xref: /openbmc/linux/drivers/dma/imx-sdma.c (revision 95e9fd10)
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19 
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39 
40 #include <asm/irq.h>
41 #include <mach/sdma.h>
42 #include <mach/dma.h>
43 #include <mach/hardware.h>
44 
45 #include "dmaengine.h"
46 
47 /* SDMA registers */
48 #define SDMA_H_C0PTR		0x000
49 #define SDMA_H_INTR		0x004
50 #define SDMA_H_STATSTOP		0x008
51 #define SDMA_H_START		0x00c
52 #define SDMA_H_EVTOVR		0x010
53 #define SDMA_H_DSPOVR		0x014
54 #define SDMA_H_HOSTOVR		0x018
55 #define SDMA_H_EVTPEND		0x01c
56 #define SDMA_H_DSPENBL		0x020
57 #define SDMA_H_RESET		0x024
58 #define SDMA_H_EVTERR		0x028
59 #define SDMA_H_INTRMSK		0x02c
60 #define SDMA_H_PSW		0x030
61 #define SDMA_H_EVTERRDBG	0x034
62 #define SDMA_H_CONFIG		0x038
63 #define SDMA_ONCE_ENB		0x040
64 #define SDMA_ONCE_DATA		0x044
65 #define SDMA_ONCE_INSTR		0x048
66 #define SDMA_ONCE_STAT		0x04c
67 #define SDMA_ONCE_CMD		0x050
68 #define SDMA_EVT_MIRROR		0x054
69 #define SDMA_ILLINSTADDR	0x058
70 #define SDMA_CHN0ADDR		0x05c
71 #define SDMA_ONCE_RTB		0x060
72 #define SDMA_XTRIG_CONF1	0x070
73 #define SDMA_XTRIG_CONF2	0x074
74 #define SDMA_CHNENBL0_IMX35	0x200
75 #define SDMA_CHNENBL0_IMX31	0x080
76 #define SDMA_CHNPRI_0		0x100
77 
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88 
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96 
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101 
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108 
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125 
126 /*
127  * Mode/Count of data node descriptors - IPCv2
128  */
129 struct sdma_mode_count {
130 	u32 count   : 16; /* size of the buffer pointed by this BD */
131 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
132 	u32 command :  8; /* command mostlky used for channel 0 */
133 };
134 
135 /*
136  * Buffer descriptor
137  */
138 struct sdma_buffer_descriptor {
139 	struct sdma_mode_count  mode;
140 	u32 buffer_addr;	/* address of the buffer described */
141 	u32 ext_buffer_addr;	/* extended buffer address */
142 } __attribute__ ((packed));
143 
144 /**
145  * struct sdma_channel_control - Channel control Block
146  *
147  * @current_bd_ptr	current buffer descriptor processed
148  * @base_bd_ptr		first element of buffer descriptor array
149  * @unused		padding. The SDMA engine expects an array of 128 byte
150  *			control blocks
151  */
152 struct sdma_channel_control {
153 	u32 current_bd_ptr;
154 	u32 base_bd_ptr;
155 	u32 unused[2];
156 } __attribute__ ((packed));
157 
158 /**
159  * struct sdma_state_registers - SDMA context for a channel
160  *
161  * @pc:		program counter
162  * @t:		test bit: status of arithmetic & test instruction
163  * @rpc:	return program counter
164  * @sf:		source fault while loading data
165  * @spc:	loop start program counter
166  * @df:		destination fault while storing data
167  * @epc:	loop end program counter
168  * @lm:		loop mode
169  */
170 struct sdma_state_registers {
171 	u32 pc     :14;
172 	u32 unused1: 1;
173 	u32 t      : 1;
174 	u32 rpc    :14;
175 	u32 unused0: 1;
176 	u32 sf     : 1;
177 	u32 spc    :14;
178 	u32 unused2: 1;
179 	u32 df     : 1;
180 	u32 epc    :14;
181 	u32 lm     : 2;
182 } __attribute__ ((packed));
183 
184 /**
185  * struct sdma_context_data - sdma context specific to a channel
186  *
187  * @channel_state:	channel state bits
188  * @gReg:		general registers
189  * @mda:		burst dma destination address register
190  * @msa:		burst dma source address register
191  * @ms:			burst dma status register
192  * @md:			burst dma data register
193  * @pda:		peripheral dma destination address register
194  * @psa:		peripheral dma source address register
195  * @ps:			peripheral dma status register
196  * @pd:			peripheral dma data register
197  * @ca:			CRC polynomial register
198  * @cs:			CRC accumulator register
199  * @dda:		dedicated core destination address register
200  * @dsa:		dedicated core source address register
201  * @ds:			dedicated core status register
202  * @dd:			dedicated core data register
203  */
204 struct sdma_context_data {
205 	struct sdma_state_registers  channel_state;
206 	u32  gReg[8];
207 	u32  mda;
208 	u32  msa;
209 	u32  ms;
210 	u32  md;
211 	u32  pda;
212 	u32  psa;
213 	u32  ps;
214 	u32  pd;
215 	u32  ca;
216 	u32  cs;
217 	u32  dda;
218 	u32  dsa;
219 	u32  ds;
220 	u32  dd;
221 	u32  scratch0;
222 	u32  scratch1;
223 	u32  scratch2;
224 	u32  scratch3;
225 	u32  scratch4;
226 	u32  scratch5;
227 	u32  scratch6;
228 	u32  scratch7;
229 } __attribute__ ((packed));
230 
231 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
232 
233 struct sdma_engine;
234 
235 /**
236  * struct sdma_channel - housekeeping for a SDMA channel
237  *
238  * @sdma		pointer to the SDMA engine for this channel
239  * @channel		the channel number, matches dmaengine chan_id + 1
240  * @direction		transfer type. Needed for setting SDMA script
241  * @peripheral_type	Peripheral type. Needed for setting SDMA script
242  * @event_id0		aka dma request line
243  * @event_id1		for channels that use 2 events
244  * @word_size		peripheral access size
245  * @buf_tail		ID of the buffer that was processed
246  * @done		channel completion
247  * @num_bd		max NUM_BD. number of descriptors currently handling
248  */
249 struct sdma_channel {
250 	struct sdma_engine		*sdma;
251 	unsigned int			channel;
252 	enum dma_transfer_direction		direction;
253 	enum sdma_peripheral_type	peripheral_type;
254 	unsigned int			event_id0;
255 	unsigned int			event_id1;
256 	enum dma_slave_buswidth		word_size;
257 	unsigned int			buf_tail;
258 	struct completion		done;
259 	unsigned int			num_bd;
260 	struct sdma_buffer_descriptor	*bd;
261 	dma_addr_t			bd_phys;
262 	unsigned int			pc_from_device, pc_to_device;
263 	unsigned long			flags;
264 	dma_addr_t			per_address;
265 	unsigned long			event_mask[2];
266 	unsigned long			watermark_level;
267 	u32				shp_addr, per_addr;
268 	struct dma_chan			chan;
269 	spinlock_t			lock;
270 	struct dma_async_tx_descriptor	desc;
271 	enum dma_status			status;
272 	unsigned int			chn_count;
273 	unsigned int			chn_real_count;
274 	struct tasklet_struct		tasklet;
275 };
276 
277 #define IMX_DMA_SG_LOOP		BIT(0)
278 
279 #define MAX_DMA_CHANNELS 32
280 #define MXC_SDMA_DEFAULT_PRIORITY 1
281 #define MXC_SDMA_MIN_PRIORITY 1
282 #define MXC_SDMA_MAX_PRIORITY 7
283 
284 #define SDMA_FIRMWARE_MAGIC 0x414d4453
285 
286 /**
287  * struct sdma_firmware_header - Layout of the firmware image
288  *
289  * @magic		"SDMA"
290  * @version_major	increased whenever layout of struct sdma_script_start_addrs
291  *			changes.
292  * @version_minor	firmware minor version (for binary compatible changes)
293  * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
294  * @num_script_addrs	Number of script addresses in this image
295  * @ram_code_start	offset of SDMA ram image in this firmware image
296  * @ram_code_size	size of SDMA ram image
297  * @script_addrs	Stores the start address of the SDMA scripts
298  *			(in SDMA memory space)
299  */
300 struct sdma_firmware_header {
301 	u32	magic;
302 	u32	version_major;
303 	u32	version_minor;
304 	u32	script_addrs_start;
305 	u32	num_script_addrs;
306 	u32	ram_code_start;
307 	u32	ram_code_size;
308 };
309 
310 enum sdma_devtype {
311 	IMX31_SDMA,	/* runs on i.mx31 */
312 	IMX35_SDMA,	/* runs on i.mx35 and later */
313 };
314 
315 struct sdma_engine {
316 	struct device			*dev;
317 	struct device_dma_parameters	dma_parms;
318 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
319 	struct sdma_channel_control	*channel_control;
320 	void __iomem			*regs;
321 	enum sdma_devtype		devtype;
322 	unsigned int			num_events;
323 	struct sdma_context_data	*context;
324 	dma_addr_t			context_phys;
325 	struct dma_device		dma_device;
326 	struct clk			*clk_ipg;
327 	struct clk			*clk_ahb;
328 	spinlock_t			channel_0_lock;
329 	struct sdma_script_start_addrs	*script_addrs;
330 };
331 
332 static struct platform_device_id sdma_devtypes[] = {
333 	{
334 		.name = "imx31-sdma",
335 		.driver_data = IMX31_SDMA,
336 	}, {
337 		.name = "imx35-sdma",
338 		.driver_data = IMX35_SDMA,
339 	}, {
340 		/* sentinel */
341 	}
342 };
343 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
344 
345 static const struct of_device_id sdma_dt_ids[] = {
346 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
347 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
348 	{ /* sentinel */ }
349 };
350 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
351 
352 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
353 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
354 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
355 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
356 
357 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
358 {
359 	u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
360 						      SDMA_CHNENBL0_IMX35);
361 	return chnenbl0 + event * 4;
362 }
363 
364 static int sdma_config_ownership(struct sdma_channel *sdmac,
365 		bool event_override, bool mcu_override, bool dsp_override)
366 {
367 	struct sdma_engine *sdma = sdmac->sdma;
368 	int channel = sdmac->channel;
369 	unsigned long evt, mcu, dsp;
370 
371 	if (event_override && mcu_override && dsp_override)
372 		return -EINVAL;
373 
374 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
375 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
376 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
377 
378 	if (dsp_override)
379 		__clear_bit(channel, &dsp);
380 	else
381 		__set_bit(channel, &dsp);
382 
383 	if (event_override)
384 		__clear_bit(channel, &evt);
385 	else
386 		__set_bit(channel, &evt);
387 
388 	if (mcu_override)
389 		__clear_bit(channel, &mcu);
390 	else
391 		__set_bit(channel, &mcu);
392 
393 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
394 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
395 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
396 
397 	return 0;
398 }
399 
400 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
401 {
402 	writel(BIT(channel), sdma->regs + SDMA_H_START);
403 }
404 
405 /*
406  * sdma_run_channel0 - run a channel and wait till it's done
407  */
408 static int sdma_run_channel0(struct sdma_engine *sdma)
409 {
410 	int ret;
411 	unsigned long timeout = 500;
412 
413 	sdma_enable_channel(sdma, 0);
414 
415 	while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
416 		if (timeout-- <= 0)
417 			break;
418 		udelay(1);
419 	}
420 
421 	if (ret) {
422 		/* Clear the interrupt status */
423 		writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
424 	} else {
425 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
426 	}
427 
428 	return ret ? 0 : -ETIMEDOUT;
429 }
430 
431 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
432 		u32 address)
433 {
434 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
435 	void *buf_virt;
436 	dma_addr_t buf_phys;
437 	int ret;
438 	unsigned long flags;
439 
440 	buf_virt = dma_alloc_coherent(NULL,
441 			size,
442 			&buf_phys, GFP_KERNEL);
443 	if (!buf_virt) {
444 		return -ENOMEM;
445 	}
446 
447 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
448 
449 	bd0->mode.command = C0_SETPM;
450 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
451 	bd0->mode.count = size / 2;
452 	bd0->buffer_addr = buf_phys;
453 	bd0->ext_buffer_addr = address;
454 
455 	memcpy(buf_virt, buf, size);
456 
457 	ret = sdma_run_channel0(sdma);
458 
459 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
460 
461 	dma_free_coherent(NULL, size, buf_virt, buf_phys);
462 
463 	return ret;
464 }
465 
466 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
467 {
468 	struct sdma_engine *sdma = sdmac->sdma;
469 	int channel = sdmac->channel;
470 	unsigned long val;
471 	u32 chnenbl = chnenbl_ofs(sdma, event);
472 
473 	val = readl_relaxed(sdma->regs + chnenbl);
474 	__set_bit(channel, &val);
475 	writel_relaxed(val, sdma->regs + chnenbl);
476 }
477 
478 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
479 {
480 	struct sdma_engine *sdma = sdmac->sdma;
481 	int channel = sdmac->channel;
482 	u32 chnenbl = chnenbl_ofs(sdma, event);
483 	unsigned long val;
484 
485 	val = readl_relaxed(sdma->regs + chnenbl);
486 	__clear_bit(channel, &val);
487 	writel_relaxed(val, sdma->regs + chnenbl);
488 }
489 
490 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
491 {
492 	struct sdma_buffer_descriptor *bd;
493 
494 	/*
495 	 * loop mode. Iterate over descriptors, re-setup them and
496 	 * call callback function.
497 	 */
498 	while (1) {
499 		bd = &sdmac->bd[sdmac->buf_tail];
500 
501 		if (bd->mode.status & BD_DONE)
502 			break;
503 
504 		if (bd->mode.status & BD_RROR)
505 			sdmac->status = DMA_ERROR;
506 		else
507 			sdmac->status = DMA_IN_PROGRESS;
508 
509 		bd->mode.status |= BD_DONE;
510 		sdmac->buf_tail++;
511 		sdmac->buf_tail %= sdmac->num_bd;
512 
513 		if (sdmac->desc.callback)
514 			sdmac->desc.callback(sdmac->desc.callback_param);
515 	}
516 }
517 
518 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
519 {
520 	struct sdma_buffer_descriptor *bd;
521 	int i, error = 0;
522 
523 	sdmac->chn_real_count = 0;
524 	/*
525 	 * non loop mode. Iterate over all descriptors, collect
526 	 * errors and call callback function
527 	 */
528 	for (i = 0; i < sdmac->num_bd; i++) {
529 		bd = &sdmac->bd[i];
530 
531 		 if (bd->mode.status & (BD_DONE | BD_RROR))
532 			error = -EIO;
533 		 sdmac->chn_real_count += bd->mode.count;
534 	}
535 
536 	if (error)
537 		sdmac->status = DMA_ERROR;
538 	else
539 		sdmac->status = DMA_SUCCESS;
540 
541 	dma_cookie_complete(&sdmac->desc);
542 	if (sdmac->desc.callback)
543 		sdmac->desc.callback(sdmac->desc.callback_param);
544 }
545 
546 static void sdma_tasklet(unsigned long data)
547 {
548 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
549 
550 	complete(&sdmac->done);
551 
552 	if (sdmac->flags & IMX_DMA_SG_LOOP)
553 		sdma_handle_channel_loop(sdmac);
554 	else
555 		mxc_sdma_handle_channel_normal(sdmac);
556 }
557 
558 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
559 {
560 	struct sdma_engine *sdma = dev_id;
561 	unsigned long stat;
562 
563 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
564 	/* not interested in channel 0 interrupts */
565 	stat &= ~1;
566 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
567 
568 	while (stat) {
569 		int channel = fls(stat) - 1;
570 		struct sdma_channel *sdmac = &sdma->channel[channel];
571 
572 		tasklet_schedule(&sdmac->tasklet);
573 
574 		__clear_bit(channel, &stat);
575 	}
576 
577 	return IRQ_HANDLED;
578 }
579 
580 /*
581  * sets the pc of SDMA script according to the peripheral type
582  */
583 static void sdma_get_pc(struct sdma_channel *sdmac,
584 		enum sdma_peripheral_type peripheral_type)
585 {
586 	struct sdma_engine *sdma = sdmac->sdma;
587 	int per_2_emi = 0, emi_2_per = 0;
588 	/*
589 	 * These are needed once we start to support transfers between
590 	 * two peripherals or memory-to-memory transfers
591 	 */
592 	int per_2_per = 0, emi_2_emi = 0;
593 
594 	sdmac->pc_from_device = 0;
595 	sdmac->pc_to_device = 0;
596 
597 	switch (peripheral_type) {
598 	case IMX_DMATYPE_MEMORY:
599 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
600 		break;
601 	case IMX_DMATYPE_DSP:
602 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
603 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
604 		break;
605 	case IMX_DMATYPE_FIRI:
606 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
607 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
608 		break;
609 	case IMX_DMATYPE_UART:
610 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
611 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
612 		break;
613 	case IMX_DMATYPE_UART_SP:
614 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
615 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
616 		break;
617 	case IMX_DMATYPE_ATA:
618 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
619 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
620 		break;
621 	case IMX_DMATYPE_CSPI:
622 	case IMX_DMATYPE_EXT:
623 	case IMX_DMATYPE_SSI:
624 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
625 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
626 		break;
627 	case IMX_DMATYPE_SSI_SP:
628 	case IMX_DMATYPE_MMC:
629 	case IMX_DMATYPE_SDHC:
630 	case IMX_DMATYPE_CSPI_SP:
631 	case IMX_DMATYPE_ESAI:
632 	case IMX_DMATYPE_MSHC_SP:
633 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
634 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
635 		break;
636 	case IMX_DMATYPE_ASRC:
637 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
638 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
639 		per_2_per = sdma->script_addrs->per_2_per_addr;
640 		break;
641 	case IMX_DMATYPE_MSHC:
642 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
643 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
644 		break;
645 	case IMX_DMATYPE_CCM:
646 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
647 		break;
648 	case IMX_DMATYPE_SPDIF:
649 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
650 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
651 		break;
652 	case IMX_DMATYPE_IPU_MEMORY:
653 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
654 		break;
655 	default:
656 		break;
657 	}
658 
659 	sdmac->pc_from_device = per_2_emi;
660 	sdmac->pc_to_device = emi_2_per;
661 }
662 
663 static int sdma_load_context(struct sdma_channel *sdmac)
664 {
665 	struct sdma_engine *sdma = sdmac->sdma;
666 	int channel = sdmac->channel;
667 	int load_address;
668 	struct sdma_context_data *context = sdma->context;
669 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
670 	int ret;
671 	unsigned long flags;
672 
673 	if (sdmac->direction == DMA_DEV_TO_MEM) {
674 		load_address = sdmac->pc_from_device;
675 	} else {
676 		load_address = sdmac->pc_to_device;
677 	}
678 
679 	if (load_address < 0)
680 		return load_address;
681 
682 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
683 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
684 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
685 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
686 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
687 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
688 
689 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
690 
691 	memset(context, 0, sizeof(*context));
692 	context->channel_state.pc = load_address;
693 
694 	/* Send by context the event mask,base address for peripheral
695 	 * and watermark level
696 	 */
697 	context->gReg[0] = sdmac->event_mask[1];
698 	context->gReg[1] = sdmac->event_mask[0];
699 	context->gReg[2] = sdmac->per_addr;
700 	context->gReg[6] = sdmac->shp_addr;
701 	context->gReg[7] = sdmac->watermark_level;
702 
703 	bd0->mode.command = C0_SETDM;
704 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
705 	bd0->mode.count = sizeof(*context) / 4;
706 	bd0->buffer_addr = sdma->context_phys;
707 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
708 	ret = sdma_run_channel0(sdma);
709 
710 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
711 
712 	return ret;
713 }
714 
715 static void sdma_disable_channel(struct sdma_channel *sdmac)
716 {
717 	struct sdma_engine *sdma = sdmac->sdma;
718 	int channel = sdmac->channel;
719 
720 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
721 	sdmac->status = DMA_ERROR;
722 }
723 
724 static int sdma_config_channel(struct sdma_channel *sdmac)
725 {
726 	int ret;
727 
728 	sdma_disable_channel(sdmac);
729 
730 	sdmac->event_mask[0] = 0;
731 	sdmac->event_mask[1] = 0;
732 	sdmac->shp_addr = 0;
733 	sdmac->per_addr = 0;
734 
735 	if (sdmac->event_id0) {
736 		if (sdmac->event_id0 >= sdmac->sdma->num_events)
737 			return -EINVAL;
738 		sdma_event_enable(sdmac, sdmac->event_id0);
739 	}
740 
741 	switch (sdmac->peripheral_type) {
742 	case IMX_DMATYPE_DSP:
743 		sdma_config_ownership(sdmac, false, true, true);
744 		break;
745 	case IMX_DMATYPE_MEMORY:
746 		sdma_config_ownership(sdmac, false, true, false);
747 		break;
748 	default:
749 		sdma_config_ownership(sdmac, true, true, false);
750 		break;
751 	}
752 
753 	sdma_get_pc(sdmac, sdmac->peripheral_type);
754 
755 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
756 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
757 		/* Handle multiple event channels differently */
758 		if (sdmac->event_id1) {
759 			sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
760 			if (sdmac->event_id1 > 31)
761 				__set_bit(31, &sdmac->watermark_level);
762 			sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
763 			if (sdmac->event_id0 > 31)
764 				__set_bit(30, &sdmac->watermark_level);
765 		} else {
766 			__set_bit(sdmac->event_id0, sdmac->event_mask);
767 		}
768 		/* Watermark Level */
769 		sdmac->watermark_level |= sdmac->watermark_level;
770 		/* Address */
771 		sdmac->shp_addr = sdmac->per_address;
772 	} else {
773 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
774 	}
775 
776 	ret = sdma_load_context(sdmac);
777 
778 	return ret;
779 }
780 
781 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
782 		unsigned int priority)
783 {
784 	struct sdma_engine *sdma = sdmac->sdma;
785 	int channel = sdmac->channel;
786 
787 	if (priority < MXC_SDMA_MIN_PRIORITY
788 	    || priority > MXC_SDMA_MAX_PRIORITY) {
789 		return -EINVAL;
790 	}
791 
792 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
793 
794 	return 0;
795 }
796 
797 static int sdma_request_channel(struct sdma_channel *sdmac)
798 {
799 	struct sdma_engine *sdma = sdmac->sdma;
800 	int channel = sdmac->channel;
801 	int ret = -EBUSY;
802 
803 	sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
804 	if (!sdmac->bd) {
805 		ret = -ENOMEM;
806 		goto out;
807 	}
808 
809 	memset(sdmac->bd, 0, PAGE_SIZE);
810 
811 	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
812 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
813 
814 	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
815 
816 	init_completion(&sdmac->done);
817 
818 	return 0;
819 out:
820 
821 	return ret;
822 }
823 
824 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
825 {
826 	return container_of(chan, struct sdma_channel, chan);
827 }
828 
829 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
830 {
831 	unsigned long flags;
832 	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
833 	dma_cookie_t cookie;
834 
835 	spin_lock_irqsave(&sdmac->lock, flags);
836 
837 	cookie = dma_cookie_assign(tx);
838 
839 	spin_unlock_irqrestore(&sdmac->lock, flags);
840 
841 	return cookie;
842 }
843 
844 static int sdma_alloc_chan_resources(struct dma_chan *chan)
845 {
846 	struct sdma_channel *sdmac = to_sdma_chan(chan);
847 	struct imx_dma_data *data = chan->private;
848 	int prio, ret;
849 
850 	if (!data)
851 		return -EINVAL;
852 
853 	switch (data->priority) {
854 	case DMA_PRIO_HIGH:
855 		prio = 3;
856 		break;
857 	case DMA_PRIO_MEDIUM:
858 		prio = 2;
859 		break;
860 	case DMA_PRIO_LOW:
861 	default:
862 		prio = 1;
863 		break;
864 	}
865 
866 	sdmac->peripheral_type = data->peripheral_type;
867 	sdmac->event_id0 = data->dma_request;
868 
869 	clk_enable(sdmac->sdma->clk_ipg);
870 	clk_enable(sdmac->sdma->clk_ahb);
871 
872 	ret = sdma_request_channel(sdmac);
873 	if (ret)
874 		return ret;
875 
876 	ret = sdma_set_channel_priority(sdmac, prio);
877 	if (ret)
878 		return ret;
879 
880 	dma_async_tx_descriptor_init(&sdmac->desc, chan);
881 	sdmac->desc.tx_submit = sdma_tx_submit;
882 	/* txd.flags will be overwritten in prep funcs */
883 	sdmac->desc.flags = DMA_CTRL_ACK;
884 
885 	return 0;
886 }
887 
888 static void sdma_free_chan_resources(struct dma_chan *chan)
889 {
890 	struct sdma_channel *sdmac = to_sdma_chan(chan);
891 	struct sdma_engine *sdma = sdmac->sdma;
892 
893 	sdma_disable_channel(sdmac);
894 
895 	if (sdmac->event_id0)
896 		sdma_event_disable(sdmac, sdmac->event_id0);
897 	if (sdmac->event_id1)
898 		sdma_event_disable(sdmac, sdmac->event_id1);
899 
900 	sdmac->event_id0 = 0;
901 	sdmac->event_id1 = 0;
902 
903 	sdma_set_channel_priority(sdmac, 0);
904 
905 	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
906 
907 	clk_disable(sdma->clk_ipg);
908 	clk_disable(sdma->clk_ahb);
909 }
910 
911 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
912 		struct dma_chan *chan, struct scatterlist *sgl,
913 		unsigned int sg_len, enum dma_transfer_direction direction,
914 		unsigned long flags, void *context)
915 {
916 	struct sdma_channel *sdmac = to_sdma_chan(chan);
917 	struct sdma_engine *sdma = sdmac->sdma;
918 	int ret, i, count;
919 	int channel = sdmac->channel;
920 	struct scatterlist *sg;
921 
922 	if (sdmac->status == DMA_IN_PROGRESS)
923 		return NULL;
924 	sdmac->status = DMA_IN_PROGRESS;
925 
926 	sdmac->flags = 0;
927 
928 	sdmac->buf_tail = 0;
929 
930 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
931 			sg_len, channel);
932 
933 	sdmac->direction = direction;
934 	ret = sdma_load_context(sdmac);
935 	if (ret)
936 		goto err_out;
937 
938 	if (sg_len > NUM_BD) {
939 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
940 				channel, sg_len, NUM_BD);
941 		ret = -EINVAL;
942 		goto err_out;
943 	}
944 
945 	sdmac->chn_count = 0;
946 	for_each_sg(sgl, sg, sg_len, i) {
947 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
948 		int param;
949 
950 		bd->buffer_addr = sg->dma_address;
951 
952 		count = sg_dma_len(sg);
953 
954 		if (count > 0xffff) {
955 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
956 					channel, count, 0xffff);
957 			ret = -EINVAL;
958 			goto err_out;
959 		}
960 
961 		bd->mode.count = count;
962 		sdmac->chn_count += count;
963 
964 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
965 			ret =  -EINVAL;
966 			goto err_out;
967 		}
968 
969 		switch (sdmac->word_size) {
970 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
971 			bd->mode.command = 0;
972 			if (count & 3 || sg->dma_address & 3)
973 				return NULL;
974 			break;
975 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
976 			bd->mode.command = 2;
977 			if (count & 1 || sg->dma_address & 1)
978 				return NULL;
979 			break;
980 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
981 			bd->mode.command = 1;
982 			break;
983 		default:
984 			return NULL;
985 		}
986 
987 		param = BD_DONE | BD_EXTD | BD_CONT;
988 
989 		if (i + 1 == sg_len) {
990 			param |= BD_INTR;
991 			param |= BD_LAST;
992 			param &= ~BD_CONT;
993 		}
994 
995 		dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
996 				i, count, sg->dma_address,
997 				param & BD_WRAP ? "wrap" : "",
998 				param & BD_INTR ? " intr" : "");
999 
1000 		bd->mode.status = param;
1001 	}
1002 
1003 	sdmac->num_bd = sg_len;
1004 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1005 
1006 	return &sdmac->desc;
1007 err_out:
1008 	sdmac->status = DMA_ERROR;
1009 	return NULL;
1010 }
1011 
1012 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1013 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1014 		size_t period_len, enum dma_transfer_direction direction,
1015 		void *context)
1016 {
1017 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1018 	struct sdma_engine *sdma = sdmac->sdma;
1019 	int num_periods = buf_len / period_len;
1020 	int channel = sdmac->channel;
1021 	int ret, i = 0, buf = 0;
1022 
1023 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1024 
1025 	if (sdmac->status == DMA_IN_PROGRESS)
1026 		return NULL;
1027 
1028 	sdmac->status = DMA_IN_PROGRESS;
1029 
1030 	sdmac->buf_tail = 0;
1031 
1032 	sdmac->flags |= IMX_DMA_SG_LOOP;
1033 	sdmac->direction = direction;
1034 	ret = sdma_load_context(sdmac);
1035 	if (ret)
1036 		goto err_out;
1037 
1038 	if (num_periods > NUM_BD) {
1039 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1040 				channel, num_periods, NUM_BD);
1041 		goto err_out;
1042 	}
1043 
1044 	if (period_len > 0xffff) {
1045 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1046 				channel, period_len, 0xffff);
1047 		goto err_out;
1048 	}
1049 
1050 	while (buf < buf_len) {
1051 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1052 		int param;
1053 
1054 		bd->buffer_addr = dma_addr;
1055 
1056 		bd->mode.count = period_len;
1057 
1058 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1059 			goto err_out;
1060 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1061 			bd->mode.command = 0;
1062 		else
1063 			bd->mode.command = sdmac->word_size;
1064 
1065 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1066 		if (i + 1 == num_periods)
1067 			param |= BD_WRAP;
1068 
1069 		dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1070 				i, period_len, dma_addr,
1071 				param & BD_WRAP ? "wrap" : "",
1072 				param & BD_INTR ? " intr" : "");
1073 
1074 		bd->mode.status = param;
1075 
1076 		dma_addr += period_len;
1077 		buf += period_len;
1078 
1079 		i++;
1080 	}
1081 
1082 	sdmac->num_bd = num_periods;
1083 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1084 
1085 	return &sdmac->desc;
1086 err_out:
1087 	sdmac->status = DMA_ERROR;
1088 	return NULL;
1089 }
1090 
1091 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1092 		unsigned long arg)
1093 {
1094 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1095 	struct dma_slave_config *dmaengine_cfg = (void *)arg;
1096 
1097 	switch (cmd) {
1098 	case DMA_TERMINATE_ALL:
1099 		sdma_disable_channel(sdmac);
1100 		return 0;
1101 	case DMA_SLAVE_CONFIG:
1102 		if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1103 			sdmac->per_address = dmaengine_cfg->src_addr;
1104 			sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1105 						dmaengine_cfg->src_addr_width;
1106 			sdmac->word_size = dmaengine_cfg->src_addr_width;
1107 		} else {
1108 			sdmac->per_address = dmaengine_cfg->dst_addr;
1109 			sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1110 						dmaengine_cfg->dst_addr_width;
1111 			sdmac->word_size = dmaengine_cfg->dst_addr_width;
1112 		}
1113 		sdmac->direction = dmaengine_cfg->direction;
1114 		return sdma_config_channel(sdmac);
1115 	default:
1116 		return -ENOSYS;
1117 	}
1118 
1119 	return -EINVAL;
1120 }
1121 
1122 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1123 					    dma_cookie_t cookie,
1124 					    struct dma_tx_state *txstate)
1125 {
1126 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1127 	dma_cookie_t last_used;
1128 
1129 	last_used = chan->cookie;
1130 
1131 	dma_set_tx_state(txstate, chan->completed_cookie, last_used,
1132 			sdmac->chn_count - sdmac->chn_real_count);
1133 
1134 	return sdmac->status;
1135 }
1136 
1137 static void sdma_issue_pending(struct dma_chan *chan)
1138 {
1139 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1140 	struct sdma_engine *sdma = sdmac->sdma;
1141 
1142 	if (sdmac->status == DMA_IN_PROGRESS)
1143 		sdma_enable_channel(sdma, sdmac->channel);
1144 }
1145 
1146 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1147 
1148 static void sdma_add_scripts(struct sdma_engine *sdma,
1149 		const struct sdma_script_start_addrs *addr)
1150 {
1151 	s32 *addr_arr = (u32 *)addr;
1152 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1153 	int i;
1154 
1155 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1156 		if (addr_arr[i] > 0)
1157 			saddr_arr[i] = addr_arr[i];
1158 }
1159 
1160 static void sdma_load_firmware(const struct firmware *fw, void *context)
1161 {
1162 	struct sdma_engine *sdma = context;
1163 	const struct sdma_firmware_header *header;
1164 	const struct sdma_script_start_addrs *addr;
1165 	unsigned short *ram_code;
1166 
1167 	if (!fw) {
1168 		dev_err(sdma->dev, "firmware not found\n");
1169 		return;
1170 	}
1171 
1172 	if (fw->size < sizeof(*header))
1173 		goto err_firmware;
1174 
1175 	header = (struct sdma_firmware_header *)fw->data;
1176 
1177 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1178 		goto err_firmware;
1179 	if (header->ram_code_start + header->ram_code_size > fw->size)
1180 		goto err_firmware;
1181 
1182 	addr = (void *)header + header->script_addrs_start;
1183 	ram_code = (void *)header + header->ram_code_start;
1184 
1185 	clk_enable(sdma->clk_ipg);
1186 	clk_enable(sdma->clk_ahb);
1187 	/* download the RAM image for SDMA */
1188 	sdma_load_script(sdma, ram_code,
1189 			header->ram_code_size,
1190 			addr->ram_code_start_addr);
1191 	clk_disable(sdma->clk_ipg);
1192 	clk_disable(sdma->clk_ahb);
1193 
1194 	sdma_add_scripts(sdma, addr);
1195 
1196 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1197 			header->version_major,
1198 			header->version_minor);
1199 
1200 err_firmware:
1201 	release_firmware(fw);
1202 }
1203 
1204 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1205 		const char *fw_name)
1206 {
1207 	int ret;
1208 
1209 	ret = request_firmware_nowait(THIS_MODULE,
1210 			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1211 			GFP_KERNEL, sdma, sdma_load_firmware);
1212 
1213 	return ret;
1214 }
1215 
1216 static int __init sdma_init(struct sdma_engine *sdma)
1217 {
1218 	int i, ret;
1219 	dma_addr_t ccb_phys;
1220 
1221 	switch (sdma->devtype) {
1222 	case IMX31_SDMA:
1223 		sdma->num_events = 32;
1224 		break;
1225 	case IMX35_SDMA:
1226 		sdma->num_events = 48;
1227 		break;
1228 	default:
1229 		dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
1230 			sdma->devtype);
1231 		return -ENODEV;
1232 	}
1233 
1234 	clk_enable(sdma->clk_ipg);
1235 	clk_enable(sdma->clk_ahb);
1236 
1237 	/* Be sure SDMA has not started yet */
1238 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1239 
1240 	sdma->channel_control = dma_alloc_coherent(NULL,
1241 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1242 			sizeof(struct sdma_context_data),
1243 			&ccb_phys, GFP_KERNEL);
1244 
1245 	if (!sdma->channel_control) {
1246 		ret = -ENOMEM;
1247 		goto err_dma_alloc;
1248 	}
1249 
1250 	sdma->context = (void *)sdma->channel_control +
1251 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1252 	sdma->context_phys = ccb_phys +
1253 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1254 
1255 	/* Zero-out the CCB structures array just allocated */
1256 	memset(sdma->channel_control, 0,
1257 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1258 
1259 	/* disable all channels */
1260 	for (i = 0; i < sdma->num_events; i++)
1261 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1262 
1263 	/* All channels have priority 0 */
1264 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1265 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1266 
1267 	ret = sdma_request_channel(&sdma->channel[0]);
1268 	if (ret)
1269 		goto err_dma_alloc;
1270 
1271 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1272 
1273 	/* Set Command Channel (Channel Zero) */
1274 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1275 
1276 	/* Set bits of CONFIG register but with static context switching */
1277 	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1278 	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1279 
1280 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1281 
1282 	/* Set bits of CONFIG register with given context switching mode */
1283 	writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1284 
1285 	/* Initializes channel's priorities */
1286 	sdma_set_channel_priority(&sdma->channel[0], 7);
1287 
1288 	clk_disable(sdma->clk_ipg);
1289 	clk_disable(sdma->clk_ahb);
1290 
1291 	return 0;
1292 
1293 err_dma_alloc:
1294 	clk_disable(sdma->clk_ipg);
1295 	clk_disable(sdma->clk_ahb);
1296 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1297 	return ret;
1298 }
1299 
1300 static int __init sdma_probe(struct platform_device *pdev)
1301 {
1302 	const struct of_device_id *of_id =
1303 			of_match_device(sdma_dt_ids, &pdev->dev);
1304 	struct device_node *np = pdev->dev.of_node;
1305 	const char *fw_name;
1306 	int ret;
1307 	int irq;
1308 	struct resource *iores;
1309 	struct sdma_platform_data *pdata = pdev->dev.platform_data;
1310 	int i;
1311 	struct sdma_engine *sdma;
1312 	s32 *saddr_arr;
1313 
1314 	sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1315 	if (!sdma)
1316 		return -ENOMEM;
1317 
1318 	spin_lock_init(&sdma->channel_0_lock);
1319 
1320 	sdma->dev = &pdev->dev;
1321 
1322 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1323 	irq = platform_get_irq(pdev, 0);
1324 	if (!iores || irq < 0) {
1325 		ret = -EINVAL;
1326 		goto err_irq;
1327 	}
1328 
1329 	if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1330 		ret = -EBUSY;
1331 		goto err_request_region;
1332 	}
1333 
1334 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1335 	if (IS_ERR(sdma->clk_ipg)) {
1336 		ret = PTR_ERR(sdma->clk_ipg);
1337 		goto err_clk;
1338 	}
1339 
1340 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1341 	if (IS_ERR(sdma->clk_ahb)) {
1342 		ret = PTR_ERR(sdma->clk_ahb);
1343 		goto err_clk;
1344 	}
1345 
1346 	clk_prepare(sdma->clk_ipg);
1347 	clk_prepare(sdma->clk_ahb);
1348 
1349 	sdma->regs = ioremap(iores->start, resource_size(iores));
1350 	if (!sdma->regs) {
1351 		ret = -ENOMEM;
1352 		goto err_ioremap;
1353 	}
1354 
1355 	ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1356 	if (ret)
1357 		goto err_request_irq;
1358 
1359 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1360 	if (!sdma->script_addrs) {
1361 		ret = -ENOMEM;
1362 		goto err_alloc;
1363 	}
1364 
1365 	/* initially no scripts available */
1366 	saddr_arr = (s32 *)sdma->script_addrs;
1367 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1368 		saddr_arr[i] = -EINVAL;
1369 
1370 	if (of_id)
1371 		pdev->id_entry = of_id->data;
1372 	sdma->devtype = pdev->id_entry->driver_data;
1373 
1374 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1375 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1376 
1377 	INIT_LIST_HEAD(&sdma->dma_device.channels);
1378 	/* Initialize channel parameters */
1379 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1380 		struct sdma_channel *sdmac = &sdma->channel[i];
1381 
1382 		sdmac->sdma = sdma;
1383 		spin_lock_init(&sdmac->lock);
1384 
1385 		sdmac->chan.device = &sdma->dma_device;
1386 		dma_cookie_init(&sdmac->chan);
1387 		sdmac->channel = i;
1388 
1389 		tasklet_init(&sdmac->tasklet, sdma_tasklet,
1390 			     (unsigned long) sdmac);
1391 		/*
1392 		 * Add the channel to the DMAC list. Do not add channel 0 though
1393 		 * because we need it internally in the SDMA driver. This also means
1394 		 * that channel 0 in dmaengine counting matches sdma channel 1.
1395 		 */
1396 		if (i)
1397 			list_add_tail(&sdmac->chan.device_node,
1398 					&sdma->dma_device.channels);
1399 	}
1400 
1401 	ret = sdma_init(sdma);
1402 	if (ret)
1403 		goto err_init;
1404 
1405 	if (pdata && pdata->script_addrs)
1406 		sdma_add_scripts(sdma, pdata->script_addrs);
1407 
1408 	if (pdata) {
1409 		ret = sdma_get_firmware(sdma, pdata->fw_name);
1410 		if (ret)
1411 			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1412 	} else {
1413 		/*
1414 		 * Because that device tree does not encode ROM script address,
1415 		 * the RAM script in firmware is mandatory for device tree
1416 		 * probe, otherwise it fails.
1417 		 */
1418 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1419 					      &fw_name);
1420 		if (ret)
1421 			dev_warn(&pdev->dev, "failed to get firmware name\n");
1422 		else {
1423 			ret = sdma_get_firmware(sdma, fw_name);
1424 			if (ret)
1425 				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1426 		}
1427 	}
1428 
1429 	sdma->dma_device.dev = &pdev->dev;
1430 
1431 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1432 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1433 	sdma->dma_device.device_tx_status = sdma_tx_status;
1434 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1435 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1436 	sdma->dma_device.device_control = sdma_control;
1437 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1438 	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1439 	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1440 
1441 	ret = dma_async_device_register(&sdma->dma_device);
1442 	if (ret) {
1443 		dev_err(&pdev->dev, "unable to register\n");
1444 		goto err_init;
1445 	}
1446 
1447 	dev_info(sdma->dev, "initialized\n");
1448 
1449 	return 0;
1450 
1451 err_init:
1452 	kfree(sdma->script_addrs);
1453 err_alloc:
1454 	free_irq(irq, sdma);
1455 err_request_irq:
1456 	iounmap(sdma->regs);
1457 err_ioremap:
1458 err_clk:
1459 	release_mem_region(iores->start, resource_size(iores));
1460 err_request_region:
1461 err_irq:
1462 	kfree(sdma);
1463 	return ret;
1464 }
1465 
1466 static int __exit sdma_remove(struct platform_device *pdev)
1467 {
1468 	return -EBUSY;
1469 }
1470 
1471 static struct platform_driver sdma_driver = {
1472 	.driver		= {
1473 		.name	= "imx-sdma",
1474 		.of_match_table = sdma_dt_ids,
1475 	},
1476 	.id_table	= sdma_devtypes,
1477 	.remove		= __exit_p(sdma_remove),
1478 };
1479 
1480 static int __init sdma_module_init(void)
1481 {
1482 	return platform_driver_probe(&sdma_driver, sdma_probe);
1483 }
1484 module_init(sdma_module_init);
1485 
1486 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1487 MODULE_DESCRIPTION("i.MX SDMA driver");
1488 MODULE_LICENSE("GPL");
1489