xref: /openbmc/linux/drivers/dma/imx-sdma.c (revision c819e2cf)
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19 
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39 #include <linux/of_dma.h>
40 
41 #include <asm/irq.h>
42 #include <linux/platform_data/dma-imx-sdma.h>
43 #include <linux/platform_data/dma-imx.h>
44 
45 #include "dmaengine.h"
46 
47 /* SDMA registers */
48 #define SDMA_H_C0PTR		0x000
49 #define SDMA_H_INTR		0x004
50 #define SDMA_H_STATSTOP		0x008
51 #define SDMA_H_START		0x00c
52 #define SDMA_H_EVTOVR		0x010
53 #define SDMA_H_DSPOVR		0x014
54 #define SDMA_H_HOSTOVR		0x018
55 #define SDMA_H_EVTPEND		0x01c
56 #define SDMA_H_DSPENBL		0x020
57 #define SDMA_H_RESET		0x024
58 #define SDMA_H_EVTERR		0x028
59 #define SDMA_H_INTRMSK		0x02c
60 #define SDMA_H_PSW		0x030
61 #define SDMA_H_EVTERRDBG	0x034
62 #define SDMA_H_CONFIG		0x038
63 #define SDMA_ONCE_ENB		0x040
64 #define SDMA_ONCE_DATA		0x044
65 #define SDMA_ONCE_INSTR		0x048
66 #define SDMA_ONCE_STAT		0x04c
67 #define SDMA_ONCE_CMD		0x050
68 #define SDMA_EVT_MIRROR		0x054
69 #define SDMA_ILLINSTADDR	0x058
70 #define SDMA_CHN0ADDR		0x05c
71 #define SDMA_ONCE_RTB		0x060
72 #define SDMA_XTRIG_CONF1	0x070
73 #define SDMA_XTRIG_CONF2	0x074
74 #define SDMA_CHNENBL0_IMX35	0x200
75 #define SDMA_CHNENBL0_IMX31	0x080
76 #define SDMA_CHNPRI_0		0x100
77 
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88 
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96 
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101 
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108 
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125 
126 /*
127  * Mode/Count of data node descriptors - IPCv2
128  */
129 struct sdma_mode_count {
130 	u32 count   : 16; /* size of the buffer pointed by this BD */
131 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
132 	u32 command :  8; /* command mostlky used for channel 0 */
133 };
134 
135 /*
136  * Buffer descriptor
137  */
138 struct sdma_buffer_descriptor {
139 	struct sdma_mode_count  mode;
140 	u32 buffer_addr;	/* address of the buffer described */
141 	u32 ext_buffer_addr;	/* extended buffer address */
142 } __attribute__ ((packed));
143 
144 /**
145  * struct sdma_channel_control - Channel control Block
146  *
147  * @current_bd_ptr	current buffer descriptor processed
148  * @base_bd_ptr		first element of buffer descriptor array
149  * @unused		padding. The SDMA engine expects an array of 128 byte
150  *			control blocks
151  */
152 struct sdma_channel_control {
153 	u32 current_bd_ptr;
154 	u32 base_bd_ptr;
155 	u32 unused[2];
156 } __attribute__ ((packed));
157 
158 /**
159  * struct sdma_state_registers - SDMA context for a channel
160  *
161  * @pc:		program counter
162  * @t:		test bit: status of arithmetic & test instruction
163  * @rpc:	return program counter
164  * @sf:		source fault while loading data
165  * @spc:	loop start program counter
166  * @df:		destination fault while storing data
167  * @epc:	loop end program counter
168  * @lm:		loop mode
169  */
170 struct sdma_state_registers {
171 	u32 pc     :14;
172 	u32 unused1: 1;
173 	u32 t      : 1;
174 	u32 rpc    :14;
175 	u32 unused0: 1;
176 	u32 sf     : 1;
177 	u32 spc    :14;
178 	u32 unused2: 1;
179 	u32 df     : 1;
180 	u32 epc    :14;
181 	u32 lm     : 2;
182 } __attribute__ ((packed));
183 
184 /**
185  * struct sdma_context_data - sdma context specific to a channel
186  *
187  * @channel_state:	channel state bits
188  * @gReg:		general registers
189  * @mda:		burst dma destination address register
190  * @msa:		burst dma source address register
191  * @ms:			burst dma status register
192  * @md:			burst dma data register
193  * @pda:		peripheral dma destination address register
194  * @psa:		peripheral dma source address register
195  * @ps:			peripheral dma status register
196  * @pd:			peripheral dma data register
197  * @ca:			CRC polynomial register
198  * @cs:			CRC accumulator register
199  * @dda:		dedicated core destination address register
200  * @dsa:		dedicated core source address register
201  * @ds:			dedicated core status register
202  * @dd:			dedicated core data register
203  */
204 struct sdma_context_data {
205 	struct sdma_state_registers  channel_state;
206 	u32  gReg[8];
207 	u32  mda;
208 	u32  msa;
209 	u32  ms;
210 	u32  md;
211 	u32  pda;
212 	u32  psa;
213 	u32  ps;
214 	u32  pd;
215 	u32  ca;
216 	u32  cs;
217 	u32  dda;
218 	u32  dsa;
219 	u32  ds;
220 	u32  dd;
221 	u32  scratch0;
222 	u32  scratch1;
223 	u32  scratch2;
224 	u32  scratch3;
225 	u32  scratch4;
226 	u32  scratch5;
227 	u32  scratch6;
228 	u32  scratch7;
229 } __attribute__ ((packed));
230 
231 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
232 
233 struct sdma_engine;
234 
235 /**
236  * struct sdma_channel - housekeeping for a SDMA channel
237  *
238  * @sdma		pointer to the SDMA engine for this channel
239  * @channel		the channel number, matches dmaengine chan_id + 1
240  * @direction		transfer type. Needed for setting SDMA script
241  * @peripheral_type	Peripheral type. Needed for setting SDMA script
242  * @event_id0		aka dma request line
243  * @event_id1		for channels that use 2 events
244  * @word_size		peripheral access size
245  * @buf_tail		ID of the buffer that was processed
246  * @num_bd		max NUM_BD. number of descriptors currently handling
247  */
248 struct sdma_channel {
249 	struct sdma_engine		*sdma;
250 	unsigned int			channel;
251 	enum dma_transfer_direction		direction;
252 	enum sdma_peripheral_type	peripheral_type;
253 	unsigned int			event_id0;
254 	unsigned int			event_id1;
255 	enum dma_slave_buswidth		word_size;
256 	unsigned int			buf_tail;
257 	unsigned int			num_bd;
258 	unsigned int			period_len;
259 	struct sdma_buffer_descriptor	*bd;
260 	dma_addr_t			bd_phys;
261 	unsigned int			pc_from_device, pc_to_device;
262 	unsigned long			flags;
263 	dma_addr_t			per_address;
264 	unsigned long			event_mask[2];
265 	unsigned long			watermark_level;
266 	u32				shp_addr, per_addr;
267 	struct dma_chan			chan;
268 	spinlock_t			lock;
269 	struct dma_async_tx_descriptor	desc;
270 	enum dma_status			status;
271 	unsigned int			chn_count;
272 	unsigned int			chn_real_count;
273 	struct tasklet_struct		tasklet;
274 	struct imx_dma_data		data;
275 };
276 
277 #define IMX_DMA_SG_LOOP		BIT(0)
278 
279 #define MAX_DMA_CHANNELS 32
280 #define MXC_SDMA_DEFAULT_PRIORITY 1
281 #define MXC_SDMA_MIN_PRIORITY 1
282 #define MXC_SDMA_MAX_PRIORITY 7
283 
284 #define SDMA_FIRMWARE_MAGIC 0x414d4453
285 
286 /**
287  * struct sdma_firmware_header - Layout of the firmware image
288  *
289  * @magic		"SDMA"
290  * @version_major	increased whenever layout of struct sdma_script_start_addrs
291  *			changes.
292  * @version_minor	firmware minor version (for binary compatible changes)
293  * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
294  * @num_script_addrs	Number of script addresses in this image
295  * @ram_code_start	offset of SDMA ram image in this firmware image
296  * @ram_code_size	size of SDMA ram image
297  * @script_addrs	Stores the start address of the SDMA scripts
298  *			(in SDMA memory space)
299  */
300 struct sdma_firmware_header {
301 	u32	magic;
302 	u32	version_major;
303 	u32	version_minor;
304 	u32	script_addrs_start;
305 	u32	num_script_addrs;
306 	u32	ram_code_start;
307 	u32	ram_code_size;
308 };
309 
310 struct sdma_driver_data {
311 	int chnenbl0;
312 	int num_events;
313 	struct sdma_script_start_addrs	*script_addrs;
314 };
315 
316 struct sdma_engine {
317 	struct device			*dev;
318 	struct device_dma_parameters	dma_parms;
319 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
320 	struct sdma_channel_control	*channel_control;
321 	void __iomem			*regs;
322 	struct sdma_context_data	*context;
323 	dma_addr_t			context_phys;
324 	struct dma_device		dma_device;
325 	struct clk			*clk_ipg;
326 	struct clk			*clk_ahb;
327 	spinlock_t			channel_0_lock;
328 	u32				script_number;
329 	struct sdma_script_start_addrs	*script_addrs;
330 	const struct sdma_driver_data	*drvdata;
331 };
332 
333 static struct sdma_driver_data sdma_imx31 = {
334 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
335 	.num_events = 32,
336 };
337 
338 static struct sdma_script_start_addrs sdma_script_imx25 = {
339 	.ap_2_ap_addr = 729,
340 	.uart_2_mcu_addr = 904,
341 	.per_2_app_addr = 1255,
342 	.mcu_2_app_addr = 834,
343 	.uartsh_2_mcu_addr = 1120,
344 	.per_2_shp_addr = 1329,
345 	.mcu_2_shp_addr = 1048,
346 	.ata_2_mcu_addr = 1560,
347 	.mcu_2_ata_addr = 1479,
348 	.app_2_per_addr = 1189,
349 	.app_2_mcu_addr = 770,
350 	.shp_2_per_addr = 1407,
351 	.shp_2_mcu_addr = 979,
352 };
353 
354 static struct sdma_driver_data sdma_imx25 = {
355 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
356 	.num_events = 48,
357 	.script_addrs = &sdma_script_imx25,
358 };
359 
360 static struct sdma_driver_data sdma_imx35 = {
361 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
362 	.num_events = 48,
363 };
364 
365 static struct sdma_script_start_addrs sdma_script_imx51 = {
366 	.ap_2_ap_addr = 642,
367 	.uart_2_mcu_addr = 817,
368 	.mcu_2_app_addr = 747,
369 	.mcu_2_shp_addr = 961,
370 	.ata_2_mcu_addr = 1473,
371 	.mcu_2_ata_addr = 1392,
372 	.app_2_per_addr = 1033,
373 	.app_2_mcu_addr = 683,
374 	.shp_2_per_addr = 1251,
375 	.shp_2_mcu_addr = 892,
376 };
377 
378 static struct sdma_driver_data sdma_imx51 = {
379 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
380 	.num_events = 48,
381 	.script_addrs = &sdma_script_imx51,
382 };
383 
384 static struct sdma_script_start_addrs sdma_script_imx53 = {
385 	.ap_2_ap_addr = 642,
386 	.app_2_mcu_addr = 683,
387 	.mcu_2_app_addr = 747,
388 	.uart_2_mcu_addr = 817,
389 	.shp_2_mcu_addr = 891,
390 	.mcu_2_shp_addr = 960,
391 	.uartsh_2_mcu_addr = 1032,
392 	.spdif_2_mcu_addr = 1100,
393 	.mcu_2_spdif_addr = 1134,
394 	.firi_2_mcu_addr = 1193,
395 	.mcu_2_firi_addr = 1290,
396 };
397 
398 static struct sdma_driver_data sdma_imx53 = {
399 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
400 	.num_events = 48,
401 	.script_addrs = &sdma_script_imx53,
402 };
403 
404 static struct sdma_script_start_addrs sdma_script_imx6q = {
405 	.ap_2_ap_addr = 642,
406 	.uart_2_mcu_addr = 817,
407 	.mcu_2_app_addr = 747,
408 	.per_2_per_addr = 6331,
409 	.uartsh_2_mcu_addr = 1032,
410 	.mcu_2_shp_addr = 960,
411 	.app_2_mcu_addr = 683,
412 	.shp_2_mcu_addr = 891,
413 	.spdif_2_mcu_addr = 1100,
414 	.mcu_2_spdif_addr = 1134,
415 };
416 
417 static struct sdma_driver_data sdma_imx6q = {
418 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
419 	.num_events = 48,
420 	.script_addrs = &sdma_script_imx6q,
421 };
422 
423 static struct platform_device_id sdma_devtypes[] = {
424 	{
425 		.name = "imx25-sdma",
426 		.driver_data = (unsigned long)&sdma_imx25,
427 	}, {
428 		.name = "imx31-sdma",
429 		.driver_data = (unsigned long)&sdma_imx31,
430 	}, {
431 		.name = "imx35-sdma",
432 		.driver_data = (unsigned long)&sdma_imx35,
433 	}, {
434 		.name = "imx51-sdma",
435 		.driver_data = (unsigned long)&sdma_imx51,
436 	}, {
437 		.name = "imx53-sdma",
438 		.driver_data = (unsigned long)&sdma_imx53,
439 	}, {
440 		.name = "imx6q-sdma",
441 		.driver_data = (unsigned long)&sdma_imx6q,
442 	}, {
443 		/* sentinel */
444 	}
445 };
446 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
447 
448 static const struct of_device_id sdma_dt_ids[] = {
449 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
450 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
451 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
452 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
453 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
454 	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
455 	{ /* sentinel */ }
456 };
457 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
458 
459 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
460 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
461 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
462 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
463 
464 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
465 {
466 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
467 	return chnenbl0 + event * 4;
468 }
469 
470 static int sdma_config_ownership(struct sdma_channel *sdmac,
471 		bool event_override, bool mcu_override, bool dsp_override)
472 {
473 	struct sdma_engine *sdma = sdmac->sdma;
474 	int channel = sdmac->channel;
475 	unsigned long evt, mcu, dsp;
476 
477 	if (event_override && mcu_override && dsp_override)
478 		return -EINVAL;
479 
480 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
481 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
482 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
483 
484 	if (dsp_override)
485 		__clear_bit(channel, &dsp);
486 	else
487 		__set_bit(channel, &dsp);
488 
489 	if (event_override)
490 		__clear_bit(channel, &evt);
491 	else
492 		__set_bit(channel, &evt);
493 
494 	if (mcu_override)
495 		__clear_bit(channel, &mcu);
496 	else
497 		__set_bit(channel, &mcu);
498 
499 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
500 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
501 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
502 
503 	return 0;
504 }
505 
506 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
507 {
508 	writel(BIT(channel), sdma->regs + SDMA_H_START);
509 }
510 
511 /*
512  * sdma_run_channel0 - run a channel and wait till it's done
513  */
514 static int sdma_run_channel0(struct sdma_engine *sdma)
515 {
516 	int ret;
517 	unsigned long timeout = 500;
518 
519 	sdma_enable_channel(sdma, 0);
520 
521 	while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
522 		if (timeout-- <= 0)
523 			break;
524 		udelay(1);
525 	}
526 
527 	if (ret) {
528 		/* Clear the interrupt status */
529 		writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
530 	} else {
531 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
532 	}
533 
534 	return ret ? 0 : -ETIMEDOUT;
535 }
536 
537 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
538 		u32 address)
539 {
540 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
541 	void *buf_virt;
542 	dma_addr_t buf_phys;
543 	int ret;
544 	unsigned long flags;
545 
546 	buf_virt = dma_alloc_coherent(NULL,
547 			size,
548 			&buf_phys, GFP_KERNEL);
549 	if (!buf_virt) {
550 		return -ENOMEM;
551 	}
552 
553 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
554 
555 	bd0->mode.command = C0_SETPM;
556 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
557 	bd0->mode.count = size / 2;
558 	bd0->buffer_addr = buf_phys;
559 	bd0->ext_buffer_addr = address;
560 
561 	memcpy(buf_virt, buf, size);
562 
563 	ret = sdma_run_channel0(sdma);
564 
565 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
566 
567 	dma_free_coherent(NULL, size, buf_virt, buf_phys);
568 
569 	return ret;
570 }
571 
572 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
573 {
574 	struct sdma_engine *sdma = sdmac->sdma;
575 	int channel = sdmac->channel;
576 	unsigned long val;
577 	u32 chnenbl = chnenbl_ofs(sdma, event);
578 
579 	val = readl_relaxed(sdma->regs + chnenbl);
580 	__set_bit(channel, &val);
581 	writel_relaxed(val, sdma->regs + chnenbl);
582 }
583 
584 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
585 {
586 	struct sdma_engine *sdma = sdmac->sdma;
587 	int channel = sdmac->channel;
588 	u32 chnenbl = chnenbl_ofs(sdma, event);
589 	unsigned long val;
590 
591 	val = readl_relaxed(sdma->regs + chnenbl);
592 	__clear_bit(channel, &val);
593 	writel_relaxed(val, sdma->regs + chnenbl);
594 }
595 
596 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
597 {
598 	if (sdmac->desc.callback)
599 		sdmac->desc.callback(sdmac->desc.callback_param);
600 }
601 
602 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
603 {
604 	struct sdma_buffer_descriptor *bd;
605 
606 	/*
607 	 * loop mode. Iterate over descriptors, re-setup them and
608 	 * call callback function.
609 	 */
610 	while (1) {
611 		bd = &sdmac->bd[sdmac->buf_tail];
612 
613 		if (bd->mode.status & BD_DONE)
614 			break;
615 
616 		if (bd->mode.status & BD_RROR)
617 			sdmac->status = DMA_ERROR;
618 
619 		bd->mode.status |= BD_DONE;
620 		sdmac->buf_tail++;
621 		sdmac->buf_tail %= sdmac->num_bd;
622 	}
623 }
624 
625 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
626 {
627 	struct sdma_buffer_descriptor *bd;
628 	int i, error = 0;
629 
630 	sdmac->chn_real_count = 0;
631 	/*
632 	 * non loop mode. Iterate over all descriptors, collect
633 	 * errors and call callback function
634 	 */
635 	for (i = 0; i < sdmac->num_bd; i++) {
636 		bd = &sdmac->bd[i];
637 
638 		 if (bd->mode.status & (BD_DONE | BD_RROR))
639 			error = -EIO;
640 		 sdmac->chn_real_count += bd->mode.count;
641 	}
642 
643 	if (error)
644 		sdmac->status = DMA_ERROR;
645 	else
646 		sdmac->status = DMA_COMPLETE;
647 
648 	dma_cookie_complete(&sdmac->desc);
649 	if (sdmac->desc.callback)
650 		sdmac->desc.callback(sdmac->desc.callback_param);
651 }
652 
653 static void sdma_tasklet(unsigned long data)
654 {
655 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
656 
657 	if (sdmac->flags & IMX_DMA_SG_LOOP)
658 		sdma_handle_channel_loop(sdmac);
659 	else
660 		mxc_sdma_handle_channel_normal(sdmac);
661 }
662 
663 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
664 {
665 	struct sdma_engine *sdma = dev_id;
666 	unsigned long stat;
667 
668 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
669 	/* not interested in channel 0 interrupts */
670 	stat &= ~1;
671 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
672 
673 	while (stat) {
674 		int channel = fls(stat) - 1;
675 		struct sdma_channel *sdmac = &sdma->channel[channel];
676 
677 		if (sdmac->flags & IMX_DMA_SG_LOOP)
678 			sdma_update_channel_loop(sdmac);
679 
680 		tasklet_schedule(&sdmac->tasklet);
681 
682 		__clear_bit(channel, &stat);
683 	}
684 
685 	return IRQ_HANDLED;
686 }
687 
688 /*
689  * sets the pc of SDMA script according to the peripheral type
690  */
691 static void sdma_get_pc(struct sdma_channel *sdmac,
692 		enum sdma_peripheral_type peripheral_type)
693 {
694 	struct sdma_engine *sdma = sdmac->sdma;
695 	int per_2_emi = 0, emi_2_per = 0;
696 	/*
697 	 * These are needed once we start to support transfers between
698 	 * two peripherals or memory-to-memory transfers
699 	 */
700 	int per_2_per = 0, emi_2_emi = 0;
701 
702 	sdmac->pc_from_device = 0;
703 	sdmac->pc_to_device = 0;
704 
705 	switch (peripheral_type) {
706 	case IMX_DMATYPE_MEMORY:
707 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
708 		break;
709 	case IMX_DMATYPE_DSP:
710 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
711 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
712 		break;
713 	case IMX_DMATYPE_FIRI:
714 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
715 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
716 		break;
717 	case IMX_DMATYPE_UART:
718 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
719 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
720 		break;
721 	case IMX_DMATYPE_UART_SP:
722 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
723 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
724 		break;
725 	case IMX_DMATYPE_ATA:
726 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
727 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
728 		break;
729 	case IMX_DMATYPE_CSPI:
730 	case IMX_DMATYPE_EXT:
731 	case IMX_DMATYPE_SSI:
732 	case IMX_DMATYPE_SAI:
733 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
734 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
735 		break;
736 	case IMX_DMATYPE_SSI_DUAL:
737 		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
738 		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
739 		break;
740 	case IMX_DMATYPE_SSI_SP:
741 	case IMX_DMATYPE_MMC:
742 	case IMX_DMATYPE_SDHC:
743 	case IMX_DMATYPE_CSPI_SP:
744 	case IMX_DMATYPE_ESAI:
745 	case IMX_DMATYPE_MSHC_SP:
746 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
747 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
748 		break;
749 	case IMX_DMATYPE_ASRC:
750 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
751 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
752 		per_2_per = sdma->script_addrs->per_2_per_addr;
753 		break;
754 	case IMX_DMATYPE_ASRC_SP:
755 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
756 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
757 		per_2_per = sdma->script_addrs->per_2_per_addr;
758 		break;
759 	case IMX_DMATYPE_MSHC:
760 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
761 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
762 		break;
763 	case IMX_DMATYPE_CCM:
764 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
765 		break;
766 	case IMX_DMATYPE_SPDIF:
767 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
768 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
769 		break;
770 	case IMX_DMATYPE_IPU_MEMORY:
771 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
772 		break;
773 	default:
774 		break;
775 	}
776 
777 	sdmac->pc_from_device = per_2_emi;
778 	sdmac->pc_to_device = emi_2_per;
779 }
780 
781 static int sdma_load_context(struct sdma_channel *sdmac)
782 {
783 	struct sdma_engine *sdma = sdmac->sdma;
784 	int channel = sdmac->channel;
785 	int load_address;
786 	struct sdma_context_data *context = sdma->context;
787 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
788 	int ret;
789 	unsigned long flags;
790 
791 	if (sdmac->direction == DMA_DEV_TO_MEM) {
792 		load_address = sdmac->pc_from_device;
793 	} else {
794 		load_address = sdmac->pc_to_device;
795 	}
796 
797 	if (load_address < 0)
798 		return load_address;
799 
800 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
801 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
802 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
803 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
804 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
805 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
806 
807 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
808 
809 	memset(context, 0, sizeof(*context));
810 	context->channel_state.pc = load_address;
811 
812 	/* Send by context the event mask,base address for peripheral
813 	 * and watermark level
814 	 */
815 	context->gReg[0] = sdmac->event_mask[1];
816 	context->gReg[1] = sdmac->event_mask[0];
817 	context->gReg[2] = sdmac->per_addr;
818 	context->gReg[6] = sdmac->shp_addr;
819 	context->gReg[7] = sdmac->watermark_level;
820 
821 	bd0->mode.command = C0_SETDM;
822 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
823 	bd0->mode.count = sizeof(*context) / 4;
824 	bd0->buffer_addr = sdma->context_phys;
825 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
826 	ret = sdma_run_channel0(sdma);
827 
828 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
829 
830 	return ret;
831 }
832 
833 static void sdma_disable_channel(struct sdma_channel *sdmac)
834 {
835 	struct sdma_engine *sdma = sdmac->sdma;
836 	int channel = sdmac->channel;
837 
838 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
839 	sdmac->status = DMA_ERROR;
840 }
841 
842 static int sdma_config_channel(struct sdma_channel *sdmac)
843 {
844 	int ret;
845 
846 	sdma_disable_channel(sdmac);
847 
848 	sdmac->event_mask[0] = 0;
849 	sdmac->event_mask[1] = 0;
850 	sdmac->shp_addr = 0;
851 	sdmac->per_addr = 0;
852 
853 	if (sdmac->event_id0) {
854 		if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
855 			return -EINVAL;
856 		sdma_event_enable(sdmac, sdmac->event_id0);
857 	}
858 
859 	switch (sdmac->peripheral_type) {
860 	case IMX_DMATYPE_DSP:
861 		sdma_config_ownership(sdmac, false, true, true);
862 		break;
863 	case IMX_DMATYPE_MEMORY:
864 		sdma_config_ownership(sdmac, false, true, false);
865 		break;
866 	default:
867 		sdma_config_ownership(sdmac, true, true, false);
868 		break;
869 	}
870 
871 	sdma_get_pc(sdmac, sdmac->peripheral_type);
872 
873 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
874 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
875 		/* Handle multiple event channels differently */
876 		if (sdmac->event_id1) {
877 			sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
878 			if (sdmac->event_id1 > 31)
879 				__set_bit(31, &sdmac->watermark_level);
880 			sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
881 			if (sdmac->event_id0 > 31)
882 				__set_bit(30, &sdmac->watermark_level);
883 		} else {
884 			__set_bit(sdmac->event_id0, sdmac->event_mask);
885 		}
886 		/* Watermark Level */
887 		sdmac->watermark_level |= sdmac->watermark_level;
888 		/* Address */
889 		sdmac->shp_addr = sdmac->per_address;
890 	} else {
891 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
892 	}
893 
894 	ret = sdma_load_context(sdmac);
895 
896 	return ret;
897 }
898 
899 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
900 		unsigned int priority)
901 {
902 	struct sdma_engine *sdma = sdmac->sdma;
903 	int channel = sdmac->channel;
904 
905 	if (priority < MXC_SDMA_MIN_PRIORITY
906 	    || priority > MXC_SDMA_MAX_PRIORITY) {
907 		return -EINVAL;
908 	}
909 
910 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
911 
912 	return 0;
913 }
914 
915 static int sdma_request_channel(struct sdma_channel *sdmac)
916 {
917 	struct sdma_engine *sdma = sdmac->sdma;
918 	int channel = sdmac->channel;
919 	int ret = -EBUSY;
920 
921 	sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
922 					GFP_KERNEL);
923 	if (!sdmac->bd) {
924 		ret = -ENOMEM;
925 		goto out;
926 	}
927 
928 	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
929 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
930 
931 	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
932 	return 0;
933 out:
934 
935 	return ret;
936 }
937 
938 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
939 {
940 	return container_of(chan, struct sdma_channel, chan);
941 }
942 
943 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
944 {
945 	unsigned long flags;
946 	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
947 	dma_cookie_t cookie;
948 
949 	spin_lock_irqsave(&sdmac->lock, flags);
950 
951 	cookie = dma_cookie_assign(tx);
952 
953 	spin_unlock_irqrestore(&sdmac->lock, flags);
954 
955 	return cookie;
956 }
957 
958 static int sdma_alloc_chan_resources(struct dma_chan *chan)
959 {
960 	struct sdma_channel *sdmac = to_sdma_chan(chan);
961 	struct imx_dma_data *data = chan->private;
962 	int prio, ret;
963 
964 	if (!data)
965 		return -EINVAL;
966 
967 	switch (data->priority) {
968 	case DMA_PRIO_HIGH:
969 		prio = 3;
970 		break;
971 	case DMA_PRIO_MEDIUM:
972 		prio = 2;
973 		break;
974 	case DMA_PRIO_LOW:
975 	default:
976 		prio = 1;
977 		break;
978 	}
979 
980 	sdmac->peripheral_type = data->peripheral_type;
981 	sdmac->event_id0 = data->dma_request;
982 
983 	clk_enable(sdmac->sdma->clk_ipg);
984 	clk_enable(sdmac->sdma->clk_ahb);
985 
986 	ret = sdma_request_channel(sdmac);
987 	if (ret)
988 		return ret;
989 
990 	ret = sdma_set_channel_priority(sdmac, prio);
991 	if (ret)
992 		return ret;
993 
994 	dma_async_tx_descriptor_init(&sdmac->desc, chan);
995 	sdmac->desc.tx_submit = sdma_tx_submit;
996 	/* txd.flags will be overwritten in prep funcs */
997 	sdmac->desc.flags = DMA_CTRL_ACK;
998 
999 	return 0;
1000 }
1001 
1002 static void sdma_free_chan_resources(struct dma_chan *chan)
1003 {
1004 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1005 	struct sdma_engine *sdma = sdmac->sdma;
1006 
1007 	sdma_disable_channel(sdmac);
1008 
1009 	if (sdmac->event_id0)
1010 		sdma_event_disable(sdmac, sdmac->event_id0);
1011 	if (sdmac->event_id1)
1012 		sdma_event_disable(sdmac, sdmac->event_id1);
1013 
1014 	sdmac->event_id0 = 0;
1015 	sdmac->event_id1 = 0;
1016 
1017 	sdma_set_channel_priority(sdmac, 0);
1018 
1019 	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1020 
1021 	clk_disable(sdma->clk_ipg);
1022 	clk_disable(sdma->clk_ahb);
1023 }
1024 
1025 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1026 		struct dma_chan *chan, struct scatterlist *sgl,
1027 		unsigned int sg_len, enum dma_transfer_direction direction,
1028 		unsigned long flags, void *context)
1029 {
1030 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1031 	struct sdma_engine *sdma = sdmac->sdma;
1032 	int ret, i, count;
1033 	int channel = sdmac->channel;
1034 	struct scatterlist *sg;
1035 
1036 	if (sdmac->status == DMA_IN_PROGRESS)
1037 		return NULL;
1038 	sdmac->status = DMA_IN_PROGRESS;
1039 
1040 	sdmac->flags = 0;
1041 
1042 	sdmac->buf_tail = 0;
1043 
1044 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1045 			sg_len, channel);
1046 
1047 	sdmac->direction = direction;
1048 	ret = sdma_load_context(sdmac);
1049 	if (ret)
1050 		goto err_out;
1051 
1052 	if (sg_len > NUM_BD) {
1053 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1054 				channel, sg_len, NUM_BD);
1055 		ret = -EINVAL;
1056 		goto err_out;
1057 	}
1058 
1059 	sdmac->chn_count = 0;
1060 	for_each_sg(sgl, sg, sg_len, i) {
1061 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1062 		int param;
1063 
1064 		bd->buffer_addr = sg->dma_address;
1065 
1066 		count = sg_dma_len(sg);
1067 
1068 		if (count > 0xffff) {
1069 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1070 					channel, count, 0xffff);
1071 			ret = -EINVAL;
1072 			goto err_out;
1073 		}
1074 
1075 		bd->mode.count = count;
1076 		sdmac->chn_count += count;
1077 
1078 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1079 			ret =  -EINVAL;
1080 			goto err_out;
1081 		}
1082 
1083 		switch (sdmac->word_size) {
1084 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1085 			bd->mode.command = 0;
1086 			if (count & 3 || sg->dma_address & 3)
1087 				return NULL;
1088 			break;
1089 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1090 			bd->mode.command = 2;
1091 			if (count & 1 || sg->dma_address & 1)
1092 				return NULL;
1093 			break;
1094 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1095 			bd->mode.command = 1;
1096 			break;
1097 		default:
1098 			return NULL;
1099 		}
1100 
1101 		param = BD_DONE | BD_EXTD | BD_CONT;
1102 
1103 		if (i + 1 == sg_len) {
1104 			param |= BD_INTR;
1105 			param |= BD_LAST;
1106 			param &= ~BD_CONT;
1107 		}
1108 
1109 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1110 				i, count, (u64)sg->dma_address,
1111 				param & BD_WRAP ? "wrap" : "",
1112 				param & BD_INTR ? " intr" : "");
1113 
1114 		bd->mode.status = param;
1115 	}
1116 
1117 	sdmac->num_bd = sg_len;
1118 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1119 
1120 	return &sdmac->desc;
1121 err_out:
1122 	sdmac->status = DMA_ERROR;
1123 	return NULL;
1124 }
1125 
1126 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1127 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1128 		size_t period_len, enum dma_transfer_direction direction,
1129 		unsigned long flags)
1130 {
1131 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1132 	struct sdma_engine *sdma = sdmac->sdma;
1133 	int num_periods = buf_len / period_len;
1134 	int channel = sdmac->channel;
1135 	int ret, i = 0, buf = 0;
1136 
1137 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1138 
1139 	if (sdmac->status == DMA_IN_PROGRESS)
1140 		return NULL;
1141 
1142 	sdmac->status = DMA_IN_PROGRESS;
1143 
1144 	sdmac->buf_tail = 0;
1145 	sdmac->period_len = period_len;
1146 
1147 	sdmac->flags |= IMX_DMA_SG_LOOP;
1148 	sdmac->direction = direction;
1149 	ret = sdma_load_context(sdmac);
1150 	if (ret)
1151 		goto err_out;
1152 
1153 	if (num_periods > NUM_BD) {
1154 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1155 				channel, num_periods, NUM_BD);
1156 		goto err_out;
1157 	}
1158 
1159 	if (period_len > 0xffff) {
1160 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1161 				channel, period_len, 0xffff);
1162 		goto err_out;
1163 	}
1164 
1165 	while (buf < buf_len) {
1166 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1167 		int param;
1168 
1169 		bd->buffer_addr = dma_addr;
1170 
1171 		bd->mode.count = period_len;
1172 
1173 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1174 			goto err_out;
1175 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1176 			bd->mode.command = 0;
1177 		else
1178 			bd->mode.command = sdmac->word_size;
1179 
1180 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1181 		if (i + 1 == num_periods)
1182 			param |= BD_WRAP;
1183 
1184 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1185 				i, period_len, (u64)dma_addr,
1186 				param & BD_WRAP ? "wrap" : "",
1187 				param & BD_INTR ? " intr" : "");
1188 
1189 		bd->mode.status = param;
1190 
1191 		dma_addr += period_len;
1192 		buf += period_len;
1193 
1194 		i++;
1195 	}
1196 
1197 	sdmac->num_bd = num_periods;
1198 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1199 
1200 	return &sdmac->desc;
1201 err_out:
1202 	sdmac->status = DMA_ERROR;
1203 	return NULL;
1204 }
1205 
1206 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1207 		unsigned long arg)
1208 {
1209 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1210 	struct dma_slave_config *dmaengine_cfg = (void *)arg;
1211 
1212 	switch (cmd) {
1213 	case DMA_TERMINATE_ALL:
1214 		sdma_disable_channel(sdmac);
1215 		return 0;
1216 	case DMA_SLAVE_CONFIG:
1217 		if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1218 			sdmac->per_address = dmaengine_cfg->src_addr;
1219 			sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1220 						dmaengine_cfg->src_addr_width;
1221 			sdmac->word_size = dmaengine_cfg->src_addr_width;
1222 		} else {
1223 			sdmac->per_address = dmaengine_cfg->dst_addr;
1224 			sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1225 						dmaengine_cfg->dst_addr_width;
1226 			sdmac->word_size = dmaengine_cfg->dst_addr_width;
1227 		}
1228 		sdmac->direction = dmaengine_cfg->direction;
1229 		return sdma_config_channel(sdmac);
1230 	default:
1231 		return -ENOSYS;
1232 	}
1233 
1234 	return -EINVAL;
1235 }
1236 
1237 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1238 				      dma_cookie_t cookie,
1239 				      struct dma_tx_state *txstate)
1240 {
1241 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1242 	u32 residue;
1243 
1244 	if (sdmac->flags & IMX_DMA_SG_LOOP)
1245 		residue = (sdmac->num_bd - sdmac->buf_tail) * sdmac->period_len;
1246 	else
1247 		residue = sdmac->chn_count - sdmac->chn_real_count;
1248 
1249 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1250 			 residue);
1251 
1252 	return sdmac->status;
1253 }
1254 
1255 static void sdma_issue_pending(struct dma_chan *chan)
1256 {
1257 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1258 	struct sdma_engine *sdma = sdmac->sdma;
1259 
1260 	if (sdmac->status == DMA_IN_PROGRESS)
1261 		sdma_enable_channel(sdma, sdmac->channel);
1262 }
1263 
1264 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1265 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1266 
1267 static void sdma_add_scripts(struct sdma_engine *sdma,
1268 		const struct sdma_script_start_addrs *addr)
1269 {
1270 	s32 *addr_arr = (u32 *)addr;
1271 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1272 	int i;
1273 
1274 	/* use the default firmware in ROM if missing external firmware */
1275 	if (!sdma->script_number)
1276 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1277 
1278 	for (i = 0; i < sdma->script_number; i++)
1279 		if (addr_arr[i] > 0)
1280 			saddr_arr[i] = addr_arr[i];
1281 }
1282 
1283 static void sdma_load_firmware(const struct firmware *fw, void *context)
1284 {
1285 	struct sdma_engine *sdma = context;
1286 	const struct sdma_firmware_header *header;
1287 	const struct sdma_script_start_addrs *addr;
1288 	unsigned short *ram_code;
1289 
1290 	if (!fw) {
1291 		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1292 		/* In this case we just use the ROM firmware. */
1293 		return;
1294 	}
1295 
1296 	if (fw->size < sizeof(*header))
1297 		goto err_firmware;
1298 
1299 	header = (struct sdma_firmware_header *)fw->data;
1300 
1301 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1302 		goto err_firmware;
1303 	if (header->ram_code_start + header->ram_code_size > fw->size)
1304 		goto err_firmware;
1305 	switch (header->version_major) {
1306 		case 1:
1307 			sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1308 			break;
1309 		case 2:
1310 			sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1311 			break;
1312 		default:
1313 			dev_err(sdma->dev, "unknown firmware version\n");
1314 			goto err_firmware;
1315 	}
1316 
1317 	addr = (void *)header + header->script_addrs_start;
1318 	ram_code = (void *)header + header->ram_code_start;
1319 
1320 	clk_enable(sdma->clk_ipg);
1321 	clk_enable(sdma->clk_ahb);
1322 	/* download the RAM image for SDMA */
1323 	sdma_load_script(sdma, ram_code,
1324 			header->ram_code_size,
1325 			addr->ram_code_start_addr);
1326 	clk_disable(sdma->clk_ipg);
1327 	clk_disable(sdma->clk_ahb);
1328 
1329 	sdma_add_scripts(sdma, addr);
1330 
1331 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1332 			header->version_major,
1333 			header->version_minor);
1334 
1335 err_firmware:
1336 	release_firmware(fw);
1337 }
1338 
1339 static int sdma_get_firmware(struct sdma_engine *sdma,
1340 		const char *fw_name)
1341 {
1342 	int ret;
1343 
1344 	ret = request_firmware_nowait(THIS_MODULE,
1345 			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1346 			GFP_KERNEL, sdma, sdma_load_firmware);
1347 
1348 	return ret;
1349 }
1350 
1351 static int sdma_init(struct sdma_engine *sdma)
1352 {
1353 	int i, ret;
1354 	dma_addr_t ccb_phys;
1355 
1356 	clk_enable(sdma->clk_ipg);
1357 	clk_enable(sdma->clk_ahb);
1358 
1359 	/* Be sure SDMA has not started yet */
1360 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1361 
1362 	sdma->channel_control = dma_alloc_coherent(NULL,
1363 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1364 			sizeof(struct sdma_context_data),
1365 			&ccb_phys, GFP_KERNEL);
1366 
1367 	if (!sdma->channel_control) {
1368 		ret = -ENOMEM;
1369 		goto err_dma_alloc;
1370 	}
1371 
1372 	sdma->context = (void *)sdma->channel_control +
1373 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1374 	sdma->context_phys = ccb_phys +
1375 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1376 
1377 	/* Zero-out the CCB structures array just allocated */
1378 	memset(sdma->channel_control, 0,
1379 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1380 
1381 	/* disable all channels */
1382 	for (i = 0; i < sdma->drvdata->num_events; i++)
1383 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1384 
1385 	/* All channels have priority 0 */
1386 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1387 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1388 
1389 	ret = sdma_request_channel(&sdma->channel[0]);
1390 	if (ret)
1391 		goto err_dma_alloc;
1392 
1393 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1394 
1395 	/* Set Command Channel (Channel Zero) */
1396 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1397 
1398 	/* Set bits of CONFIG register but with static context switching */
1399 	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1400 	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1401 
1402 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1403 
1404 	/* Set bits of CONFIG register with given context switching mode */
1405 	writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1406 
1407 	/* Initializes channel's priorities */
1408 	sdma_set_channel_priority(&sdma->channel[0], 7);
1409 
1410 	clk_disable(sdma->clk_ipg);
1411 	clk_disable(sdma->clk_ahb);
1412 
1413 	return 0;
1414 
1415 err_dma_alloc:
1416 	clk_disable(sdma->clk_ipg);
1417 	clk_disable(sdma->clk_ahb);
1418 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1419 	return ret;
1420 }
1421 
1422 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1423 {
1424 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1425 	struct imx_dma_data *data = fn_param;
1426 
1427 	if (!imx_dma_is_general_purpose(chan))
1428 		return false;
1429 
1430 	sdmac->data = *data;
1431 	chan->private = &sdmac->data;
1432 
1433 	return true;
1434 }
1435 
1436 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1437 				   struct of_dma *ofdma)
1438 {
1439 	struct sdma_engine *sdma = ofdma->of_dma_data;
1440 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1441 	struct imx_dma_data data;
1442 
1443 	if (dma_spec->args_count != 3)
1444 		return NULL;
1445 
1446 	data.dma_request = dma_spec->args[0];
1447 	data.peripheral_type = dma_spec->args[1];
1448 	data.priority = dma_spec->args[2];
1449 
1450 	return dma_request_channel(mask, sdma_filter_fn, &data);
1451 }
1452 
1453 static int sdma_probe(struct platform_device *pdev)
1454 {
1455 	const struct of_device_id *of_id =
1456 			of_match_device(sdma_dt_ids, &pdev->dev);
1457 	struct device_node *np = pdev->dev.of_node;
1458 	const char *fw_name;
1459 	int ret;
1460 	int irq;
1461 	struct resource *iores;
1462 	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1463 	int i;
1464 	struct sdma_engine *sdma;
1465 	s32 *saddr_arr;
1466 	const struct sdma_driver_data *drvdata = NULL;
1467 
1468 	if (of_id)
1469 		drvdata = of_id->data;
1470 	else if (pdev->id_entry)
1471 		drvdata = (void *)pdev->id_entry->driver_data;
1472 
1473 	if (!drvdata) {
1474 		dev_err(&pdev->dev, "unable to find driver data\n");
1475 		return -EINVAL;
1476 	}
1477 
1478 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1479 	if (ret)
1480 		return ret;
1481 
1482 	sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1483 	if (!sdma)
1484 		return -ENOMEM;
1485 
1486 	spin_lock_init(&sdma->channel_0_lock);
1487 
1488 	sdma->dev = &pdev->dev;
1489 	sdma->drvdata = drvdata;
1490 
1491 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1492 	irq = platform_get_irq(pdev, 0);
1493 	if (!iores || irq < 0) {
1494 		ret = -EINVAL;
1495 		goto err_irq;
1496 	}
1497 
1498 	if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1499 		ret = -EBUSY;
1500 		goto err_request_region;
1501 	}
1502 
1503 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1504 	if (IS_ERR(sdma->clk_ipg)) {
1505 		ret = PTR_ERR(sdma->clk_ipg);
1506 		goto err_clk;
1507 	}
1508 
1509 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1510 	if (IS_ERR(sdma->clk_ahb)) {
1511 		ret = PTR_ERR(sdma->clk_ahb);
1512 		goto err_clk;
1513 	}
1514 
1515 	clk_prepare(sdma->clk_ipg);
1516 	clk_prepare(sdma->clk_ahb);
1517 
1518 	sdma->regs = ioremap(iores->start, resource_size(iores));
1519 	if (!sdma->regs) {
1520 		ret = -ENOMEM;
1521 		goto err_ioremap;
1522 	}
1523 
1524 	ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1525 	if (ret)
1526 		goto err_request_irq;
1527 
1528 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1529 	if (!sdma->script_addrs) {
1530 		ret = -ENOMEM;
1531 		goto err_alloc;
1532 	}
1533 
1534 	/* initially no scripts available */
1535 	saddr_arr = (s32 *)sdma->script_addrs;
1536 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1537 		saddr_arr[i] = -EINVAL;
1538 
1539 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1540 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1541 
1542 	INIT_LIST_HEAD(&sdma->dma_device.channels);
1543 	/* Initialize channel parameters */
1544 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1545 		struct sdma_channel *sdmac = &sdma->channel[i];
1546 
1547 		sdmac->sdma = sdma;
1548 		spin_lock_init(&sdmac->lock);
1549 
1550 		sdmac->chan.device = &sdma->dma_device;
1551 		dma_cookie_init(&sdmac->chan);
1552 		sdmac->channel = i;
1553 
1554 		tasklet_init(&sdmac->tasklet, sdma_tasklet,
1555 			     (unsigned long) sdmac);
1556 		/*
1557 		 * Add the channel to the DMAC list. Do not add channel 0 though
1558 		 * because we need it internally in the SDMA driver. This also means
1559 		 * that channel 0 in dmaengine counting matches sdma channel 1.
1560 		 */
1561 		if (i)
1562 			list_add_tail(&sdmac->chan.device_node,
1563 					&sdma->dma_device.channels);
1564 	}
1565 
1566 	ret = sdma_init(sdma);
1567 	if (ret)
1568 		goto err_init;
1569 
1570 	if (sdma->drvdata->script_addrs)
1571 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1572 	if (pdata && pdata->script_addrs)
1573 		sdma_add_scripts(sdma, pdata->script_addrs);
1574 
1575 	if (pdata) {
1576 		ret = sdma_get_firmware(sdma, pdata->fw_name);
1577 		if (ret)
1578 			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1579 	} else {
1580 		/*
1581 		 * Because that device tree does not encode ROM script address,
1582 		 * the RAM script in firmware is mandatory for device tree
1583 		 * probe, otherwise it fails.
1584 		 */
1585 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1586 					      &fw_name);
1587 		if (ret)
1588 			dev_warn(&pdev->dev, "failed to get firmware name\n");
1589 		else {
1590 			ret = sdma_get_firmware(sdma, fw_name);
1591 			if (ret)
1592 				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1593 		}
1594 	}
1595 
1596 	sdma->dma_device.dev = &pdev->dev;
1597 
1598 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1599 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1600 	sdma->dma_device.device_tx_status = sdma_tx_status;
1601 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1602 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1603 	sdma->dma_device.device_control = sdma_control;
1604 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1605 	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1606 	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1607 
1608 	platform_set_drvdata(pdev, sdma);
1609 
1610 	ret = dma_async_device_register(&sdma->dma_device);
1611 	if (ret) {
1612 		dev_err(&pdev->dev, "unable to register\n");
1613 		goto err_init;
1614 	}
1615 
1616 	if (np) {
1617 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
1618 		if (ret) {
1619 			dev_err(&pdev->dev, "failed to register controller\n");
1620 			goto err_register;
1621 		}
1622 	}
1623 
1624 	dev_info(sdma->dev, "initialized\n");
1625 
1626 	return 0;
1627 
1628 err_register:
1629 	dma_async_device_unregister(&sdma->dma_device);
1630 err_init:
1631 	kfree(sdma->script_addrs);
1632 err_alloc:
1633 	free_irq(irq, sdma);
1634 err_request_irq:
1635 	iounmap(sdma->regs);
1636 err_ioremap:
1637 err_clk:
1638 	release_mem_region(iores->start, resource_size(iores));
1639 err_request_region:
1640 err_irq:
1641 	kfree(sdma);
1642 	return ret;
1643 }
1644 
1645 static int sdma_remove(struct platform_device *pdev)
1646 {
1647 	struct sdma_engine *sdma = platform_get_drvdata(pdev);
1648 	struct resource *iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1649 	int irq = platform_get_irq(pdev, 0);
1650 	int i;
1651 
1652 	dma_async_device_unregister(&sdma->dma_device);
1653 	kfree(sdma->script_addrs);
1654 	free_irq(irq, sdma);
1655 	iounmap(sdma->regs);
1656 	release_mem_region(iores->start, resource_size(iores));
1657 	/* Kill the tasklet */
1658 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1659 		struct sdma_channel *sdmac = &sdma->channel[i];
1660 
1661 		tasklet_kill(&sdmac->tasklet);
1662 	}
1663 	kfree(sdma);
1664 
1665 	platform_set_drvdata(pdev, NULL);
1666 	dev_info(&pdev->dev, "Removed...\n");
1667 	return 0;
1668 }
1669 
1670 static struct platform_driver sdma_driver = {
1671 	.driver		= {
1672 		.name	= "imx-sdma",
1673 		.of_match_table = sdma_dt_ids,
1674 	},
1675 	.id_table	= sdma_devtypes,
1676 	.remove		= sdma_remove,
1677 	.probe		= sdma_probe,
1678 };
1679 
1680 module_platform_driver(sdma_driver);
1681 
1682 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1683 MODULE_DESCRIPTION("i.MX SDMA driver");
1684 MODULE_LICENSE("GPL");
1685