xref: /openbmc/linux/drivers/dma/imx-sdma.c (revision b34e08d5)
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19 
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39 #include <linux/of_dma.h>
40 
41 #include <asm/irq.h>
42 #include <linux/platform_data/dma-imx-sdma.h>
43 #include <linux/platform_data/dma-imx.h>
44 
45 #include "dmaengine.h"
46 
47 /* SDMA registers */
48 #define SDMA_H_C0PTR		0x000
49 #define SDMA_H_INTR		0x004
50 #define SDMA_H_STATSTOP		0x008
51 #define SDMA_H_START		0x00c
52 #define SDMA_H_EVTOVR		0x010
53 #define SDMA_H_DSPOVR		0x014
54 #define SDMA_H_HOSTOVR		0x018
55 #define SDMA_H_EVTPEND		0x01c
56 #define SDMA_H_DSPENBL		0x020
57 #define SDMA_H_RESET		0x024
58 #define SDMA_H_EVTERR		0x028
59 #define SDMA_H_INTRMSK		0x02c
60 #define SDMA_H_PSW		0x030
61 #define SDMA_H_EVTERRDBG	0x034
62 #define SDMA_H_CONFIG		0x038
63 #define SDMA_ONCE_ENB		0x040
64 #define SDMA_ONCE_DATA		0x044
65 #define SDMA_ONCE_INSTR		0x048
66 #define SDMA_ONCE_STAT		0x04c
67 #define SDMA_ONCE_CMD		0x050
68 #define SDMA_EVT_MIRROR		0x054
69 #define SDMA_ILLINSTADDR	0x058
70 #define SDMA_CHN0ADDR		0x05c
71 #define SDMA_ONCE_RTB		0x060
72 #define SDMA_XTRIG_CONF1	0x070
73 #define SDMA_XTRIG_CONF2	0x074
74 #define SDMA_CHNENBL0_IMX35	0x200
75 #define SDMA_CHNENBL0_IMX31	0x080
76 #define SDMA_CHNPRI_0		0x100
77 
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88 
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96 
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101 
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108 
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125 
126 /*
127  * Mode/Count of data node descriptors - IPCv2
128  */
129 struct sdma_mode_count {
130 	u32 count   : 16; /* size of the buffer pointed by this BD */
131 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
132 	u32 command :  8; /* command mostlky used for channel 0 */
133 };
134 
135 /*
136  * Buffer descriptor
137  */
138 struct sdma_buffer_descriptor {
139 	struct sdma_mode_count  mode;
140 	u32 buffer_addr;	/* address of the buffer described */
141 	u32 ext_buffer_addr;	/* extended buffer address */
142 } __attribute__ ((packed));
143 
144 /**
145  * struct sdma_channel_control - Channel control Block
146  *
147  * @current_bd_ptr	current buffer descriptor processed
148  * @base_bd_ptr		first element of buffer descriptor array
149  * @unused		padding. The SDMA engine expects an array of 128 byte
150  *			control blocks
151  */
152 struct sdma_channel_control {
153 	u32 current_bd_ptr;
154 	u32 base_bd_ptr;
155 	u32 unused[2];
156 } __attribute__ ((packed));
157 
158 /**
159  * struct sdma_state_registers - SDMA context for a channel
160  *
161  * @pc:		program counter
162  * @t:		test bit: status of arithmetic & test instruction
163  * @rpc:	return program counter
164  * @sf:		source fault while loading data
165  * @spc:	loop start program counter
166  * @df:		destination fault while storing data
167  * @epc:	loop end program counter
168  * @lm:		loop mode
169  */
170 struct sdma_state_registers {
171 	u32 pc     :14;
172 	u32 unused1: 1;
173 	u32 t      : 1;
174 	u32 rpc    :14;
175 	u32 unused0: 1;
176 	u32 sf     : 1;
177 	u32 spc    :14;
178 	u32 unused2: 1;
179 	u32 df     : 1;
180 	u32 epc    :14;
181 	u32 lm     : 2;
182 } __attribute__ ((packed));
183 
184 /**
185  * struct sdma_context_data - sdma context specific to a channel
186  *
187  * @channel_state:	channel state bits
188  * @gReg:		general registers
189  * @mda:		burst dma destination address register
190  * @msa:		burst dma source address register
191  * @ms:			burst dma status register
192  * @md:			burst dma data register
193  * @pda:		peripheral dma destination address register
194  * @psa:		peripheral dma source address register
195  * @ps:			peripheral dma status register
196  * @pd:			peripheral dma data register
197  * @ca:			CRC polynomial register
198  * @cs:			CRC accumulator register
199  * @dda:		dedicated core destination address register
200  * @dsa:		dedicated core source address register
201  * @ds:			dedicated core status register
202  * @dd:			dedicated core data register
203  */
204 struct sdma_context_data {
205 	struct sdma_state_registers  channel_state;
206 	u32  gReg[8];
207 	u32  mda;
208 	u32  msa;
209 	u32  ms;
210 	u32  md;
211 	u32  pda;
212 	u32  psa;
213 	u32  ps;
214 	u32  pd;
215 	u32  ca;
216 	u32  cs;
217 	u32  dda;
218 	u32  dsa;
219 	u32  ds;
220 	u32  dd;
221 	u32  scratch0;
222 	u32  scratch1;
223 	u32  scratch2;
224 	u32  scratch3;
225 	u32  scratch4;
226 	u32  scratch5;
227 	u32  scratch6;
228 	u32  scratch7;
229 } __attribute__ ((packed));
230 
231 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
232 
233 struct sdma_engine;
234 
235 /**
236  * struct sdma_channel - housekeeping for a SDMA channel
237  *
238  * @sdma		pointer to the SDMA engine for this channel
239  * @channel		the channel number, matches dmaengine chan_id + 1
240  * @direction		transfer type. Needed for setting SDMA script
241  * @peripheral_type	Peripheral type. Needed for setting SDMA script
242  * @event_id0		aka dma request line
243  * @event_id1		for channels that use 2 events
244  * @word_size		peripheral access size
245  * @buf_tail		ID of the buffer that was processed
246  * @num_bd		max NUM_BD. number of descriptors currently handling
247  */
248 struct sdma_channel {
249 	struct sdma_engine		*sdma;
250 	unsigned int			channel;
251 	enum dma_transfer_direction		direction;
252 	enum sdma_peripheral_type	peripheral_type;
253 	unsigned int			event_id0;
254 	unsigned int			event_id1;
255 	enum dma_slave_buswidth		word_size;
256 	unsigned int			buf_tail;
257 	unsigned int			num_bd;
258 	struct sdma_buffer_descriptor	*bd;
259 	dma_addr_t			bd_phys;
260 	unsigned int			pc_from_device, pc_to_device;
261 	unsigned long			flags;
262 	dma_addr_t			per_address;
263 	unsigned long			event_mask[2];
264 	unsigned long			watermark_level;
265 	u32				shp_addr, per_addr;
266 	struct dma_chan			chan;
267 	spinlock_t			lock;
268 	struct dma_async_tx_descriptor	desc;
269 	enum dma_status			status;
270 	unsigned int			chn_count;
271 	unsigned int			chn_real_count;
272 	struct tasklet_struct		tasklet;
273 };
274 
275 #define IMX_DMA_SG_LOOP		BIT(0)
276 
277 #define MAX_DMA_CHANNELS 32
278 #define MXC_SDMA_DEFAULT_PRIORITY 1
279 #define MXC_SDMA_MIN_PRIORITY 1
280 #define MXC_SDMA_MAX_PRIORITY 7
281 
282 #define SDMA_FIRMWARE_MAGIC 0x414d4453
283 
284 /**
285  * struct sdma_firmware_header - Layout of the firmware image
286  *
287  * @magic		"SDMA"
288  * @version_major	increased whenever layout of struct sdma_script_start_addrs
289  *			changes.
290  * @version_minor	firmware minor version (for binary compatible changes)
291  * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
292  * @num_script_addrs	Number of script addresses in this image
293  * @ram_code_start	offset of SDMA ram image in this firmware image
294  * @ram_code_size	size of SDMA ram image
295  * @script_addrs	Stores the start address of the SDMA scripts
296  *			(in SDMA memory space)
297  */
298 struct sdma_firmware_header {
299 	u32	magic;
300 	u32	version_major;
301 	u32	version_minor;
302 	u32	script_addrs_start;
303 	u32	num_script_addrs;
304 	u32	ram_code_start;
305 	u32	ram_code_size;
306 };
307 
308 struct sdma_driver_data {
309 	int chnenbl0;
310 	int num_events;
311 	struct sdma_script_start_addrs	*script_addrs;
312 };
313 
314 struct sdma_engine {
315 	struct device			*dev;
316 	struct device_dma_parameters	dma_parms;
317 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
318 	struct sdma_channel_control	*channel_control;
319 	void __iomem			*regs;
320 	struct sdma_context_data	*context;
321 	dma_addr_t			context_phys;
322 	struct dma_device		dma_device;
323 	struct clk			*clk_ipg;
324 	struct clk			*clk_ahb;
325 	spinlock_t			channel_0_lock;
326 	u32				script_number;
327 	struct sdma_script_start_addrs	*script_addrs;
328 	const struct sdma_driver_data	*drvdata;
329 };
330 
331 static struct sdma_driver_data sdma_imx31 = {
332 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
333 	.num_events = 32,
334 };
335 
336 static struct sdma_script_start_addrs sdma_script_imx25 = {
337 	.ap_2_ap_addr = 729,
338 	.uart_2_mcu_addr = 904,
339 	.per_2_app_addr = 1255,
340 	.mcu_2_app_addr = 834,
341 	.uartsh_2_mcu_addr = 1120,
342 	.per_2_shp_addr = 1329,
343 	.mcu_2_shp_addr = 1048,
344 	.ata_2_mcu_addr = 1560,
345 	.mcu_2_ata_addr = 1479,
346 	.app_2_per_addr = 1189,
347 	.app_2_mcu_addr = 770,
348 	.shp_2_per_addr = 1407,
349 	.shp_2_mcu_addr = 979,
350 };
351 
352 static struct sdma_driver_data sdma_imx25 = {
353 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
354 	.num_events = 48,
355 	.script_addrs = &sdma_script_imx25,
356 };
357 
358 static struct sdma_driver_data sdma_imx35 = {
359 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
360 	.num_events = 48,
361 };
362 
363 static struct sdma_script_start_addrs sdma_script_imx51 = {
364 	.ap_2_ap_addr = 642,
365 	.uart_2_mcu_addr = 817,
366 	.mcu_2_app_addr = 747,
367 	.mcu_2_shp_addr = 961,
368 	.ata_2_mcu_addr = 1473,
369 	.mcu_2_ata_addr = 1392,
370 	.app_2_per_addr = 1033,
371 	.app_2_mcu_addr = 683,
372 	.shp_2_per_addr = 1251,
373 	.shp_2_mcu_addr = 892,
374 };
375 
376 static struct sdma_driver_data sdma_imx51 = {
377 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
378 	.num_events = 48,
379 	.script_addrs = &sdma_script_imx51,
380 };
381 
382 static struct sdma_script_start_addrs sdma_script_imx53 = {
383 	.ap_2_ap_addr = 642,
384 	.app_2_mcu_addr = 683,
385 	.mcu_2_app_addr = 747,
386 	.uart_2_mcu_addr = 817,
387 	.shp_2_mcu_addr = 891,
388 	.mcu_2_shp_addr = 960,
389 	.uartsh_2_mcu_addr = 1032,
390 	.spdif_2_mcu_addr = 1100,
391 	.mcu_2_spdif_addr = 1134,
392 	.firi_2_mcu_addr = 1193,
393 	.mcu_2_firi_addr = 1290,
394 };
395 
396 static struct sdma_driver_data sdma_imx53 = {
397 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
398 	.num_events = 48,
399 	.script_addrs = &sdma_script_imx53,
400 };
401 
402 static struct sdma_script_start_addrs sdma_script_imx6q = {
403 	.ap_2_ap_addr = 642,
404 	.uart_2_mcu_addr = 817,
405 	.mcu_2_app_addr = 747,
406 	.per_2_per_addr = 6331,
407 	.uartsh_2_mcu_addr = 1032,
408 	.mcu_2_shp_addr = 960,
409 	.app_2_mcu_addr = 683,
410 	.shp_2_mcu_addr = 891,
411 	.spdif_2_mcu_addr = 1100,
412 	.mcu_2_spdif_addr = 1134,
413 };
414 
415 static struct sdma_driver_data sdma_imx6q = {
416 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
417 	.num_events = 48,
418 	.script_addrs = &sdma_script_imx6q,
419 };
420 
421 static struct platform_device_id sdma_devtypes[] = {
422 	{
423 		.name = "imx25-sdma",
424 		.driver_data = (unsigned long)&sdma_imx25,
425 	}, {
426 		.name = "imx31-sdma",
427 		.driver_data = (unsigned long)&sdma_imx31,
428 	}, {
429 		.name = "imx35-sdma",
430 		.driver_data = (unsigned long)&sdma_imx35,
431 	}, {
432 		.name = "imx51-sdma",
433 		.driver_data = (unsigned long)&sdma_imx51,
434 	}, {
435 		.name = "imx53-sdma",
436 		.driver_data = (unsigned long)&sdma_imx53,
437 	}, {
438 		.name = "imx6q-sdma",
439 		.driver_data = (unsigned long)&sdma_imx6q,
440 	}, {
441 		/* sentinel */
442 	}
443 };
444 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
445 
446 static const struct of_device_id sdma_dt_ids[] = {
447 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
448 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
449 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
450 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
451 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
452 	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
453 	{ /* sentinel */ }
454 };
455 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
456 
457 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
458 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
459 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
460 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
461 
462 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
463 {
464 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
465 	return chnenbl0 + event * 4;
466 }
467 
468 static int sdma_config_ownership(struct sdma_channel *sdmac,
469 		bool event_override, bool mcu_override, bool dsp_override)
470 {
471 	struct sdma_engine *sdma = sdmac->sdma;
472 	int channel = sdmac->channel;
473 	unsigned long evt, mcu, dsp;
474 
475 	if (event_override && mcu_override && dsp_override)
476 		return -EINVAL;
477 
478 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
479 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
480 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
481 
482 	if (dsp_override)
483 		__clear_bit(channel, &dsp);
484 	else
485 		__set_bit(channel, &dsp);
486 
487 	if (event_override)
488 		__clear_bit(channel, &evt);
489 	else
490 		__set_bit(channel, &evt);
491 
492 	if (mcu_override)
493 		__clear_bit(channel, &mcu);
494 	else
495 		__set_bit(channel, &mcu);
496 
497 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
498 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
499 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
500 
501 	return 0;
502 }
503 
504 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
505 {
506 	writel(BIT(channel), sdma->regs + SDMA_H_START);
507 }
508 
509 /*
510  * sdma_run_channel0 - run a channel and wait till it's done
511  */
512 static int sdma_run_channel0(struct sdma_engine *sdma)
513 {
514 	int ret;
515 	unsigned long timeout = 500;
516 
517 	sdma_enable_channel(sdma, 0);
518 
519 	while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
520 		if (timeout-- <= 0)
521 			break;
522 		udelay(1);
523 	}
524 
525 	if (ret) {
526 		/* Clear the interrupt status */
527 		writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
528 	} else {
529 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
530 	}
531 
532 	return ret ? 0 : -ETIMEDOUT;
533 }
534 
535 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
536 		u32 address)
537 {
538 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
539 	void *buf_virt;
540 	dma_addr_t buf_phys;
541 	int ret;
542 	unsigned long flags;
543 
544 	buf_virt = dma_alloc_coherent(NULL,
545 			size,
546 			&buf_phys, GFP_KERNEL);
547 	if (!buf_virt) {
548 		return -ENOMEM;
549 	}
550 
551 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
552 
553 	bd0->mode.command = C0_SETPM;
554 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
555 	bd0->mode.count = size / 2;
556 	bd0->buffer_addr = buf_phys;
557 	bd0->ext_buffer_addr = address;
558 
559 	memcpy(buf_virt, buf, size);
560 
561 	ret = sdma_run_channel0(sdma);
562 
563 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
564 
565 	dma_free_coherent(NULL, size, buf_virt, buf_phys);
566 
567 	return ret;
568 }
569 
570 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
571 {
572 	struct sdma_engine *sdma = sdmac->sdma;
573 	int channel = sdmac->channel;
574 	unsigned long val;
575 	u32 chnenbl = chnenbl_ofs(sdma, event);
576 
577 	val = readl_relaxed(sdma->regs + chnenbl);
578 	__set_bit(channel, &val);
579 	writel_relaxed(val, sdma->regs + chnenbl);
580 }
581 
582 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
583 {
584 	struct sdma_engine *sdma = sdmac->sdma;
585 	int channel = sdmac->channel;
586 	u32 chnenbl = chnenbl_ofs(sdma, event);
587 	unsigned long val;
588 
589 	val = readl_relaxed(sdma->regs + chnenbl);
590 	__clear_bit(channel, &val);
591 	writel_relaxed(val, sdma->regs + chnenbl);
592 }
593 
594 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
595 {
596 	struct sdma_buffer_descriptor *bd;
597 
598 	/*
599 	 * loop mode. Iterate over descriptors, re-setup them and
600 	 * call callback function.
601 	 */
602 	while (1) {
603 		bd = &sdmac->bd[sdmac->buf_tail];
604 
605 		if (bd->mode.status & BD_DONE)
606 			break;
607 
608 		if (bd->mode.status & BD_RROR)
609 			sdmac->status = DMA_ERROR;
610 		else
611 			sdmac->status = DMA_IN_PROGRESS;
612 
613 		bd->mode.status |= BD_DONE;
614 		sdmac->buf_tail++;
615 		sdmac->buf_tail %= sdmac->num_bd;
616 
617 		if (sdmac->desc.callback)
618 			sdmac->desc.callback(sdmac->desc.callback_param);
619 	}
620 }
621 
622 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
623 {
624 	struct sdma_buffer_descriptor *bd;
625 	int i, error = 0;
626 
627 	sdmac->chn_real_count = 0;
628 	/*
629 	 * non loop mode. Iterate over all descriptors, collect
630 	 * errors and call callback function
631 	 */
632 	for (i = 0; i < sdmac->num_bd; i++) {
633 		bd = &sdmac->bd[i];
634 
635 		 if (bd->mode.status & (BD_DONE | BD_RROR))
636 			error = -EIO;
637 		 sdmac->chn_real_count += bd->mode.count;
638 	}
639 
640 	if (error)
641 		sdmac->status = DMA_ERROR;
642 	else
643 		sdmac->status = DMA_COMPLETE;
644 
645 	dma_cookie_complete(&sdmac->desc);
646 	if (sdmac->desc.callback)
647 		sdmac->desc.callback(sdmac->desc.callback_param);
648 }
649 
650 static void sdma_tasklet(unsigned long data)
651 {
652 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
653 
654 	if (sdmac->flags & IMX_DMA_SG_LOOP)
655 		sdma_handle_channel_loop(sdmac);
656 	else
657 		mxc_sdma_handle_channel_normal(sdmac);
658 }
659 
660 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
661 {
662 	struct sdma_engine *sdma = dev_id;
663 	unsigned long stat;
664 
665 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
666 	/* not interested in channel 0 interrupts */
667 	stat &= ~1;
668 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
669 
670 	while (stat) {
671 		int channel = fls(stat) - 1;
672 		struct sdma_channel *sdmac = &sdma->channel[channel];
673 
674 		tasklet_schedule(&sdmac->tasklet);
675 
676 		__clear_bit(channel, &stat);
677 	}
678 
679 	return IRQ_HANDLED;
680 }
681 
682 /*
683  * sets the pc of SDMA script according to the peripheral type
684  */
685 static void sdma_get_pc(struct sdma_channel *sdmac,
686 		enum sdma_peripheral_type peripheral_type)
687 {
688 	struct sdma_engine *sdma = sdmac->sdma;
689 	int per_2_emi = 0, emi_2_per = 0;
690 	/*
691 	 * These are needed once we start to support transfers between
692 	 * two peripherals or memory-to-memory transfers
693 	 */
694 	int per_2_per = 0, emi_2_emi = 0;
695 
696 	sdmac->pc_from_device = 0;
697 	sdmac->pc_to_device = 0;
698 
699 	switch (peripheral_type) {
700 	case IMX_DMATYPE_MEMORY:
701 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
702 		break;
703 	case IMX_DMATYPE_DSP:
704 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
705 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
706 		break;
707 	case IMX_DMATYPE_FIRI:
708 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
709 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
710 		break;
711 	case IMX_DMATYPE_UART:
712 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
713 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
714 		break;
715 	case IMX_DMATYPE_UART_SP:
716 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
717 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
718 		break;
719 	case IMX_DMATYPE_ATA:
720 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
721 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
722 		break;
723 	case IMX_DMATYPE_CSPI:
724 	case IMX_DMATYPE_EXT:
725 	case IMX_DMATYPE_SSI:
726 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
727 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
728 		break;
729 	case IMX_DMATYPE_SSI_DUAL:
730 		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
731 		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
732 		break;
733 	case IMX_DMATYPE_SSI_SP:
734 	case IMX_DMATYPE_MMC:
735 	case IMX_DMATYPE_SDHC:
736 	case IMX_DMATYPE_CSPI_SP:
737 	case IMX_DMATYPE_ESAI:
738 	case IMX_DMATYPE_MSHC_SP:
739 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
740 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
741 		break;
742 	case IMX_DMATYPE_ASRC:
743 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
744 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
745 		per_2_per = sdma->script_addrs->per_2_per_addr;
746 		break;
747 	case IMX_DMATYPE_MSHC:
748 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
749 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
750 		break;
751 	case IMX_DMATYPE_CCM:
752 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
753 		break;
754 	case IMX_DMATYPE_SPDIF:
755 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
756 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
757 		break;
758 	case IMX_DMATYPE_IPU_MEMORY:
759 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
760 		break;
761 	default:
762 		break;
763 	}
764 
765 	sdmac->pc_from_device = per_2_emi;
766 	sdmac->pc_to_device = emi_2_per;
767 }
768 
769 static int sdma_load_context(struct sdma_channel *sdmac)
770 {
771 	struct sdma_engine *sdma = sdmac->sdma;
772 	int channel = sdmac->channel;
773 	int load_address;
774 	struct sdma_context_data *context = sdma->context;
775 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
776 	int ret;
777 	unsigned long flags;
778 
779 	if (sdmac->direction == DMA_DEV_TO_MEM) {
780 		load_address = sdmac->pc_from_device;
781 	} else {
782 		load_address = sdmac->pc_to_device;
783 	}
784 
785 	if (load_address < 0)
786 		return load_address;
787 
788 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
789 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
790 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
791 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
792 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
793 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
794 
795 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
796 
797 	memset(context, 0, sizeof(*context));
798 	context->channel_state.pc = load_address;
799 
800 	/* Send by context the event mask,base address for peripheral
801 	 * and watermark level
802 	 */
803 	context->gReg[0] = sdmac->event_mask[1];
804 	context->gReg[1] = sdmac->event_mask[0];
805 	context->gReg[2] = sdmac->per_addr;
806 	context->gReg[6] = sdmac->shp_addr;
807 	context->gReg[7] = sdmac->watermark_level;
808 
809 	bd0->mode.command = C0_SETDM;
810 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
811 	bd0->mode.count = sizeof(*context) / 4;
812 	bd0->buffer_addr = sdma->context_phys;
813 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
814 	ret = sdma_run_channel0(sdma);
815 
816 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
817 
818 	return ret;
819 }
820 
821 static void sdma_disable_channel(struct sdma_channel *sdmac)
822 {
823 	struct sdma_engine *sdma = sdmac->sdma;
824 	int channel = sdmac->channel;
825 
826 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
827 	sdmac->status = DMA_ERROR;
828 }
829 
830 static int sdma_config_channel(struct sdma_channel *sdmac)
831 {
832 	int ret;
833 
834 	sdma_disable_channel(sdmac);
835 
836 	sdmac->event_mask[0] = 0;
837 	sdmac->event_mask[1] = 0;
838 	sdmac->shp_addr = 0;
839 	sdmac->per_addr = 0;
840 
841 	if (sdmac->event_id0) {
842 		if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
843 			return -EINVAL;
844 		sdma_event_enable(sdmac, sdmac->event_id0);
845 	}
846 
847 	switch (sdmac->peripheral_type) {
848 	case IMX_DMATYPE_DSP:
849 		sdma_config_ownership(sdmac, false, true, true);
850 		break;
851 	case IMX_DMATYPE_MEMORY:
852 		sdma_config_ownership(sdmac, false, true, false);
853 		break;
854 	default:
855 		sdma_config_ownership(sdmac, true, true, false);
856 		break;
857 	}
858 
859 	sdma_get_pc(sdmac, sdmac->peripheral_type);
860 
861 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
862 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
863 		/* Handle multiple event channels differently */
864 		if (sdmac->event_id1) {
865 			sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
866 			if (sdmac->event_id1 > 31)
867 				__set_bit(31, &sdmac->watermark_level);
868 			sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
869 			if (sdmac->event_id0 > 31)
870 				__set_bit(30, &sdmac->watermark_level);
871 		} else {
872 			__set_bit(sdmac->event_id0, sdmac->event_mask);
873 		}
874 		/* Watermark Level */
875 		sdmac->watermark_level |= sdmac->watermark_level;
876 		/* Address */
877 		sdmac->shp_addr = sdmac->per_address;
878 	} else {
879 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
880 	}
881 
882 	ret = sdma_load_context(sdmac);
883 
884 	return ret;
885 }
886 
887 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
888 		unsigned int priority)
889 {
890 	struct sdma_engine *sdma = sdmac->sdma;
891 	int channel = sdmac->channel;
892 
893 	if (priority < MXC_SDMA_MIN_PRIORITY
894 	    || priority > MXC_SDMA_MAX_PRIORITY) {
895 		return -EINVAL;
896 	}
897 
898 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
899 
900 	return 0;
901 }
902 
903 static int sdma_request_channel(struct sdma_channel *sdmac)
904 {
905 	struct sdma_engine *sdma = sdmac->sdma;
906 	int channel = sdmac->channel;
907 	int ret = -EBUSY;
908 
909 	sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
910 	if (!sdmac->bd) {
911 		ret = -ENOMEM;
912 		goto out;
913 	}
914 
915 	memset(sdmac->bd, 0, PAGE_SIZE);
916 
917 	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
918 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
919 
920 	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
921 	return 0;
922 out:
923 
924 	return ret;
925 }
926 
927 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
928 {
929 	return container_of(chan, struct sdma_channel, chan);
930 }
931 
932 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
933 {
934 	unsigned long flags;
935 	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
936 	dma_cookie_t cookie;
937 
938 	spin_lock_irqsave(&sdmac->lock, flags);
939 
940 	cookie = dma_cookie_assign(tx);
941 
942 	spin_unlock_irqrestore(&sdmac->lock, flags);
943 
944 	return cookie;
945 }
946 
947 static int sdma_alloc_chan_resources(struct dma_chan *chan)
948 {
949 	struct sdma_channel *sdmac = to_sdma_chan(chan);
950 	struct imx_dma_data *data = chan->private;
951 	int prio, ret;
952 
953 	if (!data)
954 		return -EINVAL;
955 
956 	switch (data->priority) {
957 	case DMA_PRIO_HIGH:
958 		prio = 3;
959 		break;
960 	case DMA_PRIO_MEDIUM:
961 		prio = 2;
962 		break;
963 	case DMA_PRIO_LOW:
964 	default:
965 		prio = 1;
966 		break;
967 	}
968 
969 	sdmac->peripheral_type = data->peripheral_type;
970 	sdmac->event_id0 = data->dma_request;
971 
972 	clk_enable(sdmac->sdma->clk_ipg);
973 	clk_enable(sdmac->sdma->clk_ahb);
974 
975 	ret = sdma_request_channel(sdmac);
976 	if (ret)
977 		return ret;
978 
979 	ret = sdma_set_channel_priority(sdmac, prio);
980 	if (ret)
981 		return ret;
982 
983 	dma_async_tx_descriptor_init(&sdmac->desc, chan);
984 	sdmac->desc.tx_submit = sdma_tx_submit;
985 	/* txd.flags will be overwritten in prep funcs */
986 	sdmac->desc.flags = DMA_CTRL_ACK;
987 
988 	return 0;
989 }
990 
991 static void sdma_free_chan_resources(struct dma_chan *chan)
992 {
993 	struct sdma_channel *sdmac = to_sdma_chan(chan);
994 	struct sdma_engine *sdma = sdmac->sdma;
995 
996 	sdma_disable_channel(sdmac);
997 
998 	if (sdmac->event_id0)
999 		sdma_event_disable(sdmac, sdmac->event_id0);
1000 	if (sdmac->event_id1)
1001 		sdma_event_disable(sdmac, sdmac->event_id1);
1002 
1003 	sdmac->event_id0 = 0;
1004 	sdmac->event_id1 = 0;
1005 
1006 	sdma_set_channel_priority(sdmac, 0);
1007 
1008 	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1009 
1010 	clk_disable(sdma->clk_ipg);
1011 	clk_disable(sdma->clk_ahb);
1012 }
1013 
1014 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1015 		struct dma_chan *chan, struct scatterlist *sgl,
1016 		unsigned int sg_len, enum dma_transfer_direction direction,
1017 		unsigned long flags, void *context)
1018 {
1019 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1020 	struct sdma_engine *sdma = sdmac->sdma;
1021 	int ret, i, count;
1022 	int channel = sdmac->channel;
1023 	struct scatterlist *sg;
1024 
1025 	if (sdmac->status == DMA_IN_PROGRESS)
1026 		return NULL;
1027 	sdmac->status = DMA_IN_PROGRESS;
1028 
1029 	sdmac->flags = 0;
1030 
1031 	sdmac->buf_tail = 0;
1032 
1033 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1034 			sg_len, channel);
1035 
1036 	sdmac->direction = direction;
1037 	ret = sdma_load_context(sdmac);
1038 	if (ret)
1039 		goto err_out;
1040 
1041 	if (sg_len > NUM_BD) {
1042 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1043 				channel, sg_len, NUM_BD);
1044 		ret = -EINVAL;
1045 		goto err_out;
1046 	}
1047 
1048 	sdmac->chn_count = 0;
1049 	for_each_sg(sgl, sg, sg_len, i) {
1050 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1051 		int param;
1052 
1053 		bd->buffer_addr = sg->dma_address;
1054 
1055 		count = sg_dma_len(sg);
1056 
1057 		if (count > 0xffff) {
1058 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1059 					channel, count, 0xffff);
1060 			ret = -EINVAL;
1061 			goto err_out;
1062 		}
1063 
1064 		bd->mode.count = count;
1065 		sdmac->chn_count += count;
1066 
1067 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1068 			ret =  -EINVAL;
1069 			goto err_out;
1070 		}
1071 
1072 		switch (sdmac->word_size) {
1073 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1074 			bd->mode.command = 0;
1075 			if (count & 3 || sg->dma_address & 3)
1076 				return NULL;
1077 			break;
1078 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1079 			bd->mode.command = 2;
1080 			if (count & 1 || sg->dma_address & 1)
1081 				return NULL;
1082 			break;
1083 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1084 			bd->mode.command = 1;
1085 			break;
1086 		default:
1087 			return NULL;
1088 		}
1089 
1090 		param = BD_DONE | BD_EXTD | BD_CONT;
1091 
1092 		if (i + 1 == sg_len) {
1093 			param |= BD_INTR;
1094 			param |= BD_LAST;
1095 			param &= ~BD_CONT;
1096 		}
1097 
1098 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1099 				i, count, (u64)sg->dma_address,
1100 				param & BD_WRAP ? "wrap" : "",
1101 				param & BD_INTR ? " intr" : "");
1102 
1103 		bd->mode.status = param;
1104 	}
1105 
1106 	sdmac->num_bd = sg_len;
1107 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1108 
1109 	return &sdmac->desc;
1110 err_out:
1111 	sdmac->status = DMA_ERROR;
1112 	return NULL;
1113 }
1114 
1115 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1116 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1117 		size_t period_len, enum dma_transfer_direction direction,
1118 		unsigned long flags, void *context)
1119 {
1120 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1121 	struct sdma_engine *sdma = sdmac->sdma;
1122 	int num_periods = buf_len / period_len;
1123 	int channel = sdmac->channel;
1124 	int ret, i = 0, buf = 0;
1125 
1126 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1127 
1128 	if (sdmac->status == DMA_IN_PROGRESS)
1129 		return NULL;
1130 
1131 	sdmac->status = DMA_IN_PROGRESS;
1132 
1133 	sdmac->buf_tail = 0;
1134 
1135 	sdmac->flags |= IMX_DMA_SG_LOOP;
1136 	sdmac->direction = direction;
1137 	ret = sdma_load_context(sdmac);
1138 	if (ret)
1139 		goto err_out;
1140 
1141 	if (num_periods > NUM_BD) {
1142 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1143 				channel, num_periods, NUM_BD);
1144 		goto err_out;
1145 	}
1146 
1147 	if (period_len > 0xffff) {
1148 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1149 				channel, period_len, 0xffff);
1150 		goto err_out;
1151 	}
1152 
1153 	while (buf < buf_len) {
1154 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1155 		int param;
1156 
1157 		bd->buffer_addr = dma_addr;
1158 
1159 		bd->mode.count = period_len;
1160 
1161 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1162 			goto err_out;
1163 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1164 			bd->mode.command = 0;
1165 		else
1166 			bd->mode.command = sdmac->word_size;
1167 
1168 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1169 		if (i + 1 == num_periods)
1170 			param |= BD_WRAP;
1171 
1172 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1173 				i, period_len, (u64)dma_addr,
1174 				param & BD_WRAP ? "wrap" : "",
1175 				param & BD_INTR ? " intr" : "");
1176 
1177 		bd->mode.status = param;
1178 
1179 		dma_addr += period_len;
1180 		buf += period_len;
1181 
1182 		i++;
1183 	}
1184 
1185 	sdmac->num_bd = num_periods;
1186 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1187 
1188 	return &sdmac->desc;
1189 err_out:
1190 	sdmac->status = DMA_ERROR;
1191 	return NULL;
1192 }
1193 
1194 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1195 		unsigned long arg)
1196 {
1197 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1198 	struct dma_slave_config *dmaengine_cfg = (void *)arg;
1199 
1200 	switch (cmd) {
1201 	case DMA_TERMINATE_ALL:
1202 		sdma_disable_channel(sdmac);
1203 		return 0;
1204 	case DMA_SLAVE_CONFIG:
1205 		if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1206 			sdmac->per_address = dmaengine_cfg->src_addr;
1207 			sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1208 						dmaengine_cfg->src_addr_width;
1209 			sdmac->word_size = dmaengine_cfg->src_addr_width;
1210 		} else {
1211 			sdmac->per_address = dmaengine_cfg->dst_addr;
1212 			sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1213 						dmaengine_cfg->dst_addr_width;
1214 			sdmac->word_size = dmaengine_cfg->dst_addr_width;
1215 		}
1216 		sdmac->direction = dmaengine_cfg->direction;
1217 		return sdma_config_channel(sdmac);
1218 	default:
1219 		return -ENOSYS;
1220 	}
1221 
1222 	return -EINVAL;
1223 }
1224 
1225 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1226 				      dma_cookie_t cookie,
1227 				      struct dma_tx_state *txstate)
1228 {
1229 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1230 
1231 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1232 			sdmac->chn_count - sdmac->chn_real_count);
1233 
1234 	return sdmac->status;
1235 }
1236 
1237 static void sdma_issue_pending(struct dma_chan *chan)
1238 {
1239 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1240 	struct sdma_engine *sdma = sdmac->sdma;
1241 
1242 	if (sdmac->status == DMA_IN_PROGRESS)
1243 		sdma_enable_channel(sdma, sdmac->channel);
1244 }
1245 
1246 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1247 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1248 
1249 static void sdma_add_scripts(struct sdma_engine *sdma,
1250 		const struct sdma_script_start_addrs *addr)
1251 {
1252 	s32 *addr_arr = (u32 *)addr;
1253 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1254 	int i;
1255 
1256 	/* use the default firmware in ROM if missing external firmware */
1257 	if (!sdma->script_number)
1258 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1259 
1260 	for (i = 0; i < sdma->script_number; i++)
1261 		if (addr_arr[i] > 0)
1262 			saddr_arr[i] = addr_arr[i];
1263 }
1264 
1265 static void sdma_load_firmware(const struct firmware *fw, void *context)
1266 {
1267 	struct sdma_engine *sdma = context;
1268 	const struct sdma_firmware_header *header;
1269 	const struct sdma_script_start_addrs *addr;
1270 	unsigned short *ram_code;
1271 
1272 	if (!fw) {
1273 		dev_err(sdma->dev, "firmware not found\n");
1274 		return;
1275 	}
1276 
1277 	if (fw->size < sizeof(*header))
1278 		goto err_firmware;
1279 
1280 	header = (struct sdma_firmware_header *)fw->data;
1281 
1282 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1283 		goto err_firmware;
1284 	if (header->ram_code_start + header->ram_code_size > fw->size)
1285 		goto err_firmware;
1286 	switch (header->version_major) {
1287 		case 1:
1288 			sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1289 			break;
1290 		case 2:
1291 			sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1292 			break;
1293 		default:
1294 			dev_err(sdma->dev, "unknown firmware version\n");
1295 			goto err_firmware;
1296 	}
1297 
1298 	addr = (void *)header + header->script_addrs_start;
1299 	ram_code = (void *)header + header->ram_code_start;
1300 
1301 	clk_enable(sdma->clk_ipg);
1302 	clk_enable(sdma->clk_ahb);
1303 	/* download the RAM image for SDMA */
1304 	sdma_load_script(sdma, ram_code,
1305 			header->ram_code_size,
1306 			addr->ram_code_start_addr);
1307 	clk_disable(sdma->clk_ipg);
1308 	clk_disable(sdma->clk_ahb);
1309 
1310 	sdma_add_scripts(sdma, addr);
1311 
1312 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1313 			header->version_major,
1314 			header->version_minor);
1315 
1316 err_firmware:
1317 	release_firmware(fw);
1318 }
1319 
1320 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1321 		const char *fw_name)
1322 {
1323 	int ret;
1324 
1325 	ret = request_firmware_nowait(THIS_MODULE,
1326 			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1327 			GFP_KERNEL, sdma, sdma_load_firmware);
1328 
1329 	return ret;
1330 }
1331 
1332 static int __init sdma_init(struct sdma_engine *sdma)
1333 {
1334 	int i, ret;
1335 	dma_addr_t ccb_phys;
1336 
1337 	clk_enable(sdma->clk_ipg);
1338 	clk_enable(sdma->clk_ahb);
1339 
1340 	/* Be sure SDMA has not started yet */
1341 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1342 
1343 	sdma->channel_control = dma_alloc_coherent(NULL,
1344 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1345 			sizeof(struct sdma_context_data),
1346 			&ccb_phys, GFP_KERNEL);
1347 
1348 	if (!sdma->channel_control) {
1349 		ret = -ENOMEM;
1350 		goto err_dma_alloc;
1351 	}
1352 
1353 	sdma->context = (void *)sdma->channel_control +
1354 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1355 	sdma->context_phys = ccb_phys +
1356 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1357 
1358 	/* Zero-out the CCB structures array just allocated */
1359 	memset(sdma->channel_control, 0,
1360 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1361 
1362 	/* disable all channels */
1363 	for (i = 0; i < sdma->drvdata->num_events; i++)
1364 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1365 
1366 	/* All channels have priority 0 */
1367 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1368 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1369 
1370 	ret = sdma_request_channel(&sdma->channel[0]);
1371 	if (ret)
1372 		goto err_dma_alloc;
1373 
1374 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1375 
1376 	/* Set Command Channel (Channel Zero) */
1377 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1378 
1379 	/* Set bits of CONFIG register but with static context switching */
1380 	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1381 	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1382 
1383 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1384 
1385 	/* Set bits of CONFIG register with given context switching mode */
1386 	writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1387 
1388 	/* Initializes channel's priorities */
1389 	sdma_set_channel_priority(&sdma->channel[0], 7);
1390 
1391 	clk_disable(sdma->clk_ipg);
1392 	clk_disable(sdma->clk_ahb);
1393 
1394 	return 0;
1395 
1396 err_dma_alloc:
1397 	clk_disable(sdma->clk_ipg);
1398 	clk_disable(sdma->clk_ahb);
1399 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1400 	return ret;
1401 }
1402 
1403 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1404 {
1405 	struct imx_dma_data *data = fn_param;
1406 
1407 	if (!imx_dma_is_general_purpose(chan))
1408 		return false;
1409 
1410 	chan->private = data;
1411 
1412 	return true;
1413 }
1414 
1415 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1416 				   struct of_dma *ofdma)
1417 {
1418 	struct sdma_engine *sdma = ofdma->of_dma_data;
1419 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1420 	struct imx_dma_data data;
1421 
1422 	if (dma_spec->args_count != 3)
1423 		return NULL;
1424 
1425 	data.dma_request = dma_spec->args[0];
1426 	data.peripheral_type = dma_spec->args[1];
1427 	data.priority = dma_spec->args[2];
1428 
1429 	return dma_request_channel(mask, sdma_filter_fn, &data);
1430 }
1431 
1432 static int __init sdma_probe(struct platform_device *pdev)
1433 {
1434 	const struct of_device_id *of_id =
1435 			of_match_device(sdma_dt_ids, &pdev->dev);
1436 	struct device_node *np = pdev->dev.of_node;
1437 	const char *fw_name;
1438 	int ret;
1439 	int irq;
1440 	struct resource *iores;
1441 	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1442 	int i;
1443 	struct sdma_engine *sdma;
1444 	s32 *saddr_arr;
1445 	const struct sdma_driver_data *drvdata = NULL;
1446 
1447 	if (of_id)
1448 		drvdata = of_id->data;
1449 	else if (pdev->id_entry)
1450 		drvdata = (void *)pdev->id_entry->driver_data;
1451 
1452 	if (!drvdata) {
1453 		dev_err(&pdev->dev, "unable to find driver data\n");
1454 		return -EINVAL;
1455 	}
1456 
1457 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1458 	if (ret)
1459 		return ret;
1460 
1461 	sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1462 	if (!sdma)
1463 		return -ENOMEM;
1464 
1465 	spin_lock_init(&sdma->channel_0_lock);
1466 
1467 	sdma->dev = &pdev->dev;
1468 	sdma->drvdata = drvdata;
1469 
1470 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1471 	irq = platform_get_irq(pdev, 0);
1472 	if (!iores || irq < 0) {
1473 		ret = -EINVAL;
1474 		goto err_irq;
1475 	}
1476 
1477 	if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1478 		ret = -EBUSY;
1479 		goto err_request_region;
1480 	}
1481 
1482 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1483 	if (IS_ERR(sdma->clk_ipg)) {
1484 		ret = PTR_ERR(sdma->clk_ipg);
1485 		goto err_clk;
1486 	}
1487 
1488 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1489 	if (IS_ERR(sdma->clk_ahb)) {
1490 		ret = PTR_ERR(sdma->clk_ahb);
1491 		goto err_clk;
1492 	}
1493 
1494 	clk_prepare(sdma->clk_ipg);
1495 	clk_prepare(sdma->clk_ahb);
1496 
1497 	sdma->regs = ioremap(iores->start, resource_size(iores));
1498 	if (!sdma->regs) {
1499 		ret = -ENOMEM;
1500 		goto err_ioremap;
1501 	}
1502 
1503 	ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1504 	if (ret)
1505 		goto err_request_irq;
1506 
1507 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1508 	if (!sdma->script_addrs) {
1509 		ret = -ENOMEM;
1510 		goto err_alloc;
1511 	}
1512 
1513 	/* initially no scripts available */
1514 	saddr_arr = (s32 *)sdma->script_addrs;
1515 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1516 		saddr_arr[i] = -EINVAL;
1517 
1518 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1519 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1520 
1521 	INIT_LIST_HEAD(&sdma->dma_device.channels);
1522 	/* Initialize channel parameters */
1523 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1524 		struct sdma_channel *sdmac = &sdma->channel[i];
1525 
1526 		sdmac->sdma = sdma;
1527 		spin_lock_init(&sdmac->lock);
1528 
1529 		sdmac->chan.device = &sdma->dma_device;
1530 		dma_cookie_init(&sdmac->chan);
1531 		sdmac->channel = i;
1532 
1533 		tasklet_init(&sdmac->tasklet, sdma_tasklet,
1534 			     (unsigned long) sdmac);
1535 		/*
1536 		 * Add the channel to the DMAC list. Do not add channel 0 though
1537 		 * because we need it internally in the SDMA driver. This also means
1538 		 * that channel 0 in dmaengine counting matches sdma channel 1.
1539 		 */
1540 		if (i)
1541 			list_add_tail(&sdmac->chan.device_node,
1542 					&sdma->dma_device.channels);
1543 	}
1544 
1545 	ret = sdma_init(sdma);
1546 	if (ret)
1547 		goto err_init;
1548 
1549 	if (sdma->drvdata->script_addrs)
1550 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1551 	if (pdata && pdata->script_addrs)
1552 		sdma_add_scripts(sdma, pdata->script_addrs);
1553 
1554 	if (pdata) {
1555 		ret = sdma_get_firmware(sdma, pdata->fw_name);
1556 		if (ret)
1557 			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1558 	} else {
1559 		/*
1560 		 * Because that device tree does not encode ROM script address,
1561 		 * the RAM script in firmware is mandatory for device tree
1562 		 * probe, otherwise it fails.
1563 		 */
1564 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1565 					      &fw_name);
1566 		if (ret)
1567 			dev_warn(&pdev->dev, "failed to get firmware name\n");
1568 		else {
1569 			ret = sdma_get_firmware(sdma, fw_name);
1570 			if (ret)
1571 				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1572 		}
1573 	}
1574 
1575 	sdma->dma_device.dev = &pdev->dev;
1576 
1577 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1578 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1579 	sdma->dma_device.device_tx_status = sdma_tx_status;
1580 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1581 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1582 	sdma->dma_device.device_control = sdma_control;
1583 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1584 	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1585 	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1586 
1587 	ret = dma_async_device_register(&sdma->dma_device);
1588 	if (ret) {
1589 		dev_err(&pdev->dev, "unable to register\n");
1590 		goto err_init;
1591 	}
1592 
1593 	if (np) {
1594 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
1595 		if (ret) {
1596 			dev_err(&pdev->dev, "failed to register controller\n");
1597 			goto err_register;
1598 		}
1599 	}
1600 
1601 	dev_info(sdma->dev, "initialized\n");
1602 
1603 	return 0;
1604 
1605 err_register:
1606 	dma_async_device_unregister(&sdma->dma_device);
1607 err_init:
1608 	kfree(sdma->script_addrs);
1609 err_alloc:
1610 	free_irq(irq, sdma);
1611 err_request_irq:
1612 	iounmap(sdma->regs);
1613 err_ioremap:
1614 err_clk:
1615 	release_mem_region(iores->start, resource_size(iores));
1616 err_request_region:
1617 err_irq:
1618 	kfree(sdma);
1619 	return ret;
1620 }
1621 
1622 static int sdma_remove(struct platform_device *pdev)
1623 {
1624 	return -EBUSY;
1625 }
1626 
1627 static struct platform_driver sdma_driver = {
1628 	.driver		= {
1629 		.name	= "imx-sdma",
1630 		.of_match_table = sdma_dt_ids,
1631 	},
1632 	.id_table	= sdma_devtypes,
1633 	.remove		= sdma_remove,
1634 };
1635 
1636 static int __init sdma_module_init(void)
1637 {
1638 	return platform_driver_probe(&sdma_driver, sdma_probe);
1639 }
1640 module_init(sdma_module_init);
1641 
1642 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1643 MODULE_DESCRIPTION("i.MX SDMA driver");
1644 MODULE_LICENSE("GPL");
1645