xref: /openbmc/linux/drivers/dma/imx-sdma.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
10 //
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12 
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 #include <linux/semaphore.h>
24 #include <linux/spinlock.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/slab.h>
29 #include <linux/platform_device.h>
30 #include <linux/dmaengine.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_device.h>
34 #include <linux/of_dma.h>
35 #include <linux/workqueue.h>
36 
37 #include <asm/irq.h>
38 #include <linux/platform_data/dma-imx.h>
39 #include <linux/regmap.h>
40 #include <linux/mfd/syscon.h>
41 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
42 
43 #include "dmaengine.h"
44 #include "virt-dma.h"
45 
46 /* SDMA registers */
47 #define SDMA_H_C0PTR		0x000
48 #define SDMA_H_INTR		0x004
49 #define SDMA_H_STATSTOP		0x008
50 #define SDMA_H_START		0x00c
51 #define SDMA_H_EVTOVR		0x010
52 #define SDMA_H_DSPOVR		0x014
53 #define SDMA_H_HOSTOVR		0x018
54 #define SDMA_H_EVTPEND		0x01c
55 #define SDMA_H_DSPENBL		0x020
56 #define SDMA_H_RESET		0x024
57 #define SDMA_H_EVTERR		0x028
58 #define SDMA_H_INTRMSK		0x02c
59 #define SDMA_H_PSW		0x030
60 #define SDMA_H_EVTERRDBG	0x034
61 #define SDMA_H_CONFIG		0x038
62 #define SDMA_ONCE_ENB		0x040
63 #define SDMA_ONCE_DATA		0x044
64 #define SDMA_ONCE_INSTR		0x048
65 #define SDMA_ONCE_STAT		0x04c
66 #define SDMA_ONCE_CMD		0x050
67 #define SDMA_EVT_MIRROR		0x054
68 #define SDMA_ILLINSTADDR	0x058
69 #define SDMA_CHN0ADDR		0x05c
70 #define SDMA_ONCE_RTB		0x060
71 #define SDMA_XTRIG_CONF1	0x070
72 #define SDMA_XTRIG_CONF2	0x074
73 #define SDMA_CHNENBL0_IMX35	0x200
74 #define SDMA_CHNENBL0_IMX31	0x080
75 #define SDMA_CHNPRI_0		0x100
76 
77 /*
78  * Buffer descriptor status values.
79  */
80 #define BD_DONE  0x01
81 #define BD_WRAP  0x02
82 #define BD_CONT  0x04
83 #define BD_INTR  0x08
84 #define BD_RROR  0x10
85 #define BD_LAST  0x20
86 #define BD_EXTD  0x80
87 
88 /*
89  * Data Node descriptor status values.
90  */
91 #define DND_END_OF_FRAME  0x80
92 #define DND_END_OF_XFER   0x40
93 #define DND_DONE          0x20
94 #define DND_UNUSED        0x01
95 
96 /*
97  * IPCV2 descriptor status values.
98  */
99 #define BD_IPCV2_END_OF_FRAME  0x40
100 
101 #define IPCV2_MAX_NODES        50
102 /*
103  * Error bit set in the CCB status field by the SDMA,
104  * in setbd routine, in case of a transfer error
105  */
106 #define DATA_ERROR  0x10000000
107 
108 /*
109  * Buffer descriptor commands.
110  */
111 #define C0_ADDR             0x01
112 #define C0_LOAD             0x02
113 #define C0_DUMP             0x03
114 #define C0_SETCTX           0x07
115 #define C0_GETCTX           0x03
116 #define C0_SETDM            0x01
117 #define C0_SETPM            0x04
118 #define C0_GETDM            0x02
119 #define C0_GETPM            0x08
120 /*
121  * Change endianness indicator in the BD command field
122  */
123 #define CHANGE_ENDIANNESS   0x80
124 
125 /*
126  *  p_2_p watermark_level description
127  *	Bits		Name			Description
128  *	0-7		Lower WML		Lower watermark level
129  *	8		PS			1: Pad Swallowing
130  *						0: No Pad Swallowing
131  *	9		PA			1: Pad Adding
132  *						0: No Pad Adding
133  *	10		SPDIF			If this bit is set both source
134  *						and destination are on SPBA
135  *	11		Source Bit(SP)		1: Source on SPBA
136  *						0: Source on AIPS
137  *	12		Destination Bit(DP)	1: Destination on SPBA
138  *						0: Destination on AIPS
139  *	13-15		---------		MUST BE 0
140  *	16-23		Higher WML		HWML
141  *	24-27		N			Total number of samples after
142  *						which Pad adding/Swallowing
143  *						must be done. It must be odd.
144  *	28		Lower WML Event(LWE)	SDMA events reg to check for
145  *						LWML event mask
146  *						0: LWE in EVENTS register
147  *						1: LWE in EVENTS2 register
148  *	29		Higher WML Event(HWE)	SDMA events reg to check for
149  *						HWML event mask
150  *						0: HWE in EVENTS register
151  *						1: HWE in EVENTS2 register
152  *	30		---------		MUST BE 0
153  *	31		CONT			1: Amount of samples to be
154  *						transferred is unknown and
155  *						script will keep on
156  *						transferring samples as long as
157  *						both events are detected and
158  *						script must be manually stopped
159  *						by the application
160  *						0: The amount of samples to be
161  *						transferred is equal to the
162  *						count field of mode word
163  */
164 #define SDMA_WATERMARK_LEVEL_LWML	0xFF
165 #define SDMA_WATERMARK_LEVEL_PS		BIT(8)
166 #define SDMA_WATERMARK_LEVEL_PA		BIT(9)
167 #define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
168 #define SDMA_WATERMARK_LEVEL_SP		BIT(11)
169 #define SDMA_WATERMARK_LEVEL_DP		BIT(12)
170 #define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
171 #define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
172 #define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
173 #define SDMA_WATERMARK_LEVEL_CONT	BIT(31)
174 
175 #define SDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
176 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
177 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
178 
179 #define SDMA_DMA_DIRECTIONS	(BIT(DMA_DEV_TO_MEM) | \
180 				 BIT(DMA_MEM_TO_DEV) | \
181 				 BIT(DMA_DEV_TO_DEV))
182 
183 /**
184  * struct sdma_script_start_addrs - SDMA script start pointers
185  *
186  * start addresses of the different functions in the physical
187  * address space of the SDMA engine.
188  */
189 struct sdma_script_start_addrs {
190 	s32 ap_2_ap_addr;
191 	s32 ap_2_bp_addr;
192 	s32 ap_2_ap_fixed_addr;
193 	s32 bp_2_ap_addr;
194 	s32 loopback_on_dsp_side_addr;
195 	s32 mcu_interrupt_only_addr;
196 	s32 firi_2_per_addr;
197 	s32 firi_2_mcu_addr;
198 	s32 per_2_firi_addr;
199 	s32 mcu_2_firi_addr;
200 	s32 uart_2_per_addr;
201 	s32 uart_2_mcu_addr;
202 	s32 per_2_app_addr;
203 	s32 mcu_2_app_addr;
204 	s32 per_2_per_addr;
205 	s32 uartsh_2_per_addr;
206 	s32 uartsh_2_mcu_addr;
207 	s32 per_2_shp_addr;
208 	s32 mcu_2_shp_addr;
209 	s32 ata_2_mcu_addr;
210 	s32 mcu_2_ata_addr;
211 	s32 app_2_per_addr;
212 	s32 app_2_mcu_addr;
213 	s32 shp_2_per_addr;
214 	s32 shp_2_mcu_addr;
215 	s32 mshc_2_mcu_addr;
216 	s32 mcu_2_mshc_addr;
217 	s32 spdif_2_mcu_addr;
218 	s32 mcu_2_spdif_addr;
219 	s32 asrc_2_mcu_addr;
220 	s32 ext_mem_2_ipu_addr;
221 	s32 descrambler_addr;
222 	s32 dptc_dvfs_addr;
223 	s32 utra_addr;
224 	s32 ram_code_start_addr;
225 	/* End of v1 array */
226 	s32 mcu_2_ssish_addr;
227 	s32 ssish_2_mcu_addr;
228 	s32 hdmi_dma_addr;
229 	/* End of v2 array */
230 	s32 zcanfd_2_mcu_addr;
231 	s32 zqspi_2_mcu_addr;
232 	s32 mcu_2_ecspi_addr;
233 	/* End of v3 array */
234 	s32 mcu_2_zqspi_addr;
235 	/* End of v4 array */
236 };
237 
238 /*
239  * Mode/Count of data node descriptors - IPCv2
240  */
241 struct sdma_mode_count {
242 #define SDMA_BD_MAX_CNT	0xffff
243 	u32 count   : 16; /* size of the buffer pointed by this BD */
244 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
245 	u32 command :  8; /* command mostly used for channel 0 */
246 };
247 
248 /*
249  * Buffer descriptor
250  */
251 struct sdma_buffer_descriptor {
252 	struct sdma_mode_count  mode;
253 	u32 buffer_addr;	/* address of the buffer described */
254 	u32 ext_buffer_addr;	/* extended buffer address */
255 } __attribute__ ((packed));
256 
257 /**
258  * struct sdma_channel_control - Channel control Block
259  *
260  * @current_bd_ptr:	current buffer descriptor processed
261  * @base_bd_ptr:	first element of buffer descriptor array
262  * @unused:		padding. The SDMA engine expects an array of 128 byte
263  *			control blocks
264  */
265 struct sdma_channel_control {
266 	u32 current_bd_ptr;
267 	u32 base_bd_ptr;
268 	u32 unused[2];
269 } __attribute__ ((packed));
270 
271 /**
272  * struct sdma_state_registers - SDMA context for a channel
273  *
274  * @pc:		program counter
275  * @unused1:	unused
276  * @t:		test bit: status of arithmetic & test instruction
277  * @rpc:	return program counter
278  * @unused0:	unused
279  * @sf:		source fault while loading data
280  * @spc:	loop start program counter
281  * @unused2:	unused
282  * @df:		destination fault while storing data
283  * @epc:	loop end program counter
284  * @lm:		loop mode
285  */
286 struct sdma_state_registers {
287 	u32 pc     :14;
288 	u32 unused1: 1;
289 	u32 t      : 1;
290 	u32 rpc    :14;
291 	u32 unused0: 1;
292 	u32 sf     : 1;
293 	u32 spc    :14;
294 	u32 unused2: 1;
295 	u32 df     : 1;
296 	u32 epc    :14;
297 	u32 lm     : 2;
298 } __attribute__ ((packed));
299 
300 /**
301  * struct sdma_context_data - sdma context specific to a channel
302  *
303  * @channel_state:	channel state bits
304  * @gReg:		general registers
305  * @mda:		burst dma destination address register
306  * @msa:		burst dma source address register
307  * @ms:			burst dma status register
308  * @md:			burst dma data register
309  * @pda:		peripheral dma destination address register
310  * @psa:		peripheral dma source address register
311  * @ps:			peripheral dma status register
312  * @pd:			peripheral dma data register
313  * @ca:			CRC polynomial register
314  * @cs:			CRC accumulator register
315  * @dda:		dedicated core destination address register
316  * @dsa:		dedicated core source address register
317  * @ds:			dedicated core status register
318  * @dd:			dedicated core data register
319  * @scratch0:		1st word of dedicated ram for context switch
320  * @scratch1:		2nd word of dedicated ram for context switch
321  * @scratch2:		3rd word of dedicated ram for context switch
322  * @scratch3:		4th word of dedicated ram for context switch
323  * @scratch4:		5th word of dedicated ram for context switch
324  * @scratch5:		6th word of dedicated ram for context switch
325  * @scratch6:		7th word of dedicated ram for context switch
326  * @scratch7:		8th word of dedicated ram for context switch
327  */
328 struct sdma_context_data {
329 	struct sdma_state_registers  channel_state;
330 	u32  gReg[8];
331 	u32  mda;
332 	u32  msa;
333 	u32  ms;
334 	u32  md;
335 	u32  pda;
336 	u32  psa;
337 	u32  ps;
338 	u32  pd;
339 	u32  ca;
340 	u32  cs;
341 	u32  dda;
342 	u32  dsa;
343 	u32  ds;
344 	u32  dd;
345 	u32  scratch0;
346 	u32  scratch1;
347 	u32  scratch2;
348 	u32  scratch3;
349 	u32  scratch4;
350 	u32  scratch5;
351 	u32  scratch6;
352 	u32  scratch7;
353 } __attribute__ ((packed));
354 
355 
356 struct sdma_engine;
357 
358 /**
359  * struct sdma_desc - descriptor structor for one transfer
360  * @vd:			descriptor for virt dma
361  * @num_bd:		number of descriptors currently handling
362  * @bd_phys:		physical address of bd
363  * @buf_tail:		ID of the buffer that was processed
364  * @buf_ptail:		ID of the previous buffer that was processed
365  * @period_len:		period length, used in cyclic.
366  * @chn_real_count:	the real count updated from bd->mode.count
367  * @chn_count:		the transfer count set
368  * @sdmac:		sdma_channel pointer
369  * @bd:			pointer of allocate bd
370  */
371 struct sdma_desc {
372 	struct virt_dma_desc	vd;
373 	unsigned int		num_bd;
374 	dma_addr_t		bd_phys;
375 	unsigned int		buf_tail;
376 	unsigned int		buf_ptail;
377 	unsigned int		period_len;
378 	unsigned int		chn_real_count;
379 	unsigned int		chn_count;
380 	struct sdma_channel	*sdmac;
381 	struct sdma_buffer_descriptor *bd;
382 };
383 
384 /**
385  * struct sdma_channel - housekeeping for a SDMA channel
386  *
387  * @vc:			virt_dma base structure
388  * @desc:		sdma description including vd and other special member
389  * @sdma:		pointer to the SDMA engine for this channel
390  * @channel:		the channel number, matches dmaengine chan_id + 1
391  * @direction:		transfer type. Needed for setting SDMA script
392  * @slave_config:	Slave configuration
393  * @peripheral_type:	Peripheral type. Needed for setting SDMA script
394  * @event_id0:		aka dma request line
395  * @event_id1:		for channels that use 2 events
396  * @word_size:		peripheral access size
397  * @pc_from_device:	script address for those device_2_memory
398  * @pc_to_device:	script address for those memory_2_device
399  * @device_to_device:	script address for those device_2_device
400  * @pc_to_pc:		script address for those memory_2_memory
401  * @flags:		loop mode or not
402  * @per_address:	peripheral source or destination address in common case
403  *                      destination address in p_2_p case
404  * @per_address2:	peripheral source address in p_2_p case
405  * @event_mask:		event mask used in p_2_p script
406  * @watermark_level:	value for gReg[7], some script will extend it from
407  *			basic watermark such as p_2_p
408  * @shp_addr:		value for gReg[6]
409  * @per_addr:		value for gReg[2]
410  * @status:		status of dma channel
411  * @context_loaded:	ensure context is only loaded once
412  * @data:		specific sdma interface structure
413  * @bd_pool:		dma_pool for bd
414  * @terminate_worker:	used to call back into terminate work function
415  */
416 struct sdma_channel {
417 	struct virt_dma_chan		vc;
418 	struct sdma_desc		*desc;
419 	struct sdma_engine		*sdma;
420 	unsigned int			channel;
421 	enum dma_transfer_direction		direction;
422 	struct dma_slave_config		slave_config;
423 	enum sdma_peripheral_type	peripheral_type;
424 	unsigned int			event_id0;
425 	unsigned int			event_id1;
426 	enum dma_slave_buswidth		word_size;
427 	unsigned int			pc_from_device, pc_to_device;
428 	unsigned int			device_to_device;
429 	unsigned int                    pc_to_pc;
430 	unsigned long			flags;
431 	dma_addr_t			per_address, per_address2;
432 	unsigned long			event_mask[2];
433 	unsigned long			watermark_level;
434 	u32				shp_addr, per_addr;
435 	enum dma_status			status;
436 	bool				context_loaded;
437 	struct imx_dma_data		data;
438 	struct work_struct		terminate_worker;
439 };
440 
441 #define IMX_DMA_SG_LOOP		BIT(0)
442 
443 #define MAX_DMA_CHANNELS 32
444 #define MXC_SDMA_DEFAULT_PRIORITY 1
445 #define MXC_SDMA_MIN_PRIORITY 1
446 #define MXC_SDMA_MAX_PRIORITY 7
447 
448 #define SDMA_FIRMWARE_MAGIC 0x414d4453
449 
450 /**
451  * struct sdma_firmware_header - Layout of the firmware image
452  *
453  * @magic:		"SDMA"
454  * @version_major:	increased whenever layout of struct
455  *			sdma_script_start_addrs changes.
456  * @version_minor:	firmware minor version (for binary compatible changes)
457  * @script_addrs_start:	offset of struct sdma_script_start_addrs in this image
458  * @num_script_addrs:	Number of script addresses in this image
459  * @ram_code_start:	offset of SDMA ram image in this firmware image
460  * @ram_code_size:	size of SDMA ram image
461  * @script_addrs:	Stores the start address of the SDMA scripts
462  *			(in SDMA memory space)
463  */
464 struct sdma_firmware_header {
465 	u32	magic;
466 	u32	version_major;
467 	u32	version_minor;
468 	u32	script_addrs_start;
469 	u32	num_script_addrs;
470 	u32	ram_code_start;
471 	u32	ram_code_size;
472 };
473 
474 struct sdma_driver_data {
475 	int chnenbl0;
476 	int num_events;
477 	struct sdma_script_start_addrs	*script_addrs;
478 	bool check_ratio;
479 };
480 
481 struct sdma_engine {
482 	struct device			*dev;
483 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
484 	struct sdma_channel_control	*channel_control;
485 	void __iomem			*regs;
486 	struct sdma_context_data	*context;
487 	dma_addr_t			context_phys;
488 	struct dma_device		dma_device;
489 	struct clk			*clk_ipg;
490 	struct clk			*clk_ahb;
491 	spinlock_t			channel_0_lock;
492 	u32				script_number;
493 	struct sdma_script_start_addrs	*script_addrs;
494 	const struct sdma_driver_data	*drvdata;
495 	u32				spba_start_addr;
496 	u32				spba_end_addr;
497 	unsigned int			irq;
498 	dma_addr_t			bd0_phys;
499 	struct sdma_buffer_descriptor	*bd0;
500 	/* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
501 	bool				clk_ratio;
502 };
503 
504 static int sdma_config_write(struct dma_chan *chan,
505 		       struct dma_slave_config *dmaengine_cfg,
506 		       enum dma_transfer_direction direction);
507 
508 static struct sdma_driver_data sdma_imx31 = {
509 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
510 	.num_events = 32,
511 };
512 
513 static struct sdma_script_start_addrs sdma_script_imx25 = {
514 	.ap_2_ap_addr = 729,
515 	.uart_2_mcu_addr = 904,
516 	.per_2_app_addr = 1255,
517 	.mcu_2_app_addr = 834,
518 	.uartsh_2_mcu_addr = 1120,
519 	.per_2_shp_addr = 1329,
520 	.mcu_2_shp_addr = 1048,
521 	.ata_2_mcu_addr = 1560,
522 	.mcu_2_ata_addr = 1479,
523 	.app_2_per_addr = 1189,
524 	.app_2_mcu_addr = 770,
525 	.shp_2_per_addr = 1407,
526 	.shp_2_mcu_addr = 979,
527 };
528 
529 static struct sdma_driver_data sdma_imx25 = {
530 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
531 	.num_events = 48,
532 	.script_addrs = &sdma_script_imx25,
533 };
534 
535 static struct sdma_driver_data sdma_imx35 = {
536 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
537 	.num_events = 48,
538 };
539 
540 static struct sdma_script_start_addrs sdma_script_imx51 = {
541 	.ap_2_ap_addr = 642,
542 	.uart_2_mcu_addr = 817,
543 	.mcu_2_app_addr = 747,
544 	.mcu_2_shp_addr = 961,
545 	.ata_2_mcu_addr = 1473,
546 	.mcu_2_ata_addr = 1392,
547 	.app_2_per_addr = 1033,
548 	.app_2_mcu_addr = 683,
549 	.shp_2_per_addr = 1251,
550 	.shp_2_mcu_addr = 892,
551 };
552 
553 static struct sdma_driver_data sdma_imx51 = {
554 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
555 	.num_events = 48,
556 	.script_addrs = &sdma_script_imx51,
557 };
558 
559 static struct sdma_script_start_addrs sdma_script_imx53 = {
560 	.ap_2_ap_addr = 642,
561 	.app_2_mcu_addr = 683,
562 	.mcu_2_app_addr = 747,
563 	.uart_2_mcu_addr = 817,
564 	.shp_2_mcu_addr = 891,
565 	.mcu_2_shp_addr = 960,
566 	.uartsh_2_mcu_addr = 1032,
567 	.spdif_2_mcu_addr = 1100,
568 	.mcu_2_spdif_addr = 1134,
569 	.firi_2_mcu_addr = 1193,
570 	.mcu_2_firi_addr = 1290,
571 };
572 
573 static struct sdma_driver_data sdma_imx53 = {
574 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
575 	.num_events = 48,
576 	.script_addrs = &sdma_script_imx53,
577 };
578 
579 static struct sdma_script_start_addrs sdma_script_imx6q = {
580 	.ap_2_ap_addr = 642,
581 	.uart_2_mcu_addr = 817,
582 	.mcu_2_app_addr = 747,
583 	.per_2_per_addr = 6331,
584 	.uartsh_2_mcu_addr = 1032,
585 	.mcu_2_shp_addr = 960,
586 	.app_2_mcu_addr = 683,
587 	.shp_2_mcu_addr = 891,
588 	.spdif_2_mcu_addr = 1100,
589 	.mcu_2_spdif_addr = 1134,
590 };
591 
592 static struct sdma_driver_data sdma_imx6q = {
593 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
594 	.num_events = 48,
595 	.script_addrs = &sdma_script_imx6q,
596 };
597 
598 static struct sdma_script_start_addrs sdma_script_imx7d = {
599 	.ap_2_ap_addr = 644,
600 	.uart_2_mcu_addr = 819,
601 	.mcu_2_app_addr = 749,
602 	.uartsh_2_mcu_addr = 1034,
603 	.mcu_2_shp_addr = 962,
604 	.app_2_mcu_addr = 685,
605 	.shp_2_mcu_addr = 893,
606 	.spdif_2_mcu_addr = 1102,
607 	.mcu_2_spdif_addr = 1136,
608 };
609 
610 static struct sdma_driver_data sdma_imx7d = {
611 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
612 	.num_events = 48,
613 	.script_addrs = &sdma_script_imx7d,
614 };
615 
616 static struct sdma_driver_data sdma_imx8mq = {
617 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
618 	.num_events = 48,
619 	.script_addrs = &sdma_script_imx7d,
620 	.check_ratio = 1,
621 };
622 
623 static const struct of_device_id sdma_dt_ids[] = {
624 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
625 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
626 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
627 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
628 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
629 	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
630 	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
631 	{ .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
632 	{ /* sentinel */ }
633 };
634 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
635 
636 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
637 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
638 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
639 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
640 
641 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
642 {
643 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
644 	return chnenbl0 + event * 4;
645 }
646 
647 static int sdma_config_ownership(struct sdma_channel *sdmac,
648 		bool event_override, bool mcu_override, bool dsp_override)
649 {
650 	struct sdma_engine *sdma = sdmac->sdma;
651 	int channel = sdmac->channel;
652 	unsigned long evt, mcu, dsp;
653 
654 	if (event_override && mcu_override && dsp_override)
655 		return -EINVAL;
656 
657 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
658 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
659 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
660 
661 	if (dsp_override)
662 		__clear_bit(channel, &dsp);
663 	else
664 		__set_bit(channel, &dsp);
665 
666 	if (event_override)
667 		__clear_bit(channel, &evt);
668 	else
669 		__set_bit(channel, &evt);
670 
671 	if (mcu_override)
672 		__clear_bit(channel, &mcu);
673 	else
674 		__set_bit(channel, &mcu);
675 
676 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
677 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
678 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
679 
680 	return 0;
681 }
682 
683 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
684 {
685 	writel(BIT(channel), sdma->regs + SDMA_H_START);
686 }
687 
688 /*
689  * sdma_run_channel0 - run a channel and wait till it's done
690  */
691 static int sdma_run_channel0(struct sdma_engine *sdma)
692 {
693 	int ret;
694 	u32 reg;
695 
696 	sdma_enable_channel(sdma, 0);
697 
698 	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
699 						reg, !(reg & 1), 1, 500);
700 	if (ret)
701 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
702 
703 	/* Set bits of CONFIG register with dynamic context switching */
704 	reg = readl(sdma->regs + SDMA_H_CONFIG);
705 	if ((reg & SDMA_H_CONFIG_CSM) == 0) {
706 		reg |= SDMA_H_CONFIG_CSM;
707 		writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
708 	}
709 
710 	return ret;
711 }
712 
713 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
714 		u32 address)
715 {
716 	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
717 	void *buf_virt;
718 	dma_addr_t buf_phys;
719 	int ret;
720 	unsigned long flags;
721 
722 	buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
723 	if (!buf_virt) {
724 		return -ENOMEM;
725 	}
726 
727 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
728 
729 	bd0->mode.command = C0_SETPM;
730 	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
731 	bd0->mode.count = size / 2;
732 	bd0->buffer_addr = buf_phys;
733 	bd0->ext_buffer_addr = address;
734 
735 	memcpy(buf_virt, buf, size);
736 
737 	ret = sdma_run_channel0(sdma);
738 
739 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
740 
741 	dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
742 
743 	return ret;
744 }
745 
746 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
747 {
748 	struct sdma_engine *sdma = sdmac->sdma;
749 	int channel = sdmac->channel;
750 	unsigned long val;
751 	u32 chnenbl = chnenbl_ofs(sdma, event);
752 
753 	val = readl_relaxed(sdma->regs + chnenbl);
754 	__set_bit(channel, &val);
755 	writel_relaxed(val, sdma->regs + chnenbl);
756 }
757 
758 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
759 {
760 	struct sdma_engine *sdma = sdmac->sdma;
761 	int channel = sdmac->channel;
762 	u32 chnenbl = chnenbl_ofs(sdma, event);
763 	unsigned long val;
764 
765 	val = readl_relaxed(sdma->regs + chnenbl);
766 	__clear_bit(channel, &val);
767 	writel_relaxed(val, sdma->regs + chnenbl);
768 }
769 
770 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
771 {
772 	return container_of(t, struct sdma_desc, vd.tx);
773 }
774 
775 static void sdma_start_desc(struct sdma_channel *sdmac)
776 {
777 	struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
778 	struct sdma_desc *desc;
779 	struct sdma_engine *sdma = sdmac->sdma;
780 	int channel = sdmac->channel;
781 
782 	if (!vd) {
783 		sdmac->desc = NULL;
784 		return;
785 	}
786 	sdmac->desc = desc = to_sdma_desc(&vd->tx);
787 
788 	list_del(&vd->node);
789 
790 	sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
791 	sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
792 	sdma_enable_channel(sdma, sdmac->channel);
793 }
794 
795 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
796 {
797 	struct sdma_buffer_descriptor *bd;
798 	int error = 0;
799 	enum dma_status	old_status = sdmac->status;
800 
801 	/*
802 	 * loop mode. Iterate over descriptors, re-setup them and
803 	 * call callback function.
804 	 */
805 	while (sdmac->desc) {
806 		struct sdma_desc *desc = sdmac->desc;
807 
808 		bd = &desc->bd[desc->buf_tail];
809 
810 		if (bd->mode.status & BD_DONE)
811 			break;
812 
813 		if (bd->mode.status & BD_RROR) {
814 			bd->mode.status &= ~BD_RROR;
815 			sdmac->status = DMA_ERROR;
816 			error = -EIO;
817 		}
818 
819 	       /*
820 		* We use bd->mode.count to calculate the residue, since contains
821 		* the number of bytes present in the current buffer descriptor.
822 		*/
823 
824 		desc->chn_real_count = bd->mode.count;
825 		bd->mode.status |= BD_DONE;
826 		bd->mode.count = desc->period_len;
827 		desc->buf_ptail = desc->buf_tail;
828 		desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
829 
830 		/*
831 		 * The callback is called from the interrupt context in order
832 		 * to reduce latency and to avoid the risk of altering the
833 		 * SDMA transaction status by the time the client tasklet is
834 		 * executed.
835 		 */
836 		spin_unlock(&sdmac->vc.lock);
837 		dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
838 		spin_lock(&sdmac->vc.lock);
839 
840 		if (error)
841 			sdmac->status = old_status;
842 	}
843 }
844 
845 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
846 {
847 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
848 	struct sdma_buffer_descriptor *bd;
849 	int i, error = 0;
850 
851 	sdmac->desc->chn_real_count = 0;
852 	/*
853 	 * non loop mode. Iterate over all descriptors, collect
854 	 * errors and call callback function
855 	 */
856 	for (i = 0; i < sdmac->desc->num_bd; i++) {
857 		bd = &sdmac->desc->bd[i];
858 
859 		 if (bd->mode.status & (BD_DONE | BD_RROR))
860 			error = -EIO;
861 		 sdmac->desc->chn_real_count += bd->mode.count;
862 	}
863 
864 	if (error)
865 		sdmac->status = DMA_ERROR;
866 	else
867 		sdmac->status = DMA_COMPLETE;
868 }
869 
870 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
871 {
872 	struct sdma_engine *sdma = dev_id;
873 	unsigned long stat;
874 
875 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
876 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
877 	/* channel 0 is special and not handled here, see run_channel0() */
878 	stat &= ~1;
879 
880 	while (stat) {
881 		int channel = fls(stat) - 1;
882 		struct sdma_channel *sdmac = &sdma->channel[channel];
883 		struct sdma_desc *desc;
884 
885 		spin_lock(&sdmac->vc.lock);
886 		desc = sdmac->desc;
887 		if (desc) {
888 			if (sdmac->flags & IMX_DMA_SG_LOOP) {
889 				sdma_update_channel_loop(sdmac);
890 			} else {
891 				mxc_sdma_handle_channel_normal(sdmac);
892 				vchan_cookie_complete(&desc->vd);
893 				sdma_start_desc(sdmac);
894 			}
895 		}
896 
897 		spin_unlock(&sdmac->vc.lock);
898 		__clear_bit(channel, &stat);
899 	}
900 
901 	return IRQ_HANDLED;
902 }
903 
904 /*
905  * sets the pc of SDMA script according to the peripheral type
906  */
907 static void sdma_get_pc(struct sdma_channel *sdmac,
908 		enum sdma_peripheral_type peripheral_type)
909 {
910 	struct sdma_engine *sdma = sdmac->sdma;
911 	int per_2_emi = 0, emi_2_per = 0;
912 	/*
913 	 * These are needed once we start to support transfers between
914 	 * two peripherals or memory-to-memory transfers
915 	 */
916 	int per_2_per = 0, emi_2_emi = 0;
917 
918 	sdmac->pc_from_device = 0;
919 	sdmac->pc_to_device = 0;
920 	sdmac->device_to_device = 0;
921 	sdmac->pc_to_pc = 0;
922 
923 	switch (peripheral_type) {
924 	case IMX_DMATYPE_MEMORY:
925 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
926 		break;
927 	case IMX_DMATYPE_DSP:
928 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
929 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
930 		break;
931 	case IMX_DMATYPE_FIRI:
932 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
933 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
934 		break;
935 	case IMX_DMATYPE_UART:
936 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
937 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
938 		break;
939 	case IMX_DMATYPE_UART_SP:
940 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
941 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
942 		break;
943 	case IMX_DMATYPE_ATA:
944 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
945 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
946 		break;
947 	case IMX_DMATYPE_CSPI:
948 	case IMX_DMATYPE_EXT:
949 	case IMX_DMATYPE_SSI:
950 	case IMX_DMATYPE_SAI:
951 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
952 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
953 		break;
954 	case IMX_DMATYPE_SSI_DUAL:
955 		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
956 		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
957 		break;
958 	case IMX_DMATYPE_SSI_SP:
959 	case IMX_DMATYPE_MMC:
960 	case IMX_DMATYPE_SDHC:
961 	case IMX_DMATYPE_CSPI_SP:
962 	case IMX_DMATYPE_ESAI:
963 	case IMX_DMATYPE_MSHC_SP:
964 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
965 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
966 		break;
967 	case IMX_DMATYPE_ASRC:
968 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
969 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
970 		per_2_per = sdma->script_addrs->per_2_per_addr;
971 		break;
972 	case IMX_DMATYPE_ASRC_SP:
973 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
974 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
975 		per_2_per = sdma->script_addrs->per_2_per_addr;
976 		break;
977 	case IMX_DMATYPE_MSHC:
978 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
979 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
980 		break;
981 	case IMX_DMATYPE_CCM:
982 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
983 		break;
984 	case IMX_DMATYPE_SPDIF:
985 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
986 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
987 		break;
988 	case IMX_DMATYPE_IPU_MEMORY:
989 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
990 		break;
991 	default:
992 		break;
993 	}
994 
995 	sdmac->pc_from_device = per_2_emi;
996 	sdmac->pc_to_device = emi_2_per;
997 	sdmac->device_to_device = per_2_per;
998 	sdmac->pc_to_pc = emi_2_emi;
999 }
1000 
1001 static int sdma_load_context(struct sdma_channel *sdmac)
1002 {
1003 	struct sdma_engine *sdma = sdmac->sdma;
1004 	int channel = sdmac->channel;
1005 	int load_address;
1006 	struct sdma_context_data *context = sdma->context;
1007 	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
1008 	int ret;
1009 	unsigned long flags;
1010 
1011 	if (sdmac->context_loaded)
1012 		return 0;
1013 
1014 	if (sdmac->direction == DMA_DEV_TO_MEM)
1015 		load_address = sdmac->pc_from_device;
1016 	else if (sdmac->direction == DMA_DEV_TO_DEV)
1017 		load_address = sdmac->device_to_device;
1018 	else if (sdmac->direction == DMA_MEM_TO_MEM)
1019 		load_address = sdmac->pc_to_pc;
1020 	else
1021 		load_address = sdmac->pc_to_device;
1022 
1023 	if (load_address < 0)
1024 		return load_address;
1025 
1026 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1027 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1028 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1029 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1030 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1031 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1032 
1033 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
1034 
1035 	memset(context, 0, sizeof(*context));
1036 	context->channel_state.pc = load_address;
1037 
1038 	/* Send by context the event mask,base address for peripheral
1039 	 * and watermark level
1040 	 */
1041 	context->gReg[0] = sdmac->event_mask[1];
1042 	context->gReg[1] = sdmac->event_mask[0];
1043 	context->gReg[2] = sdmac->per_addr;
1044 	context->gReg[6] = sdmac->shp_addr;
1045 	context->gReg[7] = sdmac->watermark_level;
1046 
1047 	bd0->mode.command = C0_SETDM;
1048 	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1049 	bd0->mode.count = sizeof(*context) / 4;
1050 	bd0->buffer_addr = sdma->context_phys;
1051 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1052 	ret = sdma_run_channel0(sdma);
1053 
1054 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1055 
1056 	sdmac->context_loaded = true;
1057 
1058 	return ret;
1059 }
1060 
1061 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1062 {
1063 	return container_of(chan, struct sdma_channel, vc.chan);
1064 }
1065 
1066 static int sdma_disable_channel(struct dma_chan *chan)
1067 {
1068 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1069 	struct sdma_engine *sdma = sdmac->sdma;
1070 	int channel = sdmac->channel;
1071 
1072 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1073 	sdmac->status = DMA_ERROR;
1074 
1075 	return 0;
1076 }
1077 static void sdma_channel_terminate_work(struct work_struct *work)
1078 {
1079 	struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1080 						  terminate_worker);
1081 	unsigned long flags;
1082 	LIST_HEAD(head);
1083 
1084 	/*
1085 	 * According to NXP R&D team a delay of one BD SDMA cost time
1086 	 * (maximum is 1ms) should be added after disable of the channel
1087 	 * bit, to ensure SDMA core has really been stopped after SDMA
1088 	 * clients call .device_terminate_all.
1089 	 */
1090 	usleep_range(1000, 2000);
1091 
1092 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1093 	vchan_get_all_descriptors(&sdmac->vc, &head);
1094 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1095 	vchan_dma_desc_free_list(&sdmac->vc, &head);
1096 	sdmac->context_loaded = false;
1097 }
1098 
1099 static int sdma_terminate_all(struct dma_chan *chan)
1100 {
1101 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1102 	unsigned long flags;
1103 
1104 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1105 
1106 	sdma_disable_channel(chan);
1107 
1108 	if (sdmac->desc) {
1109 		vchan_terminate_vdesc(&sdmac->desc->vd);
1110 		sdmac->desc = NULL;
1111 		schedule_work(&sdmac->terminate_worker);
1112 	}
1113 
1114 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1115 
1116 	return 0;
1117 }
1118 
1119 static void sdma_channel_synchronize(struct dma_chan *chan)
1120 {
1121 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1122 
1123 	vchan_synchronize(&sdmac->vc);
1124 
1125 	flush_work(&sdmac->terminate_worker);
1126 }
1127 
1128 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1129 {
1130 	struct sdma_engine *sdma = sdmac->sdma;
1131 
1132 	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1133 	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1134 
1135 	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1136 	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1137 
1138 	if (sdmac->event_id0 > 31)
1139 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1140 
1141 	if (sdmac->event_id1 > 31)
1142 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1143 
1144 	/*
1145 	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1146 	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1147 	 * r0(event_mask[1]) and r1(event_mask[0]).
1148 	 */
1149 	if (lwml > hwml) {
1150 		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1151 						SDMA_WATERMARK_LEVEL_HWML);
1152 		sdmac->watermark_level |= hwml;
1153 		sdmac->watermark_level |= lwml << 16;
1154 		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1155 	}
1156 
1157 	if (sdmac->per_address2 >= sdma->spba_start_addr &&
1158 			sdmac->per_address2 <= sdma->spba_end_addr)
1159 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1160 
1161 	if (sdmac->per_address >= sdma->spba_start_addr &&
1162 			sdmac->per_address <= sdma->spba_end_addr)
1163 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1164 
1165 	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1166 }
1167 
1168 static int sdma_config_channel(struct dma_chan *chan)
1169 {
1170 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1171 	int ret;
1172 
1173 	sdma_disable_channel(chan);
1174 
1175 	sdmac->event_mask[0] = 0;
1176 	sdmac->event_mask[1] = 0;
1177 	sdmac->shp_addr = 0;
1178 	sdmac->per_addr = 0;
1179 
1180 	switch (sdmac->peripheral_type) {
1181 	case IMX_DMATYPE_DSP:
1182 		sdma_config_ownership(sdmac, false, true, true);
1183 		break;
1184 	case IMX_DMATYPE_MEMORY:
1185 		sdma_config_ownership(sdmac, false, true, false);
1186 		break;
1187 	default:
1188 		sdma_config_ownership(sdmac, true, true, false);
1189 		break;
1190 	}
1191 
1192 	sdma_get_pc(sdmac, sdmac->peripheral_type);
1193 
1194 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1195 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1196 		/* Handle multiple event channels differently */
1197 		if (sdmac->event_id1) {
1198 			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1199 			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1200 				sdma_set_watermarklevel_for_p2p(sdmac);
1201 		} else
1202 			__set_bit(sdmac->event_id0, sdmac->event_mask);
1203 
1204 		/* Address */
1205 		sdmac->shp_addr = sdmac->per_address;
1206 		sdmac->per_addr = sdmac->per_address2;
1207 	} else {
1208 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1209 	}
1210 
1211 	ret = sdma_load_context(sdmac);
1212 
1213 	return ret;
1214 }
1215 
1216 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1217 		unsigned int priority)
1218 {
1219 	struct sdma_engine *sdma = sdmac->sdma;
1220 	int channel = sdmac->channel;
1221 
1222 	if (priority < MXC_SDMA_MIN_PRIORITY
1223 	    || priority > MXC_SDMA_MAX_PRIORITY) {
1224 		return -EINVAL;
1225 	}
1226 
1227 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1228 
1229 	return 0;
1230 }
1231 
1232 static int sdma_request_channel0(struct sdma_engine *sdma)
1233 {
1234 	int ret = -EBUSY;
1235 
1236 	sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1237 					GFP_NOWAIT);
1238 	if (!sdma->bd0) {
1239 		ret = -ENOMEM;
1240 		goto out;
1241 	}
1242 
1243 	sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1244 	sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1245 
1246 	sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1247 	return 0;
1248 out:
1249 
1250 	return ret;
1251 }
1252 
1253 
1254 static int sdma_alloc_bd(struct sdma_desc *desc)
1255 {
1256 	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1257 	int ret = 0;
1258 
1259 	desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1260 				       &desc->bd_phys, GFP_NOWAIT);
1261 	if (!desc->bd) {
1262 		ret = -ENOMEM;
1263 		goto out;
1264 	}
1265 out:
1266 	return ret;
1267 }
1268 
1269 static void sdma_free_bd(struct sdma_desc *desc)
1270 {
1271 	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1272 
1273 	dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1274 			  desc->bd_phys);
1275 }
1276 
1277 static void sdma_desc_free(struct virt_dma_desc *vd)
1278 {
1279 	struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1280 
1281 	sdma_free_bd(desc);
1282 	kfree(desc);
1283 }
1284 
1285 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1286 {
1287 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1288 	struct imx_dma_data *data = chan->private;
1289 	struct imx_dma_data mem_data;
1290 	int prio, ret;
1291 
1292 	/*
1293 	 * MEMCPY may never setup chan->private by filter function such as
1294 	 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1295 	 * Please note in any other slave case, you have to setup chan->private
1296 	 * with 'struct imx_dma_data' in your own filter function if you want to
1297 	 * request dma channel by dma_request_channel() rather than
1298 	 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1299 	 * to warn you to correct your filter function.
1300 	 */
1301 	if (!data) {
1302 		dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1303 		mem_data.priority = 2;
1304 		mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1305 		mem_data.dma_request = 0;
1306 		mem_data.dma_request2 = 0;
1307 		data = &mem_data;
1308 
1309 		sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1310 	}
1311 
1312 	switch (data->priority) {
1313 	case DMA_PRIO_HIGH:
1314 		prio = 3;
1315 		break;
1316 	case DMA_PRIO_MEDIUM:
1317 		prio = 2;
1318 		break;
1319 	case DMA_PRIO_LOW:
1320 	default:
1321 		prio = 1;
1322 		break;
1323 	}
1324 
1325 	sdmac->peripheral_type = data->peripheral_type;
1326 	sdmac->event_id0 = data->dma_request;
1327 	sdmac->event_id1 = data->dma_request2;
1328 
1329 	ret = clk_enable(sdmac->sdma->clk_ipg);
1330 	if (ret)
1331 		return ret;
1332 	ret = clk_enable(sdmac->sdma->clk_ahb);
1333 	if (ret)
1334 		goto disable_clk_ipg;
1335 
1336 	ret = sdma_set_channel_priority(sdmac, prio);
1337 	if (ret)
1338 		goto disable_clk_ahb;
1339 
1340 	return 0;
1341 
1342 disable_clk_ahb:
1343 	clk_disable(sdmac->sdma->clk_ahb);
1344 disable_clk_ipg:
1345 	clk_disable(sdmac->sdma->clk_ipg);
1346 	return ret;
1347 }
1348 
1349 static void sdma_free_chan_resources(struct dma_chan *chan)
1350 {
1351 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1352 	struct sdma_engine *sdma = sdmac->sdma;
1353 
1354 	sdma_terminate_all(chan);
1355 
1356 	sdma_channel_synchronize(chan);
1357 
1358 	sdma_event_disable(sdmac, sdmac->event_id0);
1359 	if (sdmac->event_id1)
1360 		sdma_event_disable(sdmac, sdmac->event_id1);
1361 
1362 	sdmac->event_id0 = 0;
1363 	sdmac->event_id1 = 0;
1364 	sdmac->context_loaded = false;
1365 
1366 	sdma_set_channel_priority(sdmac, 0);
1367 
1368 	clk_disable(sdma->clk_ipg);
1369 	clk_disable(sdma->clk_ahb);
1370 }
1371 
1372 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1373 				enum dma_transfer_direction direction, u32 bds)
1374 {
1375 	struct sdma_desc *desc;
1376 
1377 	desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1378 	if (!desc)
1379 		goto err_out;
1380 
1381 	sdmac->status = DMA_IN_PROGRESS;
1382 	sdmac->direction = direction;
1383 	sdmac->flags = 0;
1384 
1385 	desc->chn_count = 0;
1386 	desc->chn_real_count = 0;
1387 	desc->buf_tail = 0;
1388 	desc->buf_ptail = 0;
1389 	desc->sdmac = sdmac;
1390 	desc->num_bd = bds;
1391 
1392 	if (sdma_alloc_bd(desc))
1393 		goto err_desc_out;
1394 
1395 	/* No slave_config called in MEMCPY case, so do here */
1396 	if (direction == DMA_MEM_TO_MEM)
1397 		sdma_config_ownership(sdmac, false, true, false);
1398 
1399 	if (sdma_load_context(sdmac))
1400 		goto err_desc_out;
1401 
1402 	return desc;
1403 
1404 err_desc_out:
1405 	kfree(desc);
1406 err_out:
1407 	return NULL;
1408 }
1409 
1410 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1411 		struct dma_chan *chan, dma_addr_t dma_dst,
1412 		dma_addr_t dma_src, size_t len, unsigned long flags)
1413 {
1414 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1415 	struct sdma_engine *sdma = sdmac->sdma;
1416 	int channel = sdmac->channel;
1417 	size_t count;
1418 	int i = 0, param;
1419 	struct sdma_buffer_descriptor *bd;
1420 	struct sdma_desc *desc;
1421 
1422 	if (!chan || !len)
1423 		return NULL;
1424 
1425 	dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1426 		&dma_src, &dma_dst, len, channel);
1427 
1428 	desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1429 					len / SDMA_BD_MAX_CNT + 1);
1430 	if (!desc)
1431 		return NULL;
1432 
1433 	do {
1434 		count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1435 		bd = &desc->bd[i];
1436 		bd->buffer_addr = dma_src;
1437 		bd->ext_buffer_addr = dma_dst;
1438 		bd->mode.count = count;
1439 		desc->chn_count += count;
1440 		bd->mode.command = 0;
1441 
1442 		dma_src += count;
1443 		dma_dst += count;
1444 		len -= count;
1445 		i++;
1446 
1447 		param = BD_DONE | BD_EXTD | BD_CONT;
1448 		/* last bd */
1449 		if (!len) {
1450 			param |= BD_INTR;
1451 			param |= BD_LAST;
1452 			param &= ~BD_CONT;
1453 		}
1454 
1455 		dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1456 				i, count, bd->buffer_addr,
1457 				param & BD_WRAP ? "wrap" : "",
1458 				param & BD_INTR ? " intr" : "");
1459 
1460 		bd->mode.status = param;
1461 	} while (len);
1462 
1463 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1464 }
1465 
1466 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1467 		struct dma_chan *chan, struct scatterlist *sgl,
1468 		unsigned int sg_len, enum dma_transfer_direction direction,
1469 		unsigned long flags, void *context)
1470 {
1471 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1472 	struct sdma_engine *sdma = sdmac->sdma;
1473 	int i, count;
1474 	int channel = sdmac->channel;
1475 	struct scatterlist *sg;
1476 	struct sdma_desc *desc;
1477 
1478 	sdma_config_write(chan, &sdmac->slave_config, direction);
1479 
1480 	desc = sdma_transfer_init(sdmac, direction, sg_len);
1481 	if (!desc)
1482 		goto err_out;
1483 
1484 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1485 			sg_len, channel);
1486 
1487 	for_each_sg(sgl, sg, sg_len, i) {
1488 		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1489 		int param;
1490 
1491 		bd->buffer_addr = sg->dma_address;
1492 
1493 		count = sg_dma_len(sg);
1494 
1495 		if (count > SDMA_BD_MAX_CNT) {
1496 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1497 					channel, count, SDMA_BD_MAX_CNT);
1498 			goto err_bd_out;
1499 		}
1500 
1501 		bd->mode.count = count;
1502 		desc->chn_count += count;
1503 
1504 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1505 			goto err_bd_out;
1506 
1507 		switch (sdmac->word_size) {
1508 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1509 			bd->mode.command = 0;
1510 			if (count & 3 || sg->dma_address & 3)
1511 				goto err_bd_out;
1512 			break;
1513 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1514 			bd->mode.command = 2;
1515 			if (count & 1 || sg->dma_address & 1)
1516 				goto err_bd_out;
1517 			break;
1518 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1519 			bd->mode.command = 1;
1520 			break;
1521 		default:
1522 			goto err_bd_out;
1523 		}
1524 
1525 		param = BD_DONE | BD_EXTD | BD_CONT;
1526 
1527 		if (i + 1 == sg_len) {
1528 			param |= BD_INTR;
1529 			param |= BD_LAST;
1530 			param &= ~BD_CONT;
1531 		}
1532 
1533 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1534 				i, count, (u64)sg->dma_address,
1535 				param & BD_WRAP ? "wrap" : "",
1536 				param & BD_INTR ? " intr" : "");
1537 
1538 		bd->mode.status = param;
1539 	}
1540 
1541 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1542 err_bd_out:
1543 	sdma_free_bd(desc);
1544 	kfree(desc);
1545 err_out:
1546 	sdmac->status = DMA_ERROR;
1547 	return NULL;
1548 }
1549 
1550 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1551 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1552 		size_t period_len, enum dma_transfer_direction direction,
1553 		unsigned long flags)
1554 {
1555 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1556 	struct sdma_engine *sdma = sdmac->sdma;
1557 	int num_periods = buf_len / period_len;
1558 	int channel = sdmac->channel;
1559 	int i = 0, buf = 0;
1560 	struct sdma_desc *desc;
1561 
1562 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1563 
1564 	sdma_config_write(chan, &sdmac->slave_config, direction);
1565 
1566 	desc = sdma_transfer_init(sdmac, direction, num_periods);
1567 	if (!desc)
1568 		goto err_out;
1569 
1570 	desc->period_len = period_len;
1571 
1572 	sdmac->flags |= IMX_DMA_SG_LOOP;
1573 
1574 	if (period_len > SDMA_BD_MAX_CNT) {
1575 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1576 				channel, period_len, SDMA_BD_MAX_CNT);
1577 		goto err_bd_out;
1578 	}
1579 
1580 	while (buf < buf_len) {
1581 		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1582 		int param;
1583 
1584 		bd->buffer_addr = dma_addr;
1585 
1586 		bd->mode.count = period_len;
1587 
1588 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1589 			goto err_bd_out;
1590 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1591 			bd->mode.command = 0;
1592 		else
1593 			bd->mode.command = sdmac->word_size;
1594 
1595 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1596 		if (i + 1 == num_periods)
1597 			param |= BD_WRAP;
1598 
1599 		dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1600 				i, period_len, (u64)dma_addr,
1601 				param & BD_WRAP ? "wrap" : "",
1602 				param & BD_INTR ? " intr" : "");
1603 
1604 		bd->mode.status = param;
1605 
1606 		dma_addr += period_len;
1607 		buf += period_len;
1608 
1609 		i++;
1610 	}
1611 
1612 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1613 err_bd_out:
1614 	sdma_free_bd(desc);
1615 	kfree(desc);
1616 err_out:
1617 	sdmac->status = DMA_ERROR;
1618 	return NULL;
1619 }
1620 
1621 static int sdma_config_write(struct dma_chan *chan,
1622 		       struct dma_slave_config *dmaengine_cfg,
1623 		       enum dma_transfer_direction direction)
1624 {
1625 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1626 
1627 	if (direction == DMA_DEV_TO_MEM) {
1628 		sdmac->per_address = dmaengine_cfg->src_addr;
1629 		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1630 			dmaengine_cfg->src_addr_width;
1631 		sdmac->word_size = dmaengine_cfg->src_addr_width;
1632 	} else if (direction == DMA_DEV_TO_DEV) {
1633 		sdmac->per_address2 = dmaengine_cfg->src_addr;
1634 		sdmac->per_address = dmaengine_cfg->dst_addr;
1635 		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1636 			SDMA_WATERMARK_LEVEL_LWML;
1637 		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1638 			SDMA_WATERMARK_LEVEL_HWML;
1639 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1640 	} else {
1641 		sdmac->per_address = dmaengine_cfg->dst_addr;
1642 		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1643 			dmaengine_cfg->dst_addr_width;
1644 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1645 	}
1646 	sdmac->direction = direction;
1647 	return sdma_config_channel(chan);
1648 }
1649 
1650 static int sdma_config(struct dma_chan *chan,
1651 		       struct dma_slave_config *dmaengine_cfg)
1652 {
1653 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1654 
1655 	memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1656 
1657 	/* Set ENBLn earlier to make sure dma request triggered after that */
1658 	if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1659 		return -EINVAL;
1660 	sdma_event_enable(sdmac, sdmac->event_id0);
1661 
1662 	if (sdmac->event_id1) {
1663 		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1664 			return -EINVAL;
1665 		sdma_event_enable(sdmac, sdmac->event_id1);
1666 	}
1667 
1668 	return 0;
1669 }
1670 
1671 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1672 				      dma_cookie_t cookie,
1673 				      struct dma_tx_state *txstate)
1674 {
1675 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1676 	struct sdma_desc *desc = NULL;
1677 	u32 residue;
1678 	struct virt_dma_desc *vd;
1679 	enum dma_status ret;
1680 	unsigned long flags;
1681 
1682 	ret = dma_cookie_status(chan, cookie, txstate);
1683 	if (ret == DMA_COMPLETE || !txstate)
1684 		return ret;
1685 
1686 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1687 
1688 	vd = vchan_find_desc(&sdmac->vc, cookie);
1689 	if (vd)
1690 		desc = to_sdma_desc(&vd->tx);
1691 	else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1692 		desc = sdmac->desc;
1693 
1694 	if (desc) {
1695 		if (sdmac->flags & IMX_DMA_SG_LOOP)
1696 			residue = (desc->num_bd - desc->buf_ptail) *
1697 				desc->period_len - desc->chn_real_count;
1698 		else
1699 			residue = desc->chn_count - desc->chn_real_count;
1700 	} else {
1701 		residue = 0;
1702 	}
1703 
1704 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1705 
1706 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1707 			 residue);
1708 
1709 	return sdmac->status;
1710 }
1711 
1712 static void sdma_issue_pending(struct dma_chan *chan)
1713 {
1714 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1715 	unsigned long flags;
1716 
1717 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1718 	if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1719 		sdma_start_desc(sdmac);
1720 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1721 }
1722 
1723 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1724 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1725 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	41
1726 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4	42
1727 
1728 static void sdma_add_scripts(struct sdma_engine *sdma,
1729 		const struct sdma_script_start_addrs *addr)
1730 {
1731 	s32 *addr_arr = (u32 *)addr;
1732 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1733 	int i;
1734 
1735 	/* use the default firmware in ROM if missing external firmware */
1736 	if (!sdma->script_number)
1737 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1738 
1739 	if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1740 				  / sizeof(s32)) {
1741 		dev_err(sdma->dev,
1742 			"SDMA script number %d not match with firmware.\n",
1743 			sdma->script_number);
1744 		return;
1745 	}
1746 
1747 	for (i = 0; i < sdma->script_number; i++)
1748 		if (addr_arr[i] > 0)
1749 			saddr_arr[i] = addr_arr[i];
1750 }
1751 
1752 static void sdma_load_firmware(const struct firmware *fw, void *context)
1753 {
1754 	struct sdma_engine *sdma = context;
1755 	const struct sdma_firmware_header *header;
1756 	const struct sdma_script_start_addrs *addr;
1757 	unsigned short *ram_code;
1758 
1759 	if (!fw) {
1760 		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1761 		/* In this case we just use the ROM firmware. */
1762 		return;
1763 	}
1764 
1765 	if (fw->size < sizeof(*header))
1766 		goto err_firmware;
1767 
1768 	header = (struct sdma_firmware_header *)fw->data;
1769 
1770 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1771 		goto err_firmware;
1772 	if (header->ram_code_start + header->ram_code_size > fw->size)
1773 		goto err_firmware;
1774 	switch (header->version_major) {
1775 	case 1:
1776 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1777 		break;
1778 	case 2:
1779 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1780 		break;
1781 	case 3:
1782 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1783 		break;
1784 	case 4:
1785 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1786 		break;
1787 	default:
1788 		dev_err(sdma->dev, "unknown firmware version\n");
1789 		goto err_firmware;
1790 	}
1791 
1792 	addr = (void *)header + header->script_addrs_start;
1793 	ram_code = (void *)header + header->ram_code_start;
1794 
1795 	clk_enable(sdma->clk_ipg);
1796 	clk_enable(sdma->clk_ahb);
1797 	/* download the RAM image for SDMA */
1798 	sdma_load_script(sdma, ram_code,
1799 			header->ram_code_size,
1800 			addr->ram_code_start_addr);
1801 	clk_disable(sdma->clk_ipg);
1802 	clk_disable(sdma->clk_ahb);
1803 
1804 	sdma_add_scripts(sdma, addr);
1805 
1806 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1807 			header->version_major,
1808 			header->version_minor);
1809 
1810 err_firmware:
1811 	release_firmware(fw);
1812 }
1813 
1814 #define EVENT_REMAP_CELLS 3
1815 
1816 static int sdma_event_remap(struct sdma_engine *sdma)
1817 {
1818 	struct device_node *np = sdma->dev->of_node;
1819 	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1820 	struct property *event_remap;
1821 	struct regmap *gpr;
1822 	char propname[] = "fsl,sdma-event-remap";
1823 	u32 reg, val, shift, num_map, i;
1824 	int ret = 0;
1825 
1826 	if (IS_ERR(np) || IS_ERR(gpr_np))
1827 		goto out;
1828 
1829 	event_remap = of_find_property(np, propname, NULL);
1830 	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1831 	if (!num_map) {
1832 		dev_dbg(sdma->dev, "no event needs to be remapped\n");
1833 		goto out;
1834 	} else if (num_map % EVENT_REMAP_CELLS) {
1835 		dev_err(sdma->dev, "the property %s must modulo %d\n",
1836 				propname, EVENT_REMAP_CELLS);
1837 		ret = -EINVAL;
1838 		goto out;
1839 	}
1840 
1841 	gpr = syscon_node_to_regmap(gpr_np);
1842 	if (IS_ERR(gpr)) {
1843 		dev_err(sdma->dev, "failed to get gpr regmap\n");
1844 		ret = PTR_ERR(gpr);
1845 		goto out;
1846 	}
1847 
1848 	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1849 		ret = of_property_read_u32_index(np, propname, i, &reg);
1850 		if (ret) {
1851 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1852 					propname, i);
1853 			goto out;
1854 		}
1855 
1856 		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1857 		if (ret) {
1858 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1859 					propname, i + 1);
1860 			goto out;
1861 		}
1862 
1863 		ret = of_property_read_u32_index(np, propname, i + 2, &val);
1864 		if (ret) {
1865 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1866 					propname, i + 2);
1867 			goto out;
1868 		}
1869 
1870 		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1871 	}
1872 
1873 out:
1874 	if (!IS_ERR(gpr_np))
1875 		of_node_put(gpr_np);
1876 
1877 	return ret;
1878 }
1879 
1880 static int sdma_get_firmware(struct sdma_engine *sdma,
1881 		const char *fw_name)
1882 {
1883 	int ret;
1884 
1885 	ret = request_firmware_nowait(THIS_MODULE,
1886 			FW_ACTION_UEVENT, fw_name, sdma->dev,
1887 			GFP_KERNEL, sdma, sdma_load_firmware);
1888 
1889 	return ret;
1890 }
1891 
1892 static int sdma_init(struct sdma_engine *sdma)
1893 {
1894 	int i, ret;
1895 	dma_addr_t ccb_phys;
1896 
1897 	ret = clk_enable(sdma->clk_ipg);
1898 	if (ret)
1899 		return ret;
1900 	ret = clk_enable(sdma->clk_ahb);
1901 	if (ret)
1902 		goto disable_clk_ipg;
1903 
1904 	if (sdma->drvdata->check_ratio &&
1905 	    (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
1906 		sdma->clk_ratio = 1;
1907 
1908 	/* Be sure SDMA has not started yet */
1909 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1910 
1911 	sdma->channel_control = dma_alloc_coherent(sdma->dev,
1912 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1913 			sizeof(struct sdma_context_data),
1914 			&ccb_phys, GFP_KERNEL);
1915 
1916 	if (!sdma->channel_control) {
1917 		ret = -ENOMEM;
1918 		goto err_dma_alloc;
1919 	}
1920 
1921 	sdma->context = (void *)sdma->channel_control +
1922 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1923 	sdma->context_phys = ccb_phys +
1924 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1925 
1926 	/* disable all channels */
1927 	for (i = 0; i < sdma->drvdata->num_events; i++)
1928 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1929 
1930 	/* All channels have priority 0 */
1931 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1932 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1933 
1934 	ret = sdma_request_channel0(sdma);
1935 	if (ret)
1936 		goto err_dma_alloc;
1937 
1938 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1939 
1940 	/* Set Command Channel (Channel Zero) */
1941 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1942 
1943 	/* Set bits of CONFIG register but with static context switching */
1944 	if (sdma->clk_ratio)
1945 		writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
1946 	else
1947 		writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1948 
1949 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1950 
1951 	/* Initializes channel's priorities */
1952 	sdma_set_channel_priority(&sdma->channel[0], 7);
1953 
1954 	clk_disable(sdma->clk_ipg);
1955 	clk_disable(sdma->clk_ahb);
1956 
1957 	return 0;
1958 
1959 err_dma_alloc:
1960 	clk_disable(sdma->clk_ahb);
1961 disable_clk_ipg:
1962 	clk_disable(sdma->clk_ipg);
1963 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1964 	return ret;
1965 }
1966 
1967 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1968 {
1969 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1970 	struct imx_dma_data *data = fn_param;
1971 
1972 	if (!imx_dma_is_general_purpose(chan))
1973 		return false;
1974 
1975 	sdmac->data = *data;
1976 	chan->private = &sdmac->data;
1977 
1978 	return true;
1979 }
1980 
1981 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1982 				   struct of_dma *ofdma)
1983 {
1984 	struct sdma_engine *sdma = ofdma->of_dma_data;
1985 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1986 	struct imx_dma_data data;
1987 
1988 	if (dma_spec->args_count != 3)
1989 		return NULL;
1990 
1991 	data.dma_request = dma_spec->args[0];
1992 	data.peripheral_type = dma_spec->args[1];
1993 	data.priority = dma_spec->args[2];
1994 	/*
1995 	 * init dma_request2 to zero, which is not used by the dts.
1996 	 * For P2P, dma_request2 is init from dma_request_channel(),
1997 	 * chan->private will point to the imx_dma_data, and in
1998 	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1999 	 * be set to sdmac->event_id1.
2000 	 */
2001 	data.dma_request2 = 0;
2002 
2003 	return __dma_request_channel(&mask, sdma_filter_fn, &data,
2004 				     ofdma->of_node);
2005 }
2006 
2007 static int sdma_probe(struct platform_device *pdev)
2008 {
2009 	struct device_node *np = pdev->dev.of_node;
2010 	struct device_node *spba_bus;
2011 	const char *fw_name;
2012 	int ret;
2013 	int irq;
2014 	struct resource *iores;
2015 	struct resource spba_res;
2016 	int i;
2017 	struct sdma_engine *sdma;
2018 	s32 *saddr_arr;
2019 
2020 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2021 	if (ret)
2022 		return ret;
2023 
2024 	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2025 	if (!sdma)
2026 		return -ENOMEM;
2027 
2028 	spin_lock_init(&sdma->channel_0_lock);
2029 
2030 	sdma->dev = &pdev->dev;
2031 	sdma->drvdata = of_device_get_match_data(sdma->dev);
2032 
2033 	irq = platform_get_irq(pdev, 0);
2034 	if (irq < 0)
2035 		return irq;
2036 
2037 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2038 	sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
2039 	if (IS_ERR(sdma->regs))
2040 		return PTR_ERR(sdma->regs);
2041 
2042 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2043 	if (IS_ERR(sdma->clk_ipg))
2044 		return PTR_ERR(sdma->clk_ipg);
2045 
2046 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2047 	if (IS_ERR(sdma->clk_ahb))
2048 		return PTR_ERR(sdma->clk_ahb);
2049 
2050 	ret = clk_prepare(sdma->clk_ipg);
2051 	if (ret)
2052 		return ret;
2053 
2054 	ret = clk_prepare(sdma->clk_ahb);
2055 	if (ret)
2056 		goto err_clk;
2057 
2058 	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
2059 			       sdma);
2060 	if (ret)
2061 		goto err_irq;
2062 
2063 	sdma->irq = irq;
2064 
2065 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2066 	if (!sdma->script_addrs) {
2067 		ret = -ENOMEM;
2068 		goto err_irq;
2069 	}
2070 
2071 	/* initially no scripts available */
2072 	saddr_arr = (s32 *)sdma->script_addrs;
2073 	for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2074 		saddr_arr[i] = -EINVAL;
2075 
2076 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2077 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2078 	dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2079 
2080 	INIT_LIST_HEAD(&sdma->dma_device.channels);
2081 	/* Initialize channel parameters */
2082 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2083 		struct sdma_channel *sdmac = &sdma->channel[i];
2084 
2085 		sdmac->sdma = sdma;
2086 
2087 		sdmac->channel = i;
2088 		sdmac->vc.desc_free = sdma_desc_free;
2089 		INIT_WORK(&sdmac->terminate_worker,
2090 				sdma_channel_terminate_work);
2091 		/*
2092 		 * Add the channel to the DMAC list. Do not add channel 0 though
2093 		 * because we need it internally in the SDMA driver. This also means
2094 		 * that channel 0 in dmaengine counting matches sdma channel 1.
2095 		 */
2096 		if (i)
2097 			vchan_init(&sdmac->vc, &sdma->dma_device);
2098 	}
2099 
2100 	ret = sdma_init(sdma);
2101 	if (ret)
2102 		goto err_init;
2103 
2104 	ret = sdma_event_remap(sdma);
2105 	if (ret)
2106 		goto err_init;
2107 
2108 	if (sdma->drvdata->script_addrs)
2109 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2110 
2111 	sdma->dma_device.dev = &pdev->dev;
2112 
2113 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2114 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2115 	sdma->dma_device.device_tx_status = sdma_tx_status;
2116 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2117 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2118 	sdma->dma_device.device_config = sdma_config;
2119 	sdma->dma_device.device_terminate_all = sdma_terminate_all;
2120 	sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2121 	sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2122 	sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2123 	sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2124 	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2125 	sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2126 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
2127 	sdma->dma_device.copy_align = 2;
2128 	dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2129 
2130 	platform_set_drvdata(pdev, sdma);
2131 
2132 	ret = dma_async_device_register(&sdma->dma_device);
2133 	if (ret) {
2134 		dev_err(&pdev->dev, "unable to register\n");
2135 		goto err_init;
2136 	}
2137 
2138 	if (np) {
2139 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
2140 		if (ret) {
2141 			dev_err(&pdev->dev, "failed to register controller\n");
2142 			goto err_register;
2143 		}
2144 
2145 		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2146 		ret = of_address_to_resource(spba_bus, 0, &spba_res);
2147 		if (!ret) {
2148 			sdma->spba_start_addr = spba_res.start;
2149 			sdma->spba_end_addr = spba_res.end;
2150 		}
2151 		of_node_put(spba_bus);
2152 	}
2153 
2154 	/*
2155 	 * Because that device tree does not encode ROM script address,
2156 	 * the RAM script in firmware is mandatory for device tree
2157 	 * probe, otherwise it fails.
2158 	 */
2159 	ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2160 				      &fw_name);
2161 	if (ret) {
2162 		dev_warn(&pdev->dev, "failed to get firmware name\n");
2163 	} else {
2164 		ret = sdma_get_firmware(sdma, fw_name);
2165 		if (ret)
2166 			dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2167 	}
2168 
2169 	return 0;
2170 
2171 err_register:
2172 	dma_async_device_unregister(&sdma->dma_device);
2173 err_init:
2174 	kfree(sdma->script_addrs);
2175 err_irq:
2176 	clk_unprepare(sdma->clk_ahb);
2177 err_clk:
2178 	clk_unprepare(sdma->clk_ipg);
2179 	return ret;
2180 }
2181 
2182 static int sdma_remove(struct platform_device *pdev)
2183 {
2184 	struct sdma_engine *sdma = platform_get_drvdata(pdev);
2185 	int i;
2186 
2187 	devm_free_irq(&pdev->dev, sdma->irq, sdma);
2188 	dma_async_device_unregister(&sdma->dma_device);
2189 	kfree(sdma->script_addrs);
2190 	clk_unprepare(sdma->clk_ahb);
2191 	clk_unprepare(sdma->clk_ipg);
2192 	/* Kill the tasklet */
2193 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2194 		struct sdma_channel *sdmac = &sdma->channel[i];
2195 
2196 		tasklet_kill(&sdmac->vc.task);
2197 		sdma_free_chan_resources(&sdmac->vc.chan);
2198 	}
2199 
2200 	platform_set_drvdata(pdev, NULL);
2201 	return 0;
2202 }
2203 
2204 static struct platform_driver sdma_driver = {
2205 	.driver		= {
2206 		.name	= "imx-sdma",
2207 		.of_match_table = sdma_dt_ids,
2208 	},
2209 	.remove		= sdma_remove,
2210 	.probe		= sdma_probe,
2211 };
2212 
2213 module_platform_driver(sdma_driver);
2214 
2215 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2216 MODULE_DESCRIPTION("i.MX SDMA driver");
2217 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2218 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2219 #endif
2220 #if IS_ENABLED(CONFIG_SOC_IMX7D)
2221 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2222 #endif
2223 MODULE_LICENSE("GPL");
2224