xref: /openbmc/linux/drivers/dma/imx-sdma.c (revision 92a2c6b2)
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19 
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39 #include <linux/of_dma.h>
40 
41 #include <asm/irq.h>
42 #include <linux/platform_data/dma-imx-sdma.h>
43 #include <linux/platform_data/dma-imx.h>
44 
45 #include "dmaengine.h"
46 
47 /* SDMA registers */
48 #define SDMA_H_C0PTR		0x000
49 #define SDMA_H_INTR		0x004
50 #define SDMA_H_STATSTOP		0x008
51 #define SDMA_H_START		0x00c
52 #define SDMA_H_EVTOVR		0x010
53 #define SDMA_H_DSPOVR		0x014
54 #define SDMA_H_HOSTOVR		0x018
55 #define SDMA_H_EVTPEND		0x01c
56 #define SDMA_H_DSPENBL		0x020
57 #define SDMA_H_RESET		0x024
58 #define SDMA_H_EVTERR		0x028
59 #define SDMA_H_INTRMSK		0x02c
60 #define SDMA_H_PSW		0x030
61 #define SDMA_H_EVTERRDBG	0x034
62 #define SDMA_H_CONFIG		0x038
63 #define SDMA_ONCE_ENB		0x040
64 #define SDMA_ONCE_DATA		0x044
65 #define SDMA_ONCE_INSTR		0x048
66 #define SDMA_ONCE_STAT		0x04c
67 #define SDMA_ONCE_CMD		0x050
68 #define SDMA_EVT_MIRROR		0x054
69 #define SDMA_ILLINSTADDR	0x058
70 #define SDMA_CHN0ADDR		0x05c
71 #define SDMA_ONCE_RTB		0x060
72 #define SDMA_XTRIG_CONF1	0x070
73 #define SDMA_XTRIG_CONF2	0x074
74 #define SDMA_CHNENBL0_IMX35	0x200
75 #define SDMA_CHNENBL0_IMX31	0x080
76 #define SDMA_CHNPRI_0		0x100
77 
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88 
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96 
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101 
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108 
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125 
126 /*
127  * Mode/Count of data node descriptors - IPCv2
128  */
129 struct sdma_mode_count {
130 	u32 count   : 16; /* size of the buffer pointed by this BD */
131 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
132 	u32 command :  8; /* command mostlky used for channel 0 */
133 };
134 
135 /*
136  * Buffer descriptor
137  */
138 struct sdma_buffer_descriptor {
139 	struct sdma_mode_count  mode;
140 	u32 buffer_addr;	/* address of the buffer described */
141 	u32 ext_buffer_addr;	/* extended buffer address */
142 } __attribute__ ((packed));
143 
144 /**
145  * struct sdma_channel_control - Channel control Block
146  *
147  * @current_bd_ptr	current buffer descriptor processed
148  * @base_bd_ptr		first element of buffer descriptor array
149  * @unused		padding. The SDMA engine expects an array of 128 byte
150  *			control blocks
151  */
152 struct sdma_channel_control {
153 	u32 current_bd_ptr;
154 	u32 base_bd_ptr;
155 	u32 unused[2];
156 } __attribute__ ((packed));
157 
158 /**
159  * struct sdma_state_registers - SDMA context for a channel
160  *
161  * @pc:		program counter
162  * @t:		test bit: status of arithmetic & test instruction
163  * @rpc:	return program counter
164  * @sf:		source fault while loading data
165  * @spc:	loop start program counter
166  * @df:		destination fault while storing data
167  * @epc:	loop end program counter
168  * @lm:		loop mode
169  */
170 struct sdma_state_registers {
171 	u32 pc     :14;
172 	u32 unused1: 1;
173 	u32 t      : 1;
174 	u32 rpc    :14;
175 	u32 unused0: 1;
176 	u32 sf     : 1;
177 	u32 spc    :14;
178 	u32 unused2: 1;
179 	u32 df     : 1;
180 	u32 epc    :14;
181 	u32 lm     : 2;
182 } __attribute__ ((packed));
183 
184 /**
185  * struct sdma_context_data - sdma context specific to a channel
186  *
187  * @channel_state:	channel state bits
188  * @gReg:		general registers
189  * @mda:		burst dma destination address register
190  * @msa:		burst dma source address register
191  * @ms:			burst dma status register
192  * @md:			burst dma data register
193  * @pda:		peripheral dma destination address register
194  * @psa:		peripheral dma source address register
195  * @ps:			peripheral dma status register
196  * @pd:			peripheral dma data register
197  * @ca:			CRC polynomial register
198  * @cs:			CRC accumulator register
199  * @dda:		dedicated core destination address register
200  * @dsa:		dedicated core source address register
201  * @ds:			dedicated core status register
202  * @dd:			dedicated core data register
203  */
204 struct sdma_context_data {
205 	struct sdma_state_registers  channel_state;
206 	u32  gReg[8];
207 	u32  mda;
208 	u32  msa;
209 	u32  ms;
210 	u32  md;
211 	u32  pda;
212 	u32  psa;
213 	u32  ps;
214 	u32  pd;
215 	u32  ca;
216 	u32  cs;
217 	u32  dda;
218 	u32  dsa;
219 	u32  ds;
220 	u32  dd;
221 	u32  scratch0;
222 	u32  scratch1;
223 	u32  scratch2;
224 	u32  scratch3;
225 	u32  scratch4;
226 	u32  scratch5;
227 	u32  scratch6;
228 	u32  scratch7;
229 } __attribute__ ((packed));
230 
231 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
232 
233 struct sdma_engine;
234 
235 /**
236  * struct sdma_channel - housekeeping for a SDMA channel
237  *
238  * @sdma		pointer to the SDMA engine for this channel
239  * @channel		the channel number, matches dmaengine chan_id + 1
240  * @direction		transfer type. Needed for setting SDMA script
241  * @peripheral_type	Peripheral type. Needed for setting SDMA script
242  * @event_id0		aka dma request line
243  * @event_id1		for channels that use 2 events
244  * @word_size		peripheral access size
245  * @buf_tail		ID of the buffer that was processed
246  * @num_bd		max NUM_BD. number of descriptors currently handling
247  */
248 struct sdma_channel {
249 	struct sdma_engine		*sdma;
250 	unsigned int			channel;
251 	enum dma_transfer_direction		direction;
252 	enum sdma_peripheral_type	peripheral_type;
253 	unsigned int			event_id0;
254 	unsigned int			event_id1;
255 	enum dma_slave_buswidth		word_size;
256 	unsigned int			buf_tail;
257 	unsigned int			num_bd;
258 	unsigned int			period_len;
259 	struct sdma_buffer_descriptor	*bd;
260 	dma_addr_t			bd_phys;
261 	unsigned int			pc_from_device, pc_to_device;
262 	unsigned long			flags;
263 	dma_addr_t			per_address;
264 	unsigned long			event_mask[2];
265 	unsigned long			watermark_level;
266 	u32				shp_addr, per_addr;
267 	struct dma_chan			chan;
268 	spinlock_t			lock;
269 	struct dma_async_tx_descriptor	desc;
270 	enum dma_status			status;
271 	unsigned int			chn_count;
272 	unsigned int			chn_real_count;
273 	struct tasklet_struct		tasklet;
274 	struct imx_dma_data		data;
275 };
276 
277 #define IMX_DMA_SG_LOOP		BIT(0)
278 
279 #define MAX_DMA_CHANNELS 32
280 #define MXC_SDMA_DEFAULT_PRIORITY 1
281 #define MXC_SDMA_MIN_PRIORITY 1
282 #define MXC_SDMA_MAX_PRIORITY 7
283 
284 #define SDMA_FIRMWARE_MAGIC 0x414d4453
285 
286 /**
287  * struct sdma_firmware_header - Layout of the firmware image
288  *
289  * @magic		"SDMA"
290  * @version_major	increased whenever layout of struct sdma_script_start_addrs
291  *			changes.
292  * @version_minor	firmware minor version (for binary compatible changes)
293  * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
294  * @num_script_addrs	Number of script addresses in this image
295  * @ram_code_start	offset of SDMA ram image in this firmware image
296  * @ram_code_size	size of SDMA ram image
297  * @script_addrs	Stores the start address of the SDMA scripts
298  *			(in SDMA memory space)
299  */
300 struct sdma_firmware_header {
301 	u32	magic;
302 	u32	version_major;
303 	u32	version_minor;
304 	u32	script_addrs_start;
305 	u32	num_script_addrs;
306 	u32	ram_code_start;
307 	u32	ram_code_size;
308 };
309 
310 struct sdma_driver_data {
311 	int chnenbl0;
312 	int num_events;
313 	struct sdma_script_start_addrs	*script_addrs;
314 };
315 
316 struct sdma_engine {
317 	struct device			*dev;
318 	struct device_dma_parameters	dma_parms;
319 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
320 	struct sdma_channel_control	*channel_control;
321 	void __iomem			*regs;
322 	struct sdma_context_data	*context;
323 	dma_addr_t			context_phys;
324 	struct dma_device		dma_device;
325 	struct clk			*clk_ipg;
326 	struct clk			*clk_ahb;
327 	spinlock_t			channel_0_lock;
328 	u32				script_number;
329 	struct sdma_script_start_addrs	*script_addrs;
330 	const struct sdma_driver_data	*drvdata;
331 };
332 
333 static struct sdma_driver_data sdma_imx31 = {
334 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
335 	.num_events = 32,
336 };
337 
338 static struct sdma_script_start_addrs sdma_script_imx25 = {
339 	.ap_2_ap_addr = 729,
340 	.uart_2_mcu_addr = 904,
341 	.per_2_app_addr = 1255,
342 	.mcu_2_app_addr = 834,
343 	.uartsh_2_mcu_addr = 1120,
344 	.per_2_shp_addr = 1329,
345 	.mcu_2_shp_addr = 1048,
346 	.ata_2_mcu_addr = 1560,
347 	.mcu_2_ata_addr = 1479,
348 	.app_2_per_addr = 1189,
349 	.app_2_mcu_addr = 770,
350 	.shp_2_per_addr = 1407,
351 	.shp_2_mcu_addr = 979,
352 };
353 
354 static struct sdma_driver_data sdma_imx25 = {
355 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
356 	.num_events = 48,
357 	.script_addrs = &sdma_script_imx25,
358 };
359 
360 static struct sdma_driver_data sdma_imx35 = {
361 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
362 	.num_events = 48,
363 };
364 
365 static struct sdma_script_start_addrs sdma_script_imx51 = {
366 	.ap_2_ap_addr = 642,
367 	.uart_2_mcu_addr = 817,
368 	.mcu_2_app_addr = 747,
369 	.mcu_2_shp_addr = 961,
370 	.ata_2_mcu_addr = 1473,
371 	.mcu_2_ata_addr = 1392,
372 	.app_2_per_addr = 1033,
373 	.app_2_mcu_addr = 683,
374 	.shp_2_per_addr = 1251,
375 	.shp_2_mcu_addr = 892,
376 };
377 
378 static struct sdma_driver_data sdma_imx51 = {
379 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
380 	.num_events = 48,
381 	.script_addrs = &sdma_script_imx51,
382 };
383 
384 static struct sdma_script_start_addrs sdma_script_imx53 = {
385 	.ap_2_ap_addr = 642,
386 	.app_2_mcu_addr = 683,
387 	.mcu_2_app_addr = 747,
388 	.uart_2_mcu_addr = 817,
389 	.shp_2_mcu_addr = 891,
390 	.mcu_2_shp_addr = 960,
391 	.uartsh_2_mcu_addr = 1032,
392 	.spdif_2_mcu_addr = 1100,
393 	.mcu_2_spdif_addr = 1134,
394 	.firi_2_mcu_addr = 1193,
395 	.mcu_2_firi_addr = 1290,
396 };
397 
398 static struct sdma_driver_data sdma_imx53 = {
399 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
400 	.num_events = 48,
401 	.script_addrs = &sdma_script_imx53,
402 };
403 
404 static struct sdma_script_start_addrs sdma_script_imx6q = {
405 	.ap_2_ap_addr = 642,
406 	.uart_2_mcu_addr = 817,
407 	.mcu_2_app_addr = 747,
408 	.per_2_per_addr = 6331,
409 	.uartsh_2_mcu_addr = 1032,
410 	.mcu_2_shp_addr = 960,
411 	.app_2_mcu_addr = 683,
412 	.shp_2_mcu_addr = 891,
413 	.spdif_2_mcu_addr = 1100,
414 	.mcu_2_spdif_addr = 1134,
415 };
416 
417 static struct sdma_driver_data sdma_imx6q = {
418 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
419 	.num_events = 48,
420 	.script_addrs = &sdma_script_imx6q,
421 };
422 
423 static struct platform_device_id sdma_devtypes[] = {
424 	{
425 		.name = "imx25-sdma",
426 		.driver_data = (unsigned long)&sdma_imx25,
427 	}, {
428 		.name = "imx31-sdma",
429 		.driver_data = (unsigned long)&sdma_imx31,
430 	}, {
431 		.name = "imx35-sdma",
432 		.driver_data = (unsigned long)&sdma_imx35,
433 	}, {
434 		.name = "imx51-sdma",
435 		.driver_data = (unsigned long)&sdma_imx51,
436 	}, {
437 		.name = "imx53-sdma",
438 		.driver_data = (unsigned long)&sdma_imx53,
439 	}, {
440 		.name = "imx6q-sdma",
441 		.driver_data = (unsigned long)&sdma_imx6q,
442 	}, {
443 		/* sentinel */
444 	}
445 };
446 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
447 
448 static const struct of_device_id sdma_dt_ids[] = {
449 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
450 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
451 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
452 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
453 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
454 	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
455 	{ /* sentinel */ }
456 };
457 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
458 
459 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
460 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
461 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
462 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
463 
464 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
465 {
466 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
467 	return chnenbl0 + event * 4;
468 }
469 
470 static int sdma_config_ownership(struct sdma_channel *sdmac,
471 		bool event_override, bool mcu_override, bool dsp_override)
472 {
473 	struct sdma_engine *sdma = sdmac->sdma;
474 	int channel = sdmac->channel;
475 	unsigned long evt, mcu, dsp;
476 
477 	if (event_override && mcu_override && dsp_override)
478 		return -EINVAL;
479 
480 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
481 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
482 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
483 
484 	if (dsp_override)
485 		__clear_bit(channel, &dsp);
486 	else
487 		__set_bit(channel, &dsp);
488 
489 	if (event_override)
490 		__clear_bit(channel, &evt);
491 	else
492 		__set_bit(channel, &evt);
493 
494 	if (mcu_override)
495 		__clear_bit(channel, &mcu);
496 	else
497 		__set_bit(channel, &mcu);
498 
499 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
500 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
501 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
502 
503 	return 0;
504 }
505 
506 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
507 {
508 	writel(BIT(channel), sdma->regs + SDMA_H_START);
509 }
510 
511 /*
512  * sdma_run_channel0 - run a channel and wait till it's done
513  */
514 static int sdma_run_channel0(struct sdma_engine *sdma)
515 {
516 	int ret;
517 	unsigned long timeout = 500;
518 
519 	sdma_enable_channel(sdma, 0);
520 
521 	while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
522 		if (timeout-- <= 0)
523 			break;
524 		udelay(1);
525 	}
526 
527 	if (ret) {
528 		/* Clear the interrupt status */
529 		writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
530 	} else {
531 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
532 	}
533 
534 	return ret ? 0 : -ETIMEDOUT;
535 }
536 
537 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
538 		u32 address)
539 {
540 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
541 	void *buf_virt;
542 	dma_addr_t buf_phys;
543 	int ret;
544 	unsigned long flags;
545 
546 	buf_virt = dma_alloc_coherent(NULL,
547 			size,
548 			&buf_phys, GFP_KERNEL);
549 	if (!buf_virt) {
550 		return -ENOMEM;
551 	}
552 
553 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
554 
555 	bd0->mode.command = C0_SETPM;
556 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
557 	bd0->mode.count = size / 2;
558 	bd0->buffer_addr = buf_phys;
559 	bd0->ext_buffer_addr = address;
560 
561 	memcpy(buf_virt, buf, size);
562 
563 	ret = sdma_run_channel0(sdma);
564 
565 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
566 
567 	dma_free_coherent(NULL, size, buf_virt, buf_phys);
568 
569 	return ret;
570 }
571 
572 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
573 {
574 	struct sdma_engine *sdma = sdmac->sdma;
575 	int channel = sdmac->channel;
576 	unsigned long val;
577 	u32 chnenbl = chnenbl_ofs(sdma, event);
578 
579 	val = readl_relaxed(sdma->regs + chnenbl);
580 	__set_bit(channel, &val);
581 	writel_relaxed(val, sdma->regs + chnenbl);
582 }
583 
584 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
585 {
586 	struct sdma_engine *sdma = sdmac->sdma;
587 	int channel = sdmac->channel;
588 	u32 chnenbl = chnenbl_ofs(sdma, event);
589 	unsigned long val;
590 
591 	val = readl_relaxed(sdma->regs + chnenbl);
592 	__clear_bit(channel, &val);
593 	writel_relaxed(val, sdma->regs + chnenbl);
594 }
595 
596 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
597 {
598 	if (sdmac->desc.callback)
599 		sdmac->desc.callback(sdmac->desc.callback_param);
600 }
601 
602 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
603 {
604 	struct sdma_buffer_descriptor *bd;
605 
606 	/*
607 	 * loop mode. Iterate over descriptors, re-setup them and
608 	 * call callback function.
609 	 */
610 	while (1) {
611 		bd = &sdmac->bd[sdmac->buf_tail];
612 
613 		if (bd->mode.status & BD_DONE)
614 			break;
615 
616 		if (bd->mode.status & BD_RROR)
617 			sdmac->status = DMA_ERROR;
618 
619 		bd->mode.status |= BD_DONE;
620 		sdmac->buf_tail++;
621 		sdmac->buf_tail %= sdmac->num_bd;
622 	}
623 }
624 
625 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
626 {
627 	struct sdma_buffer_descriptor *bd;
628 	int i, error = 0;
629 
630 	sdmac->chn_real_count = 0;
631 	/*
632 	 * non loop mode. Iterate over all descriptors, collect
633 	 * errors and call callback function
634 	 */
635 	for (i = 0; i < sdmac->num_bd; i++) {
636 		bd = &sdmac->bd[i];
637 
638 		 if (bd->mode.status & (BD_DONE | BD_RROR))
639 			error = -EIO;
640 		 sdmac->chn_real_count += bd->mode.count;
641 	}
642 
643 	if (error)
644 		sdmac->status = DMA_ERROR;
645 	else
646 		sdmac->status = DMA_COMPLETE;
647 
648 	dma_cookie_complete(&sdmac->desc);
649 	if (sdmac->desc.callback)
650 		sdmac->desc.callback(sdmac->desc.callback_param);
651 }
652 
653 static void sdma_tasklet(unsigned long data)
654 {
655 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
656 
657 	if (sdmac->flags & IMX_DMA_SG_LOOP)
658 		sdma_handle_channel_loop(sdmac);
659 	else
660 		mxc_sdma_handle_channel_normal(sdmac);
661 }
662 
663 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
664 {
665 	struct sdma_engine *sdma = dev_id;
666 	unsigned long stat;
667 
668 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
669 	/* not interested in channel 0 interrupts */
670 	stat &= ~1;
671 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
672 
673 	while (stat) {
674 		int channel = fls(stat) - 1;
675 		struct sdma_channel *sdmac = &sdma->channel[channel];
676 
677 		if (sdmac->flags & IMX_DMA_SG_LOOP)
678 			sdma_update_channel_loop(sdmac);
679 
680 		tasklet_schedule(&sdmac->tasklet);
681 
682 		__clear_bit(channel, &stat);
683 	}
684 
685 	return IRQ_HANDLED;
686 }
687 
688 /*
689  * sets the pc of SDMA script according to the peripheral type
690  */
691 static void sdma_get_pc(struct sdma_channel *sdmac,
692 		enum sdma_peripheral_type peripheral_type)
693 {
694 	struct sdma_engine *sdma = sdmac->sdma;
695 	int per_2_emi = 0, emi_2_per = 0;
696 	/*
697 	 * These are needed once we start to support transfers between
698 	 * two peripherals or memory-to-memory transfers
699 	 */
700 	int per_2_per = 0, emi_2_emi = 0;
701 
702 	sdmac->pc_from_device = 0;
703 	sdmac->pc_to_device = 0;
704 
705 	switch (peripheral_type) {
706 	case IMX_DMATYPE_MEMORY:
707 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
708 		break;
709 	case IMX_DMATYPE_DSP:
710 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
711 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
712 		break;
713 	case IMX_DMATYPE_FIRI:
714 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
715 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
716 		break;
717 	case IMX_DMATYPE_UART:
718 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
719 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
720 		break;
721 	case IMX_DMATYPE_UART_SP:
722 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
723 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
724 		break;
725 	case IMX_DMATYPE_ATA:
726 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
727 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
728 		break;
729 	case IMX_DMATYPE_CSPI:
730 	case IMX_DMATYPE_EXT:
731 	case IMX_DMATYPE_SSI:
732 	case IMX_DMATYPE_SAI:
733 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
734 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
735 		break;
736 	case IMX_DMATYPE_SSI_DUAL:
737 		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
738 		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
739 		break;
740 	case IMX_DMATYPE_SSI_SP:
741 	case IMX_DMATYPE_MMC:
742 	case IMX_DMATYPE_SDHC:
743 	case IMX_DMATYPE_CSPI_SP:
744 	case IMX_DMATYPE_ESAI:
745 	case IMX_DMATYPE_MSHC_SP:
746 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
747 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
748 		break;
749 	case IMX_DMATYPE_ASRC:
750 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
751 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
752 		per_2_per = sdma->script_addrs->per_2_per_addr;
753 		break;
754 	case IMX_DMATYPE_ASRC_SP:
755 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
756 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
757 		per_2_per = sdma->script_addrs->per_2_per_addr;
758 		break;
759 	case IMX_DMATYPE_MSHC:
760 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
761 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
762 		break;
763 	case IMX_DMATYPE_CCM:
764 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
765 		break;
766 	case IMX_DMATYPE_SPDIF:
767 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
768 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
769 		break;
770 	case IMX_DMATYPE_IPU_MEMORY:
771 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
772 		break;
773 	default:
774 		break;
775 	}
776 
777 	sdmac->pc_from_device = per_2_emi;
778 	sdmac->pc_to_device = emi_2_per;
779 }
780 
781 static int sdma_load_context(struct sdma_channel *sdmac)
782 {
783 	struct sdma_engine *sdma = sdmac->sdma;
784 	int channel = sdmac->channel;
785 	int load_address;
786 	struct sdma_context_data *context = sdma->context;
787 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
788 	int ret;
789 	unsigned long flags;
790 
791 	if (sdmac->direction == DMA_DEV_TO_MEM) {
792 		load_address = sdmac->pc_from_device;
793 	} else {
794 		load_address = sdmac->pc_to_device;
795 	}
796 
797 	if (load_address < 0)
798 		return load_address;
799 
800 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
801 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
802 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
803 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
804 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
805 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
806 
807 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
808 
809 	memset(context, 0, sizeof(*context));
810 	context->channel_state.pc = load_address;
811 
812 	/* Send by context the event mask,base address for peripheral
813 	 * and watermark level
814 	 */
815 	context->gReg[0] = sdmac->event_mask[1];
816 	context->gReg[1] = sdmac->event_mask[0];
817 	context->gReg[2] = sdmac->per_addr;
818 	context->gReg[6] = sdmac->shp_addr;
819 	context->gReg[7] = sdmac->watermark_level;
820 
821 	bd0->mode.command = C0_SETDM;
822 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
823 	bd0->mode.count = sizeof(*context) / 4;
824 	bd0->buffer_addr = sdma->context_phys;
825 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
826 	ret = sdma_run_channel0(sdma);
827 
828 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
829 
830 	return ret;
831 }
832 
833 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
834 {
835 	return container_of(chan, struct sdma_channel, chan);
836 }
837 
838 static int sdma_disable_channel(struct dma_chan *chan)
839 {
840 	struct sdma_channel *sdmac = to_sdma_chan(chan);
841 	struct sdma_engine *sdma = sdmac->sdma;
842 	int channel = sdmac->channel;
843 
844 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
845 	sdmac->status = DMA_ERROR;
846 
847 	return 0;
848 }
849 
850 static int sdma_config_channel(struct dma_chan *chan)
851 {
852 	struct sdma_channel *sdmac = to_sdma_chan(chan);
853 	int ret;
854 
855 	sdma_disable_channel(chan);
856 
857 	sdmac->event_mask[0] = 0;
858 	sdmac->event_mask[1] = 0;
859 	sdmac->shp_addr = 0;
860 	sdmac->per_addr = 0;
861 
862 	if (sdmac->event_id0) {
863 		if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
864 			return -EINVAL;
865 		sdma_event_enable(sdmac, sdmac->event_id0);
866 	}
867 
868 	switch (sdmac->peripheral_type) {
869 	case IMX_DMATYPE_DSP:
870 		sdma_config_ownership(sdmac, false, true, true);
871 		break;
872 	case IMX_DMATYPE_MEMORY:
873 		sdma_config_ownership(sdmac, false, true, false);
874 		break;
875 	default:
876 		sdma_config_ownership(sdmac, true, true, false);
877 		break;
878 	}
879 
880 	sdma_get_pc(sdmac, sdmac->peripheral_type);
881 
882 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
883 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
884 		/* Handle multiple event channels differently */
885 		if (sdmac->event_id1) {
886 			sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
887 			if (sdmac->event_id1 > 31)
888 				__set_bit(31, &sdmac->watermark_level);
889 			sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
890 			if (sdmac->event_id0 > 31)
891 				__set_bit(30, &sdmac->watermark_level);
892 		} else {
893 			__set_bit(sdmac->event_id0, sdmac->event_mask);
894 		}
895 		/* Watermark Level */
896 		sdmac->watermark_level |= sdmac->watermark_level;
897 		/* Address */
898 		sdmac->shp_addr = sdmac->per_address;
899 	} else {
900 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
901 	}
902 
903 	ret = sdma_load_context(sdmac);
904 
905 	return ret;
906 }
907 
908 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
909 		unsigned int priority)
910 {
911 	struct sdma_engine *sdma = sdmac->sdma;
912 	int channel = sdmac->channel;
913 
914 	if (priority < MXC_SDMA_MIN_PRIORITY
915 	    || priority > MXC_SDMA_MAX_PRIORITY) {
916 		return -EINVAL;
917 	}
918 
919 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
920 
921 	return 0;
922 }
923 
924 static int sdma_request_channel(struct sdma_channel *sdmac)
925 {
926 	struct sdma_engine *sdma = sdmac->sdma;
927 	int channel = sdmac->channel;
928 	int ret = -EBUSY;
929 
930 	sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
931 					GFP_KERNEL);
932 	if (!sdmac->bd) {
933 		ret = -ENOMEM;
934 		goto out;
935 	}
936 
937 	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
938 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
939 
940 	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
941 	return 0;
942 out:
943 
944 	return ret;
945 }
946 
947 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
948 {
949 	unsigned long flags;
950 	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
951 	dma_cookie_t cookie;
952 
953 	spin_lock_irqsave(&sdmac->lock, flags);
954 
955 	cookie = dma_cookie_assign(tx);
956 
957 	spin_unlock_irqrestore(&sdmac->lock, flags);
958 
959 	return cookie;
960 }
961 
962 static int sdma_alloc_chan_resources(struct dma_chan *chan)
963 {
964 	struct sdma_channel *sdmac = to_sdma_chan(chan);
965 	struct imx_dma_data *data = chan->private;
966 	int prio, ret;
967 
968 	if (!data)
969 		return -EINVAL;
970 
971 	switch (data->priority) {
972 	case DMA_PRIO_HIGH:
973 		prio = 3;
974 		break;
975 	case DMA_PRIO_MEDIUM:
976 		prio = 2;
977 		break;
978 	case DMA_PRIO_LOW:
979 	default:
980 		prio = 1;
981 		break;
982 	}
983 
984 	sdmac->peripheral_type = data->peripheral_type;
985 	sdmac->event_id0 = data->dma_request;
986 
987 	clk_enable(sdmac->sdma->clk_ipg);
988 	clk_enable(sdmac->sdma->clk_ahb);
989 
990 	ret = sdma_request_channel(sdmac);
991 	if (ret)
992 		return ret;
993 
994 	ret = sdma_set_channel_priority(sdmac, prio);
995 	if (ret)
996 		return ret;
997 
998 	dma_async_tx_descriptor_init(&sdmac->desc, chan);
999 	sdmac->desc.tx_submit = sdma_tx_submit;
1000 	/* txd.flags will be overwritten in prep funcs */
1001 	sdmac->desc.flags = DMA_CTRL_ACK;
1002 
1003 	return 0;
1004 }
1005 
1006 static void sdma_free_chan_resources(struct dma_chan *chan)
1007 {
1008 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1009 	struct sdma_engine *sdma = sdmac->sdma;
1010 
1011 	sdma_disable_channel(chan);
1012 
1013 	if (sdmac->event_id0)
1014 		sdma_event_disable(sdmac, sdmac->event_id0);
1015 	if (sdmac->event_id1)
1016 		sdma_event_disable(sdmac, sdmac->event_id1);
1017 
1018 	sdmac->event_id0 = 0;
1019 	sdmac->event_id1 = 0;
1020 
1021 	sdma_set_channel_priority(sdmac, 0);
1022 
1023 	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1024 
1025 	clk_disable(sdma->clk_ipg);
1026 	clk_disable(sdma->clk_ahb);
1027 }
1028 
1029 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1030 		struct dma_chan *chan, struct scatterlist *sgl,
1031 		unsigned int sg_len, enum dma_transfer_direction direction,
1032 		unsigned long flags, void *context)
1033 {
1034 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1035 	struct sdma_engine *sdma = sdmac->sdma;
1036 	int ret, i, count;
1037 	int channel = sdmac->channel;
1038 	struct scatterlist *sg;
1039 
1040 	if (sdmac->status == DMA_IN_PROGRESS)
1041 		return NULL;
1042 	sdmac->status = DMA_IN_PROGRESS;
1043 
1044 	sdmac->flags = 0;
1045 
1046 	sdmac->buf_tail = 0;
1047 
1048 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1049 			sg_len, channel);
1050 
1051 	sdmac->direction = direction;
1052 	ret = sdma_load_context(sdmac);
1053 	if (ret)
1054 		goto err_out;
1055 
1056 	if (sg_len > NUM_BD) {
1057 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1058 				channel, sg_len, NUM_BD);
1059 		ret = -EINVAL;
1060 		goto err_out;
1061 	}
1062 
1063 	sdmac->chn_count = 0;
1064 	for_each_sg(sgl, sg, sg_len, i) {
1065 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1066 		int param;
1067 
1068 		bd->buffer_addr = sg->dma_address;
1069 
1070 		count = sg_dma_len(sg);
1071 
1072 		if (count > 0xffff) {
1073 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1074 					channel, count, 0xffff);
1075 			ret = -EINVAL;
1076 			goto err_out;
1077 		}
1078 
1079 		bd->mode.count = count;
1080 		sdmac->chn_count += count;
1081 
1082 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1083 			ret =  -EINVAL;
1084 			goto err_out;
1085 		}
1086 
1087 		switch (sdmac->word_size) {
1088 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1089 			bd->mode.command = 0;
1090 			if (count & 3 || sg->dma_address & 3)
1091 				return NULL;
1092 			break;
1093 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1094 			bd->mode.command = 2;
1095 			if (count & 1 || sg->dma_address & 1)
1096 				return NULL;
1097 			break;
1098 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1099 			bd->mode.command = 1;
1100 			break;
1101 		default:
1102 			return NULL;
1103 		}
1104 
1105 		param = BD_DONE | BD_EXTD | BD_CONT;
1106 
1107 		if (i + 1 == sg_len) {
1108 			param |= BD_INTR;
1109 			param |= BD_LAST;
1110 			param &= ~BD_CONT;
1111 		}
1112 
1113 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1114 				i, count, (u64)sg->dma_address,
1115 				param & BD_WRAP ? "wrap" : "",
1116 				param & BD_INTR ? " intr" : "");
1117 
1118 		bd->mode.status = param;
1119 	}
1120 
1121 	sdmac->num_bd = sg_len;
1122 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1123 
1124 	return &sdmac->desc;
1125 err_out:
1126 	sdmac->status = DMA_ERROR;
1127 	return NULL;
1128 }
1129 
1130 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1131 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1132 		size_t period_len, enum dma_transfer_direction direction,
1133 		unsigned long flags)
1134 {
1135 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1136 	struct sdma_engine *sdma = sdmac->sdma;
1137 	int num_periods = buf_len / period_len;
1138 	int channel = sdmac->channel;
1139 	int ret, i = 0, buf = 0;
1140 
1141 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1142 
1143 	if (sdmac->status == DMA_IN_PROGRESS)
1144 		return NULL;
1145 
1146 	sdmac->status = DMA_IN_PROGRESS;
1147 
1148 	sdmac->buf_tail = 0;
1149 	sdmac->period_len = period_len;
1150 
1151 	sdmac->flags |= IMX_DMA_SG_LOOP;
1152 	sdmac->direction = direction;
1153 	ret = sdma_load_context(sdmac);
1154 	if (ret)
1155 		goto err_out;
1156 
1157 	if (num_periods > NUM_BD) {
1158 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1159 				channel, num_periods, NUM_BD);
1160 		goto err_out;
1161 	}
1162 
1163 	if (period_len > 0xffff) {
1164 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1165 				channel, period_len, 0xffff);
1166 		goto err_out;
1167 	}
1168 
1169 	while (buf < buf_len) {
1170 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1171 		int param;
1172 
1173 		bd->buffer_addr = dma_addr;
1174 
1175 		bd->mode.count = period_len;
1176 
1177 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1178 			goto err_out;
1179 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1180 			bd->mode.command = 0;
1181 		else
1182 			bd->mode.command = sdmac->word_size;
1183 
1184 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1185 		if (i + 1 == num_periods)
1186 			param |= BD_WRAP;
1187 
1188 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1189 				i, period_len, (u64)dma_addr,
1190 				param & BD_WRAP ? "wrap" : "",
1191 				param & BD_INTR ? " intr" : "");
1192 
1193 		bd->mode.status = param;
1194 
1195 		dma_addr += period_len;
1196 		buf += period_len;
1197 
1198 		i++;
1199 	}
1200 
1201 	sdmac->num_bd = num_periods;
1202 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1203 
1204 	return &sdmac->desc;
1205 err_out:
1206 	sdmac->status = DMA_ERROR;
1207 	return NULL;
1208 }
1209 
1210 static int sdma_config(struct dma_chan *chan,
1211 		       struct dma_slave_config *dmaengine_cfg)
1212 {
1213 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1214 
1215 	if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1216 		sdmac->per_address = dmaengine_cfg->src_addr;
1217 		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1218 			dmaengine_cfg->src_addr_width;
1219 		sdmac->word_size = dmaengine_cfg->src_addr_width;
1220 	} else {
1221 		sdmac->per_address = dmaengine_cfg->dst_addr;
1222 		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1223 			dmaengine_cfg->dst_addr_width;
1224 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1225 	}
1226 	sdmac->direction = dmaengine_cfg->direction;
1227 	return sdma_config_channel(chan);
1228 }
1229 
1230 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1231 				      dma_cookie_t cookie,
1232 				      struct dma_tx_state *txstate)
1233 {
1234 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1235 	u32 residue;
1236 
1237 	if (sdmac->flags & IMX_DMA_SG_LOOP)
1238 		residue = (sdmac->num_bd - sdmac->buf_tail) * sdmac->period_len;
1239 	else
1240 		residue = sdmac->chn_count - sdmac->chn_real_count;
1241 
1242 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1243 			 residue);
1244 
1245 	return sdmac->status;
1246 }
1247 
1248 static void sdma_issue_pending(struct dma_chan *chan)
1249 {
1250 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1251 	struct sdma_engine *sdma = sdmac->sdma;
1252 
1253 	if (sdmac->status == DMA_IN_PROGRESS)
1254 		sdma_enable_channel(sdma, sdmac->channel);
1255 }
1256 
1257 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1258 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1259 
1260 static void sdma_add_scripts(struct sdma_engine *sdma,
1261 		const struct sdma_script_start_addrs *addr)
1262 {
1263 	s32 *addr_arr = (u32 *)addr;
1264 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1265 	int i;
1266 
1267 	/* use the default firmware in ROM if missing external firmware */
1268 	if (!sdma->script_number)
1269 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1270 
1271 	for (i = 0; i < sdma->script_number; i++)
1272 		if (addr_arr[i] > 0)
1273 			saddr_arr[i] = addr_arr[i];
1274 }
1275 
1276 static void sdma_load_firmware(const struct firmware *fw, void *context)
1277 {
1278 	struct sdma_engine *sdma = context;
1279 	const struct sdma_firmware_header *header;
1280 	const struct sdma_script_start_addrs *addr;
1281 	unsigned short *ram_code;
1282 
1283 	if (!fw) {
1284 		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1285 		/* In this case we just use the ROM firmware. */
1286 		return;
1287 	}
1288 
1289 	if (fw->size < sizeof(*header))
1290 		goto err_firmware;
1291 
1292 	header = (struct sdma_firmware_header *)fw->data;
1293 
1294 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1295 		goto err_firmware;
1296 	if (header->ram_code_start + header->ram_code_size > fw->size)
1297 		goto err_firmware;
1298 	switch (header->version_major) {
1299 	case 1:
1300 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1301 		break;
1302 	case 2:
1303 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1304 		break;
1305 	default:
1306 		dev_err(sdma->dev, "unknown firmware version\n");
1307 		goto err_firmware;
1308 	}
1309 
1310 	addr = (void *)header + header->script_addrs_start;
1311 	ram_code = (void *)header + header->ram_code_start;
1312 
1313 	clk_enable(sdma->clk_ipg);
1314 	clk_enable(sdma->clk_ahb);
1315 	/* download the RAM image for SDMA */
1316 	sdma_load_script(sdma, ram_code,
1317 			header->ram_code_size,
1318 			addr->ram_code_start_addr);
1319 	clk_disable(sdma->clk_ipg);
1320 	clk_disable(sdma->clk_ahb);
1321 
1322 	sdma_add_scripts(sdma, addr);
1323 
1324 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1325 			header->version_major,
1326 			header->version_minor);
1327 
1328 err_firmware:
1329 	release_firmware(fw);
1330 }
1331 
1332 static int sdma_get_firmware(struct sdma_engine *sdma,
1333 		const char *fw_name)
1334 {
1335 	int ret;
1336 
1337 	ret = request_firmware_nowait(THIS_MODULE,
1338 			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1339 			GFP_KERNEL, sdma, sdma_load_firmware);
1340 
1341 	return ret;
1342 }
1343 
1344 static int sdma_init(struct sdma_engine *sdma)
1345 {
1346 	int i, ret;
1347 	dma_addr_t ccb_phys;
1348 
1349 	clk_enable(sdma->clk_ipg);
1350 	clk_enable(sdma->clk_ahb);
1351 
1352 	/* Be sure SDMA has not started yet */
1353 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1354 
1355 	sdma->channel_control = dma_alloc_coherent(NULL,
1356 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1357 			sizeof(struct sdma_context_data),
1358 			&ccb_phys, GFP_KERNEL);
1359 
1360 	if (!sdma->channel_control) {
1361 		ret = -ENOMEM;
1362 		goto err_dma_alloc;
1363 	}
1364 
1365 	sdma->context = (void *)sdma->channel_control +
1366 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1367 	sdma->context_phys = ccb_phys +
1368 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1369 
1370 	/* Zero-out the CCB structures array just allocated */
1371 	memset(sdma->channel_control, 0,
1372 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1373 
1374 	/* disable all channels */
1375 	for (i = 0; i < sdma->drvdata->num_events; i++)
1376 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1377 
1378 	/* All channels have priority 0 */
1379 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1380 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1381 
1382 	ret = sdma_request_channel(&sdma->channel[0]);
1383 	if (ret)
1384 		goto err_dma_alloc;
1385 
1386 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1387 
1388 	/* Set Command Channel (Channel Zero) */
1389 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1390 
1391 	/* Set bits of CONFIG register but with static context switching */
1392 	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1393 	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1394 
1395 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1396 
1397 	/* Set bits of CONFIG register with given context switching mode */
1398 	writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1399 
1400 	/* Initializes channel's priorities */
1401 	sdma_set_channel_priority(&sdma->channel[0], 7);
1402 
1403 	clk_disable(sdma->clk_ipg);
1404 	clk_disable(sdma->clk_ahb);
1405 
1406 	return 0;
1407 
1408 err_dma_alloc:
1409 	clk_disable(sdma->clk_ipg);
1410 	clk_disable(sdma->clk_ahb);
1411 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1412 	return ret;
1413 }
1414 
1415 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1416 {
1417 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1418 	struct imx_dma_data *data = fn_param;
1419 
1420 	if (!imx_dma_is_general_purpose(chan))
1421 		return false;
1422 
1423 	sdmac->data = *data;
1424 	chan->private = &sdmac->data;
1425 
1426 	return true;
1427 }
1428 
1429 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1430 				   struct of_dma *ofdma)
1431 {
1432 	struct sdma_engine *sdma = ofdma->of_dma_data;
1433 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1434 	struct imx_dma_data data;
1435 
1436 	if (dma_spec->args_count != 3)
1437 		return NULL;
1438 
1439 	data.dma_request = dma_spec->args[0];
1440 	data.peripheral_type = dma_spec->args[1];
1441 	data.priority = dma_spec->args[2];
1442 
1443 	return dma_request_channel(mask, sdma_filter_fn, &data);
1444 }
1445 
1446 static int sdma_probe(struct platform_device *pdev)
1447 {
1448 	const struct of_device_id *of_id =
1449 			of_match_device(sdma_dt_ids, &pdev->dev);
1450 	struct device_node *np = pdev->dev.of_node;
1451 	const char *fw_name;
1452 	int ret;
1453 	int irq;
1454 	struct resource *iores;
1455 	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1456 	int i;
1457 	struct sdma_engine *sdma;
1458 	s32 *saddr_arr;
1459 	const struct sdma_driver_data *drvdata = NULL;
1460 
1461 	if (of_id)
1462 		drvdata = of_id->data;
1463 	else if (pdev->id_entry)
1464 		drvdata = (void *)pdev->id_entry->driver_data;
1465 
1466 	if (!drvdata) {
1467 		dev_err(&pdev->dev, "unable to find driver data\n");
1468 		return -EINVAL;
1469 	}
1470 
1471 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1472 	if (ret)
1473 		return ret;
1474 
1475 	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1476 	if (!sdma)
1477 		return -ENOMEM;
1478 
1479 	spin_lock_init(&sdma->channel_0_lock);
1480 
1481 	sdma->dev = &pdev->dev;
1482 	sdma->drvdata = drvdata;
1483 
1484 	irq = platform_get_irq(pdev, 0);
1485 	if (irq < 0)
1486 		return irq;
1487 
1488 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1489 	sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1490 	if (IS_ERR(sdma->regs))
1491 		return PTR_ERR(sdma->regs);
1492 
1493 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1494 	if (IS_ERR(sdma->clk_ipg))
1495 		return PTR_ERR(sdma->clk_ipg);
1496 
1497 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1498 	if (IS_ERR(sdma->clk_ahb))
1499 		return PTR_ERR(sdma->clk_ahb);
1500 
1501 	clk_prepare(sdma->clk_ipg);
1502 	clk_prepare(sdma->clk_ahb);
1503 
1504 	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
1505 			       sdma);
1506 	if (ret)
1507 		return ret;
1508 
1509 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1510 	if (!sdma->script_addrs)
1511 		return -ENOMEM;
1512 
1513 	/* initially no scripts available */
1514 	saddr_arr = (s32 *)sdma->script_addrs;
1515 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1516 		saddr_arr[i] = -EINVAL;
1517 
1518 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1519 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1520 
1521 	INIT_LIST_HEAD(&sdma->dma_device.channels);
1522 	/* Initialize channel parameters */
1523 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1524 		struct sdma_channel *sdmac = &sdma->channel[i];
1525 
1526 		sdmac->sdma = sdma;
1527 		spin_lock_init(&sdmac->lock);
1528 
1529 		sdmac->chan.device = &sdma->dma_device;
1530 		dma_cookie_init(&sdmac->chan);
1531 		sdmac->channel = i;
1532 
1533 		tasklet_init(&sdmac->tasklet, sdma_tasklet,
1534 			     (unsigned long) sdmac);
1535 		/*
1536 		 * Add the channel to the DMAC list. Do not add channel 0 though
1537 		 * because we need it internally in the SDMA driver. This also means
1538 		 * that channel 0 in dmaengine counting matches sdma channel 1.
1539 		 */
1540 		if (i)
1541 			list_add_tail(&sdmac->chan.device_node,
1542 					&sdma->dma_device.channels);
1543 	}
1544 
1545 	ret = sdma_init(sdma);
1546 	if (ret)
1547 		goto err_init;
1548 
1549 	if (sdma->drvdata->script_addrs)
1550 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1551 	if (pdata && pdata->script_addrs)
1552 		sdma_add_scripts(sdma, pdata->script_addrs);
1553 
1554 	if (pdata) {
1555 		ret = sdma_get_firmware(sdma, pdata->fw_name);
1556 		if (ret)
1557 			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1558 	} else {
1559 		/*
1560 		 * Because that device tree does not encode ROM script address,
1561 		 * the RAM script in firmware is mandatory for device tree
1562 		 * probe, otherwise it fails.
1563 		 */
1564 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1565 					      &fw_name);
1566 		if (ret)
1567 			dev_warn(&pdev->dev, "failed to get firmware name\n");
1568 		else {
1569 			ret = sdma_get_firmware(sdma, fw_name);
1570 			if (ret)
1571 				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1572 		}
1573 	}
1574 
1575 	sdma->dma_device.dev = &pdev->dev;
1576 
1577 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1578 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1579 	sdma->dma_device.device_tx_status = sdma_tx_status;
1580 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1581 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1582 	sdma->dma_device.device_config = sdma_config;
1583 	sdma->dma_device.device_terminate_all = sdma_disable_channel;
1584 	sdma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1585 	sdma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1586 	sdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1587 	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1588 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1589 	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1590 	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1591 
1592 	platform_set_drvdata(pdev, sdma);
1593 
1594 	ret = dma_async_device_register(&sdma->dma_device);
1595 	if (ret) {
1596 		dev_err(&pdev->dev, "unable to register\n");
1597 		goto err_init;
1598 	}
1599 
1600 	if (np) {
1601 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
1602 		if (ret) {
1603 			dev_err(&pdev->dev, "failed to register controller\n");
1604 			goto err_register;
1605 		}
1606 	}
1607 
1608 	dev_info(sdma->dev, "initialized\n");
1609 
1610 	return 0;
1611 
1612 err_register:
1613 	dma_async_device_unregister(&sdma->dma_device);
1614 err_init:
1615 	kfree(sdma->script_addrs);
1616 	return ret;
1617 }
1618 
1619 static int sdma_remove(struct platform_device *pdev)
1620 {
1621 	struct sdma_engine *sdma = platform_get_drvdata(pdev);
1622 	int i;
1623 
1624 	dma_async_device_unregister(&sdma->dma_device);
1625 	kfree(sdma->script_addrs);
1626 	/* Kill the tasklet */
1627 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1628 		struct sdma_channel *sdmac = &sdma->channel[i];
1629 
1630 		tasklet_kill(&sdmac->tasklet);
1631 	}
1632 
1633 	platform_set_drvdata(pdev, NULL);
1634 	dev_info(&pdev->dev, "Removed...\n");
1635 	return 0;
1636 }
1637 
1638 static struct platform_driver sdma_driver = {
1639 	.driver		= {
1640 		.name	= "imx-sdma",
1641 		.of_match_table = sdma_dt_ids,
1642 	},
1643 	.id_table	= sdma_devtypes,
1644 	.remove		= sdma_remove,
1645 	.probe		= sdma_probe,
1646 };
1647 
1648 module_platform_driver(sdma_driver);
1649 
1650 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1651 MODULE_DESCRIPTION("i.MX SDMA driver");
1652 MODULE_LICENSE("GPL");
1653