1 // SPDX-License-Identifier: GPL-2.0+ 2 // 3 // drivers/dma/imx-sdma.c 4 // 5 // This file contains a driver for the Freescale Smart DMA engine 6 // 7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de> 8 // 9 // Based on code from Freescale: 10 // 11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved. 12 13 #include <linux/init.h> 14 #include <linux/iopoll.h> 15 #include <linux/module.h> 16 #include <linux/types.h> 17 #include <linux/bitops.h> 18 #include <linux/mm.h> 19 #include <linux/interrupt.h> 20 #include <linux/clk.h> 21 #include <linux/delay.h> 22 #include <linux/sched.h> 23 #include <linux/semaphore.h> 24 #include <linux/spinlock.h> 25 #include <linux/device.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/firmware.h> 28 #include <linux/slab.h> 29 #include <linux/platform_device.h> 30 #include <linux/dmaengine.h> 31 #include <linux/of.h> 32 #include <linux/of_address.h> 33 #include <linux/of_device.h> 34 #include <linux/of_dma.h> 35 #include <linux/workqueue.h> 36 37 #include <asm/irq.h> 38 #include <linux/platform_data/dma-imx-sdma.h> 39 #include <linux/platform_data/dma-imx.h> 40 #include <linux/regmap.h> 41 #include <linux/mfd/syscon.h> 42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h> 43 44 #include "dmaengine.h" 45 #include "virt-dma.h" 46 47 /* SDMA registers */ 48 #define SDMA_H_C0PTR 0x000 49 #define SDMA_H_INTR 0x004 50 #define SDMA_H_STATSTOP 0x008 51 #define SDMA_H_START 0x00c 52 #define SDMA_H_EVTOVR 0x010 53 #define SDMA_H_DSPOVR 0x014 54 #define SDMA_H_HOSTOVR 0x018 55 #define SDMA_H_EVTPEND 0x01c 56 #define SDMA_H_DSPENBL 0x020 57 #define SDMA_H_RESET 0x024 58 #define SDMA_H_EVTERR 0x028 59 #define SDMA_H_INTRMSK 0x02c 60 #define SDMA_H_PSW 0x030 61 #define SDMA_H_EVTERRDBG 0x034 62 #define SDMA_H_CONFIG 0x038 63 #define SDMA_ONCE_ENB 0x040 64 #define SDMA_ONCE_DATA 0x044 65 #define SDMA_ONCE_INSTR 0x048 66 #define SDMA_ONCE_STAT 0x04c 67 #define SDMA_ONCE_CMD 0x050 68 #define SDMA_EVT_MIRROR 0x054 69 #define SDMA_ILLINSTADDR 0x058 70 #define SDMA_CHN0ADDR 0x05c 71 #define SDMA_ONCE_RTB 0x060 72 #define SDMA_XTRIG_CONF1 0x070 73 #define SDMA_XTRIG_CONF2 0x074 74 #define SDMA_CHNENBL0_IMX35 0x200 75 #define SDMA_CHNENBL0_IMX31 0x080 76 #define SDMA_CHNPRI_0 0x100 77 78 /* 79 * Buffer descriptor status values. 80 */ 81 #define BD_DONE 0x01 82 #define BD_WRAP 0x02 83 #define BD_CONT 0x04 84 #define BD_INTR 0x08 85 #define BD_RROR 0x10 86 #define BD_LAST 0x20 87 #define BD_EXTD 0x80 88 89 /* 90 * Data Node descriptor status values. 91 */ 92 #define DND_END_OF_FRAME 0x80 93 #define DND_END_OF_XFER 0x40 94 #define DND_DONE 0x20 95 #define DND_UNUSED 0x01 96 97 /* 98 * IPCV2 descriptor status values. 99 */ 100 #define BD_IPCV2_END_OF_FRAME 0x40 101 102 #define IPCV2_MAX_NODES 50 103 /* 104 * Error bit set in the CCB status field by the SDMA, 105 * in setbd routine, in case of a transfer error 106 */ 107 #define DATA_ERROR 0x10000000 108 109 /* 110 * Buffer descriptor commands. 111 */ 112 #define C0_ADDR 0x01 113 #define C0_LOAD 0x02 114 #define C0_DUMP 0x03 115 #define C0_SETCTX 0x07 116 #define C0_GETCTX 0x03 117 #define C0_SETDM 0x01 118 #define C0_SETPM 0x04 119 #define C0_GETDM 0x02 120 #define C0_GETPM 0x08 121 /* 122 * Change endianness indicator in the BD command field 123 */ 124 #define CHANGE_ENDIANNESS 0x80 125 126 /* 127 * p_2_p watermark_level description 128 * Bits Name Description 129 * 0-7 Lower WML Lower watermark level 130 * 8 PS 1: Pad Swallowing 131 * 0: No Pad Swallowing 132 * 9 PA 1: Pad Adding 133 * 0: No Pad Adding 134 * 10 SPDIF If this bit is set both source 135 * and destination are on SPBA 136 * 11 Source Bit(SP) 1: Source on SPBA 137 * 0: Source on AIPS 138 * 12 Destination Bit(DP) 1: Destination on SPBA 139 * 0: Destination on AIPS 140 * 13-15 --------- MUST BE 0 141 * 16-23 Higher WML HWML 142 * 24-27 N Total number of samples after 143 * which Pad adding/Swallowing 144 * must be done. It must be odd. 145 * 28 Lower WML Event(LWE) SDMA events reg to check for 146 * LWML event mask 147 * 0: LWE in EVENTS register 148 * 1: LWE in EVENTS2 register 149 * 29 Higher WML Event(HWE) SDMA events reg to check for 150 * HWML event mask 151 * 0: HWE in EVENTS register 152 * 1: HWE in EVENTS2 register 153 * 30 --------- MUST BE 0 154 * 31 CONT 1: Amount of samples to be 155 * transferred is unknown and 156 * script will keep on 157 * transferring samples as long as 158 * both events are detected and 159 * script must be manually stopped 160 * by the application 161 * 0: The amount of samples to be 162 * transferred is equal to the 163 * count field of mode word 164 */ 165 #define SDMA_WATERMARK_LEVEL_LWML 0xFF 166 #define SDMA_WATERMARK_LEVEL_PS BIT(8) 167 #define SDMA_WATERMARK_LEVEL_PA BIT(9) 168 #define SDMA_WATERMARK_LEVEL_SPDIF BIT(10) 169 #define SDMA_WATERMARK_LEVEL_SP BIT(11) 170 #define SDMA_WATERMARK_LEVEL_DP BIT(12) 171 #define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16) 172 #define SDMA_WATERMARK_LEVEL_LWE BIT(28) 173 #define SDMA_WATERMARK_LEVEL_HWE BIT(29) 174 #define SDMA_WATERMARK_LEVEL_CONT BIT(31) 175 176 #define SDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 177 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 178 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 179 180 #define SDMA_DMA_DIRECTIONS (BIT(DMA_DEV_TO_MEM) | \ 181 BIT(DMA_MEM_TO_DEV) | \ 182 BIT(DMA_DEV_TO_DEV)) 183 184 /* 185 * Mode/Count of data node descriptors - IPCv2 186 */ 187 struct sdma_mode_count { 188 #define SDMA_BD_MAX_CNT 0xffff 189 u32 count : 16; /* size of the buffer pointed by this BD */ 190 u32 status : 8; /* E,R,I,C,W,D status bits stored here */ 191 u32 command : 8; /* command mostly used for channel 0 */ 192 }; 193 194 /* 195 * Buffer descriptor 196 */ 197 struct sdma_buffer_descriptor { 198 struct sdma_mode_count mode; 199 u32 buffer_addr; /* address of the buffer described */ 200 u32 ext_buffer_addr; /* extended buffer address */ 201 } __attribute__ ((packed)); 202 203 /** 204 * struct sdma_channel_control - Channel control Block 205 * 206 * @current_bd_ptr: current buffer descriptor processed 207 * @base_bd_ptr: first element of buffer descriptor array 208 * @unused: padding. The SDMA engine expects an array of 128 byte 209 * control blocks 210 */ 211 struct sdma_channel_control { 212 u32 current_bd_ptr; 213 u32 base_bd_ptr; 214 u32 unused[2]; 215 } __attribute__ ((packed)); 216 217 /** 218 * struct sdma_state_registers - SDMA context for a channel 219 * 220 * @pc: program counter 221 * @unused1: unused 222 * @t: test bit: status of arithmetic & test instruction 223 * @rpc: return program counter 224 * @unused0: unused 225 * @sf: source fault while loading data 226 * @spc: loop start program counter 227 * @unused2: unused 228 * @df: destination fault while storing data 229 * @epc: loop end program counter 230 * @lm: loop mode 231 */ 232 struct sdma_state_registers { 233 u32 pc :14; 234 u32 unused1: 1; 235 u32 t : 1; 236 u32 rpc :14; 237 u32 unused0: 1; 238 u32 sf : 1; 239 u32 spc :14; 240 u32 unused2: 1; 241 u32 df : 1; 242 u32 epc :14; 243 u32 lm : 2; 244 } __attribute__ ((packed)); 245 246 /** 247 * struct sdma_context_data - sdma context specific to a channel 248 * 249 * @channel_state: channel state bits 250 * @gReg: general registers 251 * @mda: burst dma destination address register 252 * @msa: burst dma source address register 253 * @ms: burst dma status register 254 * @md: burst dma data register 255 * @pda: peripheral dma destination address register 256 * @psa: peripheral dma source address register 257 * @ps: peripheral dma status register 258 * @pd: peripheral dma data register 259 * @ca: CRC polynomial register 260 * @cs: CRC accumulator register 261 * @dda: dedicated core destination address register 262 * @dsa: dedicated core source address register 263 * @ds: dedicated core status register 264 * @dd: dedicated core data register 265 * @scratch0: 1st word of dedicated ram for context switch 266 * @scratch1: 2nd word of dedicated ram for context switch 267 * @scratch2: 3rd word of dedicated ram for context switch 268 * @scratch3: 4th word of dedicated ram for context switch 269 * @scratch4: 5th word of dedicated ram for context switch 270 * @scratch5: 6th word of dedicated ram for context switch 271 * @scratch6: 7th word of dedicated ram for context switch 272 * @scratch7: 8th word of dedicated ram for context switch 273 */ 274 struct sdma_context_data { 275 struct sdma_state_registers channel_state; 276 u32 gReg[8]; 277 u32 mda; 278 u32 msa; 279 u32 ms; 280 u32 md; 281 u32 pda; 282 u32 psa; 283 u32 ps; 284 u32 pd; 285 u32 ca; 286 u32 cs; 287 u32 dda; 288 u32 dsa; 289 u32 ds; 290 u32 dd; 291 u32 scratch0; 292 u32 scratch1; 293 u32 scratch2; 294 u32 scratch3; 295 u32 scratch4; 296 u32 scratch5; 297 u32 scratch6; 298 u32 scratch7; 299 } __attribute__ ((packed)); 300 301 302 struct sdma_engine; 303 304 /** 305 * struct sdma_desc - descriptor structor for one transfer 306 * @vd: descriptor for virt dma 307 * @num_bd: number of descriptors currently handling 308 * @bd_phys: physical address of bd 309 * @buf_tail: ID of the buffer that was processed 310 * @buf_ptail: ID of the previous buffer that was processed 311 * @period_len: period length, used in cyclic. 312 * @chn_real_count: the real count updated from bd->mode.count 313 * @chn_count: the transfer count set 314 * @sdmac: sdma_channel pointer 315 * @bd: pointer of allocate bd 316 */ 317 struct sdma_desc { 318 struct virt_dma_desc vd; 319 unsigned int num_bd; 320 dma_addr_t bd_phys; 321 unsigned int buf_tail; 322 unsigned int buf_ptail; 323 unsigned int period_len; 324 unsigned int chn_real_count; 325 unsigned int chn_count; 326 struct sdma_channel *sdmac; 327 struct sdma_buffer_descriptor *bd; 328 }; 329 330 /** 331 * struct sdma_channel - housekeeping for a SDMA channel 332 * 333 * @vc: virt_dma base structure 334 * @desc: sdma description including vd and other special member 335 * @sdma: pointer to the SDMA engine for this channel 336 * @channel: the channel number, matches dmaengine chan_id + 1 337 * @direction: transfer type. Needed for setting SDMA script 338 * @peripheral_type: Peripheral type. Needed for setting SDMA script 339 * @event_id0: aka dma request line 340 * @event_id1: for channels that use 2 events 341 * @word_size: peripheral access size 342 * @pc_from_device: script address for those device_2_memory 343 * @pc_to_device: script address for those memory_2_device 344 * @device_to_device: script address for those device_2_device 345 * @pc_to_pc: script address for those memory_2_memory 346 * @flags: loop mode or not 347 * @per_address: peripheral source or destination address in common case 348 * destination address in p_2_p case 349 * @per_address2: peripheral source address in p_2_p case 350 * @event_mask: event mask used in p_2_p script 351 * @watermark_level: value for gReg[7], some script will extend it from 352 * basic watermark such as p_2_p 353 * @shp_addr: value for gReg[6] 354 * @per_addr: value for gReg[2] 355 * @status: status of dma channel 356 * @data: specific sdma interface structure 357 * @bd_pool: dma_pool for bd 358 */ 359 struct sdma_channel { 360 struct virt_dma_chan vc; 361 struct sdma_desc *desc; 362 struct sdma_engine *sdma; 363 unsigned int channel; 364 enum dma_transfer_direction direction; 365 enum sdma_peripheral_type peripheral_type; 366 unsigned int event_id0; 367 unsigned int event_id1; 368 enum dma_slave_buswidth word_size; 369 unsigned int pc_from_device, pc_to_device; 370 unsigned int device_to_device; 371 unsigned int pc_to_pc; 372 unsigned long flags; 373 dma_addr_t per_address, per_address2; 374 unsigned long event_mask[2]; 375 unsigned long watermark_level; 376 u32 shp_addr, per_addr; 377 enum dma_status status; 378 struct imx_dma_data data; 379 struct work_struct terminate_worker; 380 }; 381 382 #define IMX_DMA_SG_LOOP BIT(0) 383 384 #define MAX_DMA_CHANNELS 32 385 #define MXC_SDMA_DEFAULT_PRIORITY 1 386 #define MXC_SDMA_MIN_PRIORITY 1 387 #define MXC_SDMA_MAX_PRIORITY 7 388 389 #define SDMA_FIRMWARE_MAGIC 0x414d4453 390 391 /** 392 * struct sdma_firmware_header - Layout of the firmware image 393 * 394 * @magic: "SDMA" 395 * @version_major: increased whenever layout of struct 396 * sdma_script_start_addrs changes. 397 * @version_minor: firmware minor version (for binary compatible changes) 398 * @script_addrs_start: offset of struct sdma_script_start_addrs in this image 399 * @num_script_addrs: Number of script addresses in this image 400 * @ram_code_start: offset of SDMA ram image in this firmware image 401 * @ram_code_size: size of SDMA ram image 402 * @script_addrs: Stores the start address of the SDMA scripts 403 * (in SDMA memory space) 404 */ 405 struct sdma_firmware_header { 406 u32 magic; 407 u32 version_major; 408 u32 version_minor; 409 u32 script_addrs_start; 410 u32 num_script_addrs; 411 u32 ram_code_start; 412 u32 ram_code_size; 413 }; 414 415 struct sdma_driver_data { 416 int chnenbl0; 417 int num_events; 418 struct sdma_script_start_addrs *script_addrs; 419 }; 420 421 struct sdma_engine { 422 struct device *dev; 423 struct device_dma_parameters dma_parms; 424 struct sdma_channel channel[MAX_DMA_CHANNELS]; 425 struct sdma_channel_control *channel_control; 426 void __iomem *regs; 427 struct sdma_context_data *context; 428 dma_addr_t context_phys; 429 struct dma_device dma_device; 430 struct clk *clk_ipg; 431 struct clk *clk_ahb; 432 spinlock_t channel_0_lock; 433 u32 script_number; 434 struct sdma_script_start_addrs *script_addrs; 435 const struct sdma_driver_data *drvdata; 436 u32 spba_start_addr; 437 u32 spba_end_addr; 438 unsigned int irq; 439 dma_addr_t bd0_phys; 440 struct sdma_buffer_descriptor *bd0; 441 }; 442 443 static struct sdma_driver_data sdma_imx31 = { 444 .chnenbl0 = SDMA_CHNENBL0_IMX31, 445 .num_events = 32, 446 }; 447 448 static struct sdma_script_start_addrs sdma_script_imx25 = { 449 .ap_2_ap_addr = 729, 450 .uart_2_mcu_addr = 904, 451 .per_2_app_addr = 1255, 452 .mcu_2_app_addr = 834, 453 .uartsh_2_mcu_addr = 1120, 454 .per_2_shp_addr = 1329, 455 .mcu_2_shp_addr = 1048, 456 .ata_2_mcu_addr = 1560, 457 .mcu_2_ata_addr = 1479, 458 .app_2_per_addr = 1189, 459 .app_2_mcu_addr = 770, 460 .shp_2_per_addr = 1407, 461 .shp_2_mcu_addr = 979, 462 }; 463 464 static struct sdma_driver_data sdma_imx25 = { 465 .chnenbl0 = SDMA_CHNENBL0_IMX35, 466 .num_events = 48, 467 .script_addrs = &sdma_script_imx25, 468 }; 469 470 static struct sdma_driver_data sdma_imx35 = { 471 .chnenbl0 = SDMA_CHNENBL0_IMX35, 472 .num_events = 48, 473 }; 474 475 static struct sdma_script_start_addrs sdma_script_imx51 = { 476 .ap_2_ap_addr = 642, 477 .uart_2_mcu_addr = 817, 478 .mcu_2_app_addr = 747, 479 .mcu_2_shp_addr = 961, 480 .ata_2_mcu_addr = 1473, 481 .mcu_2_ata_addr = 1392, 482 .app_2_per_addr = 1033, 483 .app_2_mcu_addr = 683, 484 .shp_2_per_addr = 1251, 485 .shp_2_mcu_addr = 892, 486 }; 487 488 static struct sdma_driver_data sdma_imx51 = { 489 .chnenbl0 = SDMA_CHNENBL0_IMX35, 490 .num_events = 48, 491 .script_addrs = &sdma_script_imx51, 492 }; 493 494 static struct sdma_script_start_addrs sdma_script_imx53 = { 495 .ap_2_ap_addr = 642, 496 .app_2_mcu_addr = 683, 497 .mcu_2_app_addr = 747, 498 .uart_2_mcu_addr = 817, 499 .shp_2_mcu_addr = 891, 500 .mcu_2_shp_addr = 960, 501 .uartsh_2_mcu_addr = 1032, 502 .spdif_2_mcu_addr = 1100, 503 .mcu_2_spdif_addr = 1134, 504 .firi_2_mcu_addr = 1193, 505 .mcu_2_firi_addr = 1290, 506 }; 507 508 static struct sdma_driver_data sdma_imx53 = { 509 .chnenbl0 = SDMA_CHNENBL0_IMX35, 510 .num_events = 48, 511 .script_addrs = &sdma_script_imx53, 512 }; 513 514 static struct sdma_script_start_addrs sdma_script_imx6q = { 515 .ap_2_ap_addr = 642, 516 .uart_2_mcu_addr = 817, 517 .mcu_2_app_addr = 747, 518 .per_2_per_addr = 6331, 519 .uartsh_2_mcu_addr = 1032, 520 .mcu_2_shp_addr = 960, 521 .app_2_mcu_addr = 683, 522 .shp_2_mcu_addr = 891, 523 .spdif_2_mcu_addr = 1100, 524 .mcu_2_spdif_addr = 1134, 525 }; 526 527 static struct sdma_driver_data sdma_imx6q = { 528 .chnenbl0 = SDMA_CHNENBL0_IMX35, 529 .num_events = 48, 530 .script_addrs = &sdma_script_imx6q, 531 }; 532 533 static struct sdma_script_start_addrs sdma_script_imx7d = { 534 .ap_2_ap_addr = 644, 535 .uart_2_mcu_addr = 819, 536 .mcu_2_app_addr = 749, 537 .uartsh_2_mcu_addr = 1034, 538 .mcu_2_shp_addr = 962, 539 .app_2_mcu_addr = 685, 540 .shp_2_mcu_addr = 893, 541 .spdif_2_mcu_addr = 1102, 542 .mcu_2_spdif_addr = 1136, 543 }; 544 545 static struct sdma_driver_data sdma_imx7d = { 546 .chnenbl0 = SDMA_CHNENBL0_IMX35, 547 .num_events = 48, 548 .script_addrs = &sdma_script_imx7d, 549 }; 550 551 static const struct platform_device_id sdma_devtypes[] = { 552 { 553 .name = "imx25-sdma", 554 .driver_data = (unsigned long)&sdma_imx25, 555 }, { 556 .name = "imx31-sdma", 557 .driver_data = (unsigned long)&sdma_imx31, 558 }, { 559 .name = "imx35-sdma", 560 .driver_data = (unsigned long)&sdma_imx35, 561 }, { 562 .name = "imx51-sdma", 563 .driver_data = (unsigned long)&sdma_imx51, 564 }, { 565 .name = "imx53-sdma", 566 .driver_data = (unsigned long)&sdma_imx53, 567 }, { 568 .name = "imx6q-sdma", 569 .driver_data = (unsigned long)&sdma_imx6q, 570 }, { 571 .name = "imx7d-sdma", 572 .driver_data = (unsigned long)&sdma_imx7d, 573 }, { 574 /* sentinel */ 575 } 576 }; 577 MODULE_DEVICE_TABLE(platform, sdma_devtypes); 578 579 static const struct of_device_id sdma_dt_ids[] = { 580 { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, }, 581 { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, }, 582 { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, }, 583 { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, }, 584 { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, }, 585 { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, }, 586 { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, }, 587 { /* sentinel */ } 588 }; 589 MODULE_DEVICE_TABLE(of, sdma_dt_ids); 590 591 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */ 592 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */ 593 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */ 594 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/ 595 596 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event) 597 { 598 u32 chnenbl0 = sdma->drvdata->chnenbl0; 599 return chnenbl0 + event * 4; 600 } 601 602 static int sdma_config_ownership(struct sdma_channel *sdmac, 603 bool event_override, bool mcu_override, bool dsp_override) 604 { 605 struct sdma_engine *sdma = sdmac->sdma; 606 int channel = sdmac->channel; 607 unsigned long evt, mcu, dsp; 608 609 if (event_override && mcu_override && dsp_override) 610 return -EINVAL; 611 612 evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR); 613 mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR); 614 dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR); 615 616 if (dsp_override) 617 __clear_bit(channel, &dsp); 618 else 619 __set_bit(channel, &dsp); 620 621 if (event_override) 622 __clear_bit(channel, &evt); 623 else 624 __set_bit(channel, &evt); 625 626 if (mcu_override) 627 __clear_bit(channel, &mcu); 628 else 629 __set_bit(channel, &mcu); 630 631 writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR); 632 writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR); 633 writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR); 634 635 return 0; 636 } 637 638 static void sdma_enable_channel(struct sdma_engine *sdma, int channel) 639 { 640 writel(BIT(channel), sdma->regs + SDMA_H_START); 641 } 642 643 /* 644 * sdma_run_channel0 - run a channel and wait till it's done 645 */ 646 static int sdma_run_channel0(struct sdma_engine *sdma) 647 { 648 int ret; 649 u32 reg; 650 651 sdma_enable_channel(sdma, 0); 652 653 ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP, 654 reg, !(reg & 1), 1, 500); 655 if (ret) 656 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n"); 657 658 /* Set bits of CONFIG register with dynamic context switching */ 659 if (readl(sdma->regs + SDMA_H_CONFIG) == 0) 660 writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG); 661 662 return ret; 663 } 664 665 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size, 666 u32 address) 667 { 668 struct sdma_buffer_descriptor *bd0 = sdma->bd0; 669 void *buf_virt; 670 dma_addr_t buf_phys; 671 int ret; 672 unsigned long flags; 673 674 buf_virt = dma_alloc_coherent(NULL, 675 size, 676 &buf_phys, GFP_KERNEL); 677 if (!buf_virt) { 678 return -ENOMEM; 679 } 680 681 spin_lock_irqsave(&sdma->channel_0_lock, flags); 682 683 bd0->mode.command = C0_SETPM; 684 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD; 685 bd0->mode.count = size / 2; 686 bd0->buffer_addr = buf_phys; 687 bd0->ext_buffer_addr = address; 688 689 memcpy(buf_virt, buf, size); 690 691 ret = sdma_run_channel0(sdma); 692 693 spin_unlock_irqrestore(&sdma->channel_0_lock, flags); 694 695 dma_free_coherent(NULL, size, buf_virt, buf_phys); 696 697 return ret; 698 } 699 700 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event) 701 { 702 struct sdma_engine *sdma = sdmac->sdma; 703 int channel = sdmac->channel; 704 unsigned long val; 705 u32 chnenbl = chnenbl_ofs(sdma, event); 706 707 val = readl_relaxed(sdma->regs + chnenbl); 708 __set_bit(channel, &val); 709 writel_relaxed(val, sdma->regs + chnenbl); 710 } 711 712 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event) 713 { 714 struct sdma_engine *sdma = sdmac->sdma; 715 int channel = sdmac->channel; 716 u32 chnenbl = chnenbl_ofs(sdma, event); 717 unsigned long val; 718 719 val = readl_relaxed(sdma->regs + chnenbl); 720 __clear_bit(channel, &val); 721 writel_relaxed(val, sdma->regs + chnenbl); 722 } 723 724 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t) 725 { 726 return container_of(t, struct sdma_desc, vd.tx); 727 } 728 729 static void sdma_start_desc(struct sdma_channel *sdmac) 730 { 731 struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc); 732 struct sdma_desc *desc; 733 struct sdma_engine *sdma = sdmac->sdma; 734 int channel = sdmac->channel; 735 736 if (!vd) { 737 sdmac->desc = NULL; 738 return; 739 } 740 sdmac->desc = desc = to_sdma_desc(&vd->tx); 741 /* 742 * Do not delete the node in desc_issued list in cyclic mode, otherwise 743 * the desc allocated will never be freed in vchan_dma_desc_free_list 744 */ 745 if (!(sdmac->flags & IMX_DMA_SG_LOOP)) 746 list_del(&vd->node); 747 748 sdma->channel_control[channel].base_bd_ptr = desc->bd_phys; 749 sdma->channel_control[channel].current_bd_ptr = desc->bd_phys; 750 sdma_enable_channel(sdma, sdmac->channel); 751 } 752 753 static void sdma_update_channel_loop(struct sdma_channel *sdmac) 754 { 755 struct sdma_buffer_descriptor *bd; 756 int error = 0; 757 enum dma_status old_status = sdmac->status; 758 759 /* 760 * loop mode. Iterate over descriptors, re-setup them and 761 * call callback function. 762 */ 763 while (sdmac->desc) { 764 struct sdma_desc *desc = sdmac->desc; 765 766 bd = &desc->bd[desc->buf_tail]; 767 768 if (bd->mode.status & BD_DONE) 769 break; 770 771 if (bd->mode.status & BD_RROR) { 772 bd->mode.status &= ~BD_RROR; 773 sdmac->status = DMA_ERROR; 774 error = -EIO; 775 } 776 777 /* 778 * We use bd->mode.count to calculate the residue, since contains 779 * the number of bytes present in the current buffer descriptor. 780 */ 781 782 desc->chn_real_count = bd->mode.count; 783 bd->mode.status |= BD_DONE; 784 bd->mode.count = desc->period_len; 785 desc->buf_ptail = desc->buf_tail; 786 desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd; 787 788 /* 789 * The callback is called from the interrupt context in order 790 * to reduce latency and to avoid the risk of altering the 791 * SDMA transaction status by the time the client tasklet is 792 * executed. 793 */ 794 spin_unlock(&sdmac->vc.lock); 795 dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL); 796 spin_lock(&sdmac->vc.lock); 797 798 if (error) 799 sdmac->status = old_status; 800 } 801 } 802 803 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data) 804 { 805 struct sdma_channel *sdmac = (struct sdma_channel *) data; 806 struct sdma_buffer_descriptor *bd; 807 int i, error = 0; 808 809 sdmac->desc->chn_real_count = 0; 810 /* 811 * non loop mode. Iterate over all descriptors, collect 812 * errors and call callback function 813 */ 814 for (i = 0; i < sdmac->desc->num_bd; i++) { 815 bd = &sdmac->desc->bd[i]; 816 817 if (bd->mode.status & (BD_DONE | BD_RROR)) 818 error = -EIO; 819 sdmac->desc->chn_real_count += bd->mode.count; 820 } 821 822 if (error) 823 sdmac->status = DMA_ERROR; 824 else 825 sdmac->status = DMA_COMPLETE; 826 } 827 828 static irqreturn_t sdma_int_handler(int irq, void *dev_id) 829 { 830 struct sdma_engine *sdma = dev_id; 831 unsigned long stat; 832 833 stat = readl_relaxed(sdma->regs + SDMA_H_INTR); 834 writel_relaxed(stat, sdma->regs + SDMA_H_INTR); 835 /* channel 0 is special and not handled here, see run_channel0() */ 836 stat &= ~1; 837 838 while (stat) { 839 int channel = fls(stat) - 1; 840 struct sdma_channel *sdmac = &sdma->channel[channel]; 841 struct sdma_desc *desc; 842 843 spin_lock(&sdmac->vc.lock); 844 desc = sdmac->desc; 845 if (desc) { 846 if (sdmac->flags & IMX_DMA_SG_LOOP) { 847 sdma_update_channel_loop(sdmac); 848 } else { 849 mxc_sdma_handle_channel_normal(sdmac); 850 vchan_cookie_complete(&desc->vd); 851 sdma_start_desc(sdmac); 852 } 853 } 854 855 spin_unlock(&sdmac->vc.lock); 856 __clear_bit(channel, &stat); 857 } 858 859 return IRQ_HANDLED; 860 } 861 862 /* 863 * sets the pc of SDMA script according to the peripheral type 864 */ 865 static void sdma_get_pc(struct sdma_channel *sdmac, 866 enum sdma_peripheral_type peripheral_type) 867 { 868 struct sdma_engine *sdma = sdmac->sdma; 869 int per_2_emi = 0, emi_2_per = 0; 870 /* 871 * These are needed once we start to support transfers between 872 * two peripherals or memory-to-memory transfers 873 */ 874 int per_2_per = 0, emi_2_emi = 0; 875 876 sdmac->pc_from_device = 0; 877 sdmac->pc_to_device = 0; 878 sdmac->device_to_device = 0; 879 sdmac->pc_to_pc = 0; 880 881 switch (peripheral_type) { 882 case IMX_DMATYPE_MEMORY: 883 emi_2_emi = sdma->script_addrs->ap_2_ap_addr; 884 break; 885 case IMX_DMATYPE_DSP: 886 emi_2_per = sdma->script_addrs->bp_2_ap_addr; 887 per_2_emi = sdma->script_addrs->ap_2_bp_addr; 888 break; 889 case IMX_DMATYPE_FIRI: 890 per_2_emi = sdma->script_addrs->firi_2_mcu_addr; 891 emi_2_per = sdma->script_addrs->mcu_2_firi_addr; 892 break; 893 case IMX_DMATYPE_UART: 894 per_2_emi = sdma->script_addrs->uart_2_mcu_addr; 895 emi_2_per = sdma->script_addrs->mcu_2_app_addr; 896 break; 897 case IMX_DMATYPE_UART_SP: 898 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr; 899 emi_2_per = sdma->script_addrs->mcu_2_shp_addr; 900 break; 901 case IMX_DMATYPE_ATA: 902 per_2_emi = sdma->script_addrs->ata_2_mcu_addr; 903 emi_2_per = sdma->script_addrs->mcu_2_ata_addr; 904 break; 905 case IMX_DMATYPE_CSPI: 906 case IMX_DMATYPE_EXT: 907 case IMX_DMATYPE_SSI: 908 case IMX_DMATYPE_SAI: 909 per_2_emi = sdma->script_addrs->app_2_mcu_addr; 910 emi_2_per = sdma->script_addrs->mcu_2_app_addr; 911 break; 912 case IMX_DMATYPE_SSI_DUAL: 913 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr; 914 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr; 915 break; 916 case IMX_DMATYPE_SSI_SP: 917 case IMX_DMATYPE_MMC: 918 case IMX_DMATYPE_SDHC: 919 case IMX_DMATYPE_CSPI_SP: 920 case IMX_DMATYPE_ESAI: 921 case IMX_DMATYPE_MSHC_SP: 922 per_2_emi = sdma->script_addrs->shp_2_mcu_addr; 923 emi_2_per = sdma->script_addrs->mcu_2_shp_addr; 924 break; 925 case IMX_DMATYPE_ASRC: 926 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr; 927 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr; 928 per_2_per = sdma->script_addrs->per_2_per_addr; 929 break; 930 case IMX_DMATYPE_ASRC_SP: 931 per_2_emi = sdma->script_addrs->shp_2_mcu_addr; 932 emi_2_per = sdma->script_addrs->mcu_2_shp_addr; 933 per_2_per = sdma->script_addrs->per_2_per_addr; 934 break; 935 case IMX_DMATYPE_MSHC: 936 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr; 937 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr; 938 break; 939 case IMX_DMATYPE_CCM: 940 per_2_emi = sdma->script_addrs->dptc_dvfs_addr; 941 break; 942 case IMX_DMATYPE_SPDIF: 943 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr; 944 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr; 945 break; 946 case IMX_DMATYPE_IPU_MEMORY: 947 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr; 948 break; 949 default: 950 break; 951 } 952 953 sdmac->pc_from_device = per_2_emi; 954 sdmac->pc_to_device = emi_2_per; 955 sdmac->device_to_device = per_2_per; 956 sdmac->pc_to_pc = emi_2_emi; 957 } 958 959 static int sdma_load_context(struct sdma_channel *sdmac) 960 { 961 struct sdma_engine *sdma = sdmac->sdma; 962 int channel = sdmac->channel; 963 int load_address; 964 struct sdma_context_data *context = sdma->context; 965 struct sdma_buffer_descriptor *bd0 = sdma->bd0; 966 int ret; 967 unsigned long flags; 968 969 if (sdmac->direction == DMA_DEV_TO_MEM) 970 load_address = sdmac->pc_from_device; 971 else if (sdmac->direction == DMA_DEV_TO_DEV) 972 load_address = sdmac->device_to_device; 973 else if (sdmac->direction == DMA_MEM_TO_MEM) 974 load_address = sdmac->pc_to_pc; 975 else 976 load_address = sdmac->pc_to_device; 977 978 if (load_address < 0) 979 return load_address; 980 981 dev_dbg(sdma->dev, "load_address = %d\n", load_address); 982 dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level); 983 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr); 984 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr); 985 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]); 986 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]); 987 988 spin_lock_irqsave(&sdma->channel_0_lock, flags); 989 990 memset(context, 0, sizeof(*context)); 991 context->channel_state.pc = load_address; 992 993 /* Send by context the event mask,base address for peripheral 994 * and watermark level 995 */ 996 context->gReg[0] = sdmac->event_mask[1]; 997 context->gReg[1] = sdmac->event_mask[0]; 998 context->gReg[2] = sdmac->per_addr; 999 context->gReg[6] = sdmac->shp_addr; 1000 context->gReg[7] = sdmac->watermark_level; 1001 1002 bd0->mode.command = C0_SETDM; 1003 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD; 1004 bd0->mode.count = sizeof(*context) / 4; 1005 bd0->buffer_addr = sdma->context_phys; 1006 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel; 1007 ret = sdma_run_channel0(sdma); 1008 1009 spin_unlock_irqrestore(&sdma->channel_0_lock, flags); 1010 1011 return ret; 1012 } 1013 1014 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan) 1015 { 1016 return container_of(chan, struct sdma_channel, vc.chan); 1017 } 1018 1019 static int sdma_disable_channel(struct dma_chan *chan) 1020 { 1021 struct sdma_channel *sdmac = to_sdma_chan(chan); 1022 struct sdma_engine *sdma = sdmac->sdma; 1023 int channel = sdmac->channel; 1024 1025 writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP); 1026 sdmac->status = DMA_ERROR; 1027 1028 return 0; 1029 } 1030 static void sdma_channel_terminate_work(struct work_struct *work) 1031 { 1032 struct sdma_channel *sdmac = container_of(work, struct sdma_channel, 1033 terminate_worker); 1034 unsigned long flags; 1035 LIST_HEAD(head); 1036 1037 /* 1038 * According to NXP R&D team a delay of one BD SDMA cost time 1039 * (maximum is 1ms) should be added after disable of the channel 1040 * bit, to ensure SDMA core has really been stopped after SDMA 1041 * clients call .device_terminate_all. 1042 */ 1043 usleep_range(1000, 2000); 1044 1045 spin_lock_irqsave(&sdmac->vc.lock, flags); 1046 vchan_get_all_descriptors(&sdmac->vc, &head); 1047 sdmac->desc = NULL; 1048 spin_unlock_irqrestore(&sdmac->vc.lock, flags); 1049 vchan_dma_desc_free_list(&sdmac->vc, &head); 1050 } 1051 1052 static int sdma_disable_channel_async(struct dma_chan *chan) 1053 { 1054 struct sdma_channel *sdmac = to_sdma_chan(chan); 1055 1056 sdma_disable_channel(chan); 1057 1058 if (sdmac->desc) 1059 schedule_work(&sdmac->terminate_worker); 1060 1061 return 0; 1062 } 1063 1064 static void sdma_channel_synchronize(struct dma_chan *chan) 1065 { 1066 struct sdma_channel *sdmac = to_sdma_chan(chan); 1067 1068 vchan_synchronize(&sdmac->vc); 1069 1070 flush_work(&sdmac->terminate_worker); 1071 } 1072 1073 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac) 1074 { 1075 struct sdma_engine *sdma = sdmac->sdma; 1076 1077 int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML; 1078 int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16; 1079 1080 set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]); 1081 set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]); 1082 1083 if (sdmac->event_id0 > 31) 1084 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE; 1085 1086 if (sdmac->event_id1 > 31) 1087 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE; 1088 1089 /* 1090 * If LWML(src_maxburst) > HWML(dst_maxburst), we need 1091 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap 1092 * r0(event_mask[1]) and r1(event_mask[0]). 1093 */ 1094 if (lwml > hwml) { 1095 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML | 1096 SDMA_WATERMARK_LEVEL_HWML); 1097 sdmac->watermark_level |= hwml; 1098 sdmac->watermark_level |= lwml << 16; 1099 swap(sdmac->event_mask[0], sdmac->event_mask[1]); 1100 } 1101 1102 if (sdmac->per_address2 >= sdma->spba_start_addr && 1103 sdmac->per_address2 <= sdma->spba_end_addr) 1104 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP; 1105 1106 if (sdmac->per_address >= sdma->spba_start_addr && 1107 sdmac->per_address <= sdma->spba_end_addr) 1108 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP; 1109 1110 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT; 1111 } 1112 1113 static int sdma_config_channel(struct dma_chan *chan) 1114 { 1115 struct sdma_channel *sdmac = to_sdma_chan(chan); 1116 int ret; 1117 1118 sdma_disable_channel(chan); 1119 1120 sdmac->event_mask[0] = 0; 1121 sdmac->event_mask[1] = 0; 1122 sdmac->shp_addr = 0; 1123 sdmac->per_addr = 0; 1124 1125 if (sdmac->event_id0) { 1126 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events) 1127 return -EINVAL; 1128 sdma_event_enable(sdmac, sdmac->event_id0); 1129 } 1130 1131 if (sdmac->event_id1) { 1132 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events) 1133 return -EINVAL; 1134 sdma_event_enable(sdmac, sdmac->event_id1); 1135 } 1136 1137 switch (sdmac->peripheral_type) { 1138 case IMX_DMATYPE_DSP: 1139 sdma_config_ownership(sdmac, false, true, true); 1140 break; 1141 case IMX_DMATYPE_MEMORY: 1142 sdma_config_ownership(sdmac, false, true, false); 1143 break; 1144 default: 1145 sdma_config_ownership(sdmac, true, true, false); 1146 break; 1147 } 1148 1149 sdma_get_pc(sdmac, sdmac->peripheral_type); 1150 1151 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) && 1152 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) { 1153 /* Handle multiple event channels differently */ 1154 if (sdmac->event_id1) { 1155 if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP || 1156 sdmac->peripheral_type == IMX_DMATYPE_ASRC) 1157 sdma_set_watermarklevel_for_p2p(sdmac); 1158 } else 1159 __set_bit(sdmac->event_id0, sdmac->event_mask); 1160 1161 /* Address */ 1162 sdmac->shp_addr = sdmac->per_address; 1163 sdmac->per_addr = sdmac->per_address2; 1164 } else { 1165 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */ 1166 } 1167 1168 ret = sdma_load_context(sdmac); 1169 1170 return ret; 1171 } 1172 1173 static int sdma_set_channel_priority(struct sdma_channel *sdmac, 1174 unsigned int priority) 1175 { 1176 struct sdma_engine *sdma = sdmac->sdma; 1177 int channel = sdmac->channel; 1178 1179 if (priority < MXC_SDMA_MIN_PRIORITY 1180 || priority > MXC_SDMA_MAX_PRIORITY) { 1181 return -EINVAL; 1182 } 1183 1184 writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel); 1185 1186 return 0; 1187 } 1188 1189 static int sdma_request_channel0(struct sdma_engine *sdma) 1190 { 1191 int ret = -EBUSY; 1192 1193 sdma->bd0 = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdma->bd0_phys, 1194 GFP_NOWAIT); 1195 if (!sdma->bd0) { 1196 ret = -ENOMEM; 1197 goto out; 1198 } 1199 1200 sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys; 1201 sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys; 1202 1203 sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY); 1204 return 0; 1205 out: 1206 1207 return ret; 1208 } 1209 1210 1211 static int sdma_alloc_bd(struct sdma_desc *desc) 1212 { 1213 u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor); 1214 int ret = 0; 1215 1216 desc->bd = dma_zalloc_coherent(NULL, bd_size, &desc->bd_phys, 1217 GFP_NOWAIT); 1218 if (!desc->bd) { 1219 ret = -ENOMEM; 1220 goto out; 1221 } 1222 out: 1223 return ret; 1224 } 1225 1226 static void sdma_free_bd(struct sdma_desc *desc) 1227 { 1228 u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor); 1229 1230 dma_free_coherent(NULL, bd_size, desc->bd, desc->bd_phys); 1231 } 1232 1233 static void sdma_desc_free(struct virt_dma_desc *vd) 1234 { 1235 struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd); 1236 1237 sdma_free_bd(desc); 1238 kfree(desc); 1239 } 1240 1241 static int sdma_alloc_chan_resources(struct dma_chan *chan) 1242 { 1243 struct sdma_channel *sdmac = to_sdma_chan(chan); 1244 struct imx_dma_data *data = chan->private; 1245 struct imx_dma_data mem_data; 1246 int prio, ret; 1247 1248 /* 1249 * MEMCPY may never setup chan->private by filter function such as 1250 * dmatest, thus create 'struct imx_dma_data mem_data' for this case. 1251 * Please note in any other slave case, you have to setup chan->private 1252 * with 'struct imx_dma_data' in your own filter function if you want to 1253 * request dma channel by dma_request_channel() rather than 1254 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear 1255 * to warn you to correct your filter function. 1256 */ 1257 if (!data) { 1258 dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n"); 1259 mem_data.priority = 2; 1260 mem_data.peripheral_type = IMX_DMATYPE_MEMORY; 1261 mem_data.dma_request = 0; 1262 mem_data.dma_request2 = 0; 1263 data = &mem_data; 1264 1265 sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY); 1266 } 1267 1268 switch (data->priority) { 1269 case DMA_PRIO_HIGH: 1270 prio = 3; 1271 break; 1272 case DMA_PRIO_MEDIUM: 1273 prio = 2; 1274 break; 1275 case DMA_PRIO_LOW: 1276 default: 1277 prio = 1; 1278 break; 1279 } 1280 1281 sdmac->peripheral_type = data->peripheral_type; 1282 sdmac->event_id0 = data->dma_request; 1283 sdmac->event_id1 = data->dma_request2; 1284 1285 ret = clk_enable(sdmac->sdma->clk_ipg); 1286 if (ret) 1287 return ret; 1288 ret = clk_enable(sdmac->sdma->clk_ahb); 1289 if (ret) 1290 goto disable_clk_ipg; 1291 1292 ret = sdma_set_channel_priority(sdmac, prio); 1293 if (ret) 1294 goto disable_clk_ahb; 1295 1296 return 0; 1297 1298 disable_clk_ahb: 1299 clk_disable(sdmac->sdma->clk_ahb); 1300 disable_clk_ipg: 1301 clk_disable(sdmac->sdma->clk_ipg); 1302 return ret; 1303 } 1304 1305 static void sdma_free_chan_resources(struct dma_chan *chan) 1306 { 1307 struct sdma_channel *sdmac = to_sdma_chan(chan); 1308 struct sdma_engine *sdma = sdmac->sdma; 1309 1310 sdma_disable_channel_async(chan); 1311 1312 sdma_channel_synchronize(chan); 1313 1314 if (sdmac->event_id0) 1315 sdma_event_disable(sdmac, sdmac->event_id0); 1316 if (sdmac->event_id1) 1317 sdma_event_disable(sdmac, sdmac->event_id1); 1318 1319 sdmac->event_id0 = 0; 1320 sdmac->event_id1 = 0; 1321 1322 sdma_set_channel_priority(sdmac, 0); 1323 1324 clk_disable(sdma->clk_ipg); 1325 clk_disable(sdma->clk_ahb); 1326 } 1327 1328 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac, 1329 enum dma_transfer_direction direction, u32 bds) 1330 { 1331 struct sdma_desc *desc; 1332 1333 desc = kzalloc((sizeof(*desc)), GFP_NOWAIT); 1334 if (!desc) 1335 goto err_out; 1336 1337 sdmac->status = DMA_IN_PROGRESS; 1338 sdmac->direction = direction; 1339 sdmac->flags = 0; 1340 1341 desc->chn_count = 0; 1342 desc->chn_real_count = 0; 1343 desc->buf_tail = 0; 1344 desc->buf_ptail = 0; 1345 desc->sdmac = sdmac; 1346 desc->num_bd = bds; 1347 1348 if (sdma_alloc_bd(desc)) 1349 goto err_desc_out; 1350 1351 /* No slave_config called in MEMCPY case, so do here */ 1352 if (direction == DMA_MEM_TO_MEM) 1353 sdma_config_ownership(sdmac, false, true, false); 1354 1355 if (sdma_load_context(sdmac)) 1356 goto err_desc_out; 1357 1358 return desc; 1359 1360 err_desc_out: 1361 kfree(desc); 1362 err_out: 1363 return NULL; 1364 } 1365 1366 static struct dma_async_tx_descriptor *sdma_prep_memcpy( 1367 struct dma_chan *chan, dma_addr_t dma_dst, 1368 dma_addr_t dma_src, size_t len, unsigned long flags) 1369 { 1370 struct sdma_channel *sdmac = to_sdma_chan(chan); 1371 struct sdma_engine *sdma = sdmac->sdma; 1372 int channel = sdmac->channel; 1373 size_t count; 1374 int i = 0, param; 1375 struct sdma_buffer_descriptor *bd; 1376 struct sdma_desc *desc; 1377 1378 if (!chan || !len) 1379 return NULL; 1380 1381 dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n", 1382 &dma_src, &dma_dst, len, channel); 1383 1384 desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM, 1385 len / SDMA_BD_MAX_CNT + 1); 1386 if (!desc) 1387 return NULL; 1388 1389 do { 1390 count = min_t(size_t, len, SDMA_BD_MAX_CNT); 1391 bd = &desc->bd[i]; 1392 bd->buffer_addr = dma_src; 1393 bd->ext_buffer_addr = dma_dst; 1394 bd->mode.count = count; 1395 desc->chn_count += count; 1396 bd->mode.command = 0; 1397 1398 dma_src += count; 1399 dma_dst += count; 1400 len -= count; 1401 i++; 1402 1403 param = BD_DONE | BD_EXTD | BD_CONT; 1404 /* last bd */ 1405 if (!len) { 1406 param |= BD_INTR; 1407 param |= BD_LAST; 1408 param &= ~BD_CONT; 1409 } 1410 1411 dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n", 1412 i, count, bd->buffer_addr, 1413 param & BD_WRAP ? "wrap" : "", 1414 param & BD_INTR ? " intr" : ""); 1415 1416 bd->mode.status = param; 1417 } while (len); 1418 1419 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags); 1420 } 1421 1422 static struct dma_async_tx_descriptor *sdma_prep_slave_sg( 1423 struct dma_chan *chan, struct scatterlist *sgl, 1424 unsigned int sg_len, enum dma_transfer_direction direction, 1425 unsigned long flags, void *context) 1426 { 1427 struct sdma_channel *sdmac = to_sdma_chan(chan); 1428 struct sdma_engine *sdma = sdmac->sdma; 1429 int i, count; 1430 int channel = sdmac->channel; 1431 struct scatterlist *sg; 1432 struct sdma_desc *desc; 1433 1434 desc = sdma_transfer_init(sdmac, direction, sg_len); 1435 if (!desc) 1436 goto err_out; 1437 1438 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n", 1439 sg_len, channel); 1440 1441 for_each_sg(sgl, sg, sg_len, i) { 1442 struct sdma_buffer_descriptor *bd = &desc->bd[i]; 1443 int param; 1444 1445 bd->buffer_addr = sg->dma_address; 1446 1447 count = sg_dma_len(sg); 1448 1449 if (count > SDMA_BD_MAX_CNT) { 1450 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n", 1451 channel, count, SDMA_BD_MAX_CNT); 1452 goto err_bd_out; 1453 } 1454 1455 bd->mode.count = count; 1456 desc->chn_count += count; 1457 1458 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) 1459 goto err_bd_out; 1460 1461 switch (sdmac->word_size) { 1462 case DMA_SLAVE_BUSWIDTH_4_BYTES: 1463 bd->mode.command = 0; 1464 if (count & 3 || sg->dma_address & 3) 1465 goto err_bd_out; 1466 break; 1467 case DMA_SLAVE_BUSWIDTH_2_BYTES: 1468 bd->mode.command = 2; 1469 if (count & 1 || sg->dma_address & 1) 1470 goto err_bd_out; 1471 break; 1472 case DMA_SLAVE_BUSWIDTH_1_BYTE: 1473 bd->mode.command = 1; 1474 break; 1475 default: 1476 goto err_bd_out; 1477 } 1478 1479 param = BD_DONE | BD_EXTD | BD_CONT; 1480 1481 if (i + 1 == sg_len) { 1482 param |= BD_INTR; 1483 param |= BD_LAST; 1484 param &= ~BD_CONT; 1485 } 1486 1487 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n", 1488 i, count, (u64)sg->dma_address, 1489 param & BD_WRAP ? "wrap" : "", 1490 param & BD_INTR ? " intr" : ""); 1491 1492 bd->mode.status = param; 1493 } 1494 1495 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags); 1496 err_bd_out: 1497 sdma_free_bd(desc); 1498 kfree(desc); 1499 err_out: 1500 sdmac->status = DMA_ERROR; 1501 return NULL; 1502 } 1503 1504 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic( 1505 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len, 1506 size_t period_len, enum dma_transfer_direction direction, 1507 unsigned long flags) 1508 { 1509 struct sdma_channel *sdmac = to_sdma_chan(chan); 1510 struct sdma_engine *sdma = sdmac->sdma; 1511 int num_periods = buf_len / period_len; 1512 int channel = sdmac->channel; 1513 int i = 0, buf = 0; 1514 struct sdma_desc *desc; 1515 1516 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel); 1517 1518 desc = sdma_transfer_init(sdmac, direction, num_periods); 1519 if (!desc) 1520 goto err_out; 1521 1522 desc->period_len = period_len; 1523 1524 sdmac->flags |= IMX_DMA_SG_LOOP; 1525 1526 if (period_len > SDMA_BD_MAX_CNT) { 1527 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n", 1528 channel, period_len, SDMA_BD_MAX_CNT); 1529 goto err_bd_out; 1530 } 1531 1532 while (buf < buf_len) { 1533 struct sdma_buffer_descriptor *bd = &desc->bd[i]; 1534 int param; 1535 1536 bd->buffer_addr = dma_addr; 1537 1538 bd->mode.count = period_len; 1539 1540 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) 1541 goto err_bd_out; 1542 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES) 1543 bd->mode.command = 0; 1544 else 1545 bd->mode.command = sdmac->word_size; 1546 1547 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR; 1548 if (i + 1 == num_periods) 1549 param |= BD_WRAP; 1550 1551 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n", 1552 i, period_len, (u64)dma_addr, 1553 param & BD_WRAP ? "wrap" : "", 1554 param & BD_INTR ? " intr" : ""); 1555 1556 bd->mode.status = param; 1557 1558 dma_addr += period_len; 1559 buf += period_len; 1560 1561 i++; 1562 } 1563 1564 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags); 1565 err_bd_out: 1566 sdma_free_bd(desc); 1567 kfree(desc); 1568 err_out: 1569 sdmac->status = DMA_ERROR; 1570 return NULL; 1571 } 1572 1573 static int sdma_config(struct dma_chan *chan, 1574 struct dma_slave_config *dmaengine_cfg) 1575 { 1576 struct sdma_channel *sdmac = to_sdma_chan(chan); 1577 1578 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) { 1579 sdmac->per_address = dmaengine_cfg->src_addr; 1580 sdmac->watermark_level = dmaengine_cfg->src_maxburst * 1581 dmaengine_cfg->src_addr_width; 1582 sdmac->word_size = dmaengine_cfg->src_addr_width; 1583 } else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) { 1584 sdmac->per_address2 = dmaengine_cfg->src_addr; 1585 sdmac->per_address = dmaengine_cfg->dst_addr; 1586 sdmac->watermark_level = dmaengine_cfg->src_maxburst & 1587 SDMA_WATERMARK_LEVEL_LWML; 1588 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) & 1589 SDMA_WATERMARK_LEVEL_HWML; 1590 sdmac->word_size = dmaengine_cfg->dst_addr_width; 1591 } else { 1592 sdmac->per_address = dmaengine_cfg->dst_addr; 1593 sdmac->watermark_level = dmaengine_cfg->dst_maxburst * 1594 dmaengine_cfg->dst_addr_width; 1595 sdmac->word_size = dmaengine_cfg->dst_addr_width; 1596 } 1597 sdmac->direction = dmaengine_cfg->direction; 1598 return sdma_config_channel(chan); 1599 } 1600 1601 static enum dma_status sdma_tx_status(struct dma_chan *chan, 1602 dma_cookie_t cookie, 1603 struct dma_tx_state *txstate) 1604 { 1605 struct sdma_channel *sdmac = to_sdma_chan(chan); 1606 struct sdma_desc *desc; 1607 u32 residue; 1608 struct virt_dma_desc *vd; 1609 enum dma_status ret; 1610 unsigned long flags; 1611 1612 ret = dma_cookie_status(chan, cookie, txstate); 1613 if (ret == DMA_COMPLETE || !txstate) 1614 return ret; 1615 1616 spin_lock_irqsave(&sdmac->vc.lock, flags); 1617 vd = vchan_find_desc(&sdmac->vc, cookie); 1618 if (vd) { 1619 desc = to_sdma_desc(&vd->tx); 1620 if (sdmac->flags & IMX_DMA_SG_LOOP) 1621 residue = (desc->num_bd - desc->buf_ptail) * 1622 desc->period_len - desc->chn_real_count; 1623 else 1624 residue = desc->chn_count - desc->chn_real_count; 1625 } else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie) { 1626 residue = sdmac->desc->chn_count - sdmac->desc->chn_real_count; 1627 } else { 1628 residue = 0; 1629 } 1630 spin_unlock_irqrestore(&sdmac->vc.lock, flags); 1631 1632 dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie, 1633 residue); 1634 1635 return sdmac->status; 1636 } 1637 1638 static void sdma_issue_pending(struct dma_chan *chan) 1639 { 1640 struct sdma_channel *sdmac = to_sdma_chan(chan); 1641 unsigned long flags; 1642 1643 spin_lock_irqsave(&sdmac->vc.lock, flags); 1644 if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc) 1645 sdma_start_desc(sdmac); 1646 spin_unlock_irqrestore(&sdmac->vc.lock, flags); 1647 } 1648 1649 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34 1650 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38 1651 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41 1652 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42 1653 1654 static void sdma_add_scripts(struct sdma_engine *sdma, 1655 const struct sdma_script_start_addrs *addr) 1656 { 1657 s32 *addr_arr = (u32 *)addr; 1658 s32 *saddr_arr = (u32 *)sdma->script_addrs; 1659 int i; 1660 1661 /* use the default firmware in ROM if missing external firmware */ 1662 if (!sdma->script_number) 1663 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; 1664 1665 for (i = 0; i < sdma->script_number; i++) 1666 if (addr_arr[i] > 0) 1667 saddr_arr[i] = addr_arr[i]; 1668 } 1669 1670 static void sdma_load_firmware(const struct firmware *fw, void *context) 1671 { 1672 struct sdma_engine *sdma = context; 1673 const struct sdma_firmware_header *header; 1674 const struct sdma_script_start_addrs *addr; 1675 unsigned short *ram_code; 1676 1677 if (!fw) { 1678 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n"); 1679 /* In this case we just use the ROM firmware. */ 1680 return; 1681 } 1682 1683 if (fw->size < sizeof(*header)) 1684 goto err_firmware; 1685 1686 header = (struct sdma_firmware_header *)fw->data; 1687 1688 if (header->magic != SDMA_FIRMWARE_MAGIC) 1689 goto err_firmware; 1690 if (header->ram_code_start + header->ram_code_size > fw->size) 1691 goto err_firmware; 1692 switch (header->version_major) { 1693 case 1: 1694 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; 1695 break; 1696 case 2: 1697 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2; 1698 break; 1699 case 3: 1700 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3; 1701 break; 1702 case 4: 1703 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4; 1704 break; 1705 default: 1706 dev_err(sdma->dev, "unknown firmware version\n"); 1707 goto err_firmware; 1708 } 1709 1710 addr = (void *)header + header->script_addrs_start; 1711 ram_code = (void *)header + header->ram_code_start; 1712 1713 clk_enable(sdma->clk_ipg); 1714 clk_enable(sdma->clk_ahb); 1715 /* download the RAM image for SDMA */ 1716 sdma_load_script(sdma, ram_code, 1717 header->ram_code_size, 1718 addr->ram_code_start_addr); 1719 clk_disable(sdma->clk_ipg); 1720 clk_disable(sdma->clk_ahb); 1721 1722 sdma_add_scripts(sdma, addr); 1723 1724 dev_info(sdma->dev, "loaded firmware %d.%d\n", 1725 header->version_major, 1726 header->version_minor); 1727 1728 err_firmware: 1729 release_firmware(fw); 1730 } 1731 1732 #define EVENT_REMAP_CELLS 3 1733 1734 static int sdma_event_remap(struct sdma_engine *sdma) 1735 { 1736 struct device_node *np = sdma->dev->of_node; 1737 struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0); 1738 struct property *event_remap; 1739 struct regmap *gpr; 1740 char propname[] = "fsl,sdma-event-remap"; 1741 u32 reg, val, shift, num_map, i; 1742 int ret = 0; 1743 1744 if (IS_ERR(np) || IS_ERR(gpr_np)) 1745 goto out; 1746 1747 event_remap = of_find_property(np, propname, NULL); 1748 num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0; 1749 if (!num_map) { 1750 dev_dbg(sdma->dev, "no event needs to be remapped\n"); 1751 goto out; 1752 } else if (num_map % EVENT_REMAP_CELLS) { 1753 dev_err(sdma->dev, "the property %s must modulo %d\n", 1754 propname, EVENT_REMAP_CELLS); 1755 ret = -EINVAL; 1756 goto out; 1757 } 1758 1759 gpr = syscon_node_to_regmap(gpr_np); 1760 if (IS_ERR(gpr)) { 1761 dev_err(sdma->dev, "failed to get gpr regmap\n"); 1762 ret = PTR_ERR(gpr); 1763 goto out; 1764 } 1765 1766 for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) { 1767 ret = of_property_read_u32_index(np, propname, i, ®); 1768 if (ret) { 1769 dev_err(sdma->dev, "failed to read property %s index %d\n", 1770 propname, i); 1771 goto out; 1772 } 1773 1774 ret = of_property_read_u32_index(np, propname, i + 1, &shift); 1775 if (ret) { 1776 dev_err(sdma->dev, "failed to read property %s index %d\n", 1777 propname, i + 1); 1778 goto out; 1779 } 1780 1781 ret = of_property_read_u32_index(np, propname, i + 2, &val); 1782 if (ret) { 1783 dev_err(sdma->dev, "failed to read property %s index %d\n", 1784 propname, i + 2); 1785 goto out; 1786 } 1787 1788 regmap_update_bits(gpr, reg, BIT(shift), val << shift); 1789 } 1790 1791 out: 1792 if (!IS_ERR(gpr_np)) 1793 of_node_put(gpr_np); 1794 1795 return ret; 1796 } 1797 1798 static int sdma_get_firmware(struct sdma_engine *sdma, 1799 const char *fw_name) 1800 { 1801 int ret; 1802 1803 ret = request_firmware_nowait(THIS_MODULE, 1804 FW_ACTION_HOTPLUG, fw_name, sdma->dev, 1805 GFP_KERNEL, sdma, sdma_load_firmware); 1806 1807 return ret; 1808 } 1809 1810 static int sdma_init(struct sdma_engine *sdma) 1811 { 1812 int i, ret; 1813 dma_addr_t ccb_phys; 1814 1815 ret = clk_enable(sdma->clk_ipg); 1816 if (ret) 1817 return ret; 1818 ret = clk_enable(sdma->clk_ahb); 1819 if (ret) 1820 goto disable_clk_ipg; 1821 1822 /* Be sure SDMA has not started yet */ 1823 writel_relaxed(0, sdma->regs + SDMA_H_C0PTR); 1824 1825 sdma->channel_control = dma_alloc_coherent(NULL, 1826 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) + 1827 sizeof(struct sdma_context_data), 1828 &ccb_phys, GFP_KERNEL); 1829 1830 if (!sdma->channel_control) { 1831 ret = -ENOMEM; 1832 goto err_dma_alloc; 1833 } 1834 1835 sdma->context = (void *)sdma->channel_control + 1836 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control); 1837 sdma->context_phys = ccb_phys + 1838 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control); 1839 1840 /* Zero-out the CCB structures array just allocated */ 1841 memset(sdma->channel_control, 0, 1842 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control)); 1843 1844 /* disable all channels */ 1845 for (i = 0; i < sdma->drvdata->num_events; i++) 1846 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i)); 1847 1848 /* All channels have priority 0 */ 1849 for (i = 0; i < MAX_DMA_CHANNELS; i++) 1850 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4); 1851 1852 ret = sdma_request_channel0(sdma); 1853 if (ret) 1854 goto err_dma_alloc; 1855 1856 sdma_config_ownership(&sdma->channel[0], false, true, false); 1857 1858 /* Set Command Channel (Channel Zero) */ 1859 writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR); 1860 1861 /* Set bits of CONFIG register but with static context switching */ 1862 /* FIXME: Check whether to set ACR bit depending on clock ratios */ 1863 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG); 1864 1865 writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR); 1866 1867 /* Initializes channel's priorities */ 1868 sdma_set_channel_priority(&sdma->channel[0], 7); 1869 1870 clk_disable(sdma->clk_ipg); 1871 clk_disable(sdma->clk_ahb); 1872 1873 return 0; 1874 1875 err_dma_alloc: 1876 clk_disable(sdma->clk_ahb); 1877 disable_clk_ipg: 1878 clk_disable(sdma->clk_ipg); 1879 dev_err(sdma->dev, "initialisation failed with %d\n", ret); 1880 return ret; 1881 } 1882 1883 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param) 1884 { 1885 struct sdma_channel *sdmac = to_sdma_chan(chan); 1886 struct imx_dma_data *data = fn_param; 1887 1888 if (!imx_dma_is_general_purpose(chan)) 1889 return false; 1890 1891 sdmac->data = *data; 1892 chan->private = &sdmac->data; 1893 1894 return true; 1895 } 1896 1897 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec, 1898 struct of_dma *ofdma) 1899 { 1900 struct sdma_engine *sdma = ofdma->of_dma_data; 1901 dma_cap_mask_t mask = sdma->dma_device.cap_mask; 1902 struct imx_dma_data data; 1903 1904 if (dma_spec->args_count != 3) 1905 return NULL; 1906 1907 data.dma_request = dma_spec->args[0]; 1908 data.peripheral_type = dma_spec->args[1]; 1909 data.priority = dma_spec->args[2]; 1910 /* 1911 * init dma_request2 to zero, which is not used by the dts. 1912 * For P2P, dma_request2 is init from dma_request_channel(), 1913 * chan->private will point to the imx_dma_data, and in 1914 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will 1915 * be set to sdmac->event_id1. 1916 */ 1917 data.dma_request2 = 0; 1918 1919 return dma_request_channel(mask, sdma_filter_fn, &data); 1920 } 1921 1922 static int sdma_probe(struct platform_device *pdev) 1923 { 1924 const struct of_device_id *of_id = 1925 of_match_device(sdma_dt_ids, &pdev->dev); 1926 struct device_node *np = pdev->dev.of_node; 1927 struct device_node *spba_bus; 1928 const char *fw_name; 1929 int ret; 1930 int irq; 1931 struct resource *iores; 1932 struct resource spba_res; 1933 struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev); 1934 int i; 1935 struct sdma_engine *sdma; 1936 s32 *saddr_arr; 1937 const struct sdma_driver_data *drvdata = NULL; 1938 1939 if (of_id) 1940 drvdata = of_id->data; 1941 else if (pdev->id_entry) 1942 drvdata = (void *)pdev->id_entry->driver_data; 1943 1944 if (!drvdata) { 1945 dev_err(&pdev->dev, "unable to find driver data\n"); 1946 return -EINVAL; 1947 } 1948 1949 ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1950 if (ret) 1951 return ret; 1952 1953 sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL); 1954 if (!sdma) 1955 return -ENOMEM; 1956 1957 spin_lock_init(&sdma->channel_0_lock); 1958 1959 sdma->dev = &pdev->dev; 1960 sdma->drvdata = drvdata; 1961 1962 irq = platform_get_irq(pdev, 0); 1963 if (irq < 0) 1964 return irq; 1965 1966 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1967 sdma->regs = devm_ioremap_resource(&pdev->dev, iores); 1968 if (IS_ERR(sdma->regs)) 1969 return PTR_ERR(sdma->regs); 1970 1971 sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 1972 if (IS_ERR(sdma->clk_ipg)) 1973 return PTR_ERR(sdma->clk_ipg); 1974 1975 sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 1976 if (IS_ERR(sdma->clk_ahb)) 1977 return PTR_ERR(sdma->clk_ahb); 1978 1979 ret = clk_prepare(sdma->clk_ipg); 1980 if (ret) 1981 return ret; 1982 1983 ret = clk_prepare(sdma->clk_ahb); 1984 if (ret) 1985 goto err_clk; 1986 1987 ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma", 1988 sdma); 1989 if (ret) 1990 goto err_irq; 1991 1992 sdma->irq = irq; 1993 1994 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL); 1995 if (!sdma->script_addrs) { 1996 ret = -ENOMEM; 1997 goto err_irq; 1998 } 1999 2000 /* initially no scripts available */ 2001 saddr_arr = (s32 *)sdma->script_addrs; 2002 for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++) 2003 saddr_arr[i] = -EINVAL; 2004 2005 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask); 2006 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask); 2007 dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask); 2008 2009 INIT_LIST_HEAD(&sdma->dma_device.channels); 2010 /* Initialize channel parameters */ 2011 for (i = 0; i < MAX_DMA_CHANNELS; i++) { 2012 struct sdma_channel *sdmac = &sdma->channel[i]; 2013 2014 sdmac->sdma = sdma; 2015 2016 sdmac->channel = i; 2017 sdmac->vc.desc_free = sdma_desc_free; 2018 INIT_WORK(&sdmac->terminate_worker, 2019 sdma_channel_terminate_work); 2020 /* 2021 * Add the channel to the DMAC list. Do not add channel 0 though 2022 * because we need it internally in the SDMA driver. This also means 2023 * that channel 0 in dmaengine counting matches sdma channel 1. 2024 */ 2025 if (i) 2026 vchan_init(&sdmac->vc, &sdma->dma_device); 2027 } 2028 2029 ret = sdma_init(sdma); 2030 if (ret) 2031 goto err_init; 2032 2033 ret = sdma_event_remap(sdma); 2034 if (ret) 2035 goto err_init; 2036 2037 if (sdma->drvdata->script_addrs) 2038 sdma_add_scripts(sdma, sdma->drvdata->script_addrs); 2039 if (pdata && pdata->script_addrs) 2040 sdma_add_scripts(sdma, pdata->script_addrs); 2041 2042 if (pdata) { 2043 ret = sdma_get_firmware(sdma, pdata->fw_name); 2044 if (ret) 2045 dev_warn(&pdev->dev, "failed to get firmware from platform data\n"); 2046 } else { 2047 /* 2048 * Because that device tree does not encode ROM script address, 2049 * the RAM script in firmware is mandatory for device tree 2050 * probe, otherwise it fails. 2051 */ 2052 ret = of_property_read_string(np, "fsl,sdma-ram-script-name", 2053 &fw_name); 2054 if (ret) 2055 dev_warn(&pdev->dev, "failed to get firmware name\n"); 2056 else { 2057 ret = sdma_get_firmware(sdma, fw_name); 2058 if (ret) 2059 dev_warn(&pdev->dev, "failed to get firmware from device tree\n"); 2060 } 2061 } 2062 2063 sdma->dma_device.dev = &pdev->dev; 2064 2065 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources; 2066 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources; 2067 sdma->dma_device.device_tx_status = sdma_tx_status; 2068 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg; 2069 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic; 2070 sdma->dma_device.device_config = sdma_config; 2071 sdma->dma_device.device_terminate_all = sdma_disable_channel_async; 2072 sdma->dma_device.device_synchronize = sdma_channel_synchronize; 2073 sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS; 2074 sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS; 2075 sdma->dma_device.directions = SDMA_DMA_DIRECTIONS; 2076 sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; 2077 sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy; 2078 sdma->dma_device.device_issue_pending = sdma_issue_pending; 2079 sdma->dma_device.dev->dma_parms = &sdma->dma_parms; 2080 dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT); 2081 2082 platform_set_drvdata(pdev, sdma); 2083 2084 ret = dma_async_device_register(&sdma->dma_device); 2085 if (ret) { 2086 dev_err(&pdev->dev, "unable to register\n"); 2087 goto err_init; 2088 } 2089 2090 if (np) { 2091 ret = of_dma_controller_register(np, sdma_xlate, sdma); 2092 if (ret) { 2093 dev_err(&pdev->dev, "failed to register controller\n"); 2094 goto err_register; 2095 } 2096 2097 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus"); 2098 ret = of_address_to_resource(spba_bus, 0, &spba_res); 2099 if (!ret) { 2100 sdma->spba_start_addr = spba_res.start; 2101 sdma->spba_end_addr = spba_res.end; 2102 } 2103 of_node_put(spba_bus); 2104 } 2105 2106 return 0; 2107 2108 err_register: 2109 dma_async_device_unregister(&sdma->dma_device); 2110 err_init: 2111 kfree(sdma->script_addrs); 2112 err_irq: 2113 clk_unprepare(sdma->clk_ahb); 2114 err_clk: 2115 clk_unprepare(sdma->clk_ipg); 2116 return ret; 2117 } 2118 2119 static int sdma_remove(struct platform_device *pdev) 2120 { 2121 struct sdma_engine *sdma = platform_get_drvdata(pdev); 2122 int i; 2123 2124 devm_free_irq(&pdev->dev, sdma->irq, sdma); 2125 dma_async_device_unregister(&sdma->dma_device); 2126 kfree(sdma->script_addrs); 2127 clk_unprepare(sdma->clk_ahb); 2128 clk_unprepare(sdma->clk_ipg); 2129 /* Kill the tasklet */ 2130 for (i = 0; i < MAX_DMA_CHANNELS; i++) { 2131 struct sdma_channel *sdmac = &sdma->channel[i]; 2132 2133 tasklet_kill(&sdmac->vc.task); 2134 sdma_free_chan_resources(&sdmac->vc.chan); 2135 } 2136 2137 platform_set_drvdata(pdev, NULL); 2138 return 0; 2139 } 2140 2141 static struct platform_driver sdma_driver = { 2142 .driver = { 2143 .name = "imx-sdma", 2144 .of_match_table = sdma_dt_ids, 2145 }, 2146 .id_table = sdma_devtypes, 2147 .remove = sdma_remove, 2148 .probe = sdma_probe, 2149 }; 2150 2151 module_platform_driver(sdma_driver); 2152 2153 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>"); 2154 MODULE_DESCRIPTION("i.MX SDMA driver"); 2155 #if IS_ENABLED(CONFIG_SOC_IMX6Q) 2156 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin"); 2157 #endif 2158 #if IS_ENABLED(CONFIG_SOC_IMX7D) 2159 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin"); 2160 #endif 2161 MODULE_LICENSE("GPL"); 2162