xref: /openbmc/linux/drivers/dma/imx-sdma.c (revision ca90578000afb0d8f177ea36f7259a9c3640cf49)
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19 
20 #include <linux/init.h>
21 #include <linux/iopoll.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/bitops.h>
25 #include <linux/mm.h>
26 #include <linux/interrupt.h>
27 #include <linux/clk.h>
28 #include <linux/delay.h>
29 #include <linux/sched.h>
30 #include <linux/semaphore.h>
31 #include <linux/spinlock.h>
32 #include <linux/device.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/firmware.h>
35 #include <linux/slab.h>
36 #include <linux/platform_device.h>
37 #include <linux/dmaengine.h>
38 #include <linux/of.h>
39 #include <linux/of_address.h>
40 #include <linux/of_device.h>
41 #include <linux/of_dma.h>
42 
43 #include <asm/irq.h>
44 #include <linux/platform_data/dma-imx-sdma.h>
45 #include <linux/platform_data/dma-imx.h>
46 #include <linux/regmap.h>
47 #include <linux/mfd/syscon.h>
48 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
49 
50 #include "dmaengine.h"
51 
52 /* SDMA registers */
53 #define SDMA_H_C0PTR		0x000
54 #define SDMA_H_INTR		0x004
55 #define SDMA_H_STATSTOP		0x008
56 #define SDMA_H_START		0x00c
57 #define SDMA_H_EVTOVR		0x010
58 #define SDMA_H_DSPOVR		0x014
59 #define SDMA_H_HOSTOVR		0x018
60 #define SDMA_H_EVTPEND		0x01c
61 #define SDMA_H_DSPENBL		0x020
62 #define SDMA_H_RESET		0x024
63 #define SDMA_H_EVTERR		0x028
64 #define SDMA_H_INTRMSK		0x02c
65 #define SDMA_H_PSW		0x030
66 #define SDMA_H_EVTERRDBG	0x034
67 #define SDMA_H_CONFIG		0x038
68 #define SDMA_ONCE_ENB		0x040
69 #define SDMA_ONCE_DATA		0x044
70 #define SDMA_ONCE_INSTR		0x048
71 #define SDMA_ONCE_STAT		0x04c
72 #define SDMA_ONCE_CMD		0x050
73 #define SDMA_EVT_MIRROR		0x054
74 #define SDMA_ILLINSTADDR	0x058
75 #define SDMA_CHN0ADDR		0x05c
76 #define SDMA_ONCE_RTB		0x060
77 #define SDMA_XTRIG_CONF1	0x070
78 #define SDMA_XTRIG_CONF2	0x074
79 #define SDMA_CHNENBL0_IMX35	0x200
80 #define SDMA_CHNENBL0_IMX31	0x080
81 #define SDMA_CHNPRI_0		0x100
82 
83 /*
84  * Buffer descriptor status values.
85  */
86 #define BD_DONE  0x01
87 #define BD_WRAP  0x02
88 #define BD_CONT  0x04
89 #define BD_INTR  0x08
90 #define BD_RROR  0x10
91 #define BD_LAST  0x20
92 #define BD_EXTD  0x80
93 
94 /*
95  * Data Node descriptor status values.
96  */
97 #define DND_END_OF_FRAME  0x80
98 #define DND_END_OF_XFER   0x40
99 #define DND_DONE          0x20
100 #define DND_UNUSED        0x01
101 
102 /*
103  * IPCV2 descriptor status values.
104  */
105 #define BD_IPCV2_END_OF_FRAME  0x40
106 
107 #define IPCV2_MAX_NODES        50
108 /*
109  * Error bit set in the CCB status field by the SDMA,
110  * in setbd routine, in case of a transfer error
111  */
112 #define DATA_ERROR  0x10000000
113 
114 /*
115  * Buffer descriptor commands.
116  */
117 #define C0_ADDR             0x01
118 #define C0_LOAD             0x02
119 #define C0_DUMP             0x03
120 #define C0_SETCTX           0x07
121 #define C0_GETCTX           0x03
122 #define C0_SETDM            0x01
123 #define C0_SETPM            0x04
124 #define C0_GETDM            0x02
125 #define C0_GETPM            0x08
126 /*
127  * Change endianness indicator in the BD command field
128  */
129 #define CHANGE_ENDIANNESS   0x80
130 
131 /*
132  *  p_2_p watermark_level description
133  *	Bits		Name			Description
134  *	0-7		Lower WML		Lower watermark level
135  *	8		PS			1: Pad Swallowing
136  *						0: No Pad Swallowing
137  *	9		PA			1: Pad Adding
138  *						0: No Pad Adding
139  *	10		SPDIF			If this bit is set both source
140  *						and destination are on SPBA
141  *	11		Source Bit(SP)		1: Source on SPBA
142  *						0: Source on AIPS
143  *	12		Destination Bit(DP)	1: Destination on SPBA
144  *						0: Destination on AIPS
145  *	13-15		---------		MUST BE 0
146  *	16-23		Higher WML		HWML
147  *	24-27		N			Total number of samples after
148  *						which Pad adding/Swallowing
149  *						must be done. It must be odd.
150  *	28		Lower WML Event(LWE)	SDMA events reg to check for
151  *						LWML event mask
152  *						0: LWE in EVENTS register
153  *						1: LWE in EVENTS2 register
154  *	29		Higher WML Event(HWE)	SDMA events reg to check for
155  *						HWML event mask
156  *						0: HWE in EVENTS register
157  *						1: HWE in EVENTS2 register
158  *	30		---------		MUST BE 0
159  *	31		CONT			1: Amount of samples to be
160  *						transferred is unknown and
161  *						script will keep on
162  *						transferring samples as long as
163  *						both events are detected and
164  *						script must be manually stopped
165  *						by the application
166  *						0: The amount of samples to be
167  *						transferred is equal to the
168  *						count field of mode word
169  */
170 #define SDMA_WATERMARK_LEVEL_LWML	0xFF
171 #define SDMA_WATERMARK_LEVEL_PS		BIT(8)
172 #define SDMA_WATERMARK_LEVEL_PA		BIT(9)
173 #define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
174 #define SDMA_WATERMARK_LEVEL_SP		BIT(11)
175 #define SDMA_WATERMARK_LEVEL_DP		BIT(12)
176 #define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
177 #define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
178 #define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
179 #define SDMA_WATERMARK_LEVEL_CONT	BIT(31)
180 
181 #define SDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
182 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
183 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
184 
185 #define SDMA_DMA_DIRECTIONS	(BIT(DMA_DEV_TO_MEM) | \
186 				 BIT(DMA_MEM_TO_DEV) | \
187 				 BIT(DMA_DEV_TO_DEV))
188 
189 /*
190  * Mode/Count of data node descriptors - IPCv2
191  */
192 struct sdma_mode_count {
193 	u32 count   : 16; /* size of the buffer pointed by this BD */
194 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
195 	u32 command :  8; /* command mostly used for channel 0 */
196 };
197 
198 /*
199  * Buffer descriptor
200  */
201 struct sdma_buffer_descriptor {
202 	struct sdma_mode_count  mode;
203 	u32 buffer_addr;	/* address of the buffer described */
204 	u32 ext_buffer_addr;	/* extended buffer address */
205 } __attribute__ ((packed));
206 
207 /**
208  * struct sdma_channel_control - Channel control Block
209  *
210  * @current_bd_ptr	current buffer descriptor processed
211  * @base_bd_ptr		first element of buffer descriptor array
212  * @unused		padding. The SDMA engine expects an array of 128 byte
213  *			control blocks
214  */
215 struct sdma_channel_control {
216 	u32 current_bd_ptr;
217 	u32 base_bd_ptr;
218 	u32 unused[2];
219 } __attribute__ ((packed));
220 
221 /**
222  * struct sdma_state_registers - SDMA context for a channel
223  *
224  * @pc:		program counter
225  * @t:		test bit: status of arithmetic & test instruction
226  * @rpc:	return program counter
227  * @sf:		source fault while loading data
228  * @spc:	loop start program counter
229  * @df:		destination fault while storing data
230  * @epc:	loop end program counter
231  * @lm:		loop mode
232  */
233 struct sdma_state_registers {
234 	u32 pc     :14;
235 	u32 unused1: 1;
236 	u32 t      : 1;
237 	u32 rpc    :14;
238 	u32 unused0: 1;
239 	u32 sf     : 1;
240 	u32 spc    :14;
241 	u32 unused2: 1;
242 	u32 df     : 1;
243 	u32 epc    :14;
244 	u32 lm     : 2;
245 } __attribute__ ((packed));
246 
247 /**
248  * struct sdma_context_data - sdma context specific to a channel
249  *
250  * @channel_state:	channel state bits
251  * @gReg:		general registers
252  * @mda:		burst dma destination address register
253  * @msa:		burst dma source address register
254  * @ms:			burst dma status register
255  * @md:			burst dma data register
256  * @pda:		peripheral dma destination address register
257  * @psa:		peripheral dma source address register
258  * @ps:			peripheral dma status register
259  * @pd:			peripheral dma data register
260  * @ca:			CRC polynomial register
261  * @cs:			CRC accumulator register
262  * @dda:		dedicated core destination address register
263  * @dsa:		dedicated core source address register
264  * @ds:			dedicated core status register
265  * @dd:			dedicated core data register
266  */
267 struct sdma_context_data {
268 	struct sdma_state_registers  channel_state;
269 	u32  gReg[8];
270 	u32  mda;
271 	u32  msa;
272 	u32  ms;
273 	u32  md;
274 	u32  pda;
275 	u32  psa;
276 	u32  ps;
277 	u32  pd;
278 	u32  ca;
279 	u32  cs;
280 	u32  dda;
281 	u32  dsa;
282 	u32  ds;
283 	u32  dd;
284 	u32  scratch0;
285 	u32  scratch1;
286 	u32  scratch2;
287 	u32  scratch3;
288 	u32  scratch4;
289 	u32  scratch5;
290 	u32  scratch6;
291 	u32  scratch7;
292 } __attribute__ ((packed));
293 
294 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
295 
296 struct sdma_engine;
297 
298 /**
299  * struct sdma_channel - housekeeping for a SDMA channel
300  *
301  * @sdma		pointer to the SDMA engine for this channel
302  * @channel		the channel number, matches dmaengine chan_id + 1
303  * @direction		transfer type. Needed for setting SDMA script
304  * @peripheral_type	Peripheral type. Needed for setting SDMA script
305  * @event_id0		aka dma request line
306  * @event_id1		for channels that use 2 events
307  * @word_size		peripheral access size
308  * @buf_tail		ID of the buffer that was processed
309  * @buf_ptail		ID of the previous buffer that was processed
310  * @num_bd		max NUM_BD. number of descriptors currently handling
311  */
312 struct sdma_channel {
313 	struct sdma_engine		*sdma;
314 	unsigned int			channel;
315 	enum dma_transfer_direction		direction;
316 	enum sdma_peripheral_type	peripheral_type;
317 	unsigned int			event_id0;
318 	unsigned int			event_id1;
319 	enum dma_slave_buswidth		word_size;
320 	unsigned int			buf_tail;
321 	unsigned int			buf_ptail;
322 	unsigned int			num_bd;
323 	unsigned int			period_len;
324 	struct sdma_buffer_descriptor	*bd;
325 	dma_addr_t			bd_phys;
326 	unsigned int			pc_from_device, pc_to_device;
327 	unsigned int			device_to_device;
328 	unsigned long			flags;
329 	dma_addr_t			per_address, per_address2;
330 	unsigned long			event_mask[2];
331 	unsigned long			watermark_level;
332 	u32				shp_addr, per_addr;
333 	struct dma_chan			chan;
334 	spinlock_t			lock;
335 	struct dma_async_tx_descriptor	desc;
336 	enum dma_status			status;
337 	unsigned int			chn_count;
338 	unsigned int			chn_real_count;
339 	struct tasklet_struct		tasklet;
340 	struct imx_dma_data		data;
341 	bool				enabled;
342 };
343 
344 #define IMX_DMA_SG_LOOP		BIT(0)
345 
346 #define MAX_DMA_CHANNELS 32
347 #define MXC_SDMA_DEFAULT_PRIORITY 1
348 #define MXC_SDMA_MIN_PRIORITY 1
349 #define MXC_SDMA_MAX_PRIORITY 7
350 
351 #define SDMA_FIRMWARE_MAGIC 0x414d4453
352 
353 /**
354  * struct sdma_firmware_header - Layout of the firmware image
355  *
356  * @magic		"SDMA"
357  * @version_major	increased whenever layout of struct sdma_script_start_addrs
358  *			changes.
359  * @version_minor	firmware minor version (for binary compatible changes)
360  * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
361  * @num_script_addrs	Number of script addresses in this image
362  * @ram_code_start	offset of SDMA ram image in this firmware image
363  * @ram_code_size	size of SDMA ram image
364  * @script_addrs	Stores the start address of the SDMA scripts
365  *			(in SDMA memory space)
366  */
367 struct sdma_firmware_header {
368 	u32	magic;
369 	u32	version_major;
370 	u32	version_minor;
371 	u32	script_addrs_start;
372 	u32	num_script_addrs;
373 	u32	ram_code_start;
374 	u32	ram_code_size;
375 };
376 
377 struct sdma_driver_data {
378 	int chnenbl0;
379 	int num_events;
380 	struct sdma_script_start_addrs	*script_addrs;
381 };
382 
383 struct sdma_engine {
384 	struct device			*dev;
385 	struct device_dma_parameters	dma_parms;
386 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
387 	struct sdma_channel_control	*channel_control;
388 	void __iomem			*regs;
389 	struct sdma_context_data	*context;
390 	dma_addr_t			context_phys;
391 	struct dma_device		dma_device;
392 	struct clk			*clk_ipg;
393 	struct clk			*clk_ahb;
394 	spinlock_t			channel_0_lock;
395 	u32				script_number;
396 	struct sdma_script_start_addrs	*script_addrs;
397 	const struct sdma_driver_data	*drvdata;
398 	u32				spba_start_addr;
399 	u32				spba_end_addr;
400 	unsigned int			irq;
401 };
402 
403 static struct sdma_driver_data sdma_imx31 = {
404 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
405 	.num_events = 32,
406 };
407 
408 static struct sdma_script_start_addrs sdma_script_imx25 = {
409 	.ap_2_ap_addr = 729,
410 	.uart_2_mcu_addr = 904,
411 	.per_2_app_addr = 1255,
412 	.mcu_2_app_addr = 834,
413 	.uartsh_2_mcu_addr = 1120,
414 	.per_2_shp_addr = 1329,
415 	.mcu_2_shp_addr = 1048,
416 	.ata_2_mcu_addr = 1560,
417 	.mcu_2_ata_addr = 1479,
418 	.app_2_per_addr = 1189,
419 	.app_2_mcu_addr = 770,
420 	.shp_2_per_addr = 1407,
421 	.shp_2_mcu_addr = 979,
422 };
423 
424 static struct sdma_driver_data sdma_imx25 = {
425 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
426 	.num_events = 48,
427 	.script_addrs = &sdma_script_imx25,
428 };
429 
430 static struct sdma_driver_data sdma_imx35 = {
431 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
432 	.num_events = 48,
433 };
434 
435 static struct sdma_script_start_addrs sdma_script_imx51 = {
436 	.ap_2_ap_addr = 642,
437 	.uart_2_mcu_addr = 817,
438 	.mcu_2_app_addr = 747,
439 	.mcu_2_shp_addr = 961,
440 	.ata_2_mcu_addr = 1473,
441 	.mcu_2_ata_addr = 1392,
442 	.app_2_per_addr = 1033,
443 	.app_2_mcu_addr = 683,
444 	.shp_2_per_addr = 1251,
445 	.shp_2_mcu_addr = 892,
446 };
447 
448 static struct sdma_driver_data sdma_imx51 = {
449 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
450 	.num_events = 48,
451 	.script_addrs = &sdma_script_imx51,
452 };
453 
454 static struct sdma_script_start_addrs sdma_script_imx53 = {
455 	.ap_2_ap_addr = 642,
456 	.app_2_mcu_addr = 683,
457 	.mcu_2_app_addr = 747,
458 	.uart_2_mcu_addr = 817,
459 	.shp_2_mcu_addr = 891,
460 	.mcu_2_shp_addr = 960,
461 	.uartsh_2_mcu_addr = 1032,
462 	.spdif_2_mcu_addr = 1100,
463 	.mcu_2_spdif_addr = 1134,
464 	.firi_2_mcu_addr = 1193,
465 	.mcu_2_firi_addr = 1290,
466 };
467 
468 static struct sdma_driver_data sdma_imx53 = {
469 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
470 	.num_events = 48,
471 	.script_addrs = &sdma_script_imx53,
472 };
473 
474 static struct sdma_script_start_addrs sdma_script_imx6q = {
475 	.ap_2_ap_addr = 642,
476 	.uart_2_mcu_addr = 817,
477 	.mcu_2_app_addr = 747,
478 	.per_2_per_addr = 6331,
479 	.uartsh_2_mcu_addr = 1032,
480 	.mcu_2_shp_addr = 960,
481 	.app_2_mcu_addr = 683,
482 	.shp_2_mcu_addr = 891,
483 	.spdif_2_mcu_addr = 1100,
484 	.mcu_2_spdif_addr = 1134,
485 };
486 
487 static struct sdma_driver_data sdma_imx6q = {
488 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
489 	.num_events = 48,
490 	.script_addrs = &sdma_script_imx6q,
491 };
492 
493 static struct sdma_script_start_addrs sdma_script_imx7d = {
494 	.ap_2_ap_addr = 644,
495 	.uart_2_mcu_addr = 819,
496 	.mcu_2_app_addr = 749,
497 	.uartsh_2_mcu_addr = 1034,
498 	.mcu_2_shp_addr = 962,
499 	.app_2_mcu_addr = 685,
500 	.shp_2_mcu_addr = 893,
501 	.spdif_2_mcu_addr = 1102,
502 	.mcu_2_spdif_addr = 1136,
503 };
504 
505 static struct sdma_driver_data sdma_imx7d = {
506 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
507 	.num_events = 48,
508 	.script_addrs = &sdma_script_imx7d,
509 };
510 
511 static const struct platform_device_id sdma_devtypes[] = {
512 	{
513 		.name = "imx25-sdma",
514 		.driver_data = (unsigned long)&sdma_imx25,
515 	}, {
516 		.name = "imx31-sdma",
517 		.driver_data = (unsigned long)&sdma_imx31,
518 	}, {
519 		.name = "imx35-sdma",
520 		.driver_data = (unsigned long)&sdma_imx35,
521 	}, {
522 		.name = "imx51-sdma",
523 		.driver_data = (unsigned long)&sdma_imx51,
524 	}, {
525 		.name = "imx53-sdma",
526 		.driver_data = (unsigned long)&sdma_imx53,
527 	}, {
528 		.name = "imx6q-sdma",
529 		.driver_data = (unsigned long)&sdma_imx6q,
530 	}, {
531 		.name = "imx7d-sdma",
532 		.driver_data = (unsigned long)&sdma_imx7d,
533 	}, {
534 		/* sentinel */
535 	}
536 };
537 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
538 
539 static const struct of_device_id sdma_dt_ids[] = {
540 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
541 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
542 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
543 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
544 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
545 	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
546 	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
547 	{ /* sentinel */ }
548 };
549 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
550 
551 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
552 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
553 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
554 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
555 
556 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
557 {
558 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
559 	return chnenbl0 + event * 4;
560 }
561 
562 static int sdma_config_ownership(struct sdma_channel *sdmac,
563 		bool event_override, bool mcu_override, bool dsp_override)
564 {
565 	struct sdma_engine *sdma = sdmac->sdma;
566 	int channel = sdmac->channel;
567 	unsigned long evt, mcu, dsp;
568 
569 	if (event_override && mcu_override && dsp_override)
570 		return -EINVAL;
571 
572 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
573 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
574 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
575 
576 	if (dsp_override)
577 		__clear_bit(channel, &dsp);
578 	else
579 		__set_bit(channel, &dsp);
580 
581 	if (event_override)
582 		__clear_bit(channel, &evt);
583 	else
584 		__set_bit(channel, &evt);
585 
586 	if (mcu_override)
587 		__clear_bit(channel, &mcu);
588 	else
589 		__set_bit(channel, &mcu);
590 
591 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
592 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
593 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
594 
595 	return 0;
596 }
597 
598 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
599 {
600 	unsigned long flags;
601 	struct sdma_channel *sdmac = &sdma->channel[channel];
602 
603 	writel(BIT(channel), sdma->regs + SDMA_H_START);
604 
605 	spin_lock_irqsave(&sdmac->lock, flags);
606 	sdmac->enabled = true;
607 	spin_unlock_irqrestore(&sdmac->lock, flags);
608 }
609 
610 /*
611  * sdma_run_channel0 - run a channel and wait till it's done
612  */
613 static int sdma_run_channel0(struct sdma_engine *sdma)
614 {
615 	int ret;
616 	u32 reg;
617 
618 	sdma_enable_channel(sdma, 0);
619 
620 	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
621 						reg, !(reg & 1), 1, 500);
622 	if (ret)
623 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
624 
625 	/* Set bits of CONFIG register with dynamic context switching */
626 	if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
627 		writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
628 
629 	return ret;
630 }
631 
632 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
633 		u32 address)
634 {
635 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
636 	void *buf_virt;
637 	dma_addr_t buf_phys;
638 	int ret;
639 	unsigned long flags;
640 
641 	buf_virt = dma_alloc_coherent(NULL,
642 			size,
643 			&buf_phys, GFP_KERNEL);
644 	if (!buf_virt) {
645 		return -ENOMEM;
646 	}
647 
648 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
649 
650 	bd0->mode.command = C0_SETPM;
651 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
652 	bd0->mode.count = size / 2;
653 	bd0->buffer_addr = buf_phys;
654 	bd0->ext_buffer_addr = address;
655 
656 	memcpy(buf_virt, buf, size);
657 
658 	ret = sdma_run_channel0(sdma);
659 
660 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
661 
662 	dma_free_coherent(NULL, size, buf_virt, buf_phys);
663 
664 	return ret;
665 }
666 
667 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
668 {
669 	struct sdma_engine *sdma = sdmac->sdma;
670 	int channel = sdmac->channel;
671 	unsigned long val;
672 	u32 chnenbl = chnenbl_ofs(sdma, event);
673 
674 	val = readl_relaxed(sdma->regs + chnenbl);
675 	__set_bit(channel, &val);
676 	writel_relaxed(val, sdma->regs + chnenbl);
677 }
678 
679 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
680 {
681 	struct sdma_engine *sdma = sdmac->sdma;
682 	int channel = sdmac->channel;
683 	u32 chnenbl = chnenbl_ofs(sdma, event);
684 	unsigned long val;
685 
686 	val = readl_relaxed(sdma->regs + chnenbl);
687 	__clear_bit(channel, &val);
688 	writel_relaxed(val, sdma->regs + chnenbl);
689 }
690 
691 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
692 {
693 	struct sdma_buffer_descriptor *bd;
694 	int error = 0;
695 	enum dma_status	old_status = sdmac->status;
696 	unsigned long flags;
697 
698 	spin_lock_irqsave(&sdmac->lock, flags);
699 	if (!sdmac->enabled) {
700 		spin_unlock_irqrestore(&sdmac->lock, flags);
701 		return;
702 	}
703 	spin_unlock_irqrestore(&sdmac->lock, flags);
704 
705 	/*
706 	 * loop mode. Iterate over descriptors, re-setup them and
707 	 * call callback function.
708 	 */
709 	while (1) {
710 		bd = &sdmac->bd[sdmac->buf_tail];
711 
712 		if (bd->mode.status & BD_DONE)
713 			break;
714 
715 		if (bd->mode.status & BD_RROR) {
716 			bd->mode.status &= ~BD_RROR;
717 			sdmac->status = DMA_ERROR;
718 			error = -EIO;
719 		}
720 
721 	       /*
722 		* We use bd->mode.count to calculate the residue, since contains
723 		* the number of bytes present in the current buffer descriptor.
724 		*/
725 
726 		sdmac->chn_real_count = bd->mode.count;
727 		bd->mode.status |= BD_DONE;
728 		bd->mode.count = sdmac->period_len;
729 		sdmac->buf_ptail = sdmac->buf_tail;
730 		sdmac->buf_tail = (sdmac->buf_tail + 1) % sdmac->num_bd;
731 
732 		/*
733 		 * The callback is called from the interrupt context in order
734 		 * to reduce latency and to avoid the risk of altering the
735 		 * SDMA transaction status by the time the client tasklet is
736 		 * executed.
737 		 */
738 
739 		dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
740 
741 		if (error)
742 			sdmac->status = old_status;
743 	}
744 }
745 
746 static void mxc_sdma_handle_channel_normal(unsigned long data)
747 {
748 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
749 	struct sdma_buffer_descriptor *bd;
750 	int i, error = 0;
751 
752 	sdmac->chn_real_count = 0;
753 	/*
754 	 * non loop mode. Iterate over all descriptors, collect
755 	 * errors and call callback function
756 	 */
757 	for (i = 0; i < sdmac->num_bd; i++) {
758 		bd = &sdmac->bd[i];
759 
760 		 if (bd->mode.status & (BD_DONE | BD_RROR))
761 			error = -EIO;
762 		 sdmac->chn_real_count += bd->mode.count;
763 	}
764 
765 	if (error)
766 		sdmac->status = DMA_ERROR;
767 	else
768 		sdmac->status = DMA_COMPLETE;
769 
770 	dma_cookie_complete(&sdmac->desc);
771 
772 	dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
773 }
774 
775 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
776 {
777 	struct sdma_engine *sdma = dev_id;
778 	unsigned long stat;
779 
780 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
781 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
782 	/* channel 0 is special and not handled here, see run_channel0() */
783 	stat &= ~1;
784 
785 	while (stat) {
786 		int channel = fls(stat) - 1;
787 		struct sdma_channel *sdmac = &sdma->channel[channel];
788 
789 		if (sdmac->flags & IMX_DMA_SG_LOOP)
790 			sdma_update_channel_loop(sdmac);
791 		else
792 			tasklet_schedule(&sdmac->tasklet);
793 
794 		__clear_bit(channel, &stat);
795 	}
796 
797 	return IRQ_HANDLED;
798 }
799 
800 /*
801  * sets the pc of SDMA script according to the peripheral type
802  */
803 static void sdma_get_pc(struct sdma_channel *sdmac,
804 		enum sdma_peripheral_type peripheral_type)
805 {
806 	struct sdma_engine *sdma = sdmac->sdma;
807 	int per_2_emi = 0, emi_2_per = 0;
808 	/*
809 	 * These are needed once we start to support transfers between
810 	 * two peripherals or memory-to-memory transfers
811 	 */
812 	int per_2_per = 0;
813 
814 	sdmac->pc_from_device = 0;
815 	sdmac->pc_to_device = 0;
816 	sdmac->device_to_device = 0;
817 
818 	switch (peripheral_type) {
819 	case IMX_DMATYPE_MEMORY:
820 		break;
821 	case IMX_DMATYPE_DSP:
822 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
823 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
824 		break;
825 	case IMX_DMATYPE_FIRI:
826 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
827 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
828 		break;
829 	case IMX_DMATYPE_UART:
830 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
831 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
832 		break;
833 	case IMX_DMATYPE_UART_SP:
834 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
835 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
836 		break;
837 	case IMX_DMATYPE_ATA:
838 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
839 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
840 		break;
841 	case IMX_DMATYPE_CSPI:
842 	case IMX_DMATYPE_EXT:
843 	case IMX_DMATYPE_SSI:
844 	case IMX_DMATYPE_SAI:
845 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
846 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
847 		break;
848 	case IMX_DMATYPE_SSI_DUAL:
849 		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
850 		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
851 		break;
852 	case IMX_DMATYPE_SSI_SP:
853 	case IMX_DMATYPE_MMC:
854 	case IMX_DMATYPE_SDHC:
855 	case IMX_DMATYPE_CSPI_SP:
856 	case IMX_DMATYPE_ESAI:
857 	case IMX_DMATYPE_MSHC_SP:
858 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
859 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
860 		break;
861 	case IMX_DMATYPE_ASRC:
862 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
863 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
864 		per_2_per = sdma->script_addrs->per_2_per_addr;
865 		break;
866 	case IMX_DMATYPE_ASRC_SP:
867 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
868 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
869 		per_2_per = sdma->script_addrs->per_2_per_addr;
870 		break;
871 	case IMX_DMATYPE_MSHC:
872 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
873 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
874 		break;
875 	case IMX_DMATYPE_CCM:
876 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
877 		break;
878 	case IMX_DMATYPE_SPDIF:
879 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
880 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
881 		break;
882 	case IMX_DMATYPE_IPU_MEMORY:
883 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
884 		break;
885 	default:
886 		break;
887 	}
888 
889 	sdmac->pc_from_device = per_2_emi;
890 	sdmac->pc_to_device = emi_2_per;
891 	sdmac->device_to_device = per_2_per;
892 }
893 
894 static int sdma_load_context(struct sdma_channel *sdmac)
895 {
896 	struct sdma_engine *sdma = sdmac->sdma;
897 	int channel = sdmac->channel;
898 	int load_address;
899 	struct sdma_context_data *context = sdma->context;
900 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
901 	int ret;
902 	unsigned long flags;
903 
904 	if (sdmac->direction == DMA_DEV_TO_MEM)
905 		load_address = sdmac->pc_from_device;
906 	else if (sdmac->direction == DMA_DEV_TO_DEV)
907 		load_address = sdmac->device_to_device;
908 	else
909 		load_address = sdmac->pc_to_device;
910 
911 	if (load_address < 0)
912 		return load_address;
913 
914 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
915 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
916 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
917 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
918 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
919 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
920 
921 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
922 
923 	memset(context, 0, sizeof(*context));
924 	context->channel_state.pc = load_address;
925 
926 	/* Send by context the event mask,base address for peripheral
927 	 * and watermark level
928 	 */
929 	context->gReg[0] = sdmac->event_mask[1];
930 	context->gReg[1] = sdmac->event_mask[0];
931 	context->gReg[2] = sdmac->per_addr;
932 	context->gReg[6] = sdmac->shp_addr;
933 	context->gReg[7] = sdmac->watermark_level;
934 
935 	bd0->mode.command = C0_SETDM;
936 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
937 	bd0->mode.count = sizeof(*context) / 4;
938 	bd0->buffer_addr = sdma->context_phys;
939 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
940 	ret = sdma_run_channel0(sdma);
941 
942 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
943 
944 	return ret;
945 }
946 
947 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
948 {
949 	return container_of(chan, struct sdma_channel, chan);
950 }
951 
952 static int sdma_disable_channel(struct dma_chan *chan)
953 {
954 	struct sdma_channel *sdmac = to_sdma_chan(chan);
955 	struct sdma_engine *sdma = sdmac->sdma;
956 	int channel = sdmac->channel;
957 	unsigned long flags;
958 
959 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
960 	sdmac->status = DMA_ERROR;
961 
962 	spin_lock_irqsave(&sdmac->lock, flags);
963 	sdmac->enabled = false;
964 	spin_unlock_irqrestore(&sdmac->lock, flags);
965 
966 	return 0;
967 }
968 
969 static int sdma_disable_channel_with_delay(struct dma_chan *chan)
970 {
971 	sdma_disable_channel(chan);
972 
973 	/*
974 	 * According to NXP R&D team a delay of one BD SDMA cost time
975 	 * (maximum is 1ms) should be added after disable of the channel
976 	 * bit, to ensure SDMA core has really been stopped after SDMA
977 	 * clients call .device_terminate_all.
978 	 */
979 	mdelay(1);
980 
981 	return 0;
982 }
983 
984 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
985 {
986 	struct sdma_engine *sdma = sdmac->sdma;
987 
988 	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
989 	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
990 
991 	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
992 	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
993 
994 	if (sdmac->event_id0 > 31)
995 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
996 
997 	if (sdmac->event_id1 > 31)
998 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
999 
1000 	/*
1001 	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1002 	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1003 	 * r0(event_mask[1]) and r1(event_mask[0]).
1004 	 */
1005 	if (lwml > hwml) {
1006 		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1007 						SDMA_WATERMARK_LEVEL_HWML);
1008 		sdmac->watermark_level |= hwml;
1009 		sdmac->watermark_level |= lwml << 16;
1010 		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1011 	}
1012 
1013 	if (sdmac->per_address2 >= sdma->spba_start_addr &&
1014 			sdmac->per_address2 <= sdma->spba_end_addr)
1015 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1016 
1017 	if (sdmac->per_address >= sdma->spba_start_addr &&
1018 			sdmac->per_address <= sdma->spba_end_addr)
1019 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1020 
1021 	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1022 }
1023 
1024 static int sdma_config_channel(struct dma_chan *chan)
1025 {
1026 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1027 	int ret;
1028 
1029 	sdma_disable_channel(chan);
1030 
1031 	sdmac->event_mask[0] = 0;
1032 	sdmac->event_mask[1] = 0;
1033 	sdmac->shp_addr = 0;
1034 	sdmac->per_addr = 0;
1035 
1036 	if (sdmac->event_id0) {
1037 		if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1038 			return -EINVAL;
1039 		sdma_event_enable(sdmac, sdmac->event_id0);
1040 	}
1041 
1042 	if (sdmac->event_id1) {
1043 		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1044 			return -EINVAL;
1045 		sdma_event_enable(sdmac, sdmac->event_id1);
1046 	}
1047 
1048 	switch (sdmac->peripheral_type) {
1049 	case IMX_DMATYPE_DSP:
1050 		sdma_config_ownership(sdmac, false, true, true);
1051 		break;
1052 	case IMX_DMATYPE_MEMORY:
1053 		sdma_config_ownership(sdmac, false, true, false);
1054 		break;
1055 	default:
1056 		sdma_config_ownership(sdmac, true, true, false);
1057 		break;
1058 	}
1059 
1060 	sdma_get_pc(sdmac, sdmac->peripheral_type);
1061 
1062 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1063 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1064 		/* Handle multiple event channels differently */
1065 		if (sdmac->event_id1) {
1066 			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1067 			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1068 				sdma_set_watermarklevel_for_p2p(sdmac);
1069 		} else
1070 			__set_bit(sdmac->event_id0, sdmac->event_mask);
1071 
1072 		/* Address */
1073 		sdmac->shp_addr = sdmac->per_address;
1074 		sdmac->per_addr = sdmac->per_address2;
1075 	} else {
1076 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1077 	}
1078 
1079 	ret = sdma_load_context(sdmac);
1080 
1081 	return ret;
1082 }
1083 
1084 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1085 		unsigned int priority)
1086 {
1087 	struct sdma_engine *sdma = sdmac->sdma;
1088 	int channel = sdmac->channel;
1089 
1090 	if (priority < MXC_SDMA_MIN_PRIORITY
1091 	    || priority > MXC_SDMA_MAX_PRIORITY) {
1092 		return -EINVAL;
1093 	}
1094 
1095 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1096 
1097 	return 0;
1098 }
1099 
1100 static int sdma_request_channel(struct sdma_channel *sdmac)
1101 {
1102 	struct sdma_engine *sdma = sdmac->sdma;
1103 	int channel = sdmac->channel;
1104 	int ret = -EBUSY;
1105 
1106 	sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
1107 					GFP_KERNEL);
1108 	if (!sdmac->bd) {
1109 		ret = -ENOMEM;
1110 		goto out;
1111 	}
1112 
1113 	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
1114 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1115 
1116 	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
1117 	return 0;
1118 out:
1119 
1120 	return ret;
1121 }
1122 
1123 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
1124 {
1125 	unsigned long flags;
1126 	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
1127 	dma_cookie_t cookie;
1128 
1129 	spin_lock_irqsave(&sdmac->lock, flags);
1130 
1131 	cookie = dma_cookie_assign(tx);
1132 
1133 	spin_unlock_irqrestore(&sdmac->lock, flags);
1134 
1135 	return cookie;
1136 }
1137 
1138 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1139 {
1140 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1141 	struct imx_dma_data *data = chan->private;
1142 	int prio, ret;
1143 
1144 	if (!data)
1145 		return -EINVAL;
1146 
1147 	switch (data->priority) {
1148 	case DMA_PRIO_HIGH:
1149 		prio = 3;
1150 		break;
1151 	case DMA_PRIO_MEDIUM:
1152 		prio = 2;
1153 		break;
1154 	case DMA_PRIO_LOW:
1155 	default:
1156 		prio = 1;
1157 		break;
1158 	}
1159 
1160 	sdmac->peripheral_type = data->peripheral_type;
1161 	sdmac->event_id0 = data->dma_request;
1162 	sdmac->event_id1 = data->dma_request2;
1163 
1164 	ret = clk_enable(sdmac->sdma->clk_ipg);
1165 	if (ret)
1166 		return ret;
1167 	ret = clk_enable(sdmac->sdma->clk_ahb);
1168 	if (ret)
1169 		goto disable_clk_ipg;
1170 
1171 	ret = sdma_request_channel(sdmac);
1172 	if (ret)
1173 		goto disable_clk_ahb;
1174 
1175 	ret = sdma_set_channel_priority(sdmac, prio);
1176 	if (ret)
1177 		goto disable_clk_ahb;
1178 
1179 	dma_async_tx_descriptor_init(&sdmac->desc, chan);
1180 	sdmac->desc.tx_submit = sdma_tx_submit;
1181 	/* txd.flags will be overwritten in prep funcs */
1182 	sdmac->desc.flags = DMA_CTRL_ACK;
1183 
1184 	return 0;
1185 
1186 disable_clk_ahb:
1187 	clk_disable(sdmac->sdma->clk_ahb);
1188 disable_clk_ipg:
1189 	clk_disable(sdmac->sdma->clk_ipg);
1190 	return ret;
1191 }
1192 
1193 static void sdma_free_chan_resources(struct dma_chan *chan)
1194 {
1195 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1196 	struct sdma_engine *sdma = sdmac->sdma;
1197 
1198 	sdma_disable_channel(chan);
1199 
1200 	if (sdmac->event_id0)
1201 		sdma_event_disable(sdmac, sdmac->event_id0);
1202 	if (sdmac->event_id1)
1203 		sdma_event_disable(sdmac, sdmac->event_id1);
1204 
1205 	sdmac->event_id0 = 0;
1206 	sdmac->event_id1 = 0;
1207 
1208 	sdma_set_channel_priority(sdmac, 0);
1209 
1210 	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1211 
1212 	clk_disable(sdma->clk_ipg);
1213 	clk_disable(sdma->clk_ahb);
1214 }
1215 
1216 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1217 		struct dma_chan *chan, struct scatterlist *sgl,
1218 		unsigned int sg_len, enum dma_transfer_direction direction,
1219 		unsigned long flags, void *context)
1220 {
1221 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1222 	struct sdma_engine *sdma = sdmac->sdma;
1223 	int ret, i, count;
1224 	int channel = sdmac->channel;
1225 	struct scatterlist *sg;
1226 
1227 	if (sdmac->status == DMA_IN_PROGRESS)
1228 		return NULL;
1229 	sdmac->status = DMA_IN_PROGRESS;
1230 
1231 	sdmac->flags = 0;
1232 
1233 	sdmac->buf_tail = 0;
1234 	sdmac->buf_ptail = 0;
1235 	sdmac->chn_real_count = 0;
1236 
1237 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1238 			sg_len, channel);
1239 
1240 	sdmac->direction = direction;
1241 	ret = sdma_load_context(sdmac);
1242 	if (ret)
1243 		goto err_out;
1244 
1245 	if (sg_len > NUM_BD) {
1246 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1247 				channel, sg_len, NUM_BD);
1248 		ret = -EINVAL;
1249 		goto err_out;
1250 	}
1251 
1252 	sdmac->chn_count = 0;
1253 	for_each_sg(sgl, sg, sg_len, i) {
1254 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1255 		int param;
1256 
1257 		bd->buffer_addr = sg->dma_address;
1258 
1259 		count = sg_dma_len(sg);
1260 
1261 		if (count > 0xffff) {
1262 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1263 					channel, count, 0xffff);
1264 			ret = -EINVAL;
1265 			goto err_out;
1266 		}
1267 
1268 		bd->mode.count = count;
1269 		sdmac->chn_count += count;
1270 
1271 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1272 			ret =  -EINVAL;
1273 			goto err_out;
1274 		}
1275 
1276 		switch (sdmac->word_size) {
1277 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1278 			bd->mode.command = 0;
1279 			if (count & 3 || sg->dma_address & 3)
1280 				return NULL;
1281 			break;
1282 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1283 			bd->mode.command = 2;
1284 			if (count & 1 || sg->dma_address & 1)
1285 				return NULL;
1286 			break;
1287 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1288 			bd->mode.command = 1;
1289 			break;
1290 		default:
1291 			return NULL;
1292 		}
1293 
1294 		param = BD_DONE | BD_EXTD | BD_CONT;
1295 
1296 		if (i + 1 == sg_len) {
1297 			param |= BD_INTR;
1298 			param |= BD_LAST;
1299 			param &= ~BD_CONT;
1300 		}
1301 
1302 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1303 				i, count, (u64)sg->dma_address,
1304 				param & BD_WRAP ? "wrap" : "",
1305 				param & BD_INTR ? " intr" : "");
1306 
1307 		bd->mode.status = param;
1308 	}
1309 
1310 	sdmac->num_bd = sg_len;
1311 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1312 
1313 	return &sdmac->desc;
1314 err_out:
1315 	sdmac->status = DMA_ERROR;
1316 	return NULL;
1317 }
1318 
1319 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1320 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1321 		size_t period_len, enum dma_transfer_direction direction,
1322 		unsigned long flags)
1323 {
1324 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1325 	struct sdma_engine *sdma = sdmac->sdma;
1326 	int num_periods = buf_len / period_len;
1327 	int channel = sdmac->channel;
1328 	int ret, i = 0, buf = 0;
1329 
1330 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1331 
1332 	if (sdmac->status == DMA_IN_PROGRESS)
1333 		return NULL;
1334 
1335 	sdmac->status = DMA_IN_PROGRESS;
1336 
1337 	sdmac->buf_tail = 0;
1338 	sdmac->buf_ptail = 0;
1339 	sdmac->chn_real_count = 0;
1340 	sdmac->period_len = period_len;
1341 
1342 	sdmac->flags |= IMX_DMA_SG_LOOP;
1343 	sdmac->direction = direction;
1344 	ret = sdma_load_context(sdmac);
1345 	if (ret)
1346 		goto err_out;
1347 
1348 	if (num_periods > NUM_BD) {
1349 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1350 				channel, num_periods, NUM_BD);
1351 		goto err_out;
1352 	}
1353 
1354 	if (period_len > 0xffff) {
1355 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1356 				channel, period_len, 0xffff);
1357 		goto err_out;
1358 	}
1359 
1360 	while (buf < buf_len) {
1361 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1362 		int param;
1363 
1364 		bd->buffer_addr = dma_addr;
1365 
1366 		bd->mode.count = period_len;
1367 
1368 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1369 			goto err_out;
1370 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1371 			bd->mode.command = 0;
1372 		else
1373 			bd->mode.command = sdmac->word_size;
1374 
1375 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1376 		if (i + 1 == num_periods)
1377 			param |= BD_WRAP;
1378 
1379 		dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1380 				i, period_len, (u64)dma_addr,
1381 				param & BD_WRAP ? "wrap" : "",
1382 				param & BD_INTR ? " intr" : "");
1383 
1384 		bd->mode.status = param;
1385 
1386 		dma_addr += period_len;
1387 		buf += period_len;
1388 
1389 		i++;
1390 	}
1391 
1392 	sdmac->num_bd = num_periods;
1393 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1394 
1395 	return &sdmac->desc;
1396 err_out:
1397 	sdmac->status = DMA_ERROR;
1398 	return NULL;
1399 }
1400 
1401 static int sdma_config(struct dma_chan *chan,
1402 		       struct dma_slave_config *dmaengine_cfg)
1403 {
1404 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1405 
1406 	if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1407 		sdmac->per_address = dmaengine_cfg->src_addr;
1408 		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1409 			dmaengine_cfg->src_addr_width;
1410 		sdmac->word_size = dmaengine_cfg->src_addr_width;
1411 	} else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
1412 		sdmac->per_address2 = dmaengine_cfg->src_addr;
1413 		sdmac->per_address = dmaengine_cfg->dst_addr;
1414 		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1415 			SDMA_WATERMARK_LEVEL_LWML;
1416 		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1417 			SDMA_WATERMARK_LEVEL_HWML;
1418 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1419 	} else {
1420 		sdmac->per_address = dmaengine_cfg->dst_addr;
1421 		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1422 			dmaengine_cfg->dst_addr_width;
1423 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1424 	}
1425 	sdmac->direction = dmaengine_cfg->direction;
1426 	return sdma_config_channel(chan);
1427 }
1428 
1429 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1430 				      dma_cookie_t cookie,
1431 				      struct dma_tx_state *txstate)
1432 {
1433 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1434 	u32 residue;
1435 
1436 	if (sdmac->flags & IMX_DMA_SG_LOOP)
1437 		residue = (sdmac->num_bd - sdmac->buf_ptail) *
1438 			   sdmac->period_len - sdmac->chn_real_count;
1439 	else
1440 		residue = sdmac->chn_count - sdmac->chn_real_count;
1441 
1442 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1443 			 residue);
1444 
1445 	return sdmac->status;
1446 }
1447 
1448 static void sdma_issue_pending(struct dma_chan *chan)
1449 {
1450 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1451 	struct sdma_engine *sdma = sdmac->sdma;
1452 
1453 	if (sdmac->status == DMA_IN_PROGRESS)
1454 		sdma_enable_channel(sdma, sdmac->channel);
1455 }
1456 
1457 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1458 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1459 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	41
1460 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4	42
1461 
1462 static void sdma_add_scripts(struct sdma_engine *sdma,
1463 		const struct sdma_script_start_addrs *addr)
1464 {
1465 	s32 *addr_arr = (u32 *)addr;
1466 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1467 	int i;
1468 
1469 	/* use the default firmware in ROM if missing external firmware */
1470 	if (!sdma->script_number)
1471 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1472 
1473 	for (i = 0; i < sdma->script_number; i++)
1474 		if (addr_arr[i] > 0)
1475 			saddr_arr[i] = addr_arr[i];
1476 }
1477 
1478 static void sdma_load_firmware(const struct firmware *fw, void *context)
1479 {
1480 	struct sdma_engine *sdma = context;
1481 	const struct sdma_firmware_header *header;
1482 	const struct sdma_script_start_addrs *addr;
1483 	unsigned short *ram_code;
1484 
1485 	if (!fw) {
1486 		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1487 		/* In this case we just use the ROM firmware. */
1488 		return;
1489 	}
1490 
1491 	if (fw->size < sizeof(*header))
1492 		goto err_firmware;
1493 
1494 	header = (struct sdma_firmware_header *)fw->data;
1495 
1496 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1497 		goto err_firmware;
1498 	if (header->ram_code_start + header->ram_code_size > fw->size)
1499 		goto err_firmware;
1500 	switch (header->version_major) {
1501 	case 1:
1502 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1503 		break;
1504 	case 2:
1505 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1506 		break;
1507 	case 3:
1508 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1509 		break;
1510 	case 4:
1511 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1512 		break;
1513 	default:
1514 		dev_err(sdma->dev, "unknown firmware version\n");
1515 		goto err_firmware;
1516 	}
1517 
1518 	addr = (void *)header + header->script_addrs_start;
1519 	ram_code = (void *)header + header->ram_code_start;
1520 
1521 	clk_enable(sdma->clk_ipg);
1522 	clk_enable(sdma->clk_ahb);
1523 	/* download the RAM image for SDMA */
1524 	sdma_load_script(sdma, ram_code,
1525 			header->ram_code_size,
1526 			addr->ram_code_start_addr);
1527 	clk_disable(sdma->clk_ipg);
1528 	clk_disable(sdma->clk_ahb);
1529 
1530 	sdma_add_scripts(sdma, addr);
1531 
1532 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1533 			header->version_major,
1534 			header->version_minor);
1535 
1536 err_firmware:
1537 	release_firmware(fw);
1538 }
1539 
1540 #define EVENT_REMAP_CELLS 3
1541 
1542 static int sdma_event_remap(struct sdma_engine *sdma)
1543 {
1544 	struct device_node *np = sdma->dev->of_node;
1545 	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1546 	struct property *event_remap;
1547 	struct regmap *gpr;
1548 	char propname[] = "fsl,sdma-event-remap";
1549 	u32 reg, val, shift, num_map, i;
1550 	int ret = 0;
1551 
1552 	if (IS_ERR(np) || IS_ERR(gpr_np))
1553 		goto out;
1554 
1555 	event_remap = of_find_property(np, propname, NULL);
1556 	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1557 	if (!num_map) {
1558 		dev_dbg(sdma->dev, "no event needs to be remapped\n");
1559 		goto out;
1560 	} else if (num_map % EVENT_REMAP_CELLS) {
1561 		dev_err(sdma->dev, "the property %s must modulo %d\n",
1562 				propname, EVENT_REMAP_CELLS);
1563 		ret = -EINVAL;
1564 		goto out;
1565 	}
1566 
1567 	gpr = syscon_node_to_regmap(gpr_np);
1568 	if (IS_ERR(gpr)) {
1569 		dev_err(sdma->dev, "failed to get gpr regmap\n");
1570 		ret = PTR_ERR(gpr);
1571 		goto out;
1572 	}
1573 
1574 	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1575 		ret = of_property_read_u32_index(np, propname, i, &reg);
1576 		if (ret) {
1577 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1578 					propname, i);
1579 			goto out;
1580 		}
1581 
1582 		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1583 		if (ret) {
1584 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1585 					propname, i + 1);
1586 			goto out;
1587 		}
1588 
1589 		ret = of_property_read_u32_index(np, propname, i + 2, &val);
1590 		if (ret) {
1591 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1592 					propname, i + 2);
1593 			goto out;
1594 		}
1595 
1596 		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1597 	}
1598 
1599 out:
1600 	if (!IS_ERR(gpr_np))
1601 		of_node_put(gpr_np);
1602 
1603 	return ret;
1604 }
1605 
1606 static int sdma_get_firmware(struct sdma_engine *sdma,
1607 		const char *fw_name)
1608 {
1609 	int ret;
1610 
1611 	ret = request_firmware_nowait(THIS_MODULE,
1612 			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1613 			GFP_KERNEL, sdma, sdma_load_firmware);
1614 
1615 	return ret;
1616 }
1617 
1618 static int sdma_init(struct sdma_engine *sdma)
1619 {
1620 	int i, ret;
1621 	dma_addr_t ccb_phys;
1622 
1623 	ret = clk_enable(sdma->clk_ipg);
1624 	if (ret)
1625 		return ret;
1626 	ret = clk_enable(sdma->clk_ahb);
1627 	if (ret)
1628 		goto disable_clk_ipg;
1629 
1630 	/* Be sure SDMA has not started yet */
1631 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1632 
1633 	sdma->channel_control = dma_alloc_coherent(NULL,
1634 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1635 			sizeof(struct sdma_context_data),
1636 			&ccb_phys, GFP_KERNEL);
1637 
1638 	if (!sdma->channel_control) {
1639 		ret = -ENOMEM;
1640 		goto err_dma_alloc;
1641 	}
1642 
1643 	sdma->context = (void *)sdma->channel_control +
1644 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1645 	sdma->context_phys = ccb_phys +
1646 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1647 
1648 	/* Zero-out the CCB structures array just allocated */
1649 	memset(sdma->channel_control, 0,
1650 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1651 
1652 	/* disable all channels */
1653 	for (i = 0; i < sdma->drvdata->num_events; i++)
1654 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1655 
1656 	/* All channels have priority 0 */
1657 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1658 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1659 
1660 	ret = sdma_request_channel(&sdma->channel[0]);
1661 	if (ret)
1662 		goto err_dma_alloc;
1663 
1664 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1665 
1666 	/* Set Command Channel (Channel Zero) */
1667 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1668 
1669 	/* Set bits of CONFIG register but with static context switching */
1670 	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1671 	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1672 
1673 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1674 
1675 	/* Initializes channel's priorities */
1676 	sdma_set_channel_priority(&sdma->channel[0], 7);
1677 
1678 	clk_disable(sdma->clk_ipg);
1679 	clk_disable(sdma->clk_ahb);
1680 
1681 	return 0;
1682 
1683 err_dma_alloc:
1684 	clk_disable(sdma->clk_ahb);
1685 disable_clk_ipg:
1686 	clk_disable(sdma->clk_ipg);
1687 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1688 	return ret;
1689 }
1690 
1691 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1692 {
1693 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1694 	struct imx_dma_data *data = fn_param;
1695 
1696 	if (!imx_dma_is_general_purpose(chan))
1697 		return false;
1698 
1699 	sdmac->data = *data;
1700 	chan->private = &sdmac->data;
1701 
1702 	return true;
1703 }
1704 
1705 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1706 				   struct of_dma *ofdma)
1707 {
1708 	struct sdma_engine *sdma = ofdma->of_dma_data;
1709 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1710 	struct imx_dma_data data;
1711 
1712 	if (dma_spec->args_count != 3)
1713 		return NULL;
1714 
1715 	data.dma_request = dma_spec->args[0];
1716 	data.peripheral_type = dma_spec->args[1];
1717 	data.priority = dma_spec->args[2];
1718 	/*
1719 	 * init dma_request2 to zero, which is not used by the dts.
1720 	 * For P2P, dma_request2 is init from dma_request_channel(),
1721 	 * chan->private will point to the imx_dma_data, and in
1722 	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1723 	 * be set to sdmac->event_id1.
1724 	 */
1725 	data.dma_request2 = 0;
1726 
1727 	return dma_request_channel(mask, sdma_filter_fn, &data);
1728 }
1729 
1730 static int sdma_probe(struct platform_device *pdev)
1731 {
1732 	const struct of_device_id *of_id =
1733 			of_match_device(sdma_dt_ids, &pdev->dev);
1734 	struct device_node *np = pdev->dev.of_node;
1735 	struct device_node *spba_bus;
1736 	const char *fw_name;
1737 	int ret;
1738 	int irq;
1739 	struct resource *iores;
1740 	struct resource spba_res;
1741 	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1742 	int i;
1743 	struct sdma_engine *sdma;
1744 	s32 *saddr_arr;
1745 	const struct sdma_driver_data *drvdata = NULL;
1746 
1747 	if (of_id)
1748 		drvdata = of_id->data;
1749 	else if (pdev->id_entry)
1750 		drvdata = (void *)pdev->id_entry->driver_data;
1751 
1752 	if (!drvdata) {
1753 		dev_err(&pdev->dev, "unable to find driver data\n");
1754 		return -EINVAL;
1755 	}
1756 
1757 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1758 	if (ret)
1759 		return ret;
1760 
1761 	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1762 	if (!sdma)
1763 		return -ENOMEM;
1764 
1765 	spin_lock_init(&sdma->channel_0_lock);
1766 
1767 	sdma->dev = &pdev->dev;
1768 	sdma->drvdata = drvdata;
1769 
1770 	irq = platform_get_irq(pdev, 0);
1771 	if (irq < 0)
1772 		return irq;
1773 
1774 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1775 	sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1776 	if (IS_ERR(sdma->regs))
1777 		return PTR_ERR(sdma->regs);
1778 
1779 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1780 	if (IS_ERR(sdma->clk_ipg))
1781 		return PTR_ERR(sdma->clk_ipg);
1782 
1783 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1784 	if (IS_ERR(sdma->clk_ahb))
1785 		return PTR_ERR(sdma->clk_ahb);
1786 
1787 	ret = clk_prepare(sdma->clk_ipg);
1788 	if (ret)
1789 		return ret;
1790 
1791 	ret = clk_prepare(sdma->clk_ahb);
1792 	if (ret)
1793 		goto err_clk;
1794 
1795 	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
1796 			       sdma);
1797 	if (ret)
1798 		goto err_irq;
1799 
1800 	sdma->irq = irq;
1801 
1802 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1803 	if (!sdma->script_addrs) {
1804 		ret = -ENOMEM;
1805 		goto err_irq;
1806 	}
1807 
1808 	/* initially no scripts available */
1809 	saddr_arr = (s32 *)sdma->script_addrs;
1810 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1811 		saddr_arr[i] = -EINVAL;
1812 
1813 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1814 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1815 
1816 	INIT_LIST_HEAD(&sdma->dma_device.channels);
1817 	/* Initialize channel parameters */
1818 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1819 		struct sdma_channel *sdmac = &sdma->channel[i];
1820 
1821 		sdmac->sdma = sdma;
1822 		spin_lock_init(&sdmac->lock);
1823 
1824 		sdmac->chan.device = &sdma->dma_device;
1825 		dma_cookie_init(&sdmac->chan);
1826 		sdmac->channel = i;
1827 
1828 		tasklet_init(&sdmac->tasklet, mxc_sdma_handle_channel_normal,
1829 			     (unsigned long) sdmac);
1830 		/*
1831 		 * Add the channel to the DMAC list. Do not add channel 0 though
1832 		 * because we need it internally in the SDMA driver. This also means
1833 		 * that channel 0 in dmaengine counting matches sdma channel 1.
1834 		 */
1835 		if (i)
1836 			list_add_tail(&sdmac->chan.device_node,
1837 					&sdma->dma_device.channels);
1838 	}
1839 
1840 	ret = sdma_init(sdma);
1841 	if (ret)
1842 		goto err_init;
1843 
1844 	ret = sdma_event_remap(sdma);
1845 	if (ret)
1846 		goto err_init;
1847 
1848 	if (sdma->drvdata->script_addrs)
1849 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1850 	if (pdata && pdata->script_addrs)
1851 		sdma_add_scripts(sdma, pdata->script_addrs);
1852 
1853 	if (pdata) {
1854 		ret = sdma_get_firmware(sdma, pdata->fw_name);
1855 		if (ret)
1856 			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1857 	} else {
1858 		/*
1859 		 * Because that device tree does not encode ROM script address,
1860 		 * the RAM script in firmware is mandatory for device tree
1861 		 * probe, otherwise it fails.
1862 		 */
1863 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1864 					      &fw_name);
1865 		if (ret)
1866 			dev_warn(&pdev->dev, "failed to get firmware name\n");
1867 		else {
1868 			ret = sdma_get_firmware(sdma, fw_name);
1869 			if (ret)
1870 				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1871 		}
1872 	}
1873 
1874 	sdma->dma_device.dev = &pdev->dev;
1875 
1876 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1877 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1878 	sdma->dma_device.device_tx_status = sdma_tx_status;
1879 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1880 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1881 	sdma->dma_device.device_config = sdma_config;
1882 	sdma->dma_device.device_terminate_all = sdma_disable_channel_with_delay;
1883 	sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
1884 	sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
1885 	sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
1886 	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
1887 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1888 	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1889 	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1890 
1891 	platform_set_drvdata(pdev, sdma);
1892 
1893 	ret = dma_async_device_register(&sdma->dma_device);
1894 	if (ret) {
1895 		dev_err(&pdev->dev, "unable to register\n");
1896 		goto err_init;
1897 	}
1898 
1899 	if (np) {
1900 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
1901 		if (ret) {
1902 			dev_err(&pdev->dev, "failed to register controller\n");
1903 			goto err_register;
1904 		}
1905 
1906 		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
1907 		ret = of_address_to_resource(spba_bus, 0, &spba_res);
1908 		if (!ret) {
1909 			sdma->spba_start_addr = spba_res.start;
1910 			sdma->spba_end_addr = spba_res.end;
1911 		}
1912 		of_node_put(spba_bus);
1913 	}
1914 
1915 	return 0;
1916 
1917 err_register:
1918 	dma_async_device_unregister(&sdma->dma_device);
1919 err_init:
1920 	kfree(sdma->script_addrs);
1921 err_irq:
1922 	clk_unprepare(sdma->clk_ahb);
1923 err_clk:
1924 	clk_unprepare(sdma->clk_ipg);
1925 	return ret;
1926 }
1927 
1928 static int sdma_remove(struct platform_device *pdev)
1929 {
1930 	struct sdma_engine *sdma = platform_get_drvdata(pdev);
1931 	int i;
1932 
1933 	devm_free_irq(&pdev->dev, sdma->irq, sdma);
1934 	dma_async_device_unregister(&sdma->dma_device);
1935 	kfree(sdma->script_addrs);
1936 	clk_unprepare(sdma->clk_ahb);
1937 	clk_unprepare(sdma->clk_ipg);
1938 	/* Kill the tasklet */
1939 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1940 		struct sdma_channel *sdmac = &sdma->channel[i];
1941 
1942 		tasklet_kill(&sdmac->tasklet);
1943 	}
1944 
1945 	platform_set_drvdata(pdev, NULL);
1946 	return 0;
1947 }
1948 
1949 static struct platform_driver sdma_driver = {
1950 	.driver		= {
1951 		.name	= "imx-sdma",
1952 		.of_match_table = sdma_dt_ids,
1953 	},
1954 	.id_table	= sdma_devtypes,
1955 	.remove		= sdma_remove,
1956 	.probe		= sdma_probe,
1957 };
1958 
1959 module_platform_driver(sdma_driver);
1960 
1961 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1962 MODULE_DESCRIPTION("i.MX SDMA driver");
1963 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
1964 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
1965 #endif
1966 #if IS_ENABLED(CONFIG_SOC_IMX7D)
1967 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
1968 #endif
1969 MODULE_LICENSE("GPL");
1970