xref: /openbmc/linux/drivers/dma/imx-sdma.c (revision d623f60d)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
10 //
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12 
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 #include <linux/semaphore.h>
24 #include <linux/spinlock.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/slab.h>
29 #include <linux/platform_device.h>
30 #include <linux/dmaengine.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_device.h>
34 #include <linux/of_dma.h>
35 
36 #include <asm/irq.h>
37 #include <linux/platform_data/dma-imx-sdma.h>
38 #include <linux/platform_data/dma-imx.h>
39 #include <linux/regmap.h>
40 #include <linux/mfd/syscon.h>
41 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
42 
43 #include "dmaengine.h"
44 
45 /* SDMA registers */
46 #define SDMA_H_C0PTR		0x000
47 #define SDMA_H_INTR		0x004
48 #define SDMA_H_STATSTOP		0x008
49 #define SDMA_H_START		0x00c
50 #define SDMA_H_EVTOVR		0x010
51 #define SDMA_H_DSPOVR		0x014
52 #define SDMA_H_HOSTOVR		0x018
53 #define SDMA_H_EVTPEND		0x01c
54 #define SDMA_H_DSPENBL		0x020
55 #define SDMA_H_RESET		0x024
56 #define SDMA_H_EVTERR		0x028
57 #define SDMA_H_INTRMSK		0x02c
58 #define SDMA_H_PSW		0x030
59 #define SDMA_H_EVTERRDBG	0x034
60 #define SDMA_H_CONFIG		0x038
61 #define SDMA_ONCE_ENB		0x040
62 #define SDMA_ONCE_DATA		0x044
63 #define SDMA_ONCE_INSTR		0x048
64 #define SDMA_ONCE_STAT		0x04c
65 #define SDMA_ONCE_CMD		0x050
66 #define SDMA_EVT_MIRROR		0x054
67 #define SDMA_ILLINSTADDR	0x058
68 #define SDMA_CHN0ADDR		0x05c
69 #define SDMA_ONCE_RTB		0x060
70 #define SDMA_XTRIG_CONF1	0x070
71 #define SDMA_XTRIG_CONF2	0x074
72 #define SDMA_CHNENBL0_IMX35	0x200
73 #define SDMA_CHNENBL0_IMX31	0x080
74 #define SDMA_CHNPRI_0		0x100
75 
76 /*
77  * Buffer descriptor status values.
78  */
79 #define BD_DONE  0x01
80 #define BD_WRAP  0x02
81 #define BD_CONT  0x04
82 #define BD_INTR  0x08
83 #define BD_RROR  0x10
84 #define BD_LAST  0x20
85 #define BD_EXTD  0x80
86 
87 /*
88  * Data Node descriptor status values.
89  */
90 #define DND_END_OF_FRAME  0x80
91 #define DND_END_OF_XFER   0x40
92 #define DND_DONE          0x20
93 #define DND_UNUSED        0x01
94 
95 /*
96  * IPCV2 descriptor status values.
97  */
98 #define BD_IPCV2_END_OF_FRAME  0x40
99 
100 #define IPCV2_MAX_NODES        50
101 /*
102  * Error bit set in the CCB status field by the SDMA,
103  * in setbd routine, in case of a transfer error
104  */
105 #define DATA_ERROR  0x10000000
106 
107 /*
108  * Buffer descriptor commands.
109  */
110 #define C0_ADDR             0x01
111 #define C0_LOAD             0x02
112 #define C0_DUMP             0x03
113 #define C0_SETCTX           0x07
114 #define C0_GETCTX           0x03
115 #define C0_SETDM            0x01
116 #define C0_SETPM            0x04
117 #define C0_GETDM            0x02
118 #define C0_GETPM            0x08
119 /*
120  * Change endianness indicator in the BD command field
121  */
122 #define CHANGE_ENDIANNESS   0x80
123 
124 /*
125  *  p_2_p watermark_level description
126  *	Bits		Name			Description
127  *	0-7		Lower WML		Lower watermark level
128  *	8		PS			1: Pad Swallowing
129  *						0: No Pad Swallowing
130  *	9		PA			1: Pad Adding
131  *						0: No Pad Adding
132  *	10		SPDIF			If this bit is set both source
133  *						and destination are on SPBA
134  *	11		Source Bit(SP)		1: Source on SPBA
135  *						0: Source on AIPS
136  *	12		Destination Bit(DP)	1: Destination on SPBA
137  *						0: Destination on AIPS
138  *	13-15		---------		MUST BE 0
139  *	16-23		Higher WML		HWML
140  *	24-27		N			Total number of samples after
141  *						which Pad adding/Swallowing
142  *						must be done. It must be odd.
143  *	28		Lower WML Event(LWE)	SDMA events reg to check for
144  *						LWML event mask
145  *						0: LWE in EVENTS register
146  *						1: LWE in EVENTS2 register
147  *	29		Higher WML Event(HWE)	SDMA events reg to check for
148  *						HWML event mask
149  *						0: HWE in EVENTS register
150  *						1: HWE in EVENTS2 register
151  *	30		---------		MUST BE 0
152  *	31		CONT			1: Amount of samples to be
153  *						transferred is unknown and
154  *						script will keep on
155  *						transferring samples as long as
156  *						both events are detected and
157  *						script must be manually stopped
158  *						by the application
159  *						0: The amount of samples to be
160  *						transferred is equal to the
161  *						count field of mode word
162  */
163 #define SDMA_WATERMARK_LEVEL_LWML	0xFF
164 #define SDMA_WATERMARK_LEVEL_PS		BIT(8)
165 #define SDMA_WATERMARK_LEVEL_PA		BIT(9)
166 #define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
167 #define SDMA_WATERMARK_LEVEL_SP		BIT(11)
168 #define SDMA_WATERMARK_LEVEL_DP		BIT(12)
169 #define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
170 #define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
171 #define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
172 #define SDMA_WATERMARK_LEVEL_CONT	BIT(31)
173 
174 #define SDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
175 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
176 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
177 
178 #define SDMA_DMA_DIRECTIONS	(BIT(DMA_DEV_TO_MEM) | \
179 				 BIT(DMA_MEM_TO_DEV) | \
180 				 BIT(DMA_DEV_TO_DEV))
181 
182 /*
183  * Mode/Count of data node descriptors - IPCv2
184  */
185 struct sdma_mode_count {
186 	u32 count   : 16; /* size of the buffer pointed by this BD */
187 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
188 	u32 command :  8; /* command mostly used for channel 0 */
189 };
190 
191 /*
192  * Buffer descriptor
193  */
194 struct sdma_buffer_descriptor {
195 	struct sdma_mode_count  mode;
196 	u32 buffer_addr;	/* address of the buffer described */
197 	u32 ext_buffer_addr;	/* extended buffer address */
198 } __attribute__ ((packed));
199 
200 /**
201  * struct sdma_channel_control - Channel control Block
202  *
203  * @current_bd_ptr	current buffer descriptor processed
204  * @base_bd_ptr		first element of buffer descriptor array
205  * @unused		padding. The SDMA engine expects an array of 128 byte
206  *			control blocks
207  */
208 struct sdma_channel_control {
209 	u32 current_bd_ptr;
210 	u32 base_bd_ptr;
211 	u32 unused[2];
212 } __attribute__ ((packed));
213 
214 /**
215  * struct sdma_state_registers - SDMA context for a channel
216  *
217  * @pc:		program counter
218  * @t:		test bit: status of arithmetic & test instruction
219  * @rpc:	return program counter
220  * @sf:		source fault while loading data
221  * @spc:	loop start program counter
222  * @df:		destination fault while storing data
223  * @epc:	loop end program counter
224  * @lm:		loop mode
225  */
226 struct sdma_state_registers {
227 	u32 pc     :14;
228 	u32 unused1: 1;
229 	u32 t      : 1;
230 	u32 rpc    :14;
231 	u32 unused0: 1;
232 	u32 sf     : 1;
233 	u32 spc    :14;
234 	u32 unused2: 1;
235 	u32 df     : 1;
236 	u32 epc    :14;
237 	u32 lm     : 2;
238 } __attribute__ ((packed));
239 
240 /**
241  * struct sdma_context_data - sdma context specific to a channel
242  *
243  * @channel_state:	channel state bits
244  * @gReg:		general registers
245  * @mda:		burst dma destination address register
246  * @msa:		burst dma source address register
247  * @ms:			burst dma status register
248  * @md:			burst dma data register
249  * @pda:		peripheral dma destination address register
250  * @psa:		peripheral dma source address register
251  * @ps:			peripheral dma status register
252  * @pd:			peripheral dma data register
253  * @ca:			CRC polynomial register
254  * @cs:			CRC accumulator register
255  * @dda:		dedicated core destination address register
256  * @dsa:		dedicated core source address register
257  * @ds:			dedicated core status register
258  * @dd:			dedicated core data register
259  */
260 struct sdma_context_data {
261 	struct sdma_state_registers  channel_state;
262 	u32  gReg[8];
263 	u32  mda;
264 	u32  msa;
265 	u32  ms;
266 	u32  md;
267 	u32  pda;
268 	u32  psa;
269 	u32  ps;
270 	u32  pd;
271 	u32  ca;
272 	u32  cs;
273 	u32  dda;
274 	u32  dsa;
275 	u32  ds;
276 	u32  dd;
277 	u32  scratch0;
278 	u32  scratch1;
279 	u32  scratch2;
280 	u32  scratch3;
281 	u32  scratch4;
282 	u32  scratch5;
283 	u32  scratch6;
284 	u32  scratch7;
285 } __attribute__ ((packed));
286 
287 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
288 
289 struct sdma_engine;
290 
291 /**
292  * struct sdma_channel - housekeeping for a SDMA channel
293  *
294  * @sdma		pointer to the SDMA engine for this channel
295  * @channel		the channel number, matches dmaengine chan_id + 1
296  * @direction		transfer type. Needed for setting SDMA script
297  * @peripheral_type	Peripheral type. Needed for setting SDMA script
298  * @event_id0		aka dma request line
299  * @event_id1		for channels that use 2 events
300  * @word_size		peripheral access size
301  * @buf_tail		ID of the buffer that was processed
302  * @buf_ptail		ID of the previous buffer that was processed
303  * @num_bd		max NUM_BD. number of descriptors currently handling
304  */
305 struct sdma_channel {
306 	struct sdma_engine		*sdma;
307 	unsigned int			channel;
308 	enum dma_transfer_direction		direction;
309 	enum sdma_peripheral_type	peripheral_type;
310 	unsigned int			event_id0;
311 	unsigned int			event_id1;
312 	enum dma_slave_buswidth		word_size;
313 	unsigned int			buf_tail;
314 	unsigned int			buf_ptail;
315 	unsigned int			num_bd;
316 	unsigned int			period_len;
317 	struct sdma_buffer_descriptor	*bd;
318 	dma_addr_t			bd_phys;
319 	unsigned int			pc_from_device, pc_to_device;
320 	unsigned int			device_to_device;
321 	unsigned long			flags;
322 	dma_addr_t			per_address, per_address2;
323 	unsigned long			event_mask[2];
324 	unsigned long			watermark_level;
325 	u32				shp_addr, per_addr;
326 	struct dma_chan			chan;
327 	spinlock_t			lock;
328 	struct dma_async_tx_descriptor	desc;
329 	enum dma_status			status;
330 	unsigned int			chn_count;
331 	unsigned int			chn_real_count;
332 	struct tasklet_struct		tasklet;
333 	struct imx_dma_data		data;
334 	bool				enabled;
335 };
336 
337 #define IMX_DMA_SG_LOOP		BIT(0)
338 
339 #define MAX_DMA_CHANNELS 32
340 #define MXC_SDMA_DEFAULT_PRIORITY 1
341 #define MXC_SDMA_MIN_PRIORITY 1
342 #define MXC_SDMA_MAX_PRIORITY 7
343 
344 #define SDMA_FIRMWARE_MAGIC 0x414d4453
345 
346 /**
347  * struct sdma_firmware_header - Layout of the firmware image
348  *
349  * @magic		"SDMA"
350  * @version_major	increased whenever layout of struct sdma_script_start_addrs
351  *			changes.
352  * @version_minor	firmware minor version (for binary compatible changes)
353  * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
354  * @num_script_addrs	Number of script addresses in this image
355  * @ram_code_start	offset of SDMA ram image in this firmware image
356  * @ram_code_size	size of SDMA ram image
357  * @script_addrs	Stores the start address of the SDMA scripts
358  *			(in SDMA memory space)
359  */
360 struct sdma_firmware_header {
361 	u32	magic;
362 	u32	version_major;
363 	u32	version_minor;
364 	u32	script_addrs_start;
365 	u32	num_script_addrs;
366 	u32	ram_code_start;
367 	u32	ram_code_size;
368 };
369 
370 struct sdma_driver_data {
371 	int chnenbl0;
372 	int num_events;
373 	struct sdma_script_start_addrs	*script_addrs;
374 };
375 
376 struct sdma_engine {
377 	struct device			*dev;
378 	struct device_dma_parameters	dma_parms;
379 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
380 	struct sdma_channel_control	*channel_control;
381 	void __iomem			*regs;
382 	struct sdma_context_data	*context;
383 	dma_addr_t			context_phys;
384 	struct dma_device		dma_device;
385 	struct clk			*clk_ipg;
386 	struct clk			*clk_ahb;
387 	spinlock_t			channel_0_lock;
388 	u32				script_number;
389 	struct sdma_script_start_addrs	*script_addrs;
390 	const struct sdma_driver_data	*drvdata;
391 	u32				spba_start_addr;
392 	u32				spba_end_addr;
393 	unsigned int			irq;
394 };
395 
396 static struct sdma_driver_data sdma_imx31 = {
397 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
398 	.num_events = 32,
399 };
400 
401 static struct sdma_script_start_addrs sdma_script_imx25 = {
402 	.ap_2_ap_addr = 729,
403 	.uart_2_mcu_addr = 904,
404 	.per_2_app_addr = 1255,
405 	.mcu_2_app_addr = 834,
406 	.uartsh_2_mcu_addr = 1120,
407 	.per_2_shp_addr = 1329,
408 	.mcu_2_shp_addr = 1048,
409 	.ata_2_mcu_addr = 1560,
410 	.mcu_2_ata_addr = 1479,
411 	.app_2_per_addr = 1189,
412 	.app_2_mcu_addr = 770,
413 	.shp_2_per_addr = 1407,
414 	.shp_2_mcu_addr = 979,
415 };
416 
417 static struct sdma_driver_data sdma_imx25 = {
418 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
419 	.num_events = 48,
420 	.script_addrs = &sdma_script_imx25,
421 };
422 
423 static struct sdma_driver_data sdma_imx35 = {
424 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
425 	.num_events = 48,
426 };
427 
428 static struct sdma_script_start_addrs sdma_script_imx51 = {
429 	.ap_2_ap_addr = 642,
430 	.uart_2_mcu_addr = 817,
431 	.mcu_2_app_addr = 747,
432 	.mcu_2_shp_addr = 961,
433 	.ata_2_mcu_addr = 1473,
434 	.mcu_2_ata_addr = 1392,
435 	.app_2_per_addr = 1033,
436 	.app_2_mcu_addr = 683,
437 	.shp_2_per_addr = 1251,
438 	.shp_2_mcu_addr = 892,
439 };
440 
441 static struct sdma_driver_data sdma_imx51 = {
442 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
443 	.num_events = 48,
444 	.script_addrs = &sdma_script_imx51,
445 };
446 
447 static struct sdma_script_start_addrs sdma_script_imx53 = {
448 	.ap_2_ap_addr = 642,
449 	.app_2_mcu_addr = 683,
450 	.mcu_2_app_addr = 747,
451 	.uart_2_mcu_addr = 817,
452 	.shp_2_mcu_addr = 891,
453 	.mcu_2_shp_addr = 960,
454 	.uartsh_2_mcu_addr = 1032,
455 	.spdif_2_mcu_addr = 1100,
456 	.mcu_2_spdif_addr = 1134,
457 	.firi_2_mcu_addr = 1193,
458 	.mcu_2_firi_addr = 1290,
459 };
460 
461 static struct sdma_driver_data sdma_imx53 = {
462 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
463 	.num_events = 48,
464 	.script_addrs = &sdma_script_imx53,
465 };
466 
467 static struct sdma_script_start_addrs sdma_script_imx6q = {
468 	.ap_2_ap_addr = 642,
469 	.uart_2_mcu_addr = 817,
470 	.mcu_2_app_addr = 747,
471 	.per_2_per_addr = 6331,
472 	.uartsh_2_mcu_addr = 1032,
473 	.mcu_2_shp_addr = 960,
474 	.app_2_mcu_addr = 683,
475 	.shp_2_mcu_addr = 891,
476 	.spdif_2_mcu_addr = 1100,
477 	.mcu_2_spdif_addr = 1134,
478 };
479 
480 static struct sdma_driver_data sdma_imx6q = {
481 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
482 	.num_events = 48,
483 	.script_addrs = &sdma_script_imx6q,
484 };
485 
486 static struct sdma_script_start_addrs sdma_script_imx7d = {
487 	.ap_2_ap_addr = 644,
488 	.uart_2_mcu_addr = 819,
489 	.mcu_2_app_addr = 749,
490 	.uartsh_2_mcu_addr = 1034,
491 	.mcu_2_shp_addr = 962,
492 	.app_2_mcu_addr = 685,
493 	.shp_2_mcu_addr = 893,
494 	.spdif_2_mcu_addr = 1102,
495 	.mcu_2_spdif_addr = 1136,
496 };
497 
498 static struct sdma_driver_data sdma_imx7d = {
499 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
500 	.num_events = 48,
501 	.script_addrs = &sdma_script_imx7d,
502 };
503 
504 static const struct platform_device_id sdma_devtypes[] = {
505 	{
506 		.name = "imx25-sdma",
507 		.driver_data = (unsigned long)&sdma_imx25,
508 	}, {
509 		.name = "imx31-sdma",
510 		.driver_data = (unsigned long)&sdma_imx31,
511 	}, {
512 		.name = "imx35-sdma",
513 		.driver_data = (unsigned long)&sdma_imx35,
514 	}, {
515 		.name = "imx51-sdma",
516 		.driver_data = (unsigned long)&sdma_imx51,
517 	}, {
518 		.name = "imx53-sdma",
519 		.driver_data = (unsigned long)&sdma_imx53,
520 	}, {
521 		.name = "imx6q-sdma",
522 		.driver_data = (unsigned long)&sdma_imx6q,
523 	}, {
524 		.name = "imx7d-sdma",
525 		.driver_data = (unsigned long)&sdma_imx7d,
526 	}, {
527 		/* sentinel */
528 	}
529 };
530 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
531 
532 static const struct of_device_id sdma_dt_ids[] = {
533 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
534 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
535 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
536 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
537 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
538 	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
539 	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
540 	{ /* sentinel */ }
541 };
542 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
543 
544 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
545 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
546 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
547 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
548 
549 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
550 {
551 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
552 	return chnenbl0 + event * 4;
553 }
554 
555 static int sdma_config_ownership(struct sdma_channel *sdmac,
556 		bool event_override, bool mcu_override, bool dsp_override)
557 {
558 	struct sdma_engine *sdma = sdmac->sdma;
559 	int channel = sdmac->channel;
560 	unsigned long evt, mcu, dsp;
561 
562 	if (event_override && mcu_override && dsp_override)
563 		return -EINVAL;
564 
565 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
566 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
567 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
568 
569 	if (dsp_override)
570 		__clear_bit(channel, &dsp);
571 	else
572 		__set_bit(channel, &dsp);
573 
574 	if (event_override)
575 		__clear_bit(channel, &evt);
576 	else
577 		__set_bit(channel, &evt);
578 
579 	if (mcu_override)
580 		__clear_bit(channel, &mcu);
581 	else
582 		__set_bit(channel, &mcu);
583 
584 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
585 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
586 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
587 
588 	return 0;
589 }
590 
591 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
592 {
593 	unsigned long flags;
594 	struct sdma_channel *sdmac = &sdma->channel[channel];
595 
596 	writel(BIT(channel), sdma->regs + SDMA_H_START);
597 
598 	spin_lock_irqsave(&sdmac->lock, flags);
599 	sdmac->enabled = true;
600 	spin_unlock_irqrestore(&sdmac->lock, flags);
601 }
602 
603 /*
604  * sdma_run_channel0 - run a channel and wait till it's done
605  */
606 static int sdma_run_channel0(struct sdma_engine *sdma)
607 {
608 	int ret;
609 	u32 reg;
610 
611 	sdma_enable_channel(sdma, 0);
612 
613 	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
614 						reg, !(reg & 1), 1, 500);
615 	if (ret)
616 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
617 
618 	/* Set bits of CONFIG register with dynamic context switching */
619 	if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
620 		writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
621 
622 	return ret;
623 }
624 
625 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
626 		u32 address)
627 {
628 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
629 	void *buf_virt;
630 	dma_addr_t buf_phys;
631 	int ret;
632 	unsigned long flags;
633 
634 	buf_virt = dma_alloc_coherent(NULL,
635 			size,
636 			&buf_phys, GFP_KERNEL);
637 	if (!buf_virt) {
638 		return -ENOMEM;
639 	}
640 
641 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
642 
643 	bd0->mode.command = C0_SETPM;
644 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
645 	bd0->mode.count = size / 2;
646 	bd0->buffer_addr = buf_phys;
647 	bd0->ext_buffer_addr = address;
648 
649 	memcpy(buf_virt, buf, size);
650 
651 	ret = sdma_run_channel0(sdma);
652 
653 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
654 
655 	dma_free_coherent(NULL, size, buf_virt, buf_phys);
656 
657 	return ret;
658 }
659 
660 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
661 {
662 	struct sdma_engine *sdma = sdmac->sdma;
663 	int channel = sdmac->channel;
664 	unsigned long val;
665 	u32 chnenbl = chnenbl_ofs(sdma, event);
666 
667 	val = readl_relaxed(sdma->regs + chnenbl);
668 	__set_bit(channel, &val);
669 	writel_relaxed(val, sdma->regs + chnenbl);
670 }
671 
672 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
673 {
674 	struct sdma_engine *sdma = sdmac->sdma;
675 	int channel = sdmac->channel;
676 	u32 chnenbl = chnenbl_ofs(sdma, event);
677 	unsigned long val;
678 
679 	val = readl_relaxed(sdma->regs + chnenbl);
680 	__clear_bit(channel, &val);
681 	writel_relaxed(val, sdma->regs + chnenbl);
682 }
683 
684 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
685 {
686 	struct sdma_buffer_descriptor *bd;
687 	int error = 0;
688 	enum dma_status	old_status = sdmac->status;
689 	unsigned long flags;
690 
691 	spin_lock_irqsave(&sdmac->lock, flags);
692 	if (!sdmac->enabled) {
693 		spin_unlock_irqrestore(&sdmac->lock, flags);
694 		return;
695 	}
696 	spin_unlock_irqrestore(&sdmac->lock, flags);
697 
698 	/*
699 	 * loop mode. Iterate over descriptors, re-setup them and
700 	 * call callback function.
701 	 */
702 	while (1) {
703 		bd = &sdmac->bd[sdmac->buf_tail];
704 
705 		if (bd->mode.status & BD_DONE)
706 			break;
707 
708 		if (bd->mode.status & BD_RROR) {
709 			bd->mode.status &= ~BD_RROR;
710 			sdmac->status = DMA_ERROR;
711 			error = -EIO;
712 		}
713 
714 	       /*
715 		* We use bd->mode.count to calculate the residue, since contains
716 		* the number of bytes present in the current buffer descriptor.
717 		*/
718 
719 		sdmac->chn_real_count = bd->mode.count;
720 		bd->mode.status |= BD_DONE;
721 		bd->mode.count = sdmac->period_len;
722 		sdmac->buf_ptail = sdmac->buf_tail;
723 		sdmac->buf_tail = (sdmac->buf_tail + 1) % sdmac->num_bd;
724 
725 		/*
726 		 * The callback is called from the interrupt context in order
727 		 * to reduce latency and to avoid the risk of altering the
728 		 * SDMA transaction status by the time the client tasklet is
729 		 * executed.
730 		 */
731 
732 		dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
733 
734 		if (error)
735 			sdmac->status = old_status;
736 	}
737 }
738 
739 static void mxc_sdma_handle_channel_normal(unsigned long data)
740 {
741 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
742 	struct sdma_buffer_descriptor *bd;
743 	int i, error = 0;
744 
745 	sdmac->chn_real_count = 0;
746 	/*
747 	 * non loop mode. Iterate over all descriptors, collect
748 	 * errors and call callback function
749 	 */
750 	for (i = 0; i < sdmac->num_bd; i++) {
751 		bd = &sdmac->bd[i];
752 
753 		 if (bd->mode.status & (BD_DONE | BD_RROR))
754 			error = -EIO;
755 		 sdmac->chn_real_count += bd->mode.count;
756 	}
757 
758 	if (error)
759 		sdmac->status = DMA_ERROR;
760 	else
761 		sdmac->status = DMA_COMPLETE;
762 
763 	dma_cookie_complete(&sdmac->desc);
764 
765 	dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
766 }
767 
768 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
769 {
770 	struct sdma_engine *sdma = dev_id;
771 	unsigned long stat;
772 
773 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
774 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
775 	/* channel 0 is special and not handled here, see run_channel0() */
776 	stat &= ~1;
777 
778 	while (stat) {
779 		int channel = fls(stat) - 1;
780 		struct sdma_channel *sdmac = &sdma->channel[channel];
781 
782 		if (sdmac->flags & IMX_DMA_SG_LOOP)
783 			sdma_update_channel_loop(sdmac);
784 		else
785 			tasklet_schedule(&sdmac->tasklet);
786 
787 		__clear_bit(channel, &stat);
788 	}
789 
790 	return IRQ_HANDLED;
791 }
792 
793 /*
794  * sets the pc of SDMA script according to the peripheral type
795  */
796 static void sdma_get_pc(struct sdma_channel *sdmac,
797 		enum sdma_peripheral_type peripheral_type)
798 {
799 	struct sdma_engine *sdma = sdmac->sdma;
800 	int per_2_emi = 0, emi_2_per = 0;
801 	/*
802 	 * These are needed once we start to support transfers between
803 	 * two peripherals or memory-to-memory transfers
804 	 */
805 	int per_2_per = 0;
806 
807 	sdmac->pc_from_device = 0;
808 	sdmac->pc_to_device = 0;
809 	sdmac->device_to_device = 0;
810 
811 	switch (peripheral_type) {
812 	case IMX_DMATYPE_MEMORY:
813 		break;
814 	case IMX_DMATYPE_DSP:
815 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
816 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
817 		break;
818 	case IMX_DMATYPE_FIRI:
819 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
820 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
821 		break;
822 	case IMX_DMATYPE_UART:
823 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
824 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
825 		break;
826 	case IMX_DMATYPE_UART_SP:
827 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
828 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
829 		break;
830 	case IMX_DMATYPE_ATA:
831 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
832 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
833 		break;
834 	case IMX_DMATYPE_CSPI:
835 	case IMX_DMATYPE_EXT:
836 	case IMX_DMATYPE_SSI:
837 	case IMX_DMATYPE_SAI:
838 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
839 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
840 		break;
841 	case IMX_DMATYPE_SSI_DUAL:
842 		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
843 		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
844 		break;
845 	case IMX_DMATYPE_SSI_SP:
846 	case IMX_DMATYPE_MMC:
847 	case IMX_DMATYPE_SDHC:
848 	case IMX_DMATYPE_CSPI_SP:
849 	case IMX_DMATYPE_ESAI:
850 	case IMX_DMATYPE_MSHC_SP:
851 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
852 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
853 		break;
854 	case IMX_DMATYPE_ASRC:
855 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
856 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
857 		per_2_per = sdma->script_addrs->per_2_per_addr;
858 		break;
859 	case IMX_DMATYPE_ASRC_SP:
860 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
861 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
862 		per_2_per = sdma->script_addrs->per_2_per_addr;
863 		break;
864 	case IMX_DMATYPE_MSHC:
865 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
866 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
867 		break;
868 	case IMX_DMATYPE_CCM:
869 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
870 		break;
871 	case IMX_DMATYPE_SPDIF:
872 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
873 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
874 		break;
875 	case IMX_DMATYPE_IPU_MEMORY:
876 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
877 		break;
878 	default:
879 		break;
880 	}
881 
882 	sdmac->pc_from_device = per_2_emi;
883 	sdmac->pc_to_device = emi_2_per;
884 	sdmac->device_to_device = per_2_per;
885 }
886 
887 static int sdma_load_context(struct sdma_channel *sdmac)
888 {
889 	struct sdma_engine *sdma = sdmac->sdma;
890 	int channel = sdmac->channel;
891 	int load_address;
892 	struct sdma_context_data *context = sdma->context;
893 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
894 	int ret;
895 	unsigned long flags;
896 
897 	if (sdmac->direction == DMA_DEV_TO_MEM)
898 		load_address = sdmac->pc_from_device;
899 	else if (sdmac->direction == DMA_DEV_TO_DEV)
900 		load_address = sdmac->device_to_device;
901 	else
902 		load_address = sdmac->pc_to_device;
903 
904 	if (load_address < 0)
905 		return load_address;
906 
907 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
908 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
909 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
910 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
911 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
912 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
913 
914 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
915 
916 	memset(context, 0, sizeof(*context));
917 	context->channel_state.pc = load_address;
918 
919 	/* Send by context the event mask,base address for peripheral
920 	 * and watermark level
921 	 */
922 	context->gReg[0] = sdmac->event_mask[1];
923 	context->gReg[1] = sdmac->event_mask[0];
924 	context->gReg[2] = sdmac->per_addr;
925 	context->gReg[6] = sdmac->shp_addr;
926 	context->gReg[7] = sdmac->watermark_level;
927 
928 	bd0->mode.command = C0_SETDM;
929 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
930 	bd0->mode.count = sizeof(*context) / 4;
931 	bd0->buffer_addr = sdma->context_phys;
932 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
933 	ret = sdma_run_channel0(sdma);
934 
935 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
936 
937 	return ret;
938 }
939 
940 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
941 {
942 	return container_of(chan, struct sdma_channel, chan);
943 }
944 
945 static int sdma_disable_channel(struct dma_chan *chan)
946 {
947 	struct sdma_channel *sdmac = to_sdma_chan(chan);
948 	struct sdma_engine *sdma = sdmac->sdma;
949 	int channel = sdmac->channel;
950 	unsigned long flags;
951 
952 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
953 	sdmac->status = DMA_ERROR;
954 
955 	spin_lock_irqsave(&sdmac->lock, flags);
956 	sdmac->enabled = false;
957 	spin_unlock_irqrestore(&sdmac->lock, flags);
958 
959 	return 0;
960 }
961 
962 static int sdma_disable_channel_with_delay(struct dma_chan *chan)
963 {
964 	sdma_disable_channel(chan);
965 
966 	/*
967 	 * According to NXP R&D team a delay of one BD SDMA cost time
968 	 * (maximum is 1ms) should be added after disable of the channel
969 	 * bit, to ensure SDMA core has really been stopped after SDMA
970 	 * clients call .device_terminate_all.
971 	 */
972 	mdelay(1);
973 
974 	return 0;
975 }
976 
977 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
978 {
979 	struct sdma_engine *sdma = sdmac->sdma;
980 
981 	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
982 	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
983 
984 	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
985 	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
986 
987 	if (sdmac->event_id0 > 31)
988 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
989 
990 	if (sdmac->event_id1 > 31)
991 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
992 
993 	/*
994 	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
995 	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
996 	 * r0(event_mask[1]) and r1(event_mask[0]).
997 	 */
998 	if (lwml > hwml) {
999 		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1000 						SDMA_WATERMARK_LEVEL_HWML);
1001 		sdmac->watermark_level |= hwml;
1002 		sdmac->watermark_level |= lwml << 16;
1003 		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1004 	}
1005 
1006 	if (sdmac->per_address2 >= sdma->spba_start_addr &&
1007 			sdmac->per_address2 <= sdma->spba_end_addr)
1008 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1009 
1010 	if (sdmac->per_address >= sdma->spba_start_addr &&
1011 			sdmac->per_address <= sdma->spba_end_addr)
1012 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1013 
1014 	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1015 }
1016 
1017 static int sdma_config_channel(struct dma_chan *chan)
1018 {
1019 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1020 	int ret;
1021 
1022 	sdma_disable_channel(chan);
1023 
1024 	sdmac->event_mask[0] = 0;
1025 	sdmac->event_mask[1] = 0;
1026 	sdmac->shp_addr = 0;
1027 	sdmac->per_addr = 0;
1028 
1029 	if (sdmac->event_id0) {
1030 		if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1031 			return -EINVAL;
1032 		sdma_event_enable(sdmac, sdmac->event_id0);
1033 	}
1034 
1035 	if (sdmac->event_id1) {
1036 		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1037 			return -EINVAL;
1038 		sdma_event_enable(sdmac, sdmac->event_id1);
1039 	}
1040 
1041 	switch (sdmac->peripheral_type) {
1042 	case IMX_DMATYPE_DSP:
1043 		sdma_config_ownership(sdmac, false, true, true);
1044 		break;
1045 	case IMX_DMATYPE_MEMORY:
1046 		sdma_config_ownership(sdmac, false, true, false);
1047 		break;
1048 	default:
1049 		sdma_config_ownership(sdmac, true, true, false);
1050 		break;
1051 	}
1052 
1053 	sdma_get_pc(sdmac, sdmac->peripheral_type);
1054 
1055 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1056 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1057 		/* Handle multiple event channels differently */
1058 		if (sdmac->event_id1) {
1059 			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1060 			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1061 				sdma_set_watermarklevel_for_p2p(sdmac);
1062 		} else
1063 			__set_bit(sdmac->event_id0, sdmac->event_mask);
1064 
1065 		/* Address */
1066 		sdmac->shp_addr = sdmac->per_address;
1067 		sdmac->per_addr = sdmac->per_address2;
1068 	} else {
1069 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1070 	}
1071 
1072 	ret = sdma_load_context(sdmac);
1073 
1074 	return ret;
1075 }
1076 
1077 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1078 		unsigned int priority)
1079 {
1080 	struct sdma_engine *sdma = sdmac->sdma;
1081 	int channel = sdmac->channel;
1082 
1083 	if (priority < MXC_SDMA_MIN_PRIORITY
1084 	    || priority > MXC_SDMA_MAX_PRIORITY) {
1085 		return -EINVAL;
1086 	}
1087 
1088 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1089 
1090 	return 0;
1091 }
1092 
1093 static int sdma_request_channel(struct sdma_channel *sdmac)
1094 {
1095 	struct sdma_engine *sdma = sdmac->sdma;
1096 	int channel = sdmac->channel;
1097 	int ret = -EBUSY;
1098 
1099 	sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
1100 					GFP_KERNEL);
1101 	if (!sdmac->bd) {
1102 		ret = -ENOMEM;
1103 		goto out;
1104 	}
1105 
1106 	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
1107 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1108 
1109 	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
1110 	return 0;
1111 out:
1112 
1113 	return ret;
1114 }
1115 
1116 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
1117 {
1118 	unsigned long flags;
1119 	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
1120 	dma_cookie_t cookie;
1121 
1122 	spin_lock_irqsave(&sdmac->lock, flags);
1123 
1124 	cookie = dma_cookie_assign(tx);
1125 
1126 	spin_unlock_irqrestore(&sdmac->lock, flags);
1127 
1128 	return cookie;
1129 }
1130 
1131 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1132 {
1133 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1134 	struct imx_dma_data *data = chan->private;
1135 	int prio, ret;
1136 
1137 	if (!data)
1138 		return -EINVAL;
1139 
1140 	switch (data->priority) {
1141 	case DMA_PRIO_HIGH:
1142 		prio = 3;
1143 		break;
1144 	case DMA_PRIO_MEDIUM:
1145 		prio = 2;
1146 		break;
1147 	case DMA_PRIO_LOW:
1148 	default:
1149 		prio = 1;
1150 		break;
1151 	}
1152 
1153 	sdmac->peripheral_type = data->peripheral_type;
1154 	sdmac->event_id0 = data->dma_request;
1155 	sdmac->event_id1 = data->dma_request2;
1156 
1157 	ret = clk_enable(sdmac->sdma->clk_ipg);
1158 	if (ret)
1159 		return ret;
1160 	ret = clk_enable(sdmac->sdma->clk_ahb);
1161 	if (ret)
1162 		goto disable_clk_ipg;
1163 
1164 	ret = sdma_request_channel(sdmac);
1165 	if (ret)
1166 		goto disable_clk_ahb;
1167 
1168 	ret = sdma_set_channel_priority(sdmac, prio);
1169 	if (ret)
1170 		goto disable_clk_ahb;
1171 
1172 	dma_async_tx_descriptor_init(&sdmac->desc, chan);
1173 	sdmac->desc.tx_submit = sdma_tx_submit;
1174 	/* txd.flags will be overwritten in prep funcs */
1175 	sdmac->desc.flags = DMA_CTRL_ACK;
1176 
1177 	return 0;
1178 
1179 disable_clk_ahb:
1180 	clk_disable(sdmac->sdma->clk_ahb);
1181 disable_clk_ipg:
1182 	clk_disable(sdmac->sdma->clk_ipg);
1183 	return ret;
1184 }
1185 
1186 static void sdma_free_chan_resources(struct dma_chan *chan)
1187 {
1188 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1189 	struct sdma_engine *sdma = sdmac->sdma;
1190 
1191 	sdma_disable_channel(chan);
1192 
1193 	if (sdmac->event_id0)
1194 		sdma_event_disable(sdmac, sdmac->event_id0);
1195 	if (sdmac->event_id1)
1196 		sdma_event_disable(sdmac, sdmac->event_id1);
1197 
1198 	sdmac->event_id0 = 0;
1199 	sdmac->event_id1 = 0;
1200 
1201 	sdma_set_channel_priority(sdmac, 0);
1202 
1203 	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1204 
1205 	clk_disable(sdma->clk_ipg);
1206 	clk_disable(sdma->clk_ahb);
1207 }
1208 
1209 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1210 		struct dma_chan *chan, struct scatterlist *sgl,
1211 		unsigned int sg_len, enum dma_transfer_direction direction,
1212 		unsigned long flags, void *context)
1213 {
1214 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1215 	struct sdma_engine *sdma = sdmac->sdma;
1216 	int ret, i, count;
1217 	int channel = sdmac->channel;
1218 	struct scatterlist *sg;
1219 
1220 	if (sdmac->status == DMA_IN_PROGRESS)
1221 		return NULL;
1222 	sdmac->status = DMA_IN_PROGRESS;
1223 
1224 	sdmac->flags = 0;
1225 
1226 	sdmac->buf_tail = 0;
1227 	sdmac->buf_ptail = 0;
1228 	sdmac->chn_real_count = 0;
1229 
1230 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1231 			sg_len, channel);
1232 
1233 	sdmac->direction = direction;
1234 	ret = sdma_load_context(sdmac);
1235 	if (ret)
1236 		goto err_out;
1237 
1238 	if (sg_len > NUM_BD) {
1239 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1240 				channel, sg_len, NUM_BD);
1241 		ret = -EINVAL;
1242 		goto err_out;
1243 	}
1244 
1245 	sdmac->chn_count = 0;
1246 	for_each_sg(sgl, sg, sg_len, i) {
1247 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1248 		int param;
1249 
1250 		bd->buffer_addr = sg->dma_address;
1251 
1252 		count = sg_dma_len(sg);
1253 
1254 		if (count > 0xffff) {
1255 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1256 					channel, count, 0xffff);
1257 			ret = -EINVAL;
1258 			goto err_out;
1259 		}
1260 
1261 		bd->mode.count = count;
1262 		sdmac->chn_count += count;
1263 
1264 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1265 			ret =  -EINVAL;
1266 			goto err_out;
1267 		}
1268 
1269 		switch (sdmac->word_size) {
1270 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1271 			bd->mode.command = 0;
1272 			if (count & 3 || sg->dma_address & 3)
1273 				return NULL;
1274 			break;
1275 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1276 			bd->mode.command = 2;
1277 			if (count & 1 || sg->dma_address & 1)
1278 				return NULL;
1279 			break;
1280 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1281 			bd->mode.command = 1;
1282 			break;
1283 		default:
1284 			return NULL;
1285 		}
1286 
1287 		param = BD_DONE | BD_EXTD | BD_CONT;
1288 
1289 		if (i + 1 == sg_len) {
1290 			param |= BD_INTR;
1291 			param |= BD_LAST;
1292 			param &= ~BD_CONT;
1293 		}
1294 
1295 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1296 				i, count, (u64)sg->dma_address,
1297 				param & BD_WRAP ? "wrap" : "",
1298 				param & BD_INTR ? " intr" : "");
1299 
1300 		bd->mode.status = param;
1301 	}
1302 
1303 	sdmac->num_bd = sg_len;
1304 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1305 
1306 	return &sdmac->desc;
1307 err_out:
1308 	sdmac->status = DMA_ERROR;
1309 	return NULL;
1310 }
1311 
1312 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1313 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1314 		size_t period_len, enum dma_transfer_direction direction,
1315 		unsigned long flags)
1316 {
1317 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1318 	struct sdma_engine *sdma = sdmac->sdma;
1319 	int num_periods = buf_len / period_len;
1320 	int channel = sdmac->channel;
1321 	int ret, i = 0, buf = 0;
1322 
1323 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1324 
1325 	if (sdmac->status == DMA_IN_PROGRESS)
1326 		return NULL;
1327 
1328 	sdmac->status = DMA_IN_PROGRESS;
1329 
1330 	sdmac->buf_tail = 0;
1331 	sdmac->buf_ptail = 0;
1332 	sdmac->chn_real_count = 0;
1333 	sdmac->period_len = period_len;
1334 
1335 	sdmac->flags |= IMX_DMA_SG_LOOP;
1336 	sdmac->direction = direction;
1337 	ret = sdma_load_context(sdmac);
1338 	if (ret)
1339 		goto err_out;
1340 
1341 	if (num_periods > NUM_BD) {
1342 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1343 				channel, num_periods, NUM_BD);
1344 		goto err_out;
1345 	}
1346 
1347 	if (period_len > 0xffff) {
1348 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1349 				channel, period_len, 0xffff);
1350 		goto err_out;
1351 	}
1352 
1353 	while (buf < buf_len) {
1354 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1355 		int param;
1356 
1357 		bd->buffer_addr = dma_addr;
1358 
1359 		bd->mode.count = period_len;
1360 
1361 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1362 			goto err_out;
1363 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1364 			bd->mode.command = 0;
1365 		else
1366 			bd->mode.command = sdmac->word_size;
1367 
1368 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1369 		if (i + 1 == num_periods)
1370 			param |= BD_WRAP;
1371 
1372 		dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1373 				i, period_len, (u64)dma_addr,
1374 				param & BD_WRAP ? "wrap" : "",
1375 				param & BD_INTR ? " intr" : "");
1376 
1377 		bd->mode.status = param;
1378 
1379 		dma_addr += period_len;
1380 		buf += period_len;
1381 
1382 		i++;
1383 	}
1384 
1385 	sdmac->num_bd = num_periods;
1386 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1387 
1388 	return &sdmac->desc;
1389 err_out:
1390 	sdmac->status = DMA_ERROR;
1391 	return NULL;
1392 }
1393 
1394 static int sdma_config(struct dma_chan *chan,
1395 		       struct dma_slave_config *dmaengine_cfg)
1396 {
1397 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1398 
1399 	if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1400 		sdmac->per_address = dmaengine_cfg->src_addr;
1401 		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1402 			dmaengine_cfg->src_addr_width;
1403 		sdmac->word_size = dmaengine_cfg->src_addr_width;
1404 	} else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
1405 		sdmac->per_address2 = dmaengine_cfg->src_addr;
1406 		sdmac->per_address = dmaengine_cfg->dst_addr;
1407 		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1408 			SDMA_WATERMARK_LEVEL_LWML;
1409 		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1410 			SDMA_WATERMARK_LEVEL_HWML;
1411 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1412 	} else {
1413 		sdmac->per_address = dmaengine_cfg->dst_addr;
1414 		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1415 			dmaengine_cfg->dst_addr_width;
1416 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1417 	}
1418 	sdmac->direction = dmaengine_cfg->direction;
1419 	return sdma_config_channel(chan);
1420 }
1421 
1422 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1423 				      dma_cookie_t cookie,
1424 				      struct dma_tx_state *txstate)
1425 {
1426 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1427 	u32 residue;
1428 
1429 	if (sdmac->flags & IMX_DMA_SG_LOOP)
1430 		residue = (sdmac->num_bd - sdmac->buf_ptail) *
1431 			   sdmac->period_len - sdmac->chn_real_count;
1432 	else
1433 		residue = sdmac->chn_count - sdmac->chn_real_count;
1434 
1435 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1436 			 residue);
1437 
1438 	return sdmac->status;
1439 }
1440 
1441 static void sdma_issue_pending(struct dma_chan *chan)
1442 {
1443 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1444 	struct sdma_engine *sdma = sdmac->sdma;
1445 
1446 	if (sdmac->status == DMA_IN_PROGRESS)
1447 		sdma_enable_channel(sdma, sdmac->channel);
1448 }
1449 
1450 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1451 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1452 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	41
1453 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4	42
1454 
1455 static void sdma_add_scripts(struct sdma_engine *sdma,
1456 		const struct sdma_script_start_addrs *addr)
1457 {
1458 	s32 *addr_arr = (u32 *)addr;
1459 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1460 	int i;
1461 
1462 	/* use the default firmware in ROM if missing external firmware */
1463 	if (!sdma->script_number)
1464 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1465 
1466 	for (i = 0; i < sdma->script_number; i++)
1467 		if (addr_arr[i] > 0)
1468 			saddr_arr[i] = addr_arr[i];
1469 }
1470 
1471 static void sdma_load_firmware(const struct firmware *fw, void *context)
1472 {
1473 	struct sdma_engine *sdma = context;
1474 	const struct sdma_firmware_header *header;
1475 	const struct sdma_script_start_addrs *addr;
1476 	unsigned short *ram_code;
1477 
1478 	if (!fw) {
1479 		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1480 		/* In this case we just use the ROM firmware. */
1481 		return;
1482 	}
1483 
1484 	if (fw->size < sizeof(*header))
1485 		goto err_firmware;
1486 
1487 	header = (struct sdma_firmware_header *)fw->data;
1488 
1489 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1490 		goto err_firmware;
1491 	if (header->ram_code_start + header->ram_code_size > fw->size)
1492 		goto err_firmware;
1493 	switch (header->version_major) {
1494 	case 1:
1495 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1496 		break;
1497 	case 2:
1498 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1499 		break;
1500 	case 3:
1501 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1502 		break;
1503 	case 4:
1504 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1505 		break;
1506 	default:
1507 		dev_err(sdma->dev, "unknown firmware version\n");
1508 		goto err_firmware;
1509 	}
1510 
1511 	addr = (void *)header + header->script_addrs_start;
1512 	ram_code = (void *)header + header->ram_code_start;
1513 
1514 	clk_enable(sdma->clk_ipg);
1515 	clk_enable(sdma->clk_ahb);
1516 	/* download the RAM image for SDMA */
1517 	sdma_load_script(sdma, ram_code,
1518 			header->ram_code_size,
1519 			addr->ram_code_start_addr);
1520 	clk_disable(sdma->clk_ipg);
1521 	clk_disable(sdma->clk_ahb);
1522 
1523 	sdma_add_scripts(sdma, addr);
1524 
1525 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1526 			header->version_major,
1527 			header->version_minor);
1528 
1529 err_firmware:
1530 	release_firmware(fw);
1531 }
1532 
1533 #define EVENT_REMAP_CELLS 3
1534 
1535 static int sdma_event_remap(struct sdma_engine *sdma)
1536 {
1537 	struct device_node *np = sdma->dev->of_node;
1538 	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1539 	struct property *event_remap;
1540 	struct regmap *gpr;
1541 	char propname[] = "fsl,sdma-event-remap";
1542 	u32 reg, val, shift, num_map, i;
1543 	int ret = 0;
1544 
1545 	if (IS_ERR(np) || IS_ERR(gpr_np))
1546 		goto out;
1547 
1548 	event_remap = of_find_property(np, propname, NULL);
1549 	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1550 	if (!num_map) {
1551 		dev_dbg(sdma->dev, "no event needs to be remapped\n");
1552 		goto out;
1553 	} else if (num_map % EVENT_REMAP_CELLS) {
1554 		dev_err(sdma->dev, "the property %s must modulo %d\n",
1555 				propname, EVENT_REMAP_CELLS);
1556 		ret = -EINVAL;
1557 		goto out;
1558 	}
1559 
1560 	gpr = syscon_node_to_regmap(gpr_np);
1561 	if (IS_ERR(gpr)) {
1562 		dev_err(sdma->dev, "failed to get gpr regmap\n");
1563 		ret = PTR_ERR(gpr);
1564 		goto out;
1565 	}
1566 
1567 	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1568 		ret = of_property_read_u32_index(np, propname, i, &reg);
1569 		if (ret) {
1570 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1571 					propname, i);
1572 			goto out;
1573 		}
1574 
1575 		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1576 		if (ret) {
1577 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1578 					propname, i + 1);
1579 			goto out;
1580 		}
1581 
1582 		ret = of_property_read_u32_index(np, propname, i + 2, &val);
1583 		if (ret) {
1584 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1585 					propname, i + 2);
1586 			goto out;
1587 		}
1588 
1589 		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1590 	}
1591 
1592 out:
1593 	if (!IS_ERR(gpr_np))
1594 		of_node_put(gpr_np);
1595 
1596 	return ret;
1597 }
1598 
1599 static int sdma_get_firmware(struct sdma_engine *sdma,
1600 		const char *fw_name)
1601 {
1602 	int ret;
1603 
1604 	ret = request_firmware_nowait(THIS_MODULE,
1605 			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1606 			GFP_KERNEL, sdma, sdma_load_firmware);
1607 
1608 	return ret;
1609 }
1610 
1611 static int sdma_init(struct sdma_engine *sdma)
1612 {
1613 	int i, ret;
1614 	dma_addr_t ccb_phys;
1615 
1616 	ret = clk_enable(sdma->clk_ipg);
1617 	if (ret)
1618 		return ret;
1619 	ret = clk_enable(sdma->clk_ahb);
1620 	if (ret)
1621 		goto disable_clk_ipg;
1622 
1623 	/* Be sure SDMA has not started yet */
1624 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1625 
1626 	sdma->channel_control = dma_alloc_coherent(NULL,
1627 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1628 			sizeof(struct sdma_context_data),
1629 			&ccb_phys, GFP_KERNEL);
1630 
1631 	if (!sdma->channel_control) {
1632 		ret = -ENOMEM;
1633 		goto err_dma_alloc;
1634 	}
1635 
1636 	sdma->context = (void *)sdma->channel_control +
1637 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1638 	sdma->context_phys = ccb_phys +
1639 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1640 
1641 	/* Zero-out the CCB structures array just allocated */
1642 	memset(sdma->channel_control, 0,
1643 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1644 
1645 	/* disable all channels */
1646 	for (i = 0; i < sdma->drvdata->num_events; i++)
1647 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1648 
1649 	/* All channels have priority 0 */
1650 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1651 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1652 
1653 	ret = sdma_request_channel(&sdma->channel[0]);
1654 	if (ret)
1655 		goto err_dma_alloc;
1656 
1657 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1658 
1659 	/* Set Command Channel (Channel Zero) */
1660 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1661 
1662 	/* Set bits of CONFIG register but with static context switching */
1663 	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1664 	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1665 
1666 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1667 
1668 	/* Initializes channel's priorities */
1669 	sdma_set_channel_priority(&sdma->channel[0], 7);
1670 
1671 	clk_disable(sdma->clk_ipg);
1672 	clk_disable(sdma->clk_ahb);
1673 
1674 	return 0;
1675 
1676 err_dma_alloc:
1677 	clk_disable(sdma->clk_ahb);
1678 disable_clk_ipg:
1679 	clk_disable(sdma->clk_ipg);
1680 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1681 	return ret;
1682 }
1683 
1684 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1685 {
1686 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1687 	struct imx_dma_data *data = fn_param;
1688 
1689 	if (!imx_dma_is_general_purpose(chan))
1690 		return false;
1691 
1692 	sdmac->data = *data;
1693 	chan->private = &sdmac->data;
1694 
1695 	return true;
1696 }
1697 
1698 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1699 				   struct of_dma *ofdma)
1700 {
1701 	struct sdma_engine *sdma = ofdma->of_dma_data;
1702 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1703 	struct imx_dma_data data;
1704 
1705 	if (dma_spec->args_count != 3)
1706 		return NULL;
1707 
1708 	data.dma_request = dma_spec->args[0];
1709 	data.peripheral_type = dma_spec->args[1];
1710 	data.priority = dma_spec->args[2];
1711 	/*
1712 	 * init dma_request2 to zero, which is not used by the dts.
1713 	 * For P2P, dma_request2 is init from dma_request_channel(),
1714 	 * chan->private will point to the imx_dma_data, and in
1715 	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1716 	 * be set to sdmac->event_id1.
1717 	 */
1718 	data.dma_request2 = 0;
1719 
1720 	return dma_request_channel(mask, sdma_filter_fn, &data);
1721 }
1722 
1723 static int sdma_probe(struct platform_device *pdev)
1724 {
1725 	const struct of_device_id *of_id =
1726 			of_match_device(sdma_dt_ids, &pdev->dev);
1727 	struct device_node *np = pdev->dev.of_node;
1728 	struct device_node *spba_bus;
1729 	const char *fw_name;
1730 	int ret;
1731 	int irq;
1732 	struct resource *iores;
1733 	struct resource spba_res;
1734 	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1735 	int i;
1736 	struct sdma_engine *sdma;
1737 	s32 *saddr_arr;
1738 	const struct sdma_driver_data *drvdata = NULL;
1739 
1740 	if (of_id)
1741 		drvdata = of_id->data;
1742 	else if (pdev->id_entry)
1743 		drvdata = (void *)pdev->id_entry->driver_data;
1744 
1745 	if (!drvdata) {
1746 		dev_err(&pdev->dev, "unable to find driver data\n");
1747 		return -EINVAL;
1748 	}
1749 
1750 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1751 	if (ret)
1752 		return ret;
1753 
1754 	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1755 	if (!sdma)
1756 		return -ENOMEM;
1757 
1758 	spin_lock_init(&sdma->channel_0_lock);
1759 
1760 	sdma->dev = &pdev->dev;
1761 	sdma->drvdata = drvdata;
1762 
1763 	irq = platform_get_irq(pdev, 0);
1764 	if (irq < 0)
1765 		return irq;
1766 
1767 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1768 	sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1769 	if (IS_ERR(sdma->regs))
1770 		return PTR_ERR(sdma->regs);
1771 
1772 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1773 	if (IS_ERR(sdma->clk_ipg))
1774 		return PTR_ERR(sdma->clk_ipg);
1775 
1776 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1777 	if (IS_ERR(sdma->clk_ahb))
1778 		return PTR_ERR(sdma->clk_ahb);
1779 
1780 	ret = clk_prepare(sdma->clk_ipg);
1781 	if (ret)
1782 		return ret;
1783 
1784 	ret = clk_prepare(sdma->clk_ahb);
1785 	if (ret)
1786 		goto err_clk;
1787 
1788 	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
1789 			       sdma);
1790 	if (ret)
1791 		goto err_irq;
1792 
1793 	sdma->irq = irq;
1794 
1795 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1796 	if (!sdma->script_addrs) {
1797 		ret = -ENOMEM;
1798 		goto err_irq;
1799 	}
1800 
1801 	/* initially no scripts available */
1802 	saddr_arr = (s32 *)sdma->script_addrs;
1803 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1804 		saddr_arr[i] = -EINVAL;
1805 
1806 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1807 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1808 
1809 	INIT_LIST_HEAD(&sdma->dma_device.channels);
1810 	/* Initialize channel parameters */
1811 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1812 		struct sdma_channel *sdmac = &sdma->channel[i];
1813 
1814 		sdmac->sdma = sdma;
1815 		spin_lock_init(&sdmac->lock);
1816 
1817 		sdmac->chan.device = &sdma->dma_device;
1818 		dma_cookie_init(&sdmac->chan);
1819 		sdmac->channel = i;
1820 
1821 		tasklet_init(&sdmac->tasklet, mxc_sdma_handle_channel_normal,
1822 			     (unsigned long) sdmac);
1823 		/*
1824 		 * Add the channel to the DMAC list. Do not add channel 0 though
1825 		 * because we need it internally in the SDMA driver. This also means
1826 		 * that channel 0 in dmaengine counting matches sdma channel 1.
1827 		 */
1828 		if (i)
1829 			list_add_tail(&sdmac->chan.device_node,
1830 					&sdma->dma_device.channels);
1831 	}
1832 
1833 	ret = sdma_init(sdma);
1834 	if (ret)
1835 		goto err_init;
1836 
1837 	ret = sdma_event_remap(sdma);
1838 	if (ret)
1839 		goto err_init;
1840 
1841 	if (sdma->drvdata->script_addrs)
1842 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1843 	if (pdata && pdata->script_addrs)
1844 		sdma_add_scripts(sdma, pdata->script_addrs);
1845 
1846 	if (pdata) {
1847 		ret = sdma_get_firmware(sdma, pdata->fw_name);
1848 		if (ret)
1849 			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1850 	} else {
1851 		/*
1852 		 * Because that device tree does not encode ROM script address,
1853 		 * the RAM script in firmware is mandatory for device tree
1854 		 * probe, otherwise it fails.
1855 		 */
1856 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1857 					      &fw_name);
1858 		if (ret)
1859 			dev_warn(&pdev->dev, "failed to get firmware name\n");
1860 		else {
1861 			ret = sdma_get_firmware(sdma, fw_name);
1862 			if (ret)
1863 				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1864 		}
1865 	}
1866 
1867 	sdma->dma_device.dev = &pdev->dev;
1868 
1869 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1870 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1871 	sdma->dma_device.device_tx_status = sdma_tx_status;
1872 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1873 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1874 	sdma->dma_device.device_config = sdma_config;
1875 	sdma->dma_device.device_terminate_all = sdma_disable_channel_with_delay;
1876 	sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
1877 	sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
1878 	sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
1879 	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
1880 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1881 	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1882 	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1883 
1884 	platform_set_drvdata(pdev, sdma);
1885 
1886 	ret = dma_async_device_register(&sdma->dma_device);
1887 	if (ret) {
1888 		dev_err(&pdev->dev, "unable to register\n");
1889 		goto err_init;
1890 	}
1891 
1892 	if (np) {
1893 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
1894 		if (ret) {
1895 			dev_err(&pdev->dev, "failed to register controller\n");
1896 			goto err_register;
1897 		}
1898 
1899 		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
1900 		ret = of_address_to_resource(spba_bus, 0, &spba_res);
1901 		if (!ret) {
1902 			sdma->spba_start_addr = spba_res.start;
1903 			sdma->spba_end_addr = spba_res.end;
1904 		}
1905 		of_node_put(spba_bus);
1906 	}
1907 
1908 	return 0;
1909 
1910 err_register:
1911 	dma_async_device_unregister(&sdma->dma_device);
1912 err_init:
1913 	kfree(sdma->script_addrs);
1914 err_irq:
1915 	clk_unprepare(sdma->clk_ahb);
1916 err_clk:
1917 	clk_unprepare(sdma->clk_ipg);
1918 	return ret;
1919 }
1920 
1921 static int sdma_remove(struct platform_device *pdev)
1922 {
1923 	struct sdma_engine *sdma = platform_get_drvdata(pdev);
1924 	int i;
1925 
1926 	devm_free_irq(&pdev->dev, sdma->irq, sdma);
1927 	dma_async_device_unregister(&sdma->dma_device);
1928 	kfree(sdma->script_addrs);
1929 	clk_unprepare(sdma->clk_ahb);
1930 	clk_unprepare(sdma->clk_ipg);
1931 	/* Kill the tasklet */
1932 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1933 		struct sdma_channel *sdmac = &sdma->channel[i];
1934 
1935 		tasklet_kill(&sdmac->tasklet);
1936 	}
1937 
1938 	platform_set_drvdata(pdev, NULL);
1939 	return 0;
1940 }
1941 
1942 static struct platform_driver sdma_driver = {
1943 	.driver		= {
1944 		.name	= "imx-sdma",
1945 		.of_match_table = sdma_dt_ids,
1946 	},
1947 	.id_table	= sdma_devtypes,
1948 	.remove		= sdma_remove,
1949 	.probe		= sdma_probe,
1950 };
1951 
1952 module_platform_driver(sdma_driver);
1953 
1954 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1955 MODULE_DESCRIPTION("i.MX SDMA driver");
1956 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
1957 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
1958 #endif
1959 #if IS_ENABLED(CONFIG_SOC_IMX7D)
1960 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
1961 #endif
1962 MODULE_LICENSE("GPL");
1963