
379 	unsigned long			watermark_level;
380 	u32				shp_addr, per_addr;
381 	enum dma_status			status;
382 	bool				context_loaded;
383 	struct imx_dma_data		data;
384 	struct work_struct		terminate_worker;
385 };
386 
387 #define IMX_DMA_SG_LOOP		BIT(0)
388 
389 #define MAX_DMA_CHANNELS 32
390 #define MXC_SDMA_DEFAULT_PRIORITY 1
391 #define MXC_SDMA_MIN_PRIORITY 1
392 #define MXC_SDMA_MAX_PRIORITY 7
393 
394 #define SDMA_FIRMWARE_MAGIC 0x414d4453
395 
396 /**
397  * struct sdma_firmware_header - Layout of the firmware image
398  *
399  * @magic:		"SDMA"
400  * @version_major:	increased whenever layout of struct
401  *			sdma_script_start_addrs changes.
402  * @version_minor:	firmware minor version (for binary compatible changes)
403  * @script_addrs_start:	offset of struct sdma_script_start_addrs in this image
404  * @num_script_addrs:	Number of script addresses in this image
405  * @ram_code_start:	offset of SDMA ram image in this firmware image
406  * @ram_code_size:	size of SDMA ram image
407  * @script_addrs:	Stores the start address of the SDMA scripts
408  *			(in SDMA memory space)
409  */
410 struct sdma_firmware_header {
411 	u32	magic;
412 	u32	version_major;
413 	u32	version_minor;
414 	u32	script_addrs_start;
415 	u32	num_script_addrs;
416 	u32	ram_code_start;
417 	u32	ram_code_size;
418 };
419 
420 struct sdma_driver_data {
421 	int chnenbl0;
422 	int num_events;
423 	struct sdma_script_start_addrs	*script_addrs;
424 	bool check_ratio;
425 };
426 
427 struct sdma_engine {
428 	struct device			*dev;
429 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
430 	struct sdma_channel_control	*channel_control;
431 	void __iomem			*regs;
432 	struct sdma_context_data	*context;
433 	dma_addr_t			context_phys;
434 	struct dma_device		dma_device;
435 	struct clk			*clk_ipg;
436 	struct clk			*clk_ahb;
437 	spinlock_t			channel_0_lock;
438 	u32				script_number;
439 	struct sdma_script_start_addrs	*script_addrs;
440 	const struct sdma_driver_data	*drvdata;
441 	u32				spba_start_addr;
442 	u32				spba_end_addr;
443 	unsigned int			irq;
444 	dma_addr_t			bd0_phys;
445 	struct sdma_buffer_descriptor	*bd0;
446 	/* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
447 	bool				clk_ratio;
448 };
449 
450 static int sdma_config_write(struct dma_chan *chan,
451 		       struct dma_slave_config *dmaengine_cfg,
452 		       enum dma_transfer_direction direction);
453 
454 static struct sdma_driver_data sdma_imx31 = {
455 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
456 	.num_events = 32,
457 };
458 
459 static struct sdma_script_start_addrs sdma_script_imx25 = {
460 	.ap_2_ap_addr = 729,
461 	.uart_2_mcu_addr = 904,
462 	.per_2_app_addr = 1255,
463 	.mcu_2_app_addr = 834,
464 	.uartsh_2_mcu_addr = 1120,
465 	.per_2_shp_addr = 1329,
466 	.mcu_2_shp_addr = 1048,
467 	.ata_2_mcu_addr = 1560,
468 	.mcu_2_ata_addr = 1479,
469 	.app_2_per_addr = 1189,
470 	.app_2_mcu_addr = 770,
471 	.shp_2_per_addr = 1407,
472 	.shp_2_mcu_addr = 979,
473 };
474 
475 static struct sdma_driver_data sdma_imx25 = {
476 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
477 	.num_events = 48,
478 	.script_addrs = &sdma_script_imx25,
479 };
480 
481 static struct sdma_driver_data sdma_imx35 = {
482 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
483 	.num_events = 48,
484 };
485 
486 static struct sdma_script_start_addrs sdma_script_imx51 = {
487 	.ap_2_ap_addr = 642,
488 	.uart_2_mcu_addr = 817,
489 	.mcu_2_app_addr = 747,
490 	.mcu_2_shp_addr = 961,
491 	.ata_2_mcu_addr = 1473,
492 	.mcu_2_ata_addr = 1392,
493 	.app_2_per_addr = 1033,
494 	.app_2_mcu_addr = 683,
495 	.shp_2_per_addr = 1251,
496 	.shp_2_mcu_addr = 892,
497 };
498 
499 static struct sdma_driver_data sdma_imx51 = {
500 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
501 	.num_events = 48,
502 	.script_addrs = &sdma_script_imx51,
503 };
504 
505 static struct sdma_script_start_addrs sdma_script_imx53 = {
506 	.ap_2_ap_addr = 642,
507 	.app_2_mcu_addr = 683,
508 	.mcu_2_app_addr = 747,
509 	.uart_2_mcu_addr = 817,
510 	.shp_2_mcu_addr = 891,
511 	.mcu_2_shp_addr = 960,
512 	.uartsh_2_mcu_addr = 1032,
513 	.spdif_2_mcu_addr = 1100,
514 	.mcu_2_spdif_addr = 1134,
515 	.firi_2_mcu_addr = 1193,
516 	.mcu_2_firi_addr = 1290,
517 };
518 
519 static struct sdma_driver_data sdma_imx53 = {
520 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
521 	.num_events = 48,
522 	.script_addrs = &sdma_script_imx53,
523 };
524 
525 static struct sdma_script_start_addrs sdma_script_imx6q = {
526 	.ap_2_ap_addr = 642,
527 	.uart_2_mcu_addr = 817,
528 	.mcu_2_app_addr = 747,
529 	.per_2_per_addr = 6331,
530 	.uartsh_2_mcu_addr = 1032,
531 	.mcu_2_shp_addr = 960,
532 	.app_2_mcu_addr = 683,
533 	.shp_2_mcu_addr = 891,
534 	.spdif_2_mcu_addr = 1100,
535 	.mcu_2_spdif_addr = 1134,
536 };
537 
538 static struct sdma_driver_data sdma_imx6q = {
539 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
540 	.num_events = 48,
541 	.script_addrs = &sdma_script_imx6q,
542 };
543 
544 static struct sdma_script_start_addrs sdma_script_imx7d = {
545 	.ap_2_ap_addr = 644,
546 	.uart_2_mcu_addr = 819,
547 	.mcu_2_app_addr = 749,
548 	.uartsh_2_mcu_addr = 1034,
549 	.mcu_2_shp_addr = 962,
550 	.app_2_mcu_addr = 685,
551 	.shp_2_mcu_addr = 893,
552 	.spdif_2_mcu_addr = 1102,
553 	.mcu_2_spdif_addr = 1136,
554 };
555 
556 static struct sdma_driver_data sdma_imx7d = {
557 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
558 	.num_events = 48,
559 	.script_addrs = &sdma_script_imx7d,
560 };
561 
562 static struct sdma_driver_data sdma_imx8mq = {
563 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
564 	.num_events = 48,
565 	.script_addrs = &sdma_script_imx7d,
566 	.check_ratio = 1,
567 };
568 
569 static const struct of_device_id sdma_dt_ids[] = {
570 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
571 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
572 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
573 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
574 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
575 	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
576 	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
577 	{ .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
578 	{ /* sentinel */ }
579 };
580 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
581 
582 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
583 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
584 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
585 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
586 
587 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
588 {
589 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
590 	return chnenbl0 + event * 4;
591 }
592 
593 static int sdma_config_ownership(struct sdma_channel *sdmac,
594 		bool event_override, bool mcu_override, bool dsp_override)
595 {
596 	struct sdma_engine *sdma = sdmac->sdma;
597 	int channel = sdmac->channel;
598 	unsigned long evt, mcu, dsp;
599 
600 	if (event_override && mcu_override && dsp_override)
601 		return -EINVAL;
602 
603 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
604 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
605 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
606 
607 	if (dsp_override)
608 		__clear_bit(channel, &dsp);
609 	else
610 		__set_bit(channel, &dsp);
611 
612 	if (event_override)
613 		__clear_bit(channel, &evt);
614 	else
615 		__set_bit(channel, &evt);
616 
617 	if (mcu_override)
618 		__clear_bit(channel, &mcu);
619 	else
620 		__set_bit(channel, &mcu);
621 
622 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
623 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
624 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
625 
626 	return 0;
627 }
628 
629 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
630 {
631 	writel(BIT(channel), sdma->regs + SDMA_H_START);
632 }
633 
634 /*
635  * sdma_run_channel0 - run a channel and wait till it's done
636  */
637 static int sdma_run_channel0(struct sdma_engine *sdma)
638 {
639 	int ret;
640 	u32 reg;
641 
642 	sdma_enable_channel(sdma, 0);
643 
644 	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
645 						reg, !(reg & 1), 1, 500);
646 	if (ret)
647 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
648 
649 	/* Set bits of CONFIG register with dynamic context switching */
650 	reg = readl(sdma->regs + SDMA_H_CONFIG);
651 	if ((reg & SDMA_H_CONFIG_CSM) == 0) {
652 		reg |= SDMA_H_CONFIG_CSM;
653 		writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
654 	}
655 
656 	return ret;
657 }
658 
659 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
660 		u32 address)
661 {
662 	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
663 	void *buf_virt;
664 	dma_addr_t buf_phys;
665 	int ret;
666 	unsigned long flags;
667 
668 	buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
669 	if (!buf_virt) {
670 		return -ENOMEM;
671 	}
672 
673 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
674 
675 	bd0->mode.command = C0_SETPM;
676 	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
677 	bd0->mode.count = size / 2;
678 	bd0->buffer_addr = buf_phys;
679 	bd0->ext_buffer_addr = address;
680 
681 	memcpy(buf_virt, buf, size);
682 
683 	ret = sdma_run_channel0(sdma);
684 
685 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
686 
687 	dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
688 
689 	return ret;
690 }
691 
692 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
693 {
694 	struct sdma_engine *sdma = sdmac->sdma;
695 	int channel = sdmac->channel;
696 	unsigned long val;
697 	u32 chnenbl = chnenbl_ofs(sdma, event);
698 
699 	val = readl_relaxed(sdma->regs + chnenbl);
700 	__set_bit(channel, &val);
701 	writel_relaxed(val, sdma->regs + chnenbl);
702 }
703 
704 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
705 {
706 	struct sdma_engine *sdma = sdmac->sdma;
707 	int channel = sdmac->channel;
708 	u32 chnenbl = chnenbl_ofs(sdma, event);
709 	unsigned long val;
710 
711 	val = readl_relaxed(sdma->regs + chnenbl);
712 	__clear_bit(channel, &val);
713 	writel_relaxed(val, sdma->regs + chnenbl);
714 }
715 
716 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
717 {
718 	return container_of(t, struct sdma_desc, vd.tx);
719 }
720 
721 static void sdma_start_desc(struct sdma_channel *sdmac)
722 {
723 	struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
724 	struct sdma_desc *desc;
725 	struct sdma_engine *sdma = sdmac->sdma;
726 	int channel = sdmac->channel;
727 
728 	if (!vd) {
729 		sdmac->desc = NULL;
730 		return;
731 	}
732 	sdmac->desc = desc = to_sdma_desc(&vd->tx);
733 
734 	list_del(&vd->node);
735 
736 	sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
737 	sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
738 	sdma_enable_channel(sdma, sdmac->channel);
739 }
740 
741 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
742 {
743 	struct sdma_buffer_descriptor *bd;
744 	int error = 0;
745 	enum dma_status	old_status = sdmac->status;
746 
747 	/*
748 	 * loop mode. Iterate over descriptors, re-setup them and
749 	 * call callback function.
750 	 */
751 	while (sdmac->desc) {
752 		struct sdma_desc *desc = sdmac->desc;
753 
754 		bd = &desc->bd[desc->buf_tail];
755 
756 		if (bd->mode.status & BD_DONE)
757 			break;
758 
759 		if (bd->mode.status & BD_RROR) {
760 			bd->mode.status &= ~BD_RROR;
761 			sdmac->status = DMA_ERROR;
762 			error = -EIO;
763 		}
764 
765 	       /*
766 		* We use bd->mode.count to calculate the residue, since contains
767 		* the number of bytes present in the current buffer descriptor.
768 		*/
769 
770 		desc->chn_real_count = bd->mode.count;
771 		bd->mode.status |= BD_DONE;
772 		bd->mode.count = desc->period_len;
773 		desc->buf_ptail = desc->buf_tail;
774 		desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
775 
776 		/*
777 		 * The callback is called from the interrupt context in order
778 		 * to reduce latency and to avoid the risk of altering the
779 		 * SDMA transaction status by the time the client tasklet is
780 		 * executed.
781 		 */
782 		spin_unlock(&sdmac->vc.lock);
783 		dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
784 		spin_lock(&sdmac->vc.lock);
785 
786 		if (error)
787 			sdmac->status = old_status;
788 	}
789 }
790 
791 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
792 {
793 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
794 	struct sdma_buffer_descriptor *bd;
795 	int i, error = 0;
796 
797 	sdmac->desc->chn_real_count = 0;
798 	/*
799 	 * non loop mode. Iterate over all descriptors, collect
800 	 * errors and call callback function
801 	 */
802 	for (i = 0; i < sdmac->desc->num_bd; i++) {
803 		bd = &sdmac->desc->bd[i];
804 
805 		 if (bd->mode.status & (BD_DONE | BD_RROR))
806 			error = -EIO;
807 		 sdmac->desc->chn_real_count += bd->mode.count;
808 	}
809 
810 	if (error)
811 		sdmac->status = DMA_ERROR;
812 	else
813 		sdmac->status = DMA_COMPLETE;
814 }
815 
816 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
817 {
818 	struct sdma_engine *sdma = dev_id;
819 	unsigned long stat;
820 
821 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
822 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
823 	/* channel 0 is special and not handled here, see run_channel0() */
824 	stat &= ~1;
825 
826 	while (stat) {
827 		int channel = fls(stat) - 1;
828 		struct sdma_channel *sdmac = &sdma->channel[channel];
829 		struct sdma_desc *desc;
830 
831 		spin_lock(&sdmac->vc.lock);
832 		desc = sdmac->desc;
833 		if (desc) {
834 			if (sdmac->flags & IMX_DMA_SG_LOOP) {
835 				sdma_update_channel_loop(sdmac);
836 			} else {
837 				mxc_sdma_handle_channel_normal(sdmac);
838 				vchan_cookie_complete(&desc->vd);
839 				sdma_start_desc(sdmac);
840 			}
841 		}
842 
843 		spin_unlock(&sdmac->vc.lock);
844 		__clear_bit(channel, &stat);
845 	}
846 
847 	return IRQ_HANDLED;
848 }
849 
850 /*
851  * sets the pc of SDMA script according to the peripheral type
852  */
853 static void sdma_get_pc(struct sdma_channel *sdmac,
854 		enum sdma_peripheral_type peripheral_type)
855 {
856 	struct sdma_engine *sdma = sdmac->sdma;
857 	int per_2_emi = 0, emi_2_per = 0;
858 	/*
859 	 * These are needed once we start to support transfers between
860 	 * two peripherals or memory-to-memory transfers
861 	 */
862 	int per_2_per = 0, emi_2_emi = 0;
863 
864 	sdmac->pc_from_device = 0;
865 	sdmac->pc_to_device = 0;
866 	sdmac->device_to_device = 0;
867 	sdmac->pc_to_pc = 0;
868 
869 	switch (peripheral_type) {
870 	case IMX_DMATYPE_MEMORY:
871 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
872 		break;
873 	case IMX_DMATYPE_DSP:
874 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
875 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
876 		break;
877 	case IMX_DMATYPE_FIRI:
878 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
879 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
880 		break;
881 	case IMX_DMATYPE_UART:
882 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
883 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
884 		break;
885 	case IMX_DMATYPE_UART_SP:
886 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
887 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
888 		break;
889 	case IMX_DMATYPE_ATA:
890 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
891 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
892 		break;
893 	case IMX_DMATYPE_CSPI:
894 	case IMX_DMATYPE_EXT:
895 	case IMX_DMATYPE_SSI:
896 	case IMX_DMATYPE_SAI:
897 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
898 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
899 		break;
900 	case IMX_DMATYPE_SSI_DUAL:
901 		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
902 		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
903 		break;
904 	case IMX_DMATYPE_SSI_SP:
905 	case IMX_DMATYPE_MMC:
906 	case IMX_DMATYPE_SDHC:
907 	case IMX_DMATYPE_CSPI_SP:
908 	case IMX_DMATYPE_ESAI:
909 	case IMX_DMATYPE_MSHC_SP:
910 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
911 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
912 		break;
913 	case IMX_DMATYPE_ASRC:
914 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
915 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
916 		per_2_per = sdma->script_addrs->per_2_per_addr;
917 		break;
918 	case IMX_DMATYPE_ASRC_SP:
919 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
920 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
921 		per_2_per = sdma->script_addrs->per_2_per_addr;
922 		break;
923 	case IMX_DMATYPE_MSHC:
924 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
925 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
926 		break;
927 	case IMX_DMATYPE_CCM:
928 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
929 		break;
930 	case IMX_DMATYPE_SPDIF:
931 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
932 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
933 		break;
934 	case IMX_DMATYPE_IPU_MEMORY:
935 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
936 		break;
937 	default:
938 		break;
939 	}
940 
941 	sdmac->pc_from_device = per_2_emi;
942 	sdmac->pc_to_device = emi_2_per;
943 	sdmac->device_to_device = per_2_per;
944 	sdmac->pc_to_pc = emi_2_emi;
945 }
946 
947 static int sdma_load_context(struct sdma_channel *sdmac)
948 {
949 	struct sdma_engine *sdma = sdmac->sdma;
950 	int channel = sdmac->channel;
951 	int load_address;
952 	struct sdma_context_data *context = sdma->context;
953 	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
954 	int ret;
955 	unsigned long flags;
956 
957 	if (sdmac->context_loaded)
958 		return 0;
959 
960 	if (sdmac->direction == DMA_DEV_TO_MEM)
961 		load_address = sdmac->pc_from_device;
962 	else if (sdmac->direction == DMA_DEV_TO_DEV)
963 		load_address = sdmac->device_to_device;
964 	else if (sdmac->direction == DMA_MEM_TO_MEM)
965 		load_address = sdmac->pc_to_pc;
966 	else
967 		load_address = sdmac->pc_to_device;
968 
969 	if (load_address < 0)
970 		return load_address;
971 
972 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
973 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
974 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
975 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
976 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
977 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
978 
979 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
980 
981 	memset(context, 0, sizeof(*context));
982 	context->channel_state.pc = load_address;
983 
984 	/* Send by context the event mask,base address for peripheral
985 	 * and watermark level
986 	 */
987 	context->gReg[0] = sdmac->event_mask[1];
988 	context->gReg[1] = sdmac->event_mask[0];
989 	context->gReg[2] = sdmac->per_addr;
990 	context->gReg[6] = sdmac->shp_addr;
991 	context->gReg[7] = sdmac->watermark_level;
992 
993 	bd0->mode.command = C0_SETDM;
994 	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
995 	bd0->mode.count = sizeof(*context) / 4;
996 	bd0->buffer_addr = sdma->context_phys;
997 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
998 	ret = sdma_run_channel0(sdma);
999 
1000 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1001 
1002 	sdmac->context_loaded = true;
1003 
1004 	return ret;
1005 }
1006 
1007 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1008 {
1009 	return container_of(chan, struct sdma_channel, vc.chan);
1010 }
1011 
1012 static int sdma_disable_channel(struct dma_chan *chan)
1013 {
1014 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1015 	struct sdma_engine *sdma = sdmac->sdma;
1016 	int channel = sdmac->channel;
1017 
1018 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1019 	sdmac->status = DMA_ERROR;
1020 
1021 	return 0;
1022 }
1023 static void sdma_channel_terminate_work(struct work_struct *work)
1024 {
1025 	struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1026 						  terminate_worker);
1027 	unsigned long flags;
1028 	LIST_HEAD(head);
1029 
1030 	/*
1031 	 * According to NXP R&D team a delay of one BD SDMA cost time
1032 	 * (maximum is 1ms) should be added after disable of the channel
1033 	 * bit, to ensure SDMA core has really been stopped after SDMA
1034 	 * clients call .device_terminate_all.
1035 	 */
1036 	usleep_range(1000, 2000);
1037 
1038 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1039 	vchan_get_all_descriptors(&sdmac->vc, &head);
1040 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1041 	vchan_dma_desc_free_list(&sdmac->vc, &head);
1042 	sdmac->context_loaded = false;
1043 }
1044 
1045 static int sdma_terminate_all(struct dma_chan *chan)
1046 {
1047 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1048 	unsigned long flags;
1049 
1050 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1051 
1052 	sdma_disable_channel(chan);
1053 
1054 	if (sdmac->desc) {
1055 		vchan_terminate_vdesc(&sdmac->desc->vd);
1056 		sdmac->desc = NULL;
1057 		schedule_work(&sdmac->terminate_worker);
1058 	}
1059 
1060 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1061 
1062 	return 0;
1063 }
1064 
1065 static void sdma_channel_synchronize(struct dma_chan *chan)
1066 {
1067 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1068 
1069 	vchan_synchronize(&sdmac->vc);
1070 
1071 	flush_work(&sdmac->terminate_worker);
1072 }
1073 
1074 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1075 {
1076 	struct sdma_engine *sdma = sdmac->sdma;
1077 
1078 	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1079 	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1080 
1081 	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1082 	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1083 
1084 	if (sdmac->event_id0 > 31)
1085 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1086 
1087 	if (sdmac->event_id1 > 31)
1088 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1089 
1090 	/*
1091 	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1092 	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1093 	 * r0(event_mask[1]) and r1(event_mask[0]).
1094 	 */
1095 	if (lwml > hwml) {
1096 		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1097 						SDMA_WATERMARK_LEVEL_HWML);
1098 		sdmac->watermark_level |= hwml;
1099 		sdmac->watermark_level |= lwml << 16;
1100 		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1101 	}
1102 
1103 	if (sdmac->per_address2 >= sdma->spba_start_addr &&
1104 			sdmac->per_address2 <= sdma->spba_end_addr)
1105 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1106 
1107 	if (sdmac->per_address >= sdma->spba_start_addr &&
1108 			sdmac->per_address <= sdma->spba_end_addr)
1109 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1110 
1111 	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1112 }
1113 
1114 static int sdma_config_channel(struct dma_chan *chan)
1115 {
1116 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1117 	int ret;
1118 
1119 	sdma_disable_channel(chan);
1120 
1121 	sdmac->event_mask[0] = 0;
1122 	sdmac->event_mask[1] = 0;
1123 	sdmac->shp_addr = 0;
1124 	sdmac->per_addr = 0;
1125 
1126 	switch (sdmac->peripheral_type) {
1127 	case IMX_DMATYPE_DSP:
1128 		sdma_config_ownership(sdmac, false, true, true);
1129 		break;
1130 	case IMX_DMATYPE_MEMORY:
1131 		sdma_config_ownership(sdmac, false, true, false);
1132 		break;
1133 	default:
1134 		sdma_config_ownership(sdmac, true, true, false);
1135 		break;
1136 	}
1137 
1138 	sdma_get_pc(sdmac, sdmac->peripheral_type);
1139 
1140 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1141 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1142 		/* Handle multiple event channels differently */
1143 		if (sdmac->event_id1) {
1144 			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1145 			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1146 				sdma_set_watermarklevel_for_p2p(sdmac);
1147 		} else
1148 			__set_bit(sdmac->event_id0, sdmac->event_mask);
1149 
1150 		/* Address */
1151 		sdmac->shp_addr = sdmac->per_address;
1152 		sdmac->per_addr = sdmac->per_address2;
1153 	} else {
1154 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1155 	}
1156 
1157 	ret = sdma_load_context(sdmac);
1158 
1159 	return ret;
1160 }
1161 
1162 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1163 		unsigned int priority)
1164 {
1165 	struct sdma_engine *sdma = sdmac->sdma;
1166 	int channel = sdmac->channel;
1167 
1168 	if (priority < MXC_SDMA_MIN_PRIORITY
1169 	    || priority > MXC_SDMA_MAX_PRIORITY) {
1170 		return -EINVAL;
1171 	}
1172 
1173 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1174 
1175 	return 0;
1176 }
1177 
1178 static int sdma_request_channel0(struct sdma_engine *sdma)
1179 {
1180 	int ret = -EBUSY;
1181 
1182 	sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1183 					GFP_NOWAIT);
1184 	if (!sdma->bd0) {
1185 		ret = -ENOMEM;
1186 		goto out;
1187 	}
1188 
1189 	sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1190 	sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1191 
1192 	sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1193 	return 0;
1194 out:
1195 
1196 	return ret;
1197 }
1198 
1199 
1200 static int sdma_alloc_bd(struct sdma_desc *desc)
1201 {
1202 	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1203 	int ret = 0;
1204 
1205 	desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1206 				       &desc->bd_phys, GFP_NOWAIT);
1207 	if (!desc->bd) {
1208 		ret = -ENOMEM;
1209 		goto out;
1210 	}
1211 out:
1212 	return ret;
1213 }
1214 
1215 static void sdma_free_bd(struct sdma_desc *desc)
1216 {
1217 	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1218 
1219 	dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1220 			  desc->bd_phys);
1221 }
1222 
1223 static void sdma_desc_free(struct virt_dma_desc *vd)
1224 {
1225 	struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1226 
1227 	sdma_free_bd(desc);
1228 	kfree(desc);
1229 }
1230 
1231 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1232 {
1233 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1234 	struct imx_dma_data *data = chan->private;
1235 	struct imx_dma_data mem_data;
1236 	int prio, ret;
1237 
1238 	/*
1239 	 * MEMCPY may never setup chan->private by filter function such as
1240 	 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1241 	 * Please note in any other slave case, you have to setup chan->private
1242 	 * with 'struct imx_dma_data' in your own filter function if you want to
1243 	 * request dma channel by dma_request_channel() rather than
1244 	 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1245 	 * to warn you to correct your filter function.
1246 	 */
1247 	if (!data) {
1248 		dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1249 		mem_data.priority = 2;
1250 		mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1251 		mem_data.dma_request = 0;
1252 		mem_data.dma_request2 = 0;
1253 		data = &mem_data;
1254 
1255 		sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1256 	}
1257 
1258 	switch (data->priority) {
1259 	case DMA_PRIO_HIGH:
1260 		prio = 3;
1261 		break;
1262 	case DMA_PRIO_MEDIUM:
1263 		prio = 2;
1264 		break;
1265 	case DMA_PRIO_LOW:
1266 	default:
1267 		prio = 1;
1268 		break;
1269 	}
1270 
1271 	sdmac->peripheral_type = data->peripheral_type;
1272 	sdmac->event_id0 = data->dma_request;
1273 	sdmac->event_id1 = data->dma_request2;
1274 
1275 	ret = clk_enable(sdmac->sdma->clk_ipg);
1276 	if (ret)
1277 		return ret;
1278 	ret = clk_enable(sdmac->sdma->clk_ahb);
1279 	if (ret)
1280 		goto disable_clk_ipg;
1281 
1282 	ret = sdma_set_channel_priority(sdmac, prio);
1283 	if (ret)
1284 		goto disable_clk_ahb;
1285 
1286 	return 0;
1287 
1288 disable_clk_ahb:
1289 	clk_disable(sdmac->sdma->clk_ahb);
1290 disable_clk_ipg:
1291 	clk_disable(sdmac->sdma->clk_ipg);
1292 	return ret;
1293 }
1294 
1295 static void sdma_free_chan_resources(struct dma_chan *chan)
1296 {
1297 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1298 	struct sdma_engine *sdma = sdmac->sdma;
1299 
1300 	sdma_terminate_all(chan);
1301 
1302 	sdma_channel_synchronize(chan);
1303 
1304 	sdma_event_disable(sdmac, sdmac->event_id0);
1305 	if (sdmac->event_id1)
1306 		sdma_event_disable(sdmac, sdmac->event_id1);
1307 
1308 	sdmac->event_id0 = 0;
1309 	sdmac->event_id1 = 0;
1310 	sdmac->context_loaded = false;
1311 
1312 	sdma_set_channel_priority(sdmac, 0);
1313 
1314 	clk_disable(sdma->clk_ipg);
1315 	clk_disable(sdma->clk_ahb);
1316 }
1317 
1318 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1319 				enum dma_transfer_direction direction, u32 bds)
1320 {
1321 	struct sdma_desc *desc;
1322 
1323 	desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1324 	if (!desc)
1325 		goto err_out;
1326 
1327 	sdmac->status = DMA_IN_PROGRESS;
1328 	sdmac->direction = direction;
1329 	sdmac->flags = 0;
1330 
1331 	desc->chn_count = 0;
1332 	desc->chn_real_count = 0;
1333 	desc->buf_tail = 0;
1334 	desc->buf_ptail = 0;
1335 	desc->sdmac = sdmac;
1336 	desc->num_bd = bds;
1337 
1338 	if (sdma_alloc_bd(desc))
1339 		goto err_desc_out;
1340 
1341 	/* No slave_config called in MEMCPY case, so do here */
1342 	if (direction == DMA_MEM_TO_MEM)
1343 		sdma_config_ownership(sdmac, false, true, false);
1344 
1345 	if (sdma_load_context(sdmac))
1346 		goto err_desc_out;
1347 
1348 	return desc;
1349 
1350 err_desc_out:
1351 	kfree(desc);
1352 err_out:
1353 	return NULL;
1354 }
1355 
1356 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1357 		struct dma_chan *chan, dma_addr_t dma_dst,
1358 		dma_addr_t dma_src, size_t len, unsigned long flags)
1359 {
1360 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1361 	struct sdma_engine *sdma = sdmac->sdma;
1362 	int channel = sdmac->channel;
1363 	size_t count;
1364 	int i = 0, param;
1365 	struct sdma_buffer_descriptor *bd;
1366 	struct sdma_desc *desc;
1367 
1368 	if (!chan || !len)
1369 		return NULL;
1370 
1371 	dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1372 		&dma_src, &dma_dst, len, channel);
1373 
1374 	desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1375 					len / SDMA_BD_MAX_CNT + 1);
1376 	if (!desc)
1377 		return NULL;
1378 
1379 	do {
1380 		count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1381 		bd = &desc->bd[i];
1382 		bd->buffer_addr = dma_src;
1383 		bd->ext_buffer_addr = dma_dst;
1384 		bd->mode.count = count;
1385 		desc->chn_count += count;
1386 		bd->mode.command = 0;
1387 
1388 		dma_src += count;
1389 		dma_dst += count;
1390 		len -= count;
1391 		i++;
1392 
1393 		param = BD_DONE | BD_EXTD | BD_CONT;
1394 		/* last bd */
1395 		if (!len) {
1396 			param |= BD_INTR;
1397 			param |= BD_LAST;
1398 			param &= ~BD_CONT;
1399 		}
1400 
1401 		dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1402 				i, count, bd->buffer_addr,
1403 				param & BD_WRAP ? "wrap" : "",
1404 				param & BD_INTR ? " intr" : "");
1405 
1406 		bd->mode.status = param;
1407 	} while (len);
1408 
1409 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1410 }
1411 
1412 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1413 		struct dma_chan *chan, struct scatterlist *sgl,
1414 		unsigned int sg_len, enum dma_transfer_direction direction,
1415 		unsigned long flags, void *context)
1416 {
1417 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1418 	struct sdma_engine *sdma = sdmac->sdma;
1419 	int i, count;
1420 	int channel = sdmac->channel;
1421 	struct scatterlist *sg;
1422 	struct sdma_desc *desc;
1423 
1424 	sdma_config_write(chan, &sdmac->slave_config, direction);
1425 
1426 	desc = sdma_transfer_init(sdmac, direction, sg_len);
1427 	if (!desc)
1428 		goto err_out;
1429 
1430 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1431 			sg_len, channel);
1432 
1433 	for_each_sg(sgl, sg, sg_len, i) {
1434 		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1435 		int param;
1436 
1437 		bd->buffer_addr = sg->dma_address;
1438 
1439 		count = sg_dma_len(sg);
1440 
1441 		if (count > SDMA_BD_MAX_CNT) {
1442 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1443 					channel, count, SDMA_BD_MAX_CNT);
1444 			goto err_bd_out;
1445 		}
1446 
1447 		bd->mode.count = count;
1448 		desc->chn_count += count;
1449 
1450 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1451 			goto err_bd_out;
1452 
1453 		switch (sdmac->word_size) {
1454 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1455 			bd->mode.command = 0;
1456 			if (count & 3 || sg->dma_address & 3)
1457 				goto err_bd_out;
1458 			break;
1459 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1460 			bd->mode.command = 2;
1461 			if (count & 1 || sg->dma_address & 1)
1462 				goto err_bd_out;
1463 			break;
1464 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1465 			bd->mode.command = 1;
1466 			break;
1467 		default:
1468 			goto err_bd_out;
1469 		}
1470 
1471 		param = BD_DONE | BD_EXTD | BD_CONT;
1472 
1473 		if (i + 1 == sg_len) {
1474 			param |= BD_INTR;
1475 			param |= BD_LAST;
1476 			param &= ~BD_CONT;
1477 		}
1478 
1479 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1480 				i, count, (u64)sg->dma_address,
1481 				param & BD_WRAP ? "wrap" : "",
1482 				param & BD_INTR ? " intr" : "");
1483 
1484 		bd->mode.status = param;
1485 	}
1486 
1487 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1488 err_bd_out:
1489 	sdma_free_bd(desc);
1490 	kfree(desc);
1491 err_out:
1492 	sdmac->status = DMA_ERROR;
1493 	return NULL;
1494 }
1495 
1496 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1497 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1498 		size_t period_len, enum dma_transfer_direction direction,
1499 		unsigned long flags)
1500 {
1501 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1502 	struct sdma_engine *sdma = sdmac->sdma;
1503 	int num_periods = buf_len / period_len;
1504 	int channel = sdmac->channel;
1505 	int i = 0, buf = 0;
1506 	struct sdma_desc *desc;
1507 
1508 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1509 
1510 	sdma_config_write(chan, &sdmac->slave_config, direction);
1511 
1512 	desc = sdma_transfer_init(sdmac, direction, num_periods);
1513 	if (!desc)
1514 		goto err_out;
1515 
1516 	desc->period_len = period_len;
1517 
1518 	sdmac->flags |= IMX_DMA_SG_LOOP;
1519 
1520 	if (period_len > SDMA_BD_MAX_CNT) {
1521 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1522 				channel, period_len, SDMA_BD_MAX_CNT);
1523 		goto err_bd_out;
1524 	}
1525 
1526 	while (buf < buf_len) {
1527 		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1528 		int param;
1529 
1530 		bd->buffer_addr = dma_addr;
1531 
1532 		bd->mode.count = period_len;
1533 
1534 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1535 			goto err_bd_out;
1536 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1537 			bd->mode.command = 0;
1538 		else
1539 			bd->mode.command = sdmac->word_size;
1540 
1541 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1542 		if (i + 1 == num_periods)
1543 			param |= BD_WRAP;
1544 
1545 		dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1546 				i, period_len, (u64)dma_addr,
1547 				param & BD_WRAP ? "wrap" : "",
1548 				param & BD_INTR ? " intr" : "");
1549 
1550 		bd->mode.status = param;
1551 
1552 		dma_addr += period_len;
1553 		buf += period_len;
1554 
1555 		i++;
1556 	}
1557 
1558 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1559 err_bd_out:
1560 	sdma_free_bd(desc);
1561 	kfree(desc);
1562 err_out:
1563 	sdmac->status = DMA_ERROR;
1564 	return NULL;
1565 }
1566 
1567 static int sdma_config_write(struct dma_chan *chan,
1568 		       struct dma_slave_config *dmaengine_cfg,
1569 		       enum dma_transfer_direction direction)
1570 {
1571 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1572 
1573 	if (direction == DMA_DEV_TO_MEM) {
1574 		sdmac->per_address = dmaengine_cfg->src_addr;
1575 		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1576 			dmaengine_cfg->src_addr_width;
1577 		sdmac->word_size = dmaengine_cfg->src_addr_width;
1578 	} else if (direction == DMA_DEV_TO_DEV) {
1579 		sdmac->per_address2 = dmaengine_cfg->src_addr;
1580 		sdmac->per_address = dmaengine_cfg->dst_addr;
1581 		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1582 			SDMA_WATERMARK_LEVEL_LWML;
1583 		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1584 			SDMA_WATERMARK_LEVEL_HWML;
1585 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1586 	} else {
1587 		sdmac->per_address = dmaengine_cfg->dst_addr;
1588 		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1589 			dmaengine_cfg->dst_addr_width;
1590 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1591 	}
1592 	sdmac->direction = direction;
1593 	return sdma_config_channel(chan);
1594 }
1595 
1596 static int sdma_config(struct dma_chan *chan,
1597 		       struct dma_slave_config *dmaengine_cfg)
1598 {
1599 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1600 
1601 	memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1602 
1603 	/* Set ENBLn earlier to make sure dma request triggered after that */
1604 	if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1605 		return -EINVAL;
1606 	sdma_event_enable(sdmac, sdmac->event_id0);
1607 
1608 	if (sdmac->event_id1) {
1609 		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1610 			return -EINVAL;
1611 		sdma_event_enable(sdmac, sdmac->event_id1);
1612 	}
1613 
1614 	return 0;
1615 }
1616 
1617 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1618 				      dma_cookie_t cookie,
1619 				      struct dma_tx_state *txstate)
1620 {
1621 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1622 	struct sdma_desc *desc = NULL;
1623 	u32 residue;
1624 	struct virt_dma_desc *vd;
1625 	enum dma_status ret;
1626 	unsigned long flags;
1627 
1628 	ret = dma_cookie_status(chan, cookie, txstate);
1629 	if (ret == DMA_COMPLETE || !txstate)
1630 		return ret;
1631 
1632 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1633 
1634 	vd = vchan_find_desc(&sdmac->vc, cookie);
1635 	if (vd)
1636 		desc = to_sdma_desc(&vd->tx);
1637 	else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1638 		desc = sdmac->desc;
1639 
1640 	if (desc) {
1641 		if (sdmac->flags & IMX_DMA_SG_LOOP)
1642 			residue = (desc->num_bd - desc->buf_ptail) *
1643 				desc->period_len - desc->chn_real_count;
1644 		else
1645 			residue = desc->chn_count - desc->chn_real_count;
1646 	} else {
1647 		residue = 0;
1648 	}
1649 
1650 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1651 
1652 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1653 			 residue);
1654 
1655 	return sdmac->status;
1656 }
1657 
1658 static void sdma_issue_pending(struct dma_chan *chan)
1659 {
1660 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1661 	unsigned long flags;
1662 
1663 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1664 	if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1665 		sdma_start_desc(sdmac);
1666 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1667 }
1668 
1669 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1670 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1671 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	41
1672 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4	42
1673 
1674 static void sdma_add_scripts(struct sdma_engine *sdma,
1675 		const struct sdma_script_start_addrs *addr)
1676 {
1677 	s32 *addr_arr = (u32 *)addr;
1678 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1679 	int i;
1680 
1681 	/* use the default firmware in ROM if missing external firmware */
1682 	if (!sdma->script_number)
1683 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1684 
1685 	if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1686 				  / sizeof(s32)) {
1687 		dev_err(sdma->dev,
1688 			"SDMA script number %d not match with firmware.\n",
1689 			sdma->script_number);
1690 		return;
1691 	}
1692 
1693 	for (i = 0; i < sdma->script_number; i++)
1694 		if (addr_arr[i] > 0)
1695 			saddr_arr[i] = addr_arr[i];
1696 }
1697 
1698 static void sdma_load_firmware(const struct firmware *fw, void *context)
1699 {
1700 	struct sdma_engine *sdma = context;
1701 	const struct sdma_firmware_header *header;
1702 	const struct sdma_script_start_addrs *addr;
1703 	unsigned short *ram_code;
1704 
1705 	if (!fw) {
1706 		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1707 		/* In this case we just use the ROM firmware. */
1708 		return;
1709 	}
1710 
1711 	if (fw->size < sizeof(*header))
1712 		goto err_firmware;
1713 
1714 	header = (struct sdma_firmware_header *)fw->data;
1715 
1716 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1717 		goto err_firmware;
1718 	if (header->ram_code_start + header->ram_code_size > fw->size)
1719 		goto err_firmware;
1720 	switch (header->version_major) {
1721 	case 1:
1722 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1723 		break;
1724 	case 2:
1725 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1726 		break;
1727 	case 3:
1728 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1729 		break;
1730 	case 4:
1731 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1732 		break;
1733 	default:
1734 		dev_err(sdma->dev, "unknown firmware version\n");
1735 		goto err_firmware;
1736 	}
1737 
1738 	addr = (void *)header + header->script_addrs_start;
1739 	ram_code = (void *)header + header->ram_code_start;
1740 
1741 	clk_enable(sdma->clk_ipg);
1742 	clk_enable(sdma->clk_ahb);
1743 	/* download the RAM image for SDMA */
1744 	sdma_load_script(sdma, ram_code,
1745 			header->ram_code_size,
1746 			addr->ram_code_start_addr);
1747 	clk_disable(sdma->clk_ipg);
1748 	clk_disable(sdma->clk_ahb);
1749 
1750 	sdma_add_scripts(sdma, addr);
1751 
1752 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1753 			header->version_major,
1754 			header->version_minor);
1755 
1756 err_firmware:
1757 	release_firmware(fw);
1758 }
1759 
1760 #define EVENT_REMAP_CELLS 3
1761 
1762 static int sdma_event_remap(struct sdma_engine *sdma)
1763 {
1764 	struct device_node *np = sdma->dev->of_node;
1765 	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1766 	struct property *event_remap;
1767 	struct regmap *gpr;
1768 	char propname[] = "fsl,sdma-event-remap";
1769 	u32 reg, val, shift, num_map, i;
1770 	int ret = 0;
1771 
1772 	if (IS_ERR(np) || IS_ERR(gpr_np))
1773 		goto out;
1774 
1775 	event_remap = of_find_property(np, propname, NULL);
1776 	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1777 	if (!num_map) {
1778 		dev_dbg(sdma->dev, "no event needs to be remapped\n");
1779 		goto out;
1780 	} else if (num_map % EVENT_REMAP_CELLS) {
1781 		dev_err(sdma->dev, "the property %s must modulo %d\n",
1782 				propname, EVENT_REMAP_CELLS);
1783 		ret = -EINVAL;
1784 		goto out;
1785 	}
1786 
1787 	gpr = syscon_node_to_regmap(gpr_np);
1788 	if (IS_ERR(gpr)) {
1789 		dev_err(sdma->dev, "failed to get gpr regmap\n");
1790 		ret = PTR_ERR(gpr);
1791 		goto out;
1792 	}
1793 
1794 	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1795 		ret = of_property_read_u32_index(np, propname, i, &reg);
1796 		if (ret) {
1797 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1798 					propname, i);
1799 			goto out;
1800 		}
1801 
1802 		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1803 		if (ret) {
1804 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1805 					propname, i + 1);
1806 			goto out;
1807 		}
1808 
1809 		ret = of_property_read_u32_index(np, propname, i + 2, &val);
1810 		if (ret) {
1811 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1812 					propname, i + 2);
1813 			goto out;
1814 		}
1815 
1816 		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1817 	}
1818 
1819 out:
1820 	if (!IS_ERR(gpr_np))
1821 		of_node_put(gpr_np);
1822 
1823 	return ret;
1824 }
1825 
1826 static int sdma_get_firmware(struct sdma_engine *sdma,
1827 		const char *fw_name)
1828 {
1829 	int ret;
1830 
1831 	ret = request_firmware_nowait(THIS_MODULE,
1832 			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1833 			GFP_KERNEL, sdma, sdma_load_firmware);
1834 
1835 	return ret;
1836 }
1837 
1838 static int sdma_init(struct sdma_engine *sdma)
1839 {
1840 	int i, ret;
1841 	dma_addr_t ccb_phys;
1842 
1843 	ret = clk_enable(sdma->clk_ipg);
1844 	if (ret)
1845 		return ret;
1846 	ret = clk_enable(sdma->clk_ahb);
1847 	if (ret)
1848 		goto disable_clk_ipg;
1849 
1850 	if (sdma->drvdata->check_ratio &&
1851 	    (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
1852 		sdma->clk_ratio = 1;
1853 
1854 	/* Be sure SDMA has not started yet */
1855 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1856 
1857 	sdma->channel_control = dma_alloc_coherent(sdma->dev,
1858 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1859 			sizeof(struct sdma_context_data),
1860 			&ccb_phys, GFP_KERNEL);
1861 
1862 	if (!sdma->channel_control) {
1863 		ret = -ENOMEM;
1864 		goto err_dma_alloc;
1865 	}
1866 
1867 	sdma->context = (void *)sdma->channel_control +
1868 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1869 	sdma->context_phys = ccb_phys +
1870 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1871 
1872 	/* disable all channels */
1873 	for (i = 0; i < sdma->drvdata->num_events; i++)
1874 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1875 
1876 	/* All channels have priority 0 */
1877 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1878 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1879 
1880 	ret = sdma_request_channel0(sdma);
1881 	if (ret)
1882 		goto err_dma_alloc;
1883 
1884 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1885 
1886 	/* Set Command Channel (Channel Zero) */
1887 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1888 
1889 	/* Set bits of CONFIG register but with static context switching */
1890 	if (sdma->clk_ratio)
1891 		writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
1892 	else
1893 		writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1894 
1895 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1896 
1897 	/* Initializes channel's priorities */
1898 	sdma_set_channel_priority(&sdma->channel[0], 7);
1899 
1900 	clk_disable(sdma->clk_ipg);
1901 	clk_disable(sdma->clk_ahb);
1902 
1903 	return 0;
1904 
1905 err_dma_alloc:
1906 	clk_disable(sdma->clk_ahb);
1907 disable_clk_ipg:
1908 	clk_disable(sdma->clk_ipg);
1909 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1910 	return ret;
1911 }
1912 
1913 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1914 {
1915 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1916 	struct imx_dma_data *data = fn_param;
1917 
1918 	if (!imx_dma_is_general_purpose(chan))
1919 		return false;
1920 
1921 	sdmac->data = *data;
1922 	chan->private = &sdmac->data;
1923 
1924 	return true;
1925 }
1926 
1927 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1928 				   struct of_dma *ofdma)
1929 {
1930 	struct sdma_engine *sdma = ofdma->of_dma_data;
1931 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1932 	struct imx_dma_data data;
1933 
1934 	if (dma_spec->args_count != 3)
1935 		return NULL;
1936 
1937 	data.dma_request = dma_spec->args[0];
1938 	data.peripheral_type = dma_spec->args[1];
1939 	data.priority = dma_spec->args[2];
1940 	/*
1941 	 * init dma_request2 to zero, which is not used by the dts.
1942 	 * For P2P, dma_request2 is init from dma_request_channel(),
1943 	 * chan->private will point to the imx_dma_data, and in
1944 	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1945 	 * be set to sdmac->event_id1.
1946 	 */
1947 	data.dma_request2 = 0;
1948 
1949 	return __dma_request_channel(&mask, sdma_filter_fn, &data,
1950 				     ofdma->of_node);
1951 }
1952 
1953 static int sdma_probe(struct platform_device *pdev)
1954 {
1955 	const struct of_device_id *of_id =
1956 			of_match_device(sdma_dt_ids, &pdev->dev);
1957 	struct device_node *np = pdev->dev.of_node;
1958 	struct device_node *spba_bus;
1959 	const char *fw_name;
1960 	int ret;
1961 	int irq;
1962 	struct resource *iores;
1963 	struct resource spba_res;
1964 	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1965 	int i;
1966 	struct sdma_engine *sdma;
1967 	s32 *saddr_arr;
1968 	const struct sdma_driver_data *drvdata = NULL;
1969 
1970 	drvdata = of_id->data;
1971 	if (!drvdata) {
1972 		dev_err(&pdev->dev, "unable to find driver data\n");
1973 		return -EINVAL;
1974 	}
1975 
1976 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1977 	if (ret)
1978 		return ret;
1979 
1980 	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1981 	if (!sdma)
1982 		return -ENOMEM;
1983 
1984 	spin_lock_init(&sdma->channel_0_lock);
1985 
1986 	sdma->dev = &pdev->dev;
1987 	sdma->drvdata = drvdata;
1988 
1989 	irq = platform_get_irq(pdev, 0);
1990 	if (irq < 0)
1991 		return irq;
1992 
1993 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1994 	sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1995 	if (IS_ERR(sdma->regs))
1996 		return PTR_ERR(sdma->regs);
1997 
1998 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1999 	if (IS_ERR(sdma->clk_ipg))
2000 		return PTR_ERR(sdma->clk_ipg);
2001 
2002 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2003 	if (IS_ERR(sdma->clk_ahb))
2004 		return PTR_ERR(sdma->clk_ahb);
2005 
2006 	ret = clk_prepare(sdma->clk_ipg);
2007 	if (ret)
2008 		return ret;
2009 
2010 	ret = clk_prepare(sdma->clk_ahb);
2011 	if (ret)
2012 		goto err_clk;
2013 
2014 	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
2015 			       sdma);
2016 	if (ret)
2017 		goto err_irq;
2018 
2019 	sdma->irq = irq;
2020 
2021 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2022 	if (!sdma->script_addrs) {
2023 		ret = -ENOMEM;
2024 		goto err_irq;
2025 	}
2026 
2027 	/* initially no scripts available */
2028 	saddr_arr = (s32 *)sdma->script_addrs;
2029 	for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2030 		saddr_arr[i] = -EINVAL;
2031 
2032 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2033 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2034 	dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2035 
2036 	INIT_LIST_HEAD(&sdma->dma_device.channels);
2037 	/* Initialize channel parameters */
2038 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2039 		struct sdma_channel *sdmac = &sdma->channel[i];
2040 
2041 		sdmac->sdma = sdma;
2042 
2043 		sdmac->channel = i;
2044 		sdmac->vc.desc_free = sdma_desc_free;
2045 		INIT_WORK(&sdmac->terminate_worker,
2046 				sdma_channel_terminate_work);
2047 		/*
2048 		 * Add the channel to the DMAC list. Do not add channel 0 though
2049 		 * because we need it internally in the SDMA driver. This also means
2050 		 * that channel 0 in dmaengine counting matches sdma channel 1.
2051 		 */
2052 		if (i)
2053 			vchan_init(&sdmac->vc, &sdma->dma_device);
2054 	}
2055 
2056 	ret = sdma_init(sdma);
2057 	if (ret)
2058 		goto err_init;
2059 
2060 	ret = sdma_event_remap(sdma);
2061 	if (ret)
2062 		goto err_init;
2063 
2064 	if (sdma->drvdata->script_addrs)
2065 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2066 	if (pdata && pdata->script_addrs)
2067 		sdma_add_scripts(sdma, pdata->script_addrs);
2068 
2069 	sdma->dma_device.dev = &pdev->dev;
2070 
2071 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2072 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2073 	sdma->dma_device.device_tx_status = sdma_tx_status;
2074 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2075 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2076 	sdma->dma_device.device_config = sdma_config;
2077 	sdma->dma_device.device_terminate_all = sdma_terminate_all;
2078 	sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2079 	sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2080 	sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2081 	sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2082 	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2083 	sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2084 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
2085 	sdma->dma_device.copy_align = 2;
2086 	dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2087 
2088 	platform_set_drvdata(pdev, sdma);
2089 
2090 	ret = dma_async_device_register(&sdma->dma_device);
2091 	if (ret) {
2092 		dev_err(&pdev->dev, "unable to register\n");
2093 		goto err_init;
2094 	}
2095 
2096 	if (np) {
2097 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
2098 		if (ret) {
2099 			dev_err(&pdev->dev, "failed to register controller\n");
2100 			goto err_register;
2101 		}
2102 
2103 		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2104 		ret = of_address_to_resource(spba_bus, 0, &spba_res);
2105 		if (!ret) {
2106 			sdma->spba_start_addr = spba_res.start;
2107 			sdma->spba_end_addr = spba_res.end;
2108 		}
2109 		of_node_put(spba_bus);
2110 	}
2111 
2112 	/*
2113 	 * Kick off firmware loading as the very last step:
2114 	 * attempt to load firmware only if we're not on the error path, because
2115 	 * the firmware callback requires a fully functional and allocated sdma
2116 	 * instance.
2117 	 */
2118 	if (pdata) {
2119 		ret = sdma_get_firmware(sdma, pdata->fw_name);
2120 		if (ret)
2121 			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
2122 	} else {
2123 		/*
2124 		 * Because that device tree does not encode ROM script address,
2125 		 * the RAM script in firmware is mandatory for device tree
2126 		 * probe, otherwise it fails.
2127 		 */
2128 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2129 					      &fw_name);
2130 		if (ret) {
2131 			dev_warn(&pdev->dev, "failed to get firmware name\n");
2132 		} else {
2133 			ret = sdma_get_firmware(sdma, fw_name);
2134 			if (ret)
2135 				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2136 		}
2137 	}
2138 
2139 	return 0;
2140 
2141 err_register:
2142 	dma_async_device_unregister(&sdma->dma_device);
2143 err_init:
2144 	kfree(sdma->script_addrs);
2145 err_irq:
2146 	clk_unprepare(sdma->clk_ahb);
2147 err_clk:
2148 	clk_unprepare(sdma->clk_ipg);
2149 	return ret;
2150 }
2151 
2152 static int sdma_remove(struct platform_device *pdev)
2153 {
2154 	struct sdma_engine *sdma = platform_get_drvdata(pdev);
2155 	int i;
2156 
2157 	devm_free_irq(&pdev->dev, sdma->irq, sdma);
2158 	dma_async_device_unregister(&sdma->dma_device);
2159 	kfree(sdma->script_addrs);
2160 	clk_unprepare(sdma->clk_ahb);
2161 	clk_unprepare(sdma->clk_ipg);
2162 	/* Kill the tasklet */
2163 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2164 		struct sdma_channel *sdmac = &sdma->channel[i];
2165 
2166 		tasklet_kill(&sdmac->vc.task);
2167 		sdma_free_chan_resources(&sdmac->vc.chan);
2168 	}
2169 
2170 	platform_set_drvdata(pdev, NULL);
2171 	return 0;
2172 }
2173 
2174 static struct platform_driver sdma_driver = {
2175 	.driver		= {
2176 		.name	= "imx-sdma",
2177 		.of_match_table = sdma_dt_ids,
2178 	},
2179 	.remove		= sdma_remove,
2180 	.probe		= sdma_probe,
2181 };
2182 
2183 module_platform_driver(sdma_driver);
2184 
2185 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2186 MODULE_DESCRIPTION("i.MX SDMA driver");
2187 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2188 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2189 #endif
2190 #if IS_ENABLED(CONFIG_SOC_IMX7D)
2191 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2192 #endif
2193 MODULE_LICENSE("GPL");
2194