xref: /openbmc/linux/drivers/dma/imx-sdma.c (revision ca79522c)
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19 
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39 
40 #include <asm/irq.h>
41 #include <linux/platform_data/dma-imx-sdma.h>
42 #include <linux/platform_data/dma-imx.h>
43 
44 #include "dmaengine.h"
45 
46 /* SDMA registers */
47 #define SDMA_H_C0PTR		0x000
48 #define SDMA_H_INTR		0x004
49 #define SDMA_H_STATSTOP		0x008
50 #define SDMA_H_START		0x00c
51 #define SDMA_H_EVTOVR		0x010
52 #define SDMA_H_DSPOVR		0x014
53 #define SDMA_H_HOSTOVR		0x018
54 #define SDMA_H_EVTPEND		0x01c
55 #define SDMA_H_DSPENBL		0x020
56 #define SDMA_H_RESET		0x024
57 #define SDMA_H_EVTERR		0x028
58 #define SDMA_H_INTRMSK		0x02c
59 #define SDMA_H_PSW		0x030
60 #define SDMA_H_EVTERRDBG	0x034
61 #define SDMA_H_CONFIG		0x038
62 #define SDMA_ONCE_ENB		0x040
63 #define SDMA_ONCE_DATA		0x044
64 #define SDMA_ONCE_INSTR		0x048
65 #define SDMA_ONCE_STAT		0x04c
66 #define SDMA_ONCE_CMD		0x050
67 #define SDMA_EVT_MIRROR		0x054
68 #define SDMA_ILLINSTADDR	0x058
69 #define SDMA_CHN0ADDR		0x05c
70 #define SDMA_ONCE_RTB		0x060
71 #define SDMA_XTRIG_CONF1	0x070
72 #define SDMA_XTRIG_CONF2	0x074
73 #define SDMA_CHNENBL0_IMX35	0x200
74 #define SDMA_CHNENBL0_IMX31	0x080
75 #define SDMA_CHNPRI_0		0x100
76 
77 /*
78  * Buffer descriptor status values.
79  */
80 #define BD_DONE  0x01
81 #define BD_WRAP  0x02
82 #define BD_CONT  0x04
83 #define BD_INTR  0x08
84 #define BD_RROR  0x10
85 #define BD_LAST  0x20
86 #define BD_EXTD  0x80
87 
88 /*
89  * Data Node descriptor status values.
90  */
91 #define DND_END_OF_FRAME  0x80
92 #define DND_END_OF_XFER   0x40
93 #define DND_DONE          0x20
94 #define DND_UNUSED        0x01
95 
96 /*
97  * IPCV2 descriptor status values.
98  */
99 #define BD_IPCV2_END_OF_FRAME  0x40
100 
101 #define IPCV2_MAX_NODES        50
102 /*
103  * Error bit set in the CCB status field by the SDMA,
104  * in setbd routine, in case of a transfer error
105  */
106 #define DATA_ERROR  0x10000000
107 
108 /*
109  * Buffer descriptor commands.
110  */
111 #define C0_ADDR             0x01
112 #define C0_LOAD             0x02
113 #define C0_DUMP             0x03
114 #define C0_SETCTX           0x07
115 #define C0_GETCTX           0x03
116 #define C0_SETDM            0x01
117 #define C0_SETPM            0x04
118 #define C0_GETDM            0x02
119 #define C0_GETPM            0x08
120 /*
121  * Change endianness indicator in the BD command field
122  */
123 #define CHANGE_ENDIANNESS   0x80
124 
125 /*
126  * Mode/Count of data node descriptors - IPCv2
127  */
128 struct sdma_mode_count {
129 	u32 count   : 16; /* size of the buffer pointed by this BD */
130 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
131 	u32 command :  8; /* command mostlky used for channel 0 */
132 };
133 
134 /*
135  * Buffer descriptor
136  */
137 struct sdma_buffer_descriptor {
138 	struct sdma_mode_count  mode;
139 	u32 buffer_addr;	/* address of the buffer described */
140 	u32 ext_buffer_addr;	/* extended buffer address */
141 } __attribute__ ((packed));
142 
143 /**
144  * struct sdma_channel_control - Channel control Block
145  *
146  * @current_bd_ptr	current buffer descriptor processed
147  * @base_bd_ptr		first element of buffer descriptor array
148  * @unused		padding. The SDMA engine expects an array of 128 byte
149  *			control blocks
150  */
151 struct sdma_channel_control {
152 	u32 current_bd_ptr;
153 	u32 base_bd_ptr;
154 	u32 unused[2];
155 } __attribute__ ((packed));
156 
157 /**
158  * struct sdma_state_registers - SDMA context for a channel
159  *
160  * @pc:		program counter
161  * @t:		test bit: status of arithmetic & test instruction
162  * @rpc:	return program counter
163  * @sf:		source fault while loading data
164  * @spc:	loop start program counter
165  * @df:		destination fault while storing data
166  * @epc:	loop end program counter
167  * @lm:		loop mode
168  */
169 struct sdma_state_registers {
170 	u32 pc     :14;
171 	u32 unused1: 1;
172 	u32 t      : 1;
173 	u32 rpc    :14;
174 	u32 unused0: 1;
175 	u32 sf     : 1;
176 	u32 spc    :14;
177 	u32 unused2: 1;
178 	u32 df     : 1;
179 	u32 epc    :14;
180 	u32 lm     : 2;
181 } __attribute__ ((packed));
182 
183 /**
184  * struct sdma_context_data - sdma context specific to a channel
185  *
186  * @channel_state:	channel state bits
187  * @gReg:		general registers
188  * @mda:		burst dma destination address register
189  * @msa:		burst dma source address register
190  * @ms:			burst dma status register
191  * @md:			burst dma data register
192  * @pda:		peripheral dma destination address register
193  * @psa:		peripheral dma source address register
194  * @ps:			peripheral dma status register
195  * @pd:			peripheral dma data register
196  * @ca:			CRC polynomial register
197  * @cs:			CRC accumulator register
198  * @dda:		dedicated core destination address register
199  * @dsa:		dedicated core source address register
200  * @ds:			dedicated core status register
201  * @dd:			dedicated core data register
202  */
203 struct sdma_context_data {
204 	struct sdma_state_registers  channel_state;
205 	u32  gReg[8];
206 	u32  mda;
207 	u32  msa;
208 	u32  ms;
209 	u32  md;
210 	u32  pda;
211 	u32  psa;
212 	u32  ps;
213 	u32  pd;
214 	u32  ca;
215 	u32  cs;
216 	u32  dda;
217 	u32  dsa;
218 	u32  ds;
219 	u32  dd;
220 	u32  scratch0;
221 	u32  scratch1;
222 	u32  scratch2;
223 	u32  scratch3;
224 	u32  scratch4;
225 	u32  scratch5;
226 	u32  scratch6;
227 	u32  scratch7;
228 } __attribute__ ((packed));
229 
230 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
231 
232 struct sdma_engine;
233 
234 /**
235  * struct sdma_channel - housekeeping for a SDMA channel
236  *
237  * @sdma		pointer to the SDMA engine for this channel
238  * @channel		the channel number, matches dmaengine chan_id + 1
239  * @direction		transfer type. Needed for setting SDMA script
240  * @peripheral_type	Peripheral type. Needed for setting SDMA script
241  * @event_id0		aka dma request line
242  * @event_id1		for channels that use 2 events
243  * @word_size		peripheral access size
244  * @buf_tail		ID of the buffer that was processed
245  * @done		channel completion
246  * @num_bd		max NUM_BD. number of descriptors currently handling
247  */
248 struct sdma_channel {
249 	struct sdma_engine		*sdma;
250 	unsigned int			channel;
251 	enum dma_transfer_direction		direction;
252 	enum sdma_peripheral_type	peripheral_type;
253 	unsigned int			event_id0;
254 	unsigned int			event_id1;
255 	enum dma_slave_buswidth		word_size;
256 	unsigned int			buf_tail;
257 	struct completion		done;
258 	unsigned int			num_bd;
259 	struct sdma_buffer_descriptor	*bd;
260 	dma_addr_t			bd_phys;
261 	unsigned int			pc_from_device, pc_to_device;
262 	unsigned long			flags;
263 	dma_addr_t			per_address;
264 	unsigned long			event_mask[2];
265 	unsigned long			watermark_level;
266 	u32				shp_addr, per_addr;
267 	struct dma_chan			chan;
268 	spinlock_t			lock;
269 	struct dma_async_tx_descriptor	desc;
270 	enum dma_status			status;
271 	unsigned int			chn_count;
272 	unsigned int			chn_real_count;
273 	struct tasklet_struct		tasklet;
274 };
275 
276 #define IMX_DMA_SG_LOOP		BIT(0)
277 
278 #define MAX_DMA_CHANNELS 32
279 #define MXC_SDMA_DEFAULT_PRIORITY 1
280 #define MXC_SDMA_MIN_PRIORITY 1
281 #define MXC_SDMA_MAX_PRIORITY 7
282 
283 #define SDMA_FIRMWARE_MAGIC 0x414d4453
284 
285 /**
286  * struct sdma_firmware_header - Layout of the firmware image
287  *
288  * @magic		"SDMA"
289  * @version_major	increased whenever layout of struct sdma_script_start_addrs
290  *			changes.
291  * @version_minor	firmware minor version (for binary compatible changes)
292  * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
293  * @num_script_addrs	Number of script addresses in this image
294  * @ram_code_start	offset of SDMA ram image in this firmware image
295  * @ram_code_size	size of SDMA ram image
296  * @script_addrs	Stores the start address of the SDMA scripts
297  *			(in SDMA memory space)
298  */
299 struct sdma_firmware_header {
300 	u32	magic;
301 	u32	version_major;
302 	u32	version_minor;
303 	u32	script_addrs_start;
304 	u32	num_script_addrs;
305 	u32	ram_code_start;
306 	u32	ram_code_size;
307 };
308 
309 enum sdma_devtype {
310 	IMX31_SDMA,	/* runs on i.mx31 */
311 	IMX35_SDMA,	/* runs on i.mx35 and later */
312 };
313 
314 struct sdma_engine {
315 	struct device			*dev;
316 	struct device_dma_parameters	dma_parms;
317 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
318 	struct sdma_channel_control	*channel_control;
319 	void __iomem			*regs;
320 	enum sdma_devtype		devtype;
321 	unsigned int			num_events;
322 	struct sdma_context_data	*context;
323 	dma_addr_t			context_phys;
324 	struct dma_device		dma_device;
325 	struct clk			*clk_ipg;
326 	struct clk			*clk_ahb;
327 	spinlock_t			channel_0_lock;
328 	struct sdma_script_start_addrs	*script_addrs;
329 };
330 
331 static struct platform_device_id sdma_devtypes[] = {
332 	{
333 		.name = "imx31-sdma",
334 		.driver_data = IMX31_SDMA,
335 	}, {
336 		.name = "imx35-sdma",
337 		.driver_data = IMX35_SDMA,
338 	}, {
339 		/* sentinel */
340 	}
341 };
342 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
343 
344 static const struct of_device_id sdma_dt_ids[] = {
345 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
346 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
347 	{ /* sentinel */ }
348 };
349 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
350 
351 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
352 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
353 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
354 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
355 
356 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
357 {
358 	u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
359 						      SDMA_CHNENBL0_IMX35);
360 	return chnenbl0 + event * 4;
361 }
362 
363 static int sdma_config_ownership(struct sdma_channel *sdmac,
364 		bool event_override, bool mcu_override, bool dsp_override)
365 {
366 	struct sdma_engine *sdma = sdmac->sdma;
367 	int channel = sdmac->channel;
368 	unsigned long evt, mcu, dsp;
369 
370 	if (event_override && mcu_override && dsp_override)
371 		return -EINVAL;
372 
373 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
374 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
375 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
376 
377 	if (dsp_override)
378 		__clear_bit(channel, &dsp);
379 	else
380 		__set_bit(channel, &dsp);
381 
382 	if (event_override)
383 		__clear_bit(channel, &evt);
384 	else
385 		__set_bit(channel, &evt);
386 
387 	if (mcu_override)
388 		__clear_bit(channel, &mcu);
389 	else
390 		__set_bit(channel, &mcu);
391 
392 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
393 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
394 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
395 
396 	return 0;
397 }
398 
399 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
400 {
401 	writel(BIT(channel), sdma->regs + SDMA_H_START);
402 }
403 
404 /*
405  * sdma_run_channel0 - run a channel and wait till it's done
406  */
407 static int sdma_run_channel0(struct sdma_engine *sdma)
408 {
409 	int ret;
410 	unsigned long timeout = 500;
411 
412 	sdma_enable_channel(sdma, 0);
413 
414 	while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
415 		if (timeout-- <= 0)
416 			break;
417 		udelay(1);
418 	}
419 
420 	if (ret) {
421 		/* Clear the interrupt status */
422 		writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
423 	} else {
424 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
425 	}
426 
427 	return ret ? 0 : -ETIMEDOUT;
428 }
429 
430 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
431 		u32 address)
432 {
433 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
434 	void *buf_virt;
435 	dma_addr_t buf_phys;
436 	int ret;
437 	unsigned long flags;
438 
439 	buf_virt = dma_alloc_coherent(NULL,
440 			size,
441 			&buf_phys, GFP_KERNEL);
442 	if (!buf_virt) {
443 		return -ENOMEM;
444 	}
445 
446 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
447 
448 	bd0->mode.command = C0_SETPM;
449 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
450 	bd0->mode.count = size / 2;
451 	bd0->buffer_addr = buf_phys;
452 	bd0->ext_buffer_addr = address;
453 
454 	memcpy(buf_virt, buf, size);
455 
456 	ret = sdma_run_channel0(sdma);
457 
458 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
459 
460 	dma_free_coherent(NULL, size, buf_virt, buf_phys);
461 
462 	return ret;
463 }
464 
465 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
466 {
467 	struct sdma_engine *sdma = sdmac->sdma;
468 	int channel = sdmac->channel;
469 	unsigned long val;
470 	u32 chnenbl = chnenbl_ofs(sdma, event);
471 
472 	val = readl_relaxed(sdma->regs + chnenbl);
473 	__set_bit(channel, &val);
474 	writel_relaxed(val, sdma->regs + chnenbl);
475 }
476 
477 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
478 {
479 	struct sdma_engine *sdma = sdmac->sdma;
480 	int channel = sdmac->channel;
481 	u32 chnenbl = chnenbl_ofs(sdma, event);
482 	unsigned long val;
483 
484 	val = readl_relaxed(sdma->regs + chnenbl);
485 	__clear_bit(channel, &val);
486 	writel_relaxed(val, sdma->regs + chnenbl);
487 }
488 
489 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
490 {
491 	struct sdma_buffer_descriptor *bd;
492 
493 	/*
494 	 * loop mode. Iterate over descriptors, re-setup them and
495 	 * call callback function.
496 	 */
497 	while (1) {
498 		bd = &sdmac->bd[sdmac->buf_tail];
499 
500 		if (bd->mode.status & BD_DONE)
501 			break;
502 
503 		if (bd->mode.status & BD_RROR)
504 			sdmac->status = DMA_ERROR;
505 		else
506 			sdmac->status = DMA_IN_PROGRESS;
507 
508 		bd->mode.status |= BD_DONE;
509 		sdmac->buf_tail++;
510 		sdmac->buf_tail %= sdmac->num_bd;
511 
512 		if (sdmac->desc.callback)
513 			sdmac->desc.callback(sdmac->desc.callback_param);
514 	}
515 }
516 
517 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
518 {
519 	struct sdma_buffer_descriptor *bd;
520 	int i, error = 0;
521 
522 	sdmac->chn_real_count = 0;
523 	/*
524 	 * non loop mode. Iterate over all descriptors, collect
525 	 * errors and call callback function
526 	 */
527 	for (i = 0; i < sdmac->num_bd; i++) {
528 		bd = &sdmac->bd[i];
529 
530 		 if (bd->mode.status & (BD_DONE | BD_RROR))
531 			error = -EIO;
532 		 sdmac->chn_real_count += bd->mode.count;
533 	}
534 
535 	if (error)
536 		sdmac->status = DMA_ERROR;
537 	else
538 		sdmac->status = DMA_SUCCESS;
539 
540 	dma_cookie_complete(&sdmac->desc);
541 	if (sdmac->desc.callback)
542 		sdmac->desc.callback(sdmac->desc.callback_param);
543 }
544 
545 static void sdma_tasklet(unsigned long data)
546 {
547 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
548 
549 	complete(&sdmac->done);
550 
551 	if (sdmac->flags & IMX_DMA_SG_LOOP)
552 		sdma_handle_channel_loop(sdmac);
553 	else
554 		mxc_sdma_handle_channel_normal(sdmac);
555 }
556 
557 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
558 {
559 	struct sdma_engine *sdma = dev_id;
560 	unsigned long stat;
561 
562 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
563 	/* not interested in channel 0 interrupts */
564 	stat &= ~1;
565 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
566 
567 	while (stat) {
568 		int channel = fls(stat) - 1;
569 		struct sdma_channel *sdmac = &sdma->channel[channel];
570 
571 		tasklet_schedule(&sdmac->tasklet);
572 
573 		__clear_bit(channel, &stat);
574 	}
575 
576 	return IRQ_HANDLED;
577 }
578 
579 /*
580  * sets the pc of SDMA script according to the peripheral type
581  */
582 static void sdma_get_pc(struct sdma_channel *sdmac,
583 		enum sdma_peripheral_type peripheral_type)
584 {
585 	struct sdma_engine *sdma = sdmac->sdma;
586 	int per_2_emi = 0, emi_2_per = 0;
587 	/*
588 	 * These are needed once we start to support transfers between
589 	 * two peripherals or memory-to-memory transfers
590 	 */
591 	int per_2_per = 0, emi_2_emi = 0;
592 
593 	sdmac->pc_from_device = 0;
594 	sdmac->pc_to_device = 0;
595 
596 	switch (peripheral_type) {
597 	case IMX_DMATYPE_MEMORY:
598 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
599 		break;
600 	case IMX_DMATYPE_DSP:
601 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
602 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
603 		break;
604 	case IMX_DMATYPE_FIRI:
605 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
606 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
607 		break;
608 	case IMX_DMATYPE_UART:
609 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
610 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
611 		break;
612 	case IMX_DMATYPE_UART_SP:
613 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
614 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
615 		break;
616 	case IMX_DMATYPE_ATA:
617 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
618 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
619 		break;
620 	case IMX_DMATYPE_CSPI:
621 	case IMX_DMATYPE_EXT:
622 	case IMX_DMATYPE_SSI:
623 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
624 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
625 		break;
626 	case IMX_DMATYPE_SSI_SP:
627 	case IMX_DMATYPE_MMC:
628 	case IMX_DMATYPE_SDHC:
629 	case IMX_DMATYPE_CSPI_SP:
630 	case IMX_DMATYPE_ESAI:
631 	case IMX_DMATYPE_MSHC_SP:
632 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
633 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
634 		break;
635 	case IMX_DMATYPE_ASRC:
636 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
637 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
638 		per_2_per = sdma->script_addrs->per_2_per_addr;
639 		break;
640 	case IMX_DMATYPE_MSHC:
641 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
642 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
643 		break;
644 	case IMX_DMATYPE_CCM:
645 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
646 		break;
647 	case IMX_DMATYPE_SPDIF:
648 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
649 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
650 		break;
651 	case IMX_DMATYPE_IPU_MEMORY:
652 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
653 		break;
654 	default:
655 		break;
656 	}
657 
658 	sdmac->pc_from_device = per_2_emi;
659 	sdmac->pc_to_device = emi_2_per;
660 }
661 
662 static int sdma_load_context(struct sdma_channel *sdmac)
663 {
664 	struct sdma_engine *sdma = sdmac->sdma;
665 	int channel = sdmac->channel;
666 	int load_address;
667 	struct sdma_context_data *context = sdma->context;
668 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
669 	int ret;
670 	unsigned long flags;
671 
672 	if (sdmac->direction == DMA_DEV_TO_MEM) {
673 		load_address = sdmac->pc_from_device;
674 	} else {
675 		load_address = sdmac->pc_to_device;
676 	}
677 
678 	if (load_address < 0)
679 		return load_address;
680 
681 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
682 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
683 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
684 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
685 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
686 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
687 
688 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
689 
690 	memset(context, 0, sizeof(*context));
691 	context->channel_state.pc = load_address;
692 
693 	/* Send by context the event mask,base address for peripheral
694 	 * and watermark level
695 	 */
696 	context->gReg[0] = sdmac->event_mask[1];
697 	context->gReg[1] = sdmac->event_mask[0];
698 	context->gReg[2] = sdmac->per_addr;
699 	context->gReg[6] = sdmac->shp_addr;
700 	context->gReg[7] = sdmac->watermark_level;
701 
702 	bd0->mode.command = C0_SETDM;
703 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
704 	bd0->mode.count = sizeof(*context) / 4;
705 	bd0->buffer_addr = sdma->context_phys;
706 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
707 	ret = sdma_run_channel0(sdma);
708 
709 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
710 
711 	return ret;
712 }
713 
714 static void sdma_disable_channel(struct sdma_channel *sdmac)
715 {
716 	struct sdma_engine *sdma = sdmac->sdma;
717 	int channel = sdmac->channel;
718 
719 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
720 	sdmac->status = DMA_ERROR;
721 }
722 
723 static int sdma_config_channel(struct sdma_channel *sdmac)
724 {
725 	int ret;
726 
727 	sdma_disable_channel(sdmac);
728 
729 	sdmac->event_mask[0] = 0;
730 	sdmac->event_mask[1] = 0;
731 	sdmac->shp_addr = 0;
732 	sdmac->per_addr = 0;
733 
734 	if (sdmac->event_id0) {
735 		if (sdmac->event_id0 >= sdmac->sdma->num_events)
736 			return -EINVAL;
737 		sdma_event_enable(sdmac, sdmac->event_id0);
738 	}
739 
740 	switch (sdmac->peripheral_type) {
741 	case IMX_DMATYPE_DSP:
742 		sdma_config_ownership(sdmac, false, true, true);
743 		break;
744 	case IMX_DMATYPE_MEMORY:
745 		sdma_config_ownership(sdmac, false, true, false);
746 		break;
747 	default:
748 		sdma_config_ownership(sdmac, true, true, false);
749 		break;
750 	}
751 
752 	sdma_get_pc(sdmac, sdmac->peripheral_type);
753 
754 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
755 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
756 		/* Handle multiple event channels differently */
757 		if (sdmac->event_id1) {
758 			sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
759 			if (sdmac->event_id1 > 31)
760 				__set_bit(31, &sdmac->watermark_level);
761 			sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
762 			if (sdmac->event_id0 > 31)
763 				__set_bit(30, &sdmac->watermark_level);
764 		} else {
765 			__set_bit(sdmac->event_id0, sdmac->event_mask);
766 		}
767 		/* Watermark Level */
768 		sdmac->watermark_level |= sdmac->watermark_level;
769 		/* Address */
770 		sdmac->shp_addr = sdmac->per_address;
771 	} else {
772 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
773 	}
774 
775 	ret = sdma_load_context(sdmac);
776 
777 	return ret;
778 }
779 
780 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
781 		unsigned int priority)
782 {
783 	struct sdma_engine *sdma = sdmac->sdma;
784 	int channel = sdmac->channel;
785 
786 	if (priority < MXC_SDMA_MIN_PRIORITY
787 	    || priority > MXC_SDMA_MAX_PRIORITY) {
788 		return -EINVAL;
789 	}
790 
791 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
792 
793 	return 0;
794 }
795 
796 static int sdma_request_channel(struct sdma_channel *sdmac)
797 {
798 	struct sdma_engine *sdma = sdmac->sdma;
799 	int channel = sdmac->channel;
800 	int ret = -EBUSY;
801 
802 	sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
803 	if (!sdmac->bd) {
804 		ret = -ENOMEM;
805 		goto out;
806 	}
807 
808 	memset(sdmac->bd, 0, PAGE_SIZE);
809 
810 	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
811 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
812 
813 	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
814 
815 	init_completion(&sdmac->done);
816 
817 	return 0;
818 out:
819 
820 	return ret;
821 }
822 
823 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
824 {
825 	return container_of(chan, struct sdma_channel, chan);
826 }
827 
828 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
829 {
830 	unsigned long flags;
831 	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
832 	dma_cookie_t cookie;
833 
834 	spin_lock_irqsave(&sdmac->lock, flags);
835 
836 	cookie = dma_cookie_assign(tx);
837 
838 	spin_unlock_irqrestore(&sdmac->lock, flags);
839 
840 	return cookie;
841 }
842 
843 static int sdma_alloc_chan_resources(struct dma_chan *chan)
844 {
845 	struct sdma_channel *sdmac = to_sdma_chan(chan);
846 	struct imx_dma_data *data = chan->private;
847 	int prio, ret;
848 
849 	if (!data)
850 		return -EINVAL;
851 
852 	switch (data->priority) {
853 	case DMA_PRIO_HIGH:
854 		prio = 3;
855 		break;
856 	case DMA_PRIO_MEDIUM:
857 		prio = 2;
858 		break;
859 	case DMA_PRIO_LOW:
860 	default:
861 		prio = 1;
862 		break;
863 	}
864 
865 	sdmac->peripheral_type = data->peripheral_type;
866 	sdmac->event_id0 = data->dma_request;
867 
868 	clk_enable(sdmac->sdma->clk_ipg);
869 	clk_enable(sdmac->sdma->clk_ahb);
870 
871 	ret = sdma_request_channel(sdmac);
872 	if (ret)
873 		return ret;
874 
875 	ret = sdma_set_channel_priority(sdmac, prio);
876 	if (ret)
877 		return ret;
878 
879 	dma_async_tx_descriptor_init(&sdmac->desc, chan);
880 	sdmac->desc.tx_submit = sdma_tx_submit;
881 	/* txd.flags will be overwritten in prep funcs */
882 	sdmac->desc.flags = DMA_CTRL_ACK;
883 
884 	return 0;
885 }
886 
887 static void sdma_free_chan_resources(struct dma_chan *chan)
888 {
889 	struct sdma_channel *sdmac = to_sdma_chan(chan);
890 	struct sdma_engine *sdma = sdmac->sdma;
891 
892 	sdma_disable_channel(sdmac);
893 
894 	if (sdmac->event_id0)
895 		sdma_event_disable(sdmac, sdmac->event_id0);
896 	if (sdmac->event_id1)
897 		sdma_event_disable(sdmac, sdmac->event_id1);
898 
899 	sdmac->event_id0 = 0;
900 	sdmac->event_id1 = 0;
901 
902 	sdma_set_channel_priority(sdmac, 0);
903 
904 	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
905 
906 	clk_disable(sdma->clk_ipg);
907 	clk_disable(sdma->clk_ahb);
908 }
909 
910 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
911 		struct dma_chan *chan, struct scatterlist *sgl,
912 		unsigned int sg_len, enum dma_transfer_direction direction,
913 		unsigned long flags, void *context)
914 {
915 	struct sdma_channel *sdmac = to_sdma_chan(chan);
916 	struct sdma_engine *sdma = sdmac->sdma;
917 	int ret, i, count;
918 	int channel = sdmac->channel;
919 	struct scatterlist *sg;
920 
921 	if (sdmac->status == DMA_IN_PROGRESS)
922 		return NULL;
923 	sdmac->status = DMA_IN_PROGRESS;
924 
925 	sdmac->flags = 0;
926 
927 	sdmac->buf_tail = 0;
928 
929 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
930 			sg_len, channel);
931 
932 	sdmac->direction = direction;
933 	ret = sdma_load_context(sdmac);
934 	if (ret)
935 		goto err_out;
936 
937 	if (sg_len > NUM_BD) {
938 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
939 				channel, sg_len, NUM_BD);
940 		ret = -EINVAL;
941 		goto err_out;
942 	}
943 
944 	sdmac->chn_count = 0;
945 	for_each_sg(sgl, sg, sg_len, i) {
946 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
947 		int param;
948 
949 		bd->buffer_addr = sg->dma_address;
950 
951 		count = sg_dma_len(sg);
952 
953 		if (count > 0xffff) {
954 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
955 					channel, count, 0xffff);
956 			ret = -EINVAL;
957 			goto err_out;
958 		}
959 
960 		bd->mode.count = count;
961 		sdmac->chn_count += count;
962 
963 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
964 			ret =  -EINVAL;
965 			goto err_out;
966 		}
967 
968 		switch (sdmac->word_size) {
969 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
970 			bd->mode.command = 0;
971 			if (count & 3 || sg->dma_address & 3)
972 				return NULL;
973 			break;
974 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
975 			bd->mode.command = 2;
976 			if (count & 1 || sg->dma_address & 1)
977 				return NULL;
978 			break;
979 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
980 			bd->mode.command = 1;
981 			break;
982 		default:
983 			return NULL;
984 		}
985 
986 		param = BD_DONE | BD_EXTD | BD_CONT;
987 
988 		if (i + 1 == sg_len) {
989 			param |= BD_INTR;
990 			param |= BD_LAST;
991 			param &= ~BD_CONT;
992 		}
993 
994 		dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
995 				i, count, sg->dma_address,
996 				param & BD_WRAP ? "wrap" : "",
997 				param & BD_INTR ? " intr" : "");
998 
999 		bd->mode.status = param;
1000 	}
1001 
1002 	sdmac->num_bd = sg_len;
1003 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1004 
1005 	return &sdmac->desc;
1006 err_out:
1007 	sdmac->status = DMA_ERROR;
1008 	return NULL;
1009 }
1010 
1011 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1012 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1013 		size_t period_len, enum dma_transfer_direction direction,
1014 		unsigned long flags, void *context)
1015 {
1016 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1017 	struct sdma_engine *sdma = sdmac->sdma;
1018 	int num_periods = buf_len / period_len;
1019 	int channel = sdmac->channel;
1020 	int ret, i = 0, buf = 0;
1021 
1022 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1023 
1024 	if (sdmac->status == DMA_IN_PROGRESS)
1025 		return NULL;
1026 
1027 	sdmac->status = DMA_IN_PROGRESS;
1028 
1029 	sdmac->buf_tail = 0;
1030 
1031 	sdmac->flags |= IMX_DMA_SG_LOOP;
1032 	sdmac->direction = direction;
1033 	ret = sdma_load_context(sdmac);
1034 	if (ret)
1035 		goto err_out;
1036 
1037 	if (num_periods > NUM_BD) {
1038 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1039 				channel, num_periods, NUM_BD);
1040 		goto err_out;
1041 	}
1042 
1043 	if (period_len > 0xffff) {
1044 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1045 				channel, period_len, 0xffff);
1046 		goto err_out;
1047 	}
1048 
1049 	while (buf < buf_len) {
1050 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1051 		int param;
1052 
1053 		bd->buffer_addr = dma_addr;
1054 
1055 		bd->mode.count = period_len;
1056 
1057 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1058 			goto err_out;
1059 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1060 			bd->mode.command = 0;
1061 		else
1062 			bd->mode.command = sdmac->word_size;
1063 
1064 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1065 		if (i + 1 == num_periods)
1066 			param |= BD_WRAP;
1067 
1068 		dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1069 				i, period_len, dma_addr,
1070 				param & BD_WRAP ? "wrap" : "",
1071 				param & BD_INTR ? " intr" : "");
1072 
1073 		bd->mode.status = param;
1074 
1075 		dma_addr += period_len;
1076 		buf += period_len;
1077 
1078 		i++;
1079 	}
1080 
1081 	sdmac->num_bd = num_periods;
1082 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1083 
1084 	return &sdmac->desc;
1085 err_out:
1086 	sdmac->status = DMA_ERROR;
1087 	return NULL;
1088 }
1089 
1090 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1091 		unsigned long arg)
1092 {
1093 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1094 	struct dma_slave_config *dmaengine_cfg = (void *)arg;
1095 
1096 	switch (cmd) {
1097 	case DMA_TERMINATE_ALL:
1098 		sdma_disable_channel(sdmac);
1099 		return 0;
1100 	case DMA_SLAVE_CONFIG:
1101 		if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1102 			sdmac->per_address = dmaengine_cfg->src_addr;
1103 			sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1104 						dmaengine_cfg->src_addr_width;
1105 			sdmac->word_size = dmaengine_cfg->src_addr_width;
1106 		} else {
1107 			sdmac->per_address = dmaengine_cfg->dst_addr;
1108 			sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1109 						dmaengine_cfg->dst_addr_width;
1110 			sdmac->word_size = dmaengine_cfg->dst_addr_width;
1111 		}
1112 		sdmac->direction = dmaengine_cfg->direction;
1113 		return sdma_config_channel(sdmac);
1114 	default:
1115 		return -ENOSYS;
1116 	}
1117 
1118 	return -EINVAL;
1119 }
1120 
1121 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1122 					    dma_cookie_t cookie,
1123 					    struct dma_tx_state *txstate)
1124 {
1125 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1126 	dma_cookie_t last_used;
1127 
1128 	last_used = chan->cookie;
1129 
1130 	dma_set_tx_state(txstate, chan->completed_cookie, last_used,
1131 			sdmac->chn_count - sdmac->chn_real_count);
1132 
1133 	return sdmac->status;
1134 }
1135 
1136 static void sdma_issue_pending(struct dma_chan *chan)
1137 {
1138 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1139 	struct sdma_engine *sdma = sdmac->sdma;
1140 
1141 	if (sdmac->status == DMA_IN_PROGRESS)
1142 		sdma_enable_channel(sdma, sdmac->channel);
1143 }
1144 
1145 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1146 
1147 static void sdma_add_scripts(struct sdma_engine *sdma,
1148 		const struct sdma_script_start_addrs *addr)
1149 {
1150 	s32 *addr_arr = (u32 *)addr;
1151 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1152 	int i;
1153 
1154 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1155 		if (addr_arr[i] > 0)
1156 			saddr_arr[i] = addr_arr[i];
1157 }
1158 
1159 static void sdma_load_firmware(const struct firmware *fw, void *context)
1160 {
1161 	struct sdma_engine *sdma = context;
1162 	const struct sdma_firmware_header *header;
1163 	const struct sdma_script_start_addrs *addr;
1164 	unsigned short *ram_code;
1165 
1166 	if (!fw) {
1167 		dev_err(sdma->dev, "firmware not found\n");
1168 		return;
1169 	}
1170 
1171 	if (fw->size < sizeof(*header))
1172 		goto err_firmware;
1173 
1174 	header = (struct sdma_firmware_header *)fw->data;
1175 
1176 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1177 		goto err_firmware;
1178 	if (header->ram_code_start + header->ram_code_size > fw->size)
1179 		goto err_firmware;
1180 
1181 	addr = (void *)header + header->script_addrs_start;
1182 	ram_code = (void *)header + header->ram_code_start;
1183 
1184 	clk_enable(sdma->clk_ipg);
1185 	clk_enable(sdma->clk_ahb);
1186 	/* download the RAM image for SDMA */
1187 	sdma_load_script(sdma, ram_code,
1188 			header->ram_code_size,
1189 			addr->ram_code_start_addr);
1190 	clk_disable(sdma->clk_ipg);
1191 	clk_disable(sdma->clk_ahb);
1192 
1193 	sdma_add_scripts(sdma, addr);
1194 
1195 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1196 			header->version_major,
1197 			header->version_minor);
1198 
1199 err_firmware:
1200 	release_firmware(fw);
1201 }
1202 
1203 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1204 		const char *fw_name)
1205 {
1206 	int ret;
1207 
1208 	ret = request_firmware_nowait(THIS_MODULE,
1209 			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1210 			GFP_KERNEL, sdma, sdma_load_firmware);
1211 
1212 	return ret;
1213 }
1214 
1215 static int __init sdma_init(struct sdma_engine *sdma)
1216 {
1217 	int i, ret;
1218 	dma_addr_t ccb_phys;
1219 
1220 	switch (sdma->devtype) {
1221 	case IMX31_SDMA:
1222 		sdma->num_events = 32;
1223 		break;
1224 	case IMX35_SDMA:
1225 		sdma->num_events = 48;
1226 		break;
1227 	default:
1228 		dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
1229 			sdma->devtype);
1230 		return -ENODEV;
1231 	}
1232 
1233 	clk_enable(sdma->clk_ipg);
1234 	clk_enable(sdma->clk_ahb);
1235 
1236 	/* Be sure SDMA has not started yet */
1237 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1238 
1239 	sdma->channel_control = dma_alloc_coherent(NULL,
1240 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1241 			sizeof(struct sdma_context_data),
1242 			&ccb_phys, GFP_KERNEL);
1243 
1244 	if (!sdma->channel_control) {
1245 		ret = -ENOMEM;
1246 		goto err_dma_alloc;
1247 	}
1248 
1249 	sdma->context = (void *)sdma->channel_control +
1250 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1251 	sdma->context_phys = ccb_phys +
1252 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1253 
1254 	/* Zero-out the CCB structures array just allocated */
1255 	memset(sdma->channel_control, 0,
1256 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1257 
1258 	/* disable all channels */
1259 	for (i = 0; i < sdma->num_events; i++)
1260 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1261 
1262 	/* All channels have priority 0 */
1263 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1264 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1265 
1266 	ret = sdma_request_channel(&sdma->channel[0]);
1267 	if (ret)
1268 		goto err_dma_alloc;
1269 
1270 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1271 
1272 	/* Set Command Channel (Channel Zero) */
1273 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1274 
1275 	/* Set bits of CONFIG register but with static context switching */
1276 	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1277 	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1278 
1279 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1280 
1281 	/* Set bits of CONFIG register with given context switching mode */
1282 	writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1283 
1284 	/* Initializes channel's priorities */
1285 	sdma_set_channel_priority(&sdma->channel[0], 7);
1286 
1287 	clk_disable(sdma->clk_ipg);
1288 	clk_disable(sdma->clk_ahb);
1289 
1290 	return 0;
1291 
1292 err_dma_alloc:
1293 	clk_disable(sdma->clk_ipg);
1294 	clk_disable(sdma->clk_ahb);
1295 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1296 	return ret;
1297 }
1298 
1299 static int __init sdma_probe(struct platform_device *pdev)
1300 {
1301 	const struct of_device_id *of_id =
1302 			of_match_device(sdma_dt_ids, &pdev->dev);
1303 	struct device_node *np = pdev->dev.of_node;
1304 	const char *fw_name;
1305 	int ret;
1306 	int irq;
1307 	struct resource *iores;
1308 	struct sdma_platform_data *pdata = pdev->dev.platform_data;
1309 	int i;
1310 	struct sdma_engine *sdma;
1311 	s32 *saddr_arr;
1312 
1313 	sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1314 	if (!sdma)
1315 		return -ENOMEM;
1316 
1317 	spin_lock_init(&sdma->channel_0_lock);
1318 
1319 	sdma->dev = &pdev->dev;
1320 
1321 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1322 	irq = platform_get_irq(pdev, 0);
1323 	if (!iores || irq < 0) {
1324 		ret = -EINVAL;
1325 		goto err_irq;
1326 	}
1327 
1328 	if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1329 		ret = -EBUSY;
1330 		goto err_request_region;
1331 	}
1332 
1333 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1334 	if (IS_ERR(sdma->clk_ipg)) {
1335 		ret = PTR_ERR(sdma->clk_ipg);
1336 		goto err_clk;
1337 	}
1338 
1339 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1340 	if (IS_ERR(sdma->clk_ahb)) {
1341 		ret = PTR_ERR(sdma->clk_ahb);
1342 		goto err_clk;
1343 	}
1344 
1345 	clk_prepare(sdma->clk_ipg);
1346 	clk_prepare(sdma->clk_ahb);
1347 
1348 	sdma->regs = ioremap(iores->start, resource_size(iores));
1349 	if (!sdma->regs) {
1350 		ret = -ENOMEM;
1351 		goto err_ioremap;
1352 	}
1353 
1354 	ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1355 	if (ret)
1356 		goto err_request_irq;
1357 
1358 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1359 	if (!sdma->script_addrs) {
1360 		ret = -ENOMEM;
1361 		goto err_alloc;
1362 	}
1363 
1364 	/* initially no scripts available */
1365 	saddr_arr = (s32 *)sdma->script_addrs;
1366 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1367 		saddr_arr[i] = -EINVAL;
1368 
1369 	if (of_id)
1370 		pdev->id_entry = of_id->data;
1371 	sdma->devtype = pdev->id_entry->driver_data;
1372 
1373 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1374 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1375 
1376 	INIT_LIST_HEAD(&sdma->dma_device.channels);
1377 	/* Initialize channel parameters */
1378 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1379 		struct sdma_channel *sdmac = &sdma->channel[i];
1380 
1381 		sdmac->sdma = sdma;
1382 		spin_lock_init(&sdmac->lock);
1383 
1384 		sdmac->chan.device = &sdma->dma_device;
1385 		dma_cookie_init(&sdmac->chan);
1386 		sdmac->channel = i;
1387 
1388 		tasklet_init(&sdmac->tasklet, sdma_tasklet,
1389 			     (unsigned long) sdmac);
1390 		/*
1391 		 * Add the channel to the DMAC list. Do not add channel 0 though
1392 		 * because we need it internally in the SDMA driver. This also means
1393 		 * that channel 0 in dmaengine counting matches sdma channel 1.
1394 		 */
1395 		if (i)
1396 			list_add_tail(&sdmac->chan.device_node,
1397 					&sdma->dma_device.channels);
1398 	}
1399 
1400 	ret = sdma_init(sdma);
1401 	if (ret)
1402 		goto err_init;
1403 
1404 	if (pdata && pdata->script_addrs)
1405 		sdma_add_scripts(sdma, pdata->script_addrs);
1406 
1407 	if (pdata) {
1408 		ret = sdma_get_firmware(sdma, pdata->fw_name);
1409 		if (ret)
1410 			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1411 	} else {
1412 		/*
1413 		 * Because that device tree does not encode ROM script address,
1414 		 * the RAM script in firmware is mandatory for device tree
1415 		 * probe, otherwise it fails.
1416 		 */
1417 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1418 					      &fw_name);
1419 		if (ret)
1420 			dev_warn(&pdev->dev, "failed to get firmware name\n");
1421 		else {
1422 			ret = sdma_get_firmware(sdma, fw_name);
1423 			if (ret)
1424 				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1425 		}
1426 	}
1427 
1428 	sdma->dma_device.dev = &pdev->dev;
1429 
1430 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1431 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1432 	sdma->dma_device.device_tx_status = sdma_tx_status;
1433 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1434 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1435 	sdma->dma_device.device_control = sdma_control;
1436 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1437 	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1438 	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1439 
1440 	ret = dma_async_device_register(&sdma->dma_device);
1441 	if (ret) {
1442 		dev_err(&pdev->dev, "unable to register\n");
1443 		goto err_init;
1444 	}
1445 
1446 	dev_info(sdma->dev, "initialized\n");
1447 
1448 	return 0;
1449 
1450 err_init:
1451 	kfree(sdma->script_addrs);
1452 err_alloc:
1453 	free_irq(irq, sdma);
1454 err_request_irq:
1455 	iounmap(sdma->regs);
1456 err_ioremap:
1457 err_clk:
1458 	release_mem_region(iores->start, resource_size(iores));
1459 err_request_region:
1460 err_irq:
1461 	kfree(sdma);
1462 	return ret;
1463 }
1464 
1465 static int sdma_remove(struct platform_device *pdev)
1466 {
1467 	return -EBUSY;
1468 }
1469 
1470 static struct platform_driver sdma_driver = {
1471 	.driver		= {
1472 		.name	= "imx-sdma",
1473 		.of_match_table = sdma_dt_ids,
1474 	},
1475 	.id_table	= sdma_devtypes,
1476 	.remove		= sdma_remove,
1477 };
1478 
1479 static int __init sdma_module_init(void)
1480 {
1481 	return platform_driver_probe(&sdma_driver, sdma_probe);
1482 }
1483 module_init(sdma_module_init);
1484 
1485 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1486 MODULE_DESCRIPTION("i.MX SDMA driver");
1487 MODULE_LICENSE("GPL");
1488