xref: /openbmc/linux/drivers/dma/imx-sdma.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
10 //
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12 
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 #include <linux/semaphore.h>
24 #include <linux/spinlock.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/slab.h>
29 #include <linux/platform_device.h>
30 #include <linux/dmaengine.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_device.h>
34 #include <linux/of_dma.h>
35 #include <linux/workqueue.h>
36 
37 #include <asm/irq.h>
38 #include <linux/platform_data/dma-imx.h>
39 #include <linux/regmap.h>
40 #include <linux/mfd/syscon.h>
41 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
42 
43 #include "dmaengine.h"
44 #include "virt-dma.h"
45 
46 /* SDMA registers */
47 #define SDMA_H_C0PTR		0x000
48 #define SDMA_H_INTR		0x004
49 #define SDMA_H_STATSTOP		0x008
50 #define SDMA_H_START		0x00c
51 #define SDMA_H_EVTOVR		0x010
52 #define SDMA_H_DSPOVR		0x014
53 #define SDMA_H_HOSTOVR		0x018
54 #define SDMA_H_EVTPEND		0x01c
55 #define SDMA_H_DSPENBL		0x020
56 #define SDMA_H_RESET		0x024
57 #define SDMA_H_EVTERR		0x028
58 #define SDMA_H_INTRMSK		0x02c
59 #define SDMA_H_PSW		0x030
60 #define SDMA_H_EVTERRDBG	0x034
61 #define SDMA_H_CONFIG		0x038
62 #define SDMA_ONCE_ENB		0x040
63 #define SDMA_ONCE_DATA		0x044
64 #define SDMA_ONCE_INSTR		0x048
65 #define SDMA_ONCE_STAT		0x04c
66 #define SDMA_ONCE_CMD		0x050
67 #define SDMA_EVT_MIRROR		0x054
68 #define SDMA_ILLINSTADDR	0x058
69 #define SDMA_CHN0ADDR		0x05c
70 #define SDMA_ONCE_RTB		0x060
71 #define SDMA_XTRIG_CONF1	0x070
72 #define SDMA_XTRIG_CONF2	0x074
73 #define SDMA_CHNENBL0_IMX35	0x200
74 #define SDMA_CHNENBL0_IMX31	0x080
75 #define SDMA_CHNPRI_0		0x100
76 
77 /*
78  * Buffer descriptor status values.
79  */
80 #define BD_DONE  0x01
81 #define BD_WRAP  0x02
82 #define BD_CONT  0x04
83 #define BD_INTR  0x08
84 #define BD_RROR  0x10
85 #define BD_LAST  0x20
86 #define BD_EXTD  0x80
87 
88 /*
89  * Data Node descriptor status values.
90  */
91 #define DND_END_OF_FRAME  0x80
92 #define DND_END_OF_XFER   0x40
93 #define DND_DONE          0x20
94 #define DND_UNUSED        0x01
95 
96 /*
97  * IPCV2 descriptor status values.
98  */
99 #define BD_IPCV2_END_OF_FRAME  0x40
100 
101 #define IPCV2_MAX_NODES        50
102 /*
103  * Error bit set in the CCB status field by the SDMA,
104  * in setbd routine, in case of a transfer error
105  */
106 #define DATA_ERROR  0x10000000
107 
108 /*
109  * Buffer descriptor commands.
110  */
111 #define C0_ADDR             0x01
112 #define C0_LOAD             0x02
113 #define C0_DUMP             0x03
114 #define C0_SETCTX           0x07
115 #define C0_GETCTX           0x03
116 #define C0_SETDM            0x01
117 #define C0_SETPM            0x04
118 #define C0_GETDM            0x02
119 #define C0_GETPM            0x08
120 /*
121  * Change endianness indicator in the BD command field
122  */
123 #define CHANGE_ENDIANNESS   0x80
124 
125 /*
126  *  p_2_p watermark_level description
127  *	Bits		Name			Description
128  *	0-7		Lower WML		Lower watermark level
129  *	8		PS			1: Pad Swallowing
130  *						0: No Pad Swallowing
131  *	9		PA			1: Pad Adding
132  *						0: No Pad Adding
133  *	10		SPDIF			If this bit is set both source
134  *						and destination are on SPBA
135  *	11		Source Bit(SP)		1: Source on SPBA
136  *						0: Source on AIPS
137  *	12		Destination Bit(DP)	1: Destination on SPBA
138  *						0: Destination on AIPS
139  *	13-15		---------		MUST BE 0
140  *	16-23		Higher WML		HWML
141  *	24-27		N			Total number of samples after
142  *						which Pad adding/Swallowing
143  *						must be done. It must be odd.
144  *	28		Lower WML Event(LWE)	SDMA events reg to check for
145  *						LWML event mask
146  *						0: LWE in EVENTS register
147  *						1: LWE in EVENTS2 register
148  *	29		Higher WML Event(HWE)	SDMA events reg to check for
149  *						HWML event mask
150  *						0: HWE in EVENTS register
151  *						1: HWE in EVENTS2 register
152  *	30		---------		MUST BE 0
153  *	31		CONT			1: Amount of samples to be
154  *						transferred is unknown and
155  *						script will keep on
156  *						transferring samples as long as
157  *						both events are detected and
158  *						script must be manually stopped
159  *						by the application
160  *						0: The amount of samples to be
161  *						transferred is equal to the
162  *						count field of mode word
163  */
164 #define SDMA_WATERMARK_LEVEL_LWML	0xFF
165 #define SDMA_WATERMARK_LEVEL_PS		BIT(8)
166 #define SDMA_WATERMARK_LEVEL_PA		BIT(9)
167 #define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
168 #define SDMA_WATERMARK_LEVEL_SP		BIT(11)
169 #define SDMA_WATERMARK_LEVEL_DP		BIT(12)
170 #define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
171 #define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
172 #define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
173 #define SDMA_WATERMARK_LEVEL_CONT	BIT(31)
174 
175 #define SDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
176 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
177 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
178 
179 #define SDMA_DMA_DIRECTIONS	(BIT(DMA_DEV_TO_MEM) | \
180 				 BIT(DMA_MEM_TO_DEV) | \
181 				 BIT(DMA_DEV_TO_DEV))
182 
183 /**
184  * struct sdma_script_start_addrs - SDMA script start pointers
185  *
186  * start addresses of the different functions in the physical
187  * address space of the SDMA engine.
188  */
189 struct sdma_script_start_addrs {
190 	s32 ap_2_ap_addr;
191 	s32 ap_2_bp_addr;
192 	s32 ap_2_ap_fixed_addr;
193 	s32 bp_2_ap_addr;
194 	s32 loopback_on_dsp_side_addr;
195 	s32 mcu_interrupt_only_addr;
196 	s32 firi_2_per_addr;
197 	s32 firi_2_mcu_addr;
198 	s32 per_2_firi_addr;
199 	s32 mcu_2_firi_addr;
200 	s32 uart_2_per_addr;
201 	s32 uart_2_mcu_ram_addr;
202 	s32 per_2_app_addr;
203 	s32 mcu_2_app_addr;
204 	s32 per_2_per_addr;
205 	s32 uartsh_2_per_addr;
206 	s32 uartsh_2_mcu_ram_addr;
207 	s32 per_2_shp_addr;
208 	s32 mcu_2_shp_addr;
209 	s32 ata_2_mcu_addr;
210 	s32 mcu_2_ata_addr;
211 	s32 app_2_per_addr;
212 	s32 app_2_mcu_addr;
213 	s32 shp_2_per_addr;
214 	s32 shp_2_mcu_addr;
215 	s32 mshc_2_mcu_addr;
216 	s32 mcu_2_mshc_addr;
217 	s32 spdif_2_mcu_addr;
218 	s32 mcu_2_spdif_addr;
219 	s32 asrc_2_mcu_addr;
220 	s32 ext_mem_2_ipu_addr;
221 	s32 descrambler_addr;
222 	s32 dptc_dvfs_addr;
223 	s32 utra_addr;
224 	s32 ram_code_start_addr;
225 	/* End of v1 array */
226 	s32 mcu_2_ssish_addr;
227 	s32 ssish_2_mcu_addr;
228 	s32 hdmi_dma_addr;
229 	/* End of v2 array */
230 	s32 zcanfd_2_mcu_addr;
231 	s32 zqspi_2_mcu_addr;
232 	s32 mcu_2_ecspi_addr;
233 	s32 mcu_2_sai_addr;
234 	s32 sai_2_mcu_addr;
235 	s32 uart_2_mcu_addr;
236 	s32 uartsh_2_mcu_addr;
237 	/* End of v3 array */
238 	s32 mcu_2_zqspi_addr;
239 	/* End of v4 array */
240 };
241 
242 /*
243  * Mode/Count of data node descriptors - IPCv2
244  */
245 struct sdma_mode_count {
246 #define SDMA_BD_MAX_CNT	0xffff
247 	u32 count   : 16; /* size of the buffer pointed by this BD */
248 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
249 	u32 command :  8; /* command mostly used for channel 0 */
250 };
251 
252 /*
253  * Buffer descriptor
254  */
255 struct sdma_buffer_descriptor {
256 	struct sdma_mode_count  mode;
257 	u32 buffer_addr;	/* address of the buffer described */
258 	u32 ext_buffer_addr;	/* extended buffer address */
259 } __attribute__ ((packed));
260 
261 /**
262  * struct sdma_channel_control - Channel control Block
263  *
264  * @current_bd_ptr:	current buffer descriptor processed
265  * @base_bd_ptr:	first element of buffer descriptor array
266  * @unused:		padding. The SDMA engine expects an array of 128 byte
267  *			control blocks
268  */
269 struct sdma_channel_control {
270 	u32 current_bd_ptr;
271 	u32 base_bd_ptr;
272 	u32 unused[2];
273 } __attribute__ ((packed));
274 
275 /**
276  * struct sdma_state_registers - SDMA context for a channel
277  *
278  * @pc:		program counter
279  * @unused1:	unused
280  * @t:		test bit: status of arithmetic & test instruction
281  * @rpc:	return program counter
282  * @unused0:	unused
283  * @sf:		source fault while loading data
284  * @spc:	loop start program counter
285  * @unused2:	unused
286  * @df:		destination fault while storing data
287  * @epc:	loop end program counter
288  * @lm:		loop mode
289  */
290 struct sdma_state_registers {
291 	u32 pc     :14;
292 	u32 unused1: 1;
293 	u32 t      : 1;
294 	u32 rpc    :14;
295 	u32 unused0: 1;
296 	u32 sf     : 1;
297 	u32 spc    :14;
298 	u32 unused2: 1;
299 	u32 df     : 1;
300 	u32 epc    :14;
301 	u32 lm     : 2;
302 } __attribute__ ((packed));
303 
304 /**
305  * struct sdma_context_data - sdma context specific to a channel
306  *
307  * @channel_state:	channel state bits
308  * @gReg:		general registers
309  * @mda:		burst dma destination address register
310  * @msa:		burst dma source address register
311  * @ms:			burst dma status register
312  * @md:			burst dma data register
313  * @pda:		peripheral dma destination address register
314  * @psa:		peripheral dma source address register
315  * @ps:			peripheral dma status register
316  * @pd:			peripheral dma data register
317  * @ca:			CRC polynomial register
318  * @cs:			CRC accumulator register
319  * @dda:		dedicated core destination address register
320  * @dsa:		dedicated core source address register
321  * @ds:			dedicated core status register
322  * @dd:			dedicated core data register
323  * @scratch0:		1st word of dedicated ram for context switch
324  * @scratch1:		2nd word of dedicated ram for context switch
325  * @scratch2:		3rd word of dedicated ram for context switch
326  * @scratch3:		4th word of dedicated ram for context switch
327  * @scratch4:		5th word of dedicated ram for context switch
328  * @scratch5:		6th word of dedicated ram for context switch
329  * @scratch6:		7th word of dedicated ram for context switch
330  * @scratch7:		8th word of dedicated ram for context switch
331  */
332 struct sdma_context_data {
333 	struct sdma_state_registers  channel_state;
334 	u32  gReg[8];
335 	u32  mda;
336 	u32  msa;
337 	u32  ms;
338 	u32  md;
339 	u32  pda;
340 	u32  psa;
341 	u32  ps;
342 	u32  pd;
343 	u32  ca;
344 	u32  cs;
345 	u32  dda;
346 	u32  dsa;
347 	u32  ds;
348 	u32  dd;
349 	u32  scratch0;
350 	u32  scratch1;
351 	u32  scratch2;
352 	u32  scratch3;
353 	u32  scratch4;
354 	u32  scratch5;
355 	u32  scratch6;
356 	u32  scratch7;
357 } __attribute__ ((packed));
358 
359 
360 struct sdma_engine;
361 
362 /**
363  * struct sdma_desc - descriptor structor for one transfer
364  * @vd:			descriptor for virt dma
365  * @num_bd:		number of descriptors currently handling
366  * @bd_phys:		physical address of bd
367  * @buf_tail:		ID of the buffer that was processed
368  * @buf_ptail:		ID of the previous buffer that was processed
369  * @period_len:		period length, used in cyclic.
370  * @chn_real_count:	the real count updated from bd->mode.count
371  * @chn_count:		the transfer count set
372  * @sdmac:		sdma_channel pointer
373  * @bd:			pointer of allocate bd
374  */
375 struct sdma_desc {
376 	struct virt_dma_desc	vd;
377 	unsigned int		num_bd;
378 	dma_addr_t		bd_phys;
379 	unsigned int		buf_tail;
380 	unsigned int		buf_ptail;
381 	unsigned int		period_len;
382 	unsigned int		chn_real_count;
383 	unsigned int		chn_count;
384 	struct sdma_channel	*sdmac;
385 	struct sdma_buffer_descriptor *bd;
386 };
387 
388 /**
389  * struct sdma_channel - housekeeping for a SDMA channel
390  *
391  * @vc:			virt_dma base structure
392  * @desc:		sdma description including vd and other special member
393  * @sdma:		pointer to the SDMA engine for this channel
394  * @channel:		the channel number, matches dmaengine chan_id + 1
395  * @direction:		transfer type. Needed for setting SDMA script
396  * @slave_config:	Slave configuration
397  * @peripheral_type:	Peripheral type. Needed for setting SDMA script
398  * @event_id0:		aka dma request line
399  * @event_id1:		for channels that use 2 events
400  * @word_size:		peripheral access size
401  * @pc_from_device:	script address for those device_2_memory
402  * @pc_to_device:	script address for those memory_2_device
403  * @device_to_device:	script address for those device_2_device
404  * @pc_to_pc:		script address for those memory_2_memory
405  * @flags:		loop mode or not
406  * @per_address:	peripheral source or destination address in common case
407  *                      destination address in p_2_p case
408  * @per_address2:	peripheral source address in p_2_p case
409  * @event_mask:		event mask used in p_2_p script
410  * @watermark_level:	value for gReg[7], some script will extend it from
411  *			basic watermark such as p_2_p
412  * @shp_addr:		value for gReg[6]
413  * @per_addr:		value for gReg[2]
414  * @status:		status of dma channel
415  * @context_loaded:	ensure context is only loaded once
416  * @data:		specific sdma interface structure
417  * @bd_pool:		dma_pool for bd
418  * @terminate_worker:	used to call back into terminate work function
419  */
420 struct sdma_channel {
421 	struct virt_dma_chan		vc;
422 	struct sdma_desc		*desc;
423 	struct sdma_engine		*sdma;
424 	unsigned int			channel;
425 	enum dma_transfer_direction		direction;
426 	struct dma_slave_config		slave_config;
427 	enum sdma_peripheral_type	peripheral_type;
428 	unsigned int			event_id0;
429 	unsigned int			event_id1;
430 	enum dma_slave_buswidth		word_size;
431 	unsigned int			pc_from_device, pc_to_device;
432 	unsigned int			device_to_device;
433 	unsigned int                    pc_to_pc;
434 	unsigned long			flags;
435 	dma_addr_t			per_address, per_address2;
436 	unsigned long			event_mask[2];
437 	unsigned long			watermark_level;
438 	u32				shp_addr, per_addr;
439 	enum dma_status			status;
440 	struct imx_dma_data		data;
441 	struct work_struct		terminate_worker;
442 	struct list_head                terminated;
443 	bool				is_ram_script;
444 };
445 
446 #define IMX_DMA_SG_LOOP		BIT(0)
447 
448 #define MAX_DMA_CHANNELS 32
449 #define MXC_SDMA_DEFAULT_PRIORITY 1
450 #define MXC_SDMA_MIN_PRIORITY 1
451 #define MXC_SDMA_MAX_PRIORITY 7
452 
453 #define SDMA_FIRMWARE_MAGIC 0x414d4453
454 
455 /**
456  * struct sdma_firmware_header - Layout of the firmware image
457  *
458  * @magic:		"SDMA"
459  * @version_major:	increased whenever layout of struct
460  *			sdma_script_start_addrs changes.
461  * @version_minor:	firmware minor version (for binary compatible changes)
462  * @script_addrs_start:	offset of struct sdma_script_start_addrs in this image
463  * @num_script_addrs:	Number of script addresses in this image
464  * @ram_code_start:	offset of SDMA ram image in this firmware image
465  * @ram_code_size:	size of SDMA ram image
466  * @script_addrs:	Stores the start address of the SDMA scripts
467  *			(in SDMA memory space)
468  */
469 struct sdma_firmware_header {
470 	u32	magic;
471 	u32	version_major;
472 	u32	version_minor;
473 	u32	script_addrs_start;
474 	u32	num_script_addrs;
475 	u32	ram_code_start;
476 	u32	ram_code_size;
477 };
478 
479 struct sdma_driver_data {
480 	int chnenbl0;
481 	int num_events;
482 	struct sdma_script_start_addrs	*script_addrs;
483 	bool check_ratio;
484 	/*
485 	 * ecspi ERR009165 fixed should be done in sdma script
486 	 * and it has been fixed in soc from i.mx6ul.
487 	 * please get more information from the below link:
488 	 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
489 	 */
490 	bool ecspi_fixed;
491 };
492 
493 struct sdma_engine {
494 	struct device			*dev;
495 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
496 	struct sdma_channel_control	*channel_control;
497 	void __iomem			*regs;
498 	struct sdma_context_data	*context;
499 	dma_addr_t			context_phys;
500 	struct dma_device		dma_device;
501 	struct clk			*clk_ipg;
502 	struct clk			*clk_ahb;
503 	spinlock_t			channel_0_lock;
504 	u32				script_number;
505 	struct sdma_script_start_addrs	*script_addrs;
506 	const struct sdma_driver_data	*drvdata;
507 	u32				spba_start_addr;
508 	u32				spba_end_addr;
509 	unsigned int			irq;
510 	dma_addr_t			bd0_phys;
511 	struct sdma_buffer_descriptor	*bd0;
512 	/* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
513 	bool				clk_ratio;
514 	bool                            fw_loaded;
515 };
516 
517 static int sdma_config_write(struct dma_chan *chan,
518 		       struct dma_slave_config *dmaengine_cfg,
519 		       enum dma_transfer_direction direction);
520 
521 static struct sdma_driver_data sdma_imx31 = {
522 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
523 	.num_events = 32,
524 };
525 
526 static struct sdma_script_start_addrs sdma_script_imx25 = {
527 	.ap_2_ap_addr = 729,
528 	.uart_2_mcu_addr = 904,
529 	.per_2_app_addr = 1255,
530 	.mcu_2_app_addr = 834,
531 	.uartsh_2_mcu_addr = 1120,
532 	.per_2_shp_addr = 1329,
533 	.mcu_2_shp_addr = 1048,
534 	.ata_2_mcu_addr = 1560,
535 	.mcu_2_ata_addr = 1479,
536 	.app_2_per_addr = 1189,
537 	.app_2_mcu_addr = 770,
538 	.shp_2_per_addr = 1407,
539 	.shp_2_mcu_addr = 979,
540 };
541 
542 static struct sdma_driver_data sdma_imx25 = {
543 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
544 	.num_events = 48,
545 	.script_addrs = &sdma_script_imx25,
546 };
547 
548 static struct sdma_driver_data sdma_imx35 = {
549 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
550 	.num_events = 48,
551 };
552 
553 static struct sdma_script_start_addrs sdma_script_imx51 = {
554 	.ap_2_ap_addr = 642,
555 	.uart_2_mcu_addr = 817,
556 	.mcu_2_app_addr = 747,
557 	.mcu_2_shp_addr = 961,
558 	.ata_2_mcu_addr = 1473,
559 	.mcu_2_ata_addr = 1392,
560 	.app_2_per_addr = 1033,
561 	.app_2_mcu_addr = 683,
562 	.shp_2_per_addr = 1251,
563 	.shp_2_mcu_addr = 892,
564 };
565 
566 static struct sdma_driver_data sdma_imx51 = {
567 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
568 	.num_events = 48,
569 	.script_addrs = &sdma_script_imx51,
570 };
571 
572 static struct sdma_script_start_addrs sdma_script_imx53 = {
573 	.ap_2_ap_addr = 642,
574 	.app_2_mcu_addr = 683,
575 	.mcu_2_app_addr = 747,
576 	.uart_2_mcu_addr = 817,
577 	.shp_2_mcu_addr = 891,
578 	.mcu_2_shp_addr = 960,
579 	.uartsh_2_mcu_addr = 1032,
580 	.spdif_2_mcu_addr = 1100,
581 	.mcu_2_spdif_addr = 1134,
582 	.firi_2_mcu_addr = 1193,
583 	.mcu_2_firi_addr = 1290,
584 };
585 
586 static struct sdma_driver_data sdma_imx53 = {
587 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
588 	.num_events = 48,
589 	.script_addrs = &sdma_script_imx53,
590 };
591 
592 static struct sdma_script_start_addrs sdma_script_imx6q = {
593 	.ap_2_ap_addr = 642,
594 	.uart_2_mcu_addr = 817,
595 	.mcu_2_app_addr = 747,
596 	.per_2_per_addr = 6331,
597 	.uartsh_2_mcu_addr = 1032,
598 	.mcu_2_shp_addr = 960,
599 	.app_2_mcu_addr = 683,
600 	.shp_2_mcu_addr = 891,
601 	.spdif_2_mcu_addr = 1100,
602 	.mcu_2_spdif_addr = 1134,
603 };
604 
605 static struct sdma_driver_data sdma_imx6q = {
606 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
607 	.num_events = 48,
608 	.script_addrs = &sdma_script_imx6q,
609 };
610 
611 static struct sdma_driver_data sdma_imx6ul = {
612 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
613 	.num_events = 48,
614 	.script_addrs = &sdma_script_imx6q,
615 	.ecspi_fixed = true,
616 };
617 
618 static struct sdma_script_start_addrs sdma_script_imx7d = {
619 	.ap_2_ap_addr = 644,
620 	.uart_2_mcu_addr = 819,
621 	.mcu_2_app_addr = 749,
622 	.uartsh_2_mcu_addr = 1034,
623 	.mcu_2_shp_addr = 962,
624 	.app_2_mcu_addr = 685,
625 	.shp_2_mcu_addr = 893,
626 	.spdif_2_mcu_addr = 1102,
627 	.mcu_2_spdif_addr = 1136,
628 };
629 
630 static struct sdma_driver_data sdma_imx7d = {
631 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
632 	.num_events = 48,
633 	.script_addrs = &sdma_script_imx7d,
634 };
635 
636 static struct sdma_driver_data sdma_imx8mq = {
637 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
638 	.num_events = 48,
639 	.script_addrs = &sdma_script_imx7d,
640 	.check_ratio = 1,
641 };
642 
643 static const struct of_device_id sdma_dt_ids[] = {
644 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
645 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
646 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
647 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
648 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
649 	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
650 	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
651 	{ .compatible = "fsl,imx6ul-sdma", .data = &sdma_imx6ul, },
652 	{ .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
653 	{ /* sentinel */ }
654 };
655 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
656 
657 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
658 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
659 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
660 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
661 
662 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
663 {
664 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
665 	return chnenbl0 + event * 4;
666 }
667 
668 static int sdma_config_ownership(struct sdma_channel *sdmac,
669 		bool event_override, bool mcu_override, bool dsp_override)
670 {
671 	struct sdma_engine *sdma = sdmac->sdma;
672 	int channel = sdmac->channel;
673 	unsigned long evt, mcu, dsp;
674 
675 	if (event_override && mcu_override && dsp_override)
676 		return -EINVAL;
677 
678 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
679 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
680 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
681 
682 	if (dsp_override)
683 		__clear_bit(channel, &dsp);
684 	else
685 		__set_bit(channel, &dsp);
686 
687 	if (event_override)
688 		__clear_bit(channel, &evt);
689 	else
690 		__set_bit(channel, &evt);
691 
692 	if (mcu_override)
693 		__clear_bit(channel, &mcu);
694 	else
695 		__set_bit(channel, &mcu);
696 
697 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
698 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
699 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
700 
701 	return 0;
702 }
703 
704 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
705 {
706 	writel(BIT(channel), sdma->regs + SDMA_H_START);
707 }
708 
709 /*
710  * sdma_run_channel0 - run a channel and wait till it's done
711  */
712 static int sdma_run_channel0(struct sdma_engine *sdma)
713 {
714 	int ret;
715 	u32 reg;
716 
717 	sdma_enable_channel(sdma, 0);
718 
719 	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
720 						reg, !(reg & 1), 1, 500);
721 	if (ret)
722 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
723 
724 	/* Set bits of CONFIG register with dynamic context switching */
725 	reg = readl(sdma->regs + SDMA_H_CONFIG);
726 	if ((reg & SDMA_H_CONFIG_CSM) == 0) {
727 		reg |= SDMA_H_CONFIG_CSM;
728 		writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
729 	}
730 
731 	return ret;
732 }
733 
734 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
735 		u32 address)
736 {
737 	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
738 	void *buf_virt;
739 	dma_addr_t buf_phys;
740 	int ret;
741 	unsigned long flags;
742 
743 	buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
744 	if (!buf_virt)
745 		return -ENOMEM;
746 
747 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
748 
749 	bd0->mode.command = C0_SETPM;
750 	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
751 	bd0->mode.count = size / 2;
752 	bd0->buffer_addr = buf_phys;
753 	bd0->ext_buffer_addr = address;
754 
755 	memcpy(buf_virt, buf, size);
756 
757 	ret = sdma_run_channel0(sdma);
758 
759 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
760 
761 	dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
762 
763 	return ret;
764 }
765 
766 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
767 {
768 	struct sdma_engine *sdma = sdmac->sdma;
769 	int channel = sdmac->channel;
770 	unsigned long val;
771 	u32 chnenbl = chnenbl_ofs(sdma, event);
772 
773 	val = readl_relaxed(sdma->regs + chnenbl);
774 	__set_bit(channel, &val);
775 	writel_relaxed(val, sdma->regs + chnenbl);
776 }
777 
778 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
779 {
780 	struct sdma_engine *sdma = sdmac->sdma;
781 	int channel = sdmac->channel;
782 	u32 chnenbl = chnenbl_ofs(sdma, event);
783 	unsigned long val;
784 
785 	val = readl_relaxed(sdma->regs + chnenbl);
786 	__clear_bit(channel, &val);
787 	writel_relaxed(val, sdma->regs + chnenbl);
788 }
789 
790 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
791 {
792 	return container_of(t, struct sdma_desc, vd.tx);
793 }
794 
795 static void sdma_start_desc(struct sdma_channel *sdmac)
796 {
797 	struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
798 	struct sdma_desc *desc;
799 	struct sdma_engine *sdma = sdmac->sdma;
800 	int channel = sdmac->channel;
801 
802 	if (!vd) {
803 		sdmac->desc = NULL;
804 		return;
805 	}
806 	sdmac->desc = desc = to_sdma_desc(&vd->tx);
807 
808 	list_del(&vd->node);
809 
810 	sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
811 	sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
812 	sdma_enable_channel(sdma, sdmac->channel);
813 }
814 
815 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
816 {
817 	struct sdma_buffer_descriptor *bd;
818 	int error = 0;
819 	enum dma_status	old_status = sdmac->status;
820 
821 	/*
822 	 * loop mode. Iterate over descriptors, re-setup them and
823 	 * call callback function.
824 	 */
825 	while (sdmac->desc) {
826 		struct sdma_desc *desc = sdmac->desc;
827 
828 		bd = &desc->bd[desc->buf_tail];
829 
830 		if (bd->mode.status & BD_DONE)
831 			break;
832 
833 		if (bd->mode.status & BD_RROR) {
834 			bd->mode.status &= ~BD_RROR;
835 			sdmac->status = DMA_ERROR;
836 			error = -EIO;
837 		}
838 
839 	       /*
840 		* We use bd->mode.count to calculate the residue, since contains
841 		* the number of bytes present in the current buffer descriptor.
842 		*/
843 
844 		desc->chn_real_count = bd->mode.count;
845 		bd->mode.status |= BD_DONE;
846 		bd->mode.count = desc->period_len;
847 		desc->buf_ptail = desc->buf_tail;
848 		desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
849 
850 		/*
851 		 * The callback is called from the interrupt context in order
852 		 * to reduce latency and to avoid the risk of altering the
853 		 * SDMA transaction status by the time the client tasklet is
854 		 * executed.
855 		 */
856 		spin_unlock(&sdmac->vc.lock);
857 		dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
858 		spin_lock(&sdmac->vc.lock);
859 
860 		if (error)
861 			sdmac->status = old_status;
862 	}
863 }
864 
865 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
866 {
867 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
868 	struct sdma_buffer_descriptor *bd;
869 	int i, error = 0;
870 
871 	sdmac->desc->chn_real_count = 0;
872 	/*
873 	 * non loop mode. Iterate over all descriptors, collect
874 	 * errors and call callback function
875 	 */
876 	for (i = 0; i < sdmac->desc->num_bd; i++) {
877 		bd = &sdmac->desc->bd[i];
878 
879 		 if (bd->mode.status & (BD_DONE | BD_RROR))
880 			error = -EIO;
881 		 sdmac->desc->chn_real_count += bd->mode.count;
882 	}
883 
884 	if (error)
885 		sdmac->status = DMA_ERROR;
886 	else
887 		sdmac->status = DMA_COMPLETE;
888 }
889 
890 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
891 {
892 	struct sdma_engine *sdma = dev_id;
893 	unsigned long stat;
894 
895 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
896 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
897 	/* channel 0 is special and not handled here, see run_channel0() */
898 	stat &= ~1;
899 
900 	while (stat) {
901 		int channel = fls(stat) - 1;
902 		struct sdma_channel *sdmac = &sdma->channel[channel];
903 		struct sdma_desc *desc;
904 
905 		spin_lock(&sdmac->vc.lock);
906 		desc = sdmac->desc;
907 		if (desc) {
908 			if (sdmac->flags & IMX_DMA_SG_LOOP) {
909 				sdma_update_channel_loop(sdmac);
910 			} else {
911 				mxc_sdma_handle_channel_normal(sdmac);
912 				vchan_cookie_complete(&desc->vd);
913 				sdma_start_desc(sdmac);
914 			}
915 		}
916 
917 		spin_unlock(&sdmac->vc.lock);
918 		__clear_bit(channel, &stat);
919 	}
920 
921 	return IRQ_HANDLED;
922 }
923 
924 /*
925  * sets the pc of SDMA script according to the peripheral type
926  */
927 static void sdma_get_pc(struct sdma_channel *sdmac,
928 		enum sdma_peripheral_type peripheral_type)
929 {
930 	struct sdma_engine *sdma = sdmac->sdma;
931 	int per_2_emi = 0, emi_2_per = 0;
932 	/*
933 	 * These are needed once we start to support transfers between
934 	 * two peripherals or memory-to-memory transfers
935 	 */
936 	int per_2_per = 0, emi_2_emi = 0;
937 
938 	sdmac->pc_from_device = 0;
939 	sdmac->pc_to_device = 0;
940 	sdmac->device_to_device = 0;
941 	sdmac->pc_to_pc = 0;
942 	sdmac->is_ram_script = false;
943 
944 	switch (peripheral_type) {
945 	case IMX_DMATYPE_MEMORY:
946 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
947 		break;
948 	case IMX_DMATYPE_DSP:
949 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
950 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
951 		break;
952 	case IMX_DMATYPE_FIRI:
953 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
954 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
955 		break;
956 	case IMX_DMATYPE_UART:
957 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
958 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
959 		break;
960 	case IMX_DMATYPE_UART_SP:
961 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
962 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
963 		break;
964 	case IMX_DMATYPE_ATA:
965 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
966 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
967 		break;
968 	case IMX_DMATYPE_CSPI:
969 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
970 
971 		/* Use rom script mcu_2_app if ERR009165 fixed */
972 		if (sdmac->sdma->drvdata->ecspi_fixed) {
973 			emi_2_per = sdma->script_addrs->mcu_2_app_addr;
974 		} else {
975 			emi_2_per = sdma->script_addrs->mcu_2_ecspi_addr;
976 			sdmac->is_ram_script = true;
977 		}
978 
979 		break;
980 	case IMX_DMATYPE_EXT:
981 	case IMX_DMATYPE_SSI:
982 	case IMX_DMATYPE_SAI:
983 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
984 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
985 		break;
986 	case IMX_DMATYPE_SSI_DUAL:
987 		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
988 		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
989 		sdmac->is_ram_script = true;
990 		break;
991 	case IMX_DMATYPE_SSI_SP:
992 	case IMX_DMATYPE_MMC:
993 	case IMX_DMATYPE_SDHC:
994 	case IMX_DMATYPE_CSPI_SP:
995 	case IMX_DMATYPE_ESAI:
996 	case IMX_DMATYPE_MSHC_SP:
997 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
998 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
999 		break;
1000 	case IMX_DMATYPE_ASRC:
1001 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
1002 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
1003 		per_2_per = sdma->script_addrs->per_2_per_addr;
1004 		sdmac->is_ram_script = true;
1005 		break;
1006 	case IMX_DMATYPE_ASRC_SP:
1007 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1008 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1009 		per_2_per = sdma->script_addrs->per_2_per_addr;
1010 		break;
1011 	case IMX_DMATYPE_MSHC:
1012 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
1013 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
1014 		break;
1015 	case IMX_DMATYPE_CCM:
1016 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
1017 		break;
1018 	case IMX_DMATYPE_SPDIF:
1019 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
1020 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
1021 		break;
1022 	case IMX_DMATYPE_IPU_MEMORY:
1023 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
1024 		break;
1025 	default:
1026 		break;
1027 	}
1028 
1029 	sdmac->pc_from_device = per_2_emi;
1030 	sdmac->pc_to_device = emi_2_per;
1031 	sdmac->device_to_device = per_2_per;
1032 	sdmac->pc_to_pc = emi_2_emi;
1033 }
1034 
1035 static int sdma_load_context(struct sdma_channel *sdmac)
1036 {
1037 	struct sdma_engine *sdma = sdmac->sdma;
1038 	int channel = sdmac->channel;
1039 	int load_address;
1040 	struct sdma_context_data *context = sdma->context;
1041 	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
1042 	int ret;
1043 	unsigned long flags;
1044 
1045 	if (sdmac->direction == DMA_DEV_TO_MEM)
1046 		load_address = sdmac->pc_from_device;
1047 	else if (sdmac->direction == DMA_DEV_TO_DEV)
1048 		load_address = sdmac->device_to_device;
1049 	else if (sdmac->direction == DMA_MEM_TO_MEM)
1050 		load_address = sdmac->pc_to_pc;
1051 	else
1052 		load_address = sdmac->pc_to_device;
1053 
1054 	if (load_address < 0)
1055 		return load_address;
1056 
1057 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1058 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1059 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1060 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1061 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1062 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1063 
1064 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
1065 
1066 	memset(context, 0, sizeof(*context));
1067 	context->channel_state.pc = load_address;
1068 
1069 	/* Send by context the event mask,base address for peripheral
1070 	 * and watermark level
1071 	 */
1072 	context->gReg[0] = sdmac->event_mask[1];
1073 	context->gReg[1] = sdmac->event_mask[0];
1074 	context->gReg[2] = sdmac->per_addr;
1075 	context->gReg[6] = sdmac->shp_addr;
1076 	context->gReg[7] = sdmac->watermark_level;
1077 
1078 	bd0->mode.command = C0_SETDM;
1079 	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1080 	bd0->mode.count = sizeof(*context) / 4;
1081 	bd0->buffer_addr = sdma->context_phys;
1082 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1083 	ret = sdma_run_channel0(sdma);
1084 
1085 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1086 
1087 	return ret;
1088 }
1089 
1090 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1091 {
1092 	return container_of(chan, struct sdma_channel, vc.chan);
1093 }
1094 
1095 static int sdma_disable_channel(struct dma_chan *chan)
1096 {
1097 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1098 	struct sdma_engine *sdma = sdmac->sdma;
1099 	int channel = sdmac->channel;
1100 
1101 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1102 	sdmac->status = DMA_ERROR;
1103 
1104 	return 0;
1105 }
1106 static void sdma_channel_terminate_work(struct work_struct *work)
1107 {
1108 	struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1109 						  terminate_worker);
1110 	/*
1111 	 * According to NXP R&D team a delay of one BD SDMA cost time
1112 	 * (maximum is 1ms) should be added after disable of the channel
1113 	 * bit, to ensure SDMA core has really been stopped after SDMA
1114 	 * clients call .device_terminate_all.
1115 	 */
1116 	usleep_range(1000, 2000);
1117 
1118 	vchan_dma_desc_free_list(&sdmac->vc, &sdmac->terminated);
1119 }
1120 
1121 static int sdma_terminate_all(struct dma_chan *chan)
1122 {
1123 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1124 	unsigned long flags;
1125 
1126 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1127 
1128 	sdma_disable_channel(chan);
1129 
1130 	if (sdmac->desc) {
1131 		vchan_terminate_vdesc(&sdmac->desc->vd);
1132 		/*
1133 		 * move out current descriptor into terminated list so that
1134 		 * it could be free in sdma_channel_terminate_work alone
1135 		 * later without potential involving next descriptor raised
1136 		 * up before the last descriptor terminated.
1137 		 */
1138 		vchan_get_all_descriptors(&sdmac->vc, &sdmac->terminated);
1139 		sdmac->desc = NULL;
1140 		schedule_work(&sdmac->terminate_worker);
1141 	}
1142 
1143 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1144 
1145 	return 0;
1146 }
1147 
1148 static void sdma_channel_synchronize(struct dma_chan *chan)
1149 {
1150 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1151 
1152 	vchan_synchronize(&sdmac->vc);
1153 
1154 	flush_work(&sdmac->terminate_worker);
1155 }
1156 
1157 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1158 {
1159 	struct sdma_engine *sdma = sdmac->sdma;
1160 
1161 	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1162 	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1163 
1164 	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1165 	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1166 
1167 	if (sdmac->event_id0 > 31)
1168 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1169 
1170 	if (sdmac->event_id1 > 31)
1171 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1172 
1173 	/*
1174 	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1175 	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1176 	 * r0(event_mask[1]) and r1(event_mask[0]).
1177 	 */
1178 	if (lwml > hwml) {
1179 		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1180 						SDMA_WATERMARK_LEVEL_HWML);
1181 		sdmac->watermark_level |= hwml;
1182 		sdmac->watermark_level |= lwml << 16;
1183 		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1184 	}
1185 
1186 	if (sdmac->per_address2 >= sdma->spba_start_addr &&
1187 			sdmac->per_address2 <= sdma->spba_end_addr)
1188 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1189 
1190 	if (sdmac->per_address >= sdma->spba_start_addr &&
1191 			sdmac->per_address <= sdma->spba_end_addr)
1192 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1193 
1194 	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1195 }
1196 
1197 static int sdma_config_channel(struct dma_chan *chan)
1198 {
1199 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1200 
1201 	sdma_disable_channel(chan);
1202 
1203 	sdmac->event_mask[0] = 0;
1204 	sdmac->event_mask[1] = 0;
1205 	sdmac->shp_addr = 0;
1206 	sdmac->per_addr = 0;
1207 
1208 	switch (sdmac->peripheral_type) {
1209 	case IMX_DMATYPE_DSP:
1210 		sdma_config_ownership(sdmac, false, true, true);
1211 		break;
1212 	case IMX_DMATYPE_MEMORY:
1213 		sdma_config_ownership(sdmac, false, true, false);
1214 		break;
1215 	default:
1216 		sdma_config_ownership(sdmac, true, true, false);
1217 		break;
1218 	}
1219 
1220 	sdma_get_pc(sdmac, sdmac->peripheral_type);
1221 
1222 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1223 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1224 		/* Handle multiple event channels differently */
1225 		if (sdmac->event_id1) {
1226 			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1227 			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1228 				sdma_set_watermarklevel_for_p2p(sdmac);
1229 		} else {
1230 			__set_bit(sdmac->event_id0, sdmac->event_mask);
1231 		}
1232 
1233 		/* Address */
1234 		sdmac->shp_addr = sdmac->per_address;
1235 		sdmac->per_addr = sdmac->per_address2;
1236 	} else {
1237 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1238 	}
1239 
1240 	return 0;
1241 }
1242 
1243 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1244 				     unsigned int priority)
1245 {
1246 	struct sdma_engine *sdma = sdmac->sdma;
1247 	int channel = sdmac->channel;
1248 
1249 	if (priority < MXC_SDMA_MIN_PRIORITY
1250 	    || priority > MXC_SDMA_MAX_PRIORITY) {
1251 		return -EINVAL;
1252 	}
1253 
1254 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1255 
1256 	return 0;
1257 }
1258 
1259 static int sdma_request_channel0(struct sdma_engine *sdma)
1260 {
1261 	int ret = -EBUSY;
1262 
1263 	sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1264 				       GFP_NOWAIT);
1265 	if (!sdma->bd0) {
1266 		ret = -ENOMEM;
1267 		goto out;
1268 	}
1269 
1270 	sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1271 	sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1272 
1273 	sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1274 	return 0;
1275 out:
1276 
1277 	return ret;
1278 }
1279 
1280 
1281 static int sdma_alloc_bd(struct sdma_desc *desc)
1282 {
1283 	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1284 	int ret = 0;
1285 
1286 	desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1287 				      &desc->bd_phys, GFP_NOWAIT);
1288 	if (!desc->bd) {
1289 		ret = -ENOMEM;
1290 		goto out;
1291 	}
1292 out:
1293 	return ret;
1294 }
1295 
1296 static void sdma_free_bd(struct sdma_desc *desc)
1297 {
1298 	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1299 
1300 	dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1301 			  desc->bd_phys);
1302 }
1303 
1304 static void sdma_desc_free(struct virt_dma_desc *vd)
1305 {
1306 	struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1307 
1308 	sdma_free_bd(desc);
1309 	kfree(desc);
1310 }
1311 
1312 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1313 {
1314 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1315 	struct imx_dma_data *data = chan->private;
1316 	struct imx_dma_data mem_data;
1317 	int prio, ret;
1318 
1319 	/*
1320 	 * MEMCPY may never setup chan->private by filter function such as
1321 	 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1322 	 * Please note in any other slave case, you have to setup chan->private
1323 	 * with 'struct imx_dma_data' in your own filter function if you want to
1324 	 * request dma channel by dma_request_channel() rather than
1325 	 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1326 	 * to warn you to correct your filter function.
1327 	 */
1328 	if (!data) {
1329 		dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1330 		mem_data.priority = 2;
1331 		mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1332 		mem_data.dma_request = 0;
1333 		mem_data.dma_request2 = 0;
1334 		data = &mem_data;
1335 
1336 		sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1337 	}
1338 
1339 	switch (data->priority) {
1340 	case DMA_PRIO_HIGH:
1341 		prio = 3;
1342 		break;
1343 	case DMA_PRIO_MEDIUM:
1344 		prio = 2;
1345 		break;
1346 	case DMA_PRIO_LOW:
1347 	default:
1348 		prio = 1;
1349 		break;
1350 	}
1351 
1352 	sdmac->peripheral_type = data->peripheral_type;
1353 	sdmac->event_id0 = data->dma_request;
1354 	sdmac->event_id1 = data->dma_request2;
1355 
1356 	ret = clk_enable(sdmac->sdma->clk_ipg);
1357 	if (ret)
1358 		return ret;
1359 	ret = clk_enable(sdmac->sdma->clk_ahb);
1360 	if (ret)
1361 		goto disable_clk_ipg;
1362 
1363 	ret = sdma_set_channel_priority(sdmac, prio);
1364 	if (ret)
1365 		goto disable_clk_ahb;
1366 
1367 	return 0;
1368 
1369 disable_clk_ahb:
1370 	clk_disable(sdmac->sdma->clk_ahb);
1371 disable_clk_ipg:
1372 	clk_disable(sdmac->sdma->clk_ipg);
1373 	return ret;
1374 }
1375 
1376 static void sdma_free_chan_resources(struct dma_chan *chan)
1377 {
1378 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1379 	struct sdma_engine *sdma = sdmac->sdma;
1380 
1381 	sdma_terminate_all(chan);
1382 
1383 	sdma_channel_synchronize(chan);
1384 
1385 	sdma_event_disable(sdmac, sdmac->event_id0);
1386 	if (sdmac->event_id1)
1387 		sdma_event_disable(sdmac, sdmac->event_id1);
1388 
1389 	sdmac->event_id0 = 0;
1390 	sdmac->event_id1 = 0;
1391 
1392 	sdma_set_channel_priority(sdmac, 0);
1393 
1394 	clk_disable(sdma->clk_ipg);
1395 	clk_disable(sdma->clk_ahb);
1396 }
1397 
1398 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1399 				enum dma_transfer_direction direction, u32 bds)
1400 {
1401 	struct sdma_desc *desc;
1402 
1403 	if (!sdmac->sdma->fw_loaded && sdmac->is_ram_script) {
1404 		dev_warn_once(sdmac->sdma->dev, "sdma firmware not ready!\n");
1405 		goto err_out;
1406 	}
1407 
1408 	desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1409 	if (!desc)
1410 		goto err_out;
1411 
1412 	sdmac->status = DMA_IN_PROGRESS;
1413 	sdmac->direction = direction;
1414 	sdmac->flags = 0;
1415 
1416 	desc->chn_count = 0;
1417 	desc->chn_real_count = 0;
1418 	desc->buf_tail = 0;
1419 	desc->buf_ptail = 0;
1420 	desc->sdmac = sdmac;
1421 	desc->num_bd = bds;
1422 
1423 	if (sdma_alloc_bd(desc))
1424 		goto err_desc_out;
1425 
1426 	/* No slave_config called in MEMCPY case, so do here */
1427 	if (direction == DMA_MEM_TO_MEM)
1428 		sdma_config_ownership(sdmac, false, true, false);
1429 
1430 	if (sdma_load_context(sdmac))
1431 		goto err_desc_out;
1432 
1433 	return desc;
1434 
1435 err_desc_out:
1436 	kfree(desc);
1437 err_out:
1438 	return NULL;
1439 }
1440 
1441 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1442 		struct dma_chan *chan, dma_addr_t dma_dst,
1443 		dma_addr_t dma_src, size_t len, unsigned long flags)
1444 {
1445 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1446 	struct sdma_engine *sdma = sdmac->sdma;
1447 	int channel = sdmac->channel;
1448 	size_t count;
1449 	int i = 0, param;
1450 	struct sdma_buffer_descriptor *bd;
1451 	struct sdma_desc *desc;
1452 
1453 	if (!chan || !len)
1454 		return NULL;
1455 
1456 	dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1457 		&dma_src, &dma_dst, len, channel);
1458 
1459 	desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1460 					len / SDMA_BD_MAX_CNT + 1);
1461 	if (!desc)
1462 		return NULL;
1463 
1464 	do {
1465 		count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1466 		bd = &desc->bd[i];
1467 		bd->buffer_addr = dma_src;
1468 		bd->ext_buffer_addr = dma_dst;
1469 		bd->mode.count = count;
1470 		desc->chn_count += count;
1471 		bd->mode.command = 0;
1472 
1473 		dma_src += count;
1474 		dma_dst += count;
1475 		len -= count;
1476 		i++;
1477 
1478 		param = BD_DONE | BD_EXTD | BD_CONT;
1479 		/* last bd */
1480 		if (!len) {
1481 			param |= BD_INTR;
1482 			param |= BD_LAST;
1483 			param &= ~BD_CONT;
1484 		}
1485 
1486 		dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1487 				i, count, bd->buffer_addr,
1488 				param & BD_WRAP ? "wrap" : "",
1489 				param & BD_INTR ? " intr" : "");
1490 
1491 		bd->mode.status = param;
1492 	} while (len);
1493 
1494 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1495 }
1496 
1497 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1498 		struct dma_chan *chan, struct scatterlist *sgl,
1499 		unsigned int sg_len, enum dma_transfer_direction direction,
1500 		unsigned long flags, void *context)
1501 {
1502 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1503 	struct sdma_engine *sdma = sdmac->sdma;
1504 	int i, count;
1505 	int channel = sdmac->channel;
1506 	struct scatterlist *sg;
1507 	struct sdma_desc *desc;
1508 
1509 	sdma_config_write(chan, &sdmac->slave_config, direction);
1510 
1511 	desc = sdma_transfer_init(sdmac, direction, sg_len);
1512 	if (!desc)
1513 		goto err_out;
1514 
1515 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1516 			sg_len, channel);
1517 
1518 	for_each_sg(sgl, sg, sg_len, i) {
1519 		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1520 		int param;
1521 
1522 		bd->buffer_addr = sg->dma_address;
1523 
1524 		count = sg_dma_len(sg);
1525 
1526 		if (count > SDMA_BD_MAX_CNT) {
1527 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1528 					channel, count, SDMA_BD_MAX_CNT);
1529 			goto err_bd_out;
1530 		}
1531 
1532 		bd->mode.count = count;
1533 		desc->chn_count += count;
1534 
1535 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1536 			goto err_bd_out;
1537 
1538 		switch (sdmac->word_size) {
1539 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1540 			bd->mode.command = 0;
1541 			if (count & 3 || sg->dma_address & 3)
1542 				goto err_bd_out;
1543 			break;
1544 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1545 			bd->mode.command = 2;
1546 			if (count & 1 || sg->dma_address & 1)
1547 				goto err_bd_out;
1548 			break;
1549 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1550 			bd->mode.command = 1;
1551 			break;
1552 		default:
1553 			goto err_bd_out;
1554 		}
1555 
1556 		param = BD_DONE | BD_EXTD | BD_CONT;
1557 
1558 		if (i + 1 == sg_len) {
1559 			param |= BD_INTR;
1560 			param |= BD_LAST;
1561 			param &= ~BD_CONT;
1562 		}
1563 
1564 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1565 				i, count, (u64)sg->dma_address,
1566 				param & BD_WRAP ? "wrap" : "",
1567 				param & BD_INTR ? " intr" : "");
1568 
1569 		bd->mode.status = param;
1570 	}
1571 
1572 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1573 err_bd_out:
1574 	sdma_free_bd(desc);
1575 	kfree(desc);
1576 err_out:
1577 	sdmac->status = DMA_ERROR;
1578 	return NULL;
1579 }
1580 
1581 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1582 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1583 		size_t period_len, enum dma_transfer_direction direction,
1584 		unsigned long flags)
1585 {
1586 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1587 	struct sdma_engine *sdma = sdmac->sdma;
1588 	int num_periods = buf_len / period_len;
1589 	int channel = sdmac->channel;
1590 	int i = 0, buf = 0;
1591 	struct sdma_desc *desc;
1592 
1593 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1594 
1595 	sdma_config_write(chan, &sdmac->slave_config, direction);
1596 
1597 	desc = sdma_transfer_init(sdmac, direction, num_periods);
1598 	if (!desc)
1599 		goto err_out;
1600 
1601 	desc->period_len = period_len;
1602 
1603 	sdmac->flags |= IMX_DMA_SG_LOOP;
1604 
1605 	if (period_len > SDMA_BD_MAX_CNT) {
1606 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1607 				channel, period_len, SDMA_BD_MAX_CNT);
1608 		goto err_bd_out;
1609 	}
1610 
1611 	while (buf < buf_len) {
1612 		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1613 		int param;
1614 
1615 		bd->buffer_addr = dma_addr;
1616 
1617 		bd->mode.count = period_len;
1618 
1619 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1620 			goto err_bd_out;
1621 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1622 			bd->mode.command = 0;
1623 		else
1624 			bd->mode.command = sdmac->word_size;
1625 
1626 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1627 		if (i + 1 == num_periods)
1628 			param |= BD_WRAP;
1629 
1630 		dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1631 				i, period_len, (u64)dma_addr,
1632 				param & BD_WRAP ? "wrap" : "",
1633 				param & BD_INTR ? " intr" : "");
1634 
1635 		bd->mode.status = param;
1636 
1637 		dma_addr += period_len;
1638 		buf += period_len;
1639 
1640 		i++;
1641 	}
1642 
1643 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1644 err_bd_out:
1645 	sdma_free_bd(desc);
1646 	kfree(desc);
1647 err_out:
1648 	sdmac->status = DMA_ERROR;
1649 	return NULL;
1650 }
1651 
1652 static int sdma_config_write(struct dma_chan *chan,
1653 		       struct dma_slave_config *dmaengine_cfg,
1654 		       enum dma_transfer_direction direction)
1655 {
1656 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1657 
1658 	if (direction == DMA_DEV_TO_MEM) {
1659 		sdmac->per_address = dmaengine_cfg->src_addr;
1660 		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1661 			dmaengine_cfg->src_addr_width;
1662 		sdmac->word_size = dmaengine_cfg->src_addr_width;
1663 	} else if (direction == DMA_DEV_TO_DEV) {
1664 		sdmac->per_address2 = dmaengine_cfg->src_addr;
1665 		sdmac->per_address = dmaengine_cfg->dst_addr;
1666 		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1667 			SDMA_WATERMARK_LEVEL_LWML;
1668 		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1669 			SDMA_WATERMARK_LEVEL_HWML;
1670 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1671 	} else {
1672 		sdmac->per_address = dmaengine_cfg->dst_addr;
1673 		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1674 			dmaengine_cfg->dst_addr_width;
1675 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1676 	}
1677 	sdmac->direction = direction;
1678 	return sdma_config_channel(chan);
1679 }
1680 
1681 static int sdma_config(struct dma_chan *chan,
1682 		       struct dma_slave_config *dmaengine_cfg)
1683 {
1684 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1685 
1686 	memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1687 
1688 	/* Set ENBLn earlier to make sure dma request triggered after that */
1689 	if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1690 		return -EINVAL;
1691 	sdma_event_enable(sdmac, sdmac->event_id0);
1692 
1693 	if (sdmac->event_id1) {
1694 		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1695 			return -EINVAL;
1696 		sdma_event_enable(sdmac, sdmac->event_id1);
1697 	}
1698 
1699 	return 0;
1700 }
1701 
1702 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1703 				      dma_cookie_t cookie,
1704 				      struct dma_tx_state *txstate)
1705 {
1706 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1707 	struct sdma_desc *desc = NULL;
1708 	u32 residue;
1709 	struct virt_dma_desc *vd;
1710 	enum dma_status ret;
1711 	unsigned long flags;
1712 
1713 	ret = dma_cookie_status(chan, cookie, txstate);
1714 	if (ret == DMA_COMPLETE || !txstate)
1715 		return ret;
1716 
1717 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1718 
1719 	vd = vchan_find_desc(&sdmac->vc, cookie);
1720 	if (vd)
1721 		desc = to_sdma_desc(&vd->tx);
1722 	else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1723 		desc = sdmac->desc;
1724 
1725 	if (desc) {
1726 		if (sdmac->flags & IMX_DMA_SG_LOOP)
1727 			residue = (desc->num_bd - desc->buf_ptail) *
1728 				desc->period_len - desc->chn_real_count;
1729 		else
1730 			residue = desc->chn_count - desc->chn_real_count;
1731 	} else {
1732 		residue = 0;
1733 	}
1734 
1735 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1736 
1737 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1738 			 residue);
1739 
1740 	return sdmac->status;
1741 }
1742 
1743 static void sdma_issue_pending(struct dma_chan *chan)
1744 {
1745 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1746 	unsigned long flags;
1747 
1748 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1749 	if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1750 		sdma_start_desc(sdmac);
1751 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1752 }
1753 
1754 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1755 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1756 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	45
1757 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4	46
1758 
1759 static void sdma_add_scripts(struct sdma_engine *sdma,
1760 			     const struct sdma_script_start_addrs *addr)
1761 {
1762 	s32 *addr_arr = (u32 *)addr;
1763 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1764 	int i;
1765 
1766 	/* use the default firmware in ROM if missing external firmware */
1767 	if (!sdma->script_number)
1768 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1769 
1770 	if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1771 				  / sizeof(s32)) {
1772 		dev_err(sdma->dev,
1773 			"SDMA script number %d not match with firmware.\n",
1774 			sdma->script_number);
1775 		return;
1776 	}
1777 
1778 	for (i = 0; i < sdma->script_number; i++)
1779 		if (addr_arr[i] > 0)
1780 			saddr_arr[i] = addr_arr[i];
1781 
1782 	/*
1783 	 * get uart_2_mcu_addr/uartsh_2_mcu_addr rom script specially because
1784 	 * they are now replaced by uart_2_mcu_ram_addr/uartsh_2_mcu_ram_addr
1785 	 * to be compatible with legacy freescale/nxp sdma firmware, and they
1786 	 * are located in the bottom part of sdma_script_start_addrs which are
1787 	 * beyond the SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1.
1788 	 */
1789 	if (addr->uart_2_mcu_addr)
1790 		sdma->script_addrs->uart_2_mcu_addr = addr->uart_2_mcu_addr;
1791 	if (addr->uartsh_2_mcu_addr)
1792 		sdma->script_addrs->uartsh_2_mcu_addr = addr->uartsh_2_mcu_addr;
1793 
1794 }
1795 
1796 static void sdma_load_firmware(const struct firmware *fw, void *context)
1797 {
1798 	struct sdma_engine *sdma = context;
1799 	const struct sdma_firmware_header *header;
1800 	const struct sdma_script_start_addrs *addr;
1801 	unsigned short *ram_code;
1802 
1803 	if (!fw) {
1804 		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1805 		/* In this case we just use the ROM firmware. */
1806 		return;
1807 	}
1808 
1809 	if (fw->size < sizeof(*header))
1810 		goto err_firmware;
1811 
1812 	header = (struct sdma_firmware_header *)fw->data;
1813 
1814 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1815 		goto err_firmware;
1816 	if (header->ram_code_start + header->ram_code_size > fw->size)
1817 		goto err_firmware;
1818 	switch (header->version_major) {
1819 	case 1:
1820 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1821 		break;
1822 	case 2:
1823 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1824 		break;
1825 	case 3:
1826 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1827 		break;
1828 	case 4:
1829 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1830 		break;
1831 	default:
1832 		dev_err(sdma->dev, "unknown firmware version\n");
1833 		goto err_firmware;
1834 	}
1835 
1836 	addr = (void *)header + header->script_addrs_start;
1837 	ram_code = (void *)header + header->ram_code_start;
1838 
1839 	clk_enable(sdma->clk_ipg);
1840 	clk_enable(sdma->clk_ahb);
1841 	/* download the RAM image for SDMA */
1842 	sdma_load_script(sdma, ram_code,
1843 			 header->ram_code_size,
1844 			 addr->ram_code_start_addr);
1845 	clk_disable(sdma->clk_ipg);
1846 	clk_disable(sdma->clk_ahb);
1847 
1848 	sdma_add_scripts(sdma, addr);
1849 
1850 	sdma->fw_loaded = true;
1851 
1852 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1853 		 header->version_major,
1854 		 header->version_minor);
1855 
1856 err_firmware:
1857 	release_firmware(fw);
1858 }
1859 
1860 #define EVENT_REMAP_CELLS 3
1861 
1862 static int sdma_event_remap(struct sdma_engine *sdma)
1863 {
1864 	struct device_node *np = sdma->dev->of_node;
1865 	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1866 	struct property *event_remap;
1867 	struct regmap *gpr;
1868 	char propname[] = "fsl,sdma-event-remap";
1869 	u32 reg, val, shift, num_map, i;
1870 	int ret = 0;
1871 
1872 	if (IS_ERR(np) || IS_ERR(gpr_np))
1873 		goto out;
1874 
1875 	event_remap = of_find_property(np, propname, NULL);
1876 	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1877 	if (!num_map) {
1878 		dev_dbg(sdma->dev, "no event needs to be remapped\n");
1879 		goto out;
1880 	} else if (num_map % EVENT_REMAP_CELLS) {
1881 		dev_err(sdma->dev, "the property %s must modulo %d\n",
1882 				propname, EVENT_REMAP_CELLS);
1883 		ret = -EINVAL;
1884 		goto out;
1885 	}
1886 
1887 	gpr = syscon_node_to_regmap(gpr_np);
1888 	if (IS_ERR(gpr)) {
1889 		dev_err(sdma->dev, "failed to get gpr regmap\n");
1890 		ret = PTR_ERR(gpr);
1891 		goto out;
1892 	}
1893 
1894 	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1895 		ret = of_property_read_u32_index(np, propname, i, &reg);
1896 		if (ret) {
1897 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1898 					propname, i);
1899 			goto out;
1900 		}
1901 
1902 		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1903 		if (ret) {
1904 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1905 					propname, i + 1);
1906 			goto out;
1907 		}
1908 
1909 		ret = of_property_read_u32_index(np, propname, i + 2, &val);
1910 		if (ret) {
1911 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1912 					propname, i + 2);
1913 			goto out;
1914 		}
1915 
1916 		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1917 	}
1918 
1919 out:
1920 	if (!IS_ERR(gpr_np))
1921 		of_node_put(gpr_np);
1922 
1923 	return ret;
1924 }
1925 
1926 static int sdma_get_firmware(struct sdma_engine *sdma,
1927 		const char *fw_name)
1928 {
1929 	int ret;
1930 
1931 	ret = request_firmware_nowait(THIS_MODULE,
1932 			FW_ACTION_UEVENT, fw_name, sdma->dev,
1933 			GFP_KERNEL, sdma, sdma_load_firmware);
1934 
1935 	return ret;
1936 }
1937 
1938 static int sdma_init(struct sdma_engine *sdma)
1939 {
1940 	int i, ret;
1941 	dma_addr_t ccb_phys;
1942 
1943 	ret = clk_enable(sdma->clk_ipg);
1944 	if (ret)
1945 		return ret;
1946 	ret = clk_enable(sdma->clk_ahb);
1947 	if (ret)
1948 		goto disable_clk_ipg;
1949 
1950 	if (sdma->drvdata->check_ratio &&
1951 	    (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
1952 		sdma->clk_ratio = 1;
1953 
1954 	/* Be sure SDMA has not started yet */
1955 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1956 
1957 	sdma->channel_control = dma_alloc_coherent(sdma->dev,
1958 			MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control) +
1959 			sizeof(struct sdma_context_data),
1960 			&ccb_phys, GFP_KERNEL);
1961 
1962 	if (!sdma->channel_control) {
1963 		ret = -ENOMEM;
1964 		goto err_dma_alloc;
1965 	}
1966 
1967 	sdma->context = (void *)sdma->channel_control +
1968 		MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
1969 	sdma->context_phys = ccb_phys +
1970 		MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
1971 
1972 	/* disable all channels */
1973 	for (i = 0; i < sdma->drvdata->num_events; i++)
1974 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1975 
1976 	/* All channels have priority 0 */
1977 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1978 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1979 
1980 	ret = sdma_request_channel0(sdma);
1981 	if (ret)
1982 		goto err_dma_alloc;
1983 
1984 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1985 
1986 	/* Set Command Channel (Channel Zero) */
1987 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1988 
1989 	/* Set bits of CONFIG register but with static context switching */
1990 	if (sdma->clk_ratio)
1991 		writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
1992 	else
1993 		writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1994 
1995 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1996 
1997 	/* Initializes channel's priorities */
1998 	sdma_set_channel_priority(&sdma->channel[0], 7);
1999 
2000 	clk_disable(sdma->clk_ipg);
2001 	clk_disable(sdma->clk_ahb);
2002 
2003 	return 0;
2004 
2005 err_dma_alloc:
2006 	clk_disable(sdma->clk_ahb);
2007 disable_clk_ipg:
2008 	clk_disable(sdma->clk_ipg);
2009 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
2010 	return ret;
2011 }
2012 
2013 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
2014 {
2015 	struct sdma_channel *sdmac = to_sdma_chan(chan);
2016 	struct imx_dma_data *data = fn_param;
2017 
2018 	if (!imx_dma_is_general_purpose(chan))
2019 		return false;
2020 
2021 	sdmac->data = *data;
2022 	chan->private = &sdmac->data;
2023 
2024 	return true;
2025 }
2026 
2027 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
2028 				   struct of_dma *ofdma)
2029 {
2030 	struct sdma_engine *sdma = ofdma->of_dma_data;
2031 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
2032 	struct imx_dma_data data;
2033 
2034 	if (dma_spec->args_count != 3)
2035 		return NULL;
2036 
2037 	data.dma_request = dma_spec->args[0];
2038 	data.peripheral_type = dma_spec->args[1];
2039 	data.priority = dma_spec->args[2];
2040 	/*
2041 	 * init dma_request2 to zero, which is not used by the dts.
2042 	 * For P2P, dma_request2 is init from dma_request_channel(),
2043 	 * chan->private will point to the imx_dma_data, and in
2044 	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
2045 	 * be set to sdmac->event_id1.
2046 	 */
2047 	data.dma_request2 = 0;
2048 
2049 	return __dma_request_channel(&mask, sdma_filter_fn, &data,
2050 				     ofdma->of_node);
2051 }
2052 
2053 static int sdma_probe(struct platform_device *pdev)
2054 {
2055 	struct device_node *np = pdev->dev.of_node;
2056 	struct device_node *spba_bus;
2057 	const char *fw_name;
2058 	int ret;
2059 	int irq;
2060 	struct resource *iores;
2061 	struct resource spba_res;
2062 	int i;
2063 	struct sdma_engine *sdma;
2064 	s32 *saddr_arr;
2065 
2066 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2067 	if (ret)
2068 		return ret;
2069 
2070 	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2071 	if (!sdma)
2072 		return -ENOMEM;
2073 
2074 	spin_lock_init(&sdma->channel_0_lock);
2075 
2076 	sdma->dev = &pdev->dev;
2077 	sdma->drvdata = of_device_get_match_data(sdma->dev);
2078 
2079 	irq = platform_get_irq(pdev, 0);
2080 	if (irq < 0)
2081 		return irq;
2082 
2083 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2084 	sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
2085 	if (IS_ERR(sdma->regs))
2086 		return PTR_ERR(sdma->regs);
2087 
2088 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2089 	if (IS_ERR(sdma->clk_ipg))
2090 		return PTR_ERR(sdma->clk_ipg);
2091 
2092 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2093 	if (IS_ERR(sdma->clk_ahb))
2094 		return PTR_ERR(sdma->clk_ahb);
2095 
2096 	ret = clk_prepare(sdma->clk_ipg);
2097 	if (ret)
2098 		return ret;
2099 
2100 	ret = clk_prepare(sdma->clk_ahb);
2101 	if (ret)
2102 		goto err_clk;
2103 
2104 	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
2105 			       sdma);
2106 	if (ret)
2107 		goto err_irq;
2108 
2109 	sdma->irq = irq;
2110 
2111 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2112 	if (!sdma->script_addrs) {
2113 		ret = -ENOMEM;
2114 		goto err_irq;
2115 	}
2116 
2117 	/* initially no scripts available */
2118 	saddr_arr = (s32 *)sdma->script_addrs;
2119 	for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2120 		saddr_arr[i] = -EINVAL;
2121 
2122 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2123 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2124 	dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2125 
2126 	INIT_LIST_HEAD(&sdma->dma_device.channels);
2127 	/* Initialize channel parameters */
2128 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2129 		struct sdma_channel *sdmac = &sdma->channel[i];
2130 
2131 		sdmac->sdma = sdma;
2132 
2133 		sdmac->channel = i;
2134 		sdmac->vc.desc_free = sdma_desc_free;
2135 		INIT_LIST_HEAD(&sdmac->terminated);
2136 		INIT_WORK(&sdmac->terminate_worker,
2137 				sdma_channel_terminate_work);
2138 		/*
2139 		 * Add the channel to the DMAC list. Do not add channel 0 though
2140 		 * because we need it internally in the SDMA driver. This also means
2141 		 * that channel 0 in dmaengine counting matches sdma channel 1.
2142 		 */
2143 		if (i)
2144 			vchan_init(&sdmac->vc, &sdma->dma_device);
2145 	}
2146 
2147 	ret = sdma_init(sdma);
2148 	if (ret)
2149 		goto err_init;
2150 
2151 	ret = sdma_event_remap(sdma);
2152 	if (ret)
2153 		goto err_init;
2154 
2155 	if (sdma->drvdata->script_addrs)
2156 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2157 
2158 	sdma->dma_device.dev = &pdev->dev;
2159 
2160 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2161 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2162 	sdma->dma_device.device_tx_status = sdma_tx_status;
2163 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2164 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2165 	sdma->dma_device.device_config = sdma_config;
2166 	sdma->dma_device.device_terminate_all = sdma_terminate_all;
2167 	sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2168 	sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2169 	sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2170 	sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2171 	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2172 	sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2173 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
2174 	sdma->dma_device.copy_align = 2;
2175 	dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2176 
2177 	platform_set_drvdata(pdev, sdma);
2178 
2179 	ret = dma_async_device_register(&sdma->dma_device);
2180 	if (ret) {
2181 		dev_err(&pdev->dev, "unable to register\n");
2182 		goto err_init;
2183 	}
2184 
2185 	if (np) {
2186 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
2187 		if (ret) {
2188 			dev_err(&pdev->dev, "failed to register controller\n");
2189 			goto err_register;
2190 		}
2191 
2192 		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2193 		ret = of_address_to_resource(spba_bus, 0, &spba_res);
2194 		if (!ret) {
2195 			sdma->spba_start_addr = spba_res.start;
2196 			sdma->spba_end_addr = spba_res.end;
2197 		}
2198 		of_node_put(spba_bus);
2199 	}
2200 
2201 	/*
2202 	 * Because that device tree does not encode ROM script address,
2203 	 * the RAM script in firmware is mandatory for device tree
2204 	 * probe, otherwise it fails.
2205 	 */
2206 	ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2207 				      &fw_name);
2208 	if (ret) {
2209 		dev_warn(&pdev->dev, "failed to get firmware name\n");
2210 	} else {
2211 		ret = sdma_get_firmware(sdma, fw_name);
2212 		if (ret)
2213 			dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2214 	}
2215 
2216 	return 0;
2217 
2218 err_register:
2219 	dma_async_device_unregister(&sdma->dma_device);
2220 err_init:
2221 	kfree(sdma->script_addrs);
2222 err_irq:
2223 	clk_unprepare(sdma->clk_ahb);
2224 err_clk:
2225 	clk_unprepare(sdma->clk_ipg);
2226 	return ret;
2227 }
2228 
2229 static int sdma_remove(struct platform_device *pdev)
2230 {
2231 	struct sdma_engine *sdma = platform_get_drvdata(pdev);
2232 	int i;
2233 
2234 	devm_free_irq(&pdev->dev, sdma->irq, sdma);
2235 	dma_async_device_unregister(&sdma->dma_device);
2236 	kfree(sdma->script_addrs);
2237 	clk_unprepare(sdma->clk_ahb);
2238 	clk_unprepare(sdma->clk_ipg);
2239 	/* Kill the tasklet */
2240 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2241 		struct sdma_channel *sdmac = &sdma->channel[i];
2242 
2243 		tasklet_kill(&sdmac->vc.task);
2244 		sdma_free_chan_resources(&sdmac->vc.chan);
2245 	}
2246 
2247 	platform_set_drvdata(pdev, NULL);
2248 	return 0;
2249 }
2250 
2251 static struct platform_driver sdma_driver = {
2252 	.driver		= {
2253 		.name	= "imx-sdma",
2254 		.of_match_table = sdma_dt_ids,
2255 	},
2256 	.remove		= sdma_remove,
2257 	.probe		= sdma_probe,
2258 };
2259 
2260 module_platform_driver(sdma_driver);
2261 
2262 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2263 MODULE_DESCRIPTION("i.MX SDMA driver");
2264 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2265 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2266 #endif
2267 #if IS_ENABLED(CONFIG_SOC_IMX7D)
2268 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2269 #endif
2270 MODULE_LICENSE("GPL");
2271