xref: /openbmc/linux/drivers/dma/imx-sdma.c (revision 8d81cd1a)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
10 //
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12 
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitfield.h>
18 #include <linux/bitops.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24 #include <linux/semaphore.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/firmware.h>
29 #include <linux/slab.h>
30 #include <linux/platform_device.h>
31 #include <linux/dmaengine.h>
32 #include <linux/of.h>
33 #include <linux/of_address.h>
34 #include <linux/of_dma.h>
35 #include <linux/workqueue.h>
36 
37 #include <asm/irq.h>
38 #include <linux/dma/imx-dma.h>
39 #include <linux/regmap.h>
40 #include <linux/mfd/syscon.h>
41 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
42 
43 #include "dmaengine.h"
44 #include "virt-dma.h"
45 
46 /* SDMA registers */
47 #define SDMA_H_C0PTR		0x000
48 #define SDMA_H_INTR		0x004
49 #define SDMA_H_STATSTOP		0x008
50 #define SDMA_H_START		0x00c
51 #define SDMA_H_EVTOVR		0x010
52 #define SDMA_H_DSPOVR		0x014
53 #define SDMA_H_HOSTOVR		0x018
54 #define SDMA_H_EVTPEND		0x01c
55 #define SDMA_H_DSPENBL		0x020
56 #define SDMA_H_RESET		0x024
57 #define SDMA_H_EVTERR		0x028
58 #define SDMA_H_INTRMSK		0x02c
59 #define SDMA_H_PSW		0x030
60 #define SDMA_H_EVTERRDBG	0x034
61 #define SDMA_H_CONFIG		0x038
62 #define SDMA_ONCE_ENB		0x040
63 #define SDMA_ONCE_DATA		0x044
64 #define SDMA_ONCE_INSTR		0x048
65 #define SDMA_ONCE_STAT		0x04c
66 #define SDMA_ONCE_CMD		0x050
67 #define SDMA_EVT_MIRROR		0x054
68 #define SDMA_ILLINSTADDR	0x058
69 #define SDMA_CHN0ADDR		0x05c
70 #define SDMA_ONCE_RTB		0x060
71 #define SDMA_XTRIG_CONF1	0x070
72 #define SDMA_XTRIG_CONF2	0x074
73 #define SDMA_CHNENBL0_IMX35	0x200
74 #define SDMA_CHNENBL0_IMX31	0x080
75 #define SDMA_CHNPRI_0		0x100
76 #define SDMA_DONE0_CONFIG	0x1000
77 
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88 
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96 
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101 
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108 
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125 
126 /*
127  *  p_2_p watermark_level description
128  *	Bits		Name			Description
129  *	0-7		Lower WML		Lower watermark level
130  *	8		PS			1: Pad Swallowing
131  *						0: No Pad Swallowing
132  *	9		PA			1: Pad Adding
133  *						0: No Pad Adding
134  *	10		SPDIF			If this bit is set both source
135  *						and destination are on SPBA
136  *	11		Source Bit(SP)		1: Source on SPBA
137  *						0: Source on AIPS
138  *	12		Destination Bit(DP)	1: Destination on SPBA
139  *						0: Destination on AIPS
140  *	13-15		---------		MUST BE 0
141  *	16-23		Higher WML		HWML
142  *	24-27		N			Total number of samples after
143  *						which Pad adding/Swallowing
144  *						must be done. It must be odd.
145  *	28		Lower WML Event(LWE)	SDMA events reg to check for
146  *						LWML event mask
147  *						0: LWE in EVENTS register
148  *						1: LWE in EVENTS2 register
149  *	29		Higher WML Event(HWE)	SDMA events reg to check for
150  *						HWML event mask
151  *						0: HWE in EVENTS register
152  *						1: HWE in EVENTS2 register
153  *	30		---------		MUST BE 0
154  *	31		CONT			1: Amount of samples to be
155  *						transferred is unknown and
156  *						script will keep on
157  *						transferring samples as long as
158  *						both events are detected and
159  *						script must be manually stopped
160  *						by the application
161  *						0: The amount of samples to be
162  *						transferred is equal to the
163  *						count field of mode word
164  */
165 #define SDMA_WATERMARK_LEVEL_LWML	0xFF
166 #define SDMA_WATERMARK_LEVEL_PS		BIT(8)
167 #define SDMA_WATERMARK_LEVEL_PA		BIT(9)
168 #define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
169 #define SDMA_WATERMARK_LEVEL_SP		BIT(11)
170 #define SDMA_WATERMARK_LEVEL_DP		BIT(12)
171 #define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
172 #define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
173 #define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
174 #define SDMA_WATERMARK_LEVEL_CONT	BIT(31)
175 
176 #define SDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
177 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
178 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
179 
180 #define SDMA_DMA_DIRECTIONS	(BIT(DMA_DEV_TO_MEM) | \
181 				 BIT(DMA_MEM_TO_DEV) | \
182 				 BIT(DMA_DEV_TO_DEV))
183 
184 #define SDMA_WATERMARK_LEVEL_N_FIFOS	GENMASK(15, 12)
185 #define SDMA_WATERMARK_LEVEL_OFF_FIFOS  GENMASK(19, 16)
186 #define SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO   GENMASK(31, 28)
187 #define SDMA_WATERMARK_LEVEL_SW_DONE	BIT(23)
188 
189 #define SDMA_DONE0_CONFIG_DONE_SEL	BIT(7)
190 #define SDMA_DONE0_CONFIG_DONE_DIS	BIT(6)
191 
192 /*
193  * struct sdma_script_start_addrs - SDMA script start pointers
194  *
195  * start addresses of the different functions in the physical
196  * address space of the SDMA engine.
197  */
198 struct sdma_script_start_addrs {
199 	s32 ap_2_ap_addr;
200 	s32 ap_2_bp_addr;
201 	s32 ap_2_ap_fixed_addr;
202 	s32 bp_2_ap_addr;
203 	s32 loopback_on_dsp_side_addr;
204 	s32 mcu_interrupt_only_addr;
205 	s32 firi_2_per_addr;
206 	s32 firi_2_mcu_addr;
207 	s32 per_2_firi_addr;
208 	s32 mcu_2_firi_addr;
209 	s32 uart_2_per_addr;
210 	s32 uart_2_mcu_addr;
211 	s32 per_2_app_addr;
212 	s32 mcu_2_app_addr;
213 	s32 per_2_per_addr;
214 	s32 uartsh_2_per_addr;
215 	s32 uartsh_2_mcu_addr;
216 	s32 per_2_shp_addr;
217 	s32 mcu_2_shp_addr;
218 	s32 ata_2_mcu_addr;
219 	s32 mcu_2_ata_addr;
220 	s32 app_2_per_addr;
221 	s32 app_2_mcu_addr;
222 	s32 shp_2_per_addr;
223 	s32 shp_2_mcu_addr;
224 	s32 mshc_2_mcu_addr;
225 	s32 mcu_2_mshc_addr;
226 	s32 spdif_2_mcu_addr;
227 	s32 mcu_2_spdif_addr;
228 	s32 asrc_2_mcu_addr;
229 	s32 ext_mem_2_ipu_addr;
230 	s32 descrambler_addr;
231 	s32 dptc_dvfs_addr;
232 	s32 utra_addr;
233 	s32 ram_code_start_addr;
234 	/* End of v1 array */
235 	s32 mcu_2_ssish_addr;
236 	s32 ssish_2_mcu_addr;
237 	s32 hdmi_dma_addr;
238 	/* End of v2 array */
239 	s32 zcanfd_2_mcu_addr;
240 	s32 zqspi_2_mcu_addr;
241 	s32 mcu_2_ecspi_addr;
242 	s32 mcu_2_sai_addr;
243 	s32 sai_2_mcu_addr;
244 	s32 uart_2_mcu_rom_addr;
245 	s32 uartsh_2_mcu_rom_addr;
246 	/* End of v3 array */
247 	s32 mcu_2_zqspi_addr;
248 	/* End of v4 array */
249 };
250 
251 /*
252  * Mode/Count of data node descriptors - IPCv2
253  */
254 struct sdma_mode_count {
255 #define SDMA_BD_MAX_CNT	0xffff
256 	u32 count   : 16; /* size of the buffer pointed by this BD */
257 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
258 	u32 command :  8; /* command mostly used for channel 0 */
259 };
260 
261 /*
262  * Buffer descriptor
263  */
264 struct sdma_buffer_descriptor {
265 	struct sdma_mode_count  mode;
266 	u32 buffer_addr;	/* address of the buffer described */
267 	u32 ext_buffer_addr;	/* extended buffer address */
268 } __attribute__ ((packed));
269 
270 /**
271  * struct sdma_channel_control - Channel control Block
272  *
273  * @current_bd_ptr:	current buffer descriptor processed
274  * @base_bd_ptr:	first element of buffer descriptor array
275  * @unused:		padding. The SDMA engine expects an array of 128 byte
276  *			control blocks
277  */
278 struct sdma_channel_control {
279 	u32 current_bd_ptr;
280 	u32 base_bd_ptr;
281 	u32 unused[2];
282 } __attribute__ ((packed));
283 
284 /**
285  * struct sdma_state_registers - SDMA context for a channel
286  *
287  * @pc:		program counter
288  * @unused1:	unused
289  * @t:		test bit: status of arithmetic & test instruction
290  * @rpc:	return program counter
291  * @unused0:	unused
292  * @sf:		source fault while loading data
293  * @spc:	loop start program counter
294  * @unused2:	unused
295  * @df:		destination fault while storing data
296  * @epc:	loop end program counter
297  * @lm:		loop mode
298  */
299 struct sdma_state_registers {
300 	u32 pc     :14;
301 	u32 unused1: 1;
302 	u32 t      : 1;
303 	u32 rpc    :14;
304 	u32 unused0: 1;
305 	u32 sf     : 1;
306 	u32 spc    :14;
307 	u32 unused2: 1;
308 	u32 df     : 1;
309 	u32 epc    :14;
310 	u32 lm     : 2;
311 } __attribute__ ((packed));
312 
313 /**
314  * struct sdma_context_data - sdma context specific to a channel
315  *
316  * @channel_state:	channel state bits
317  * @gReg:		general registers
318  * @mda:		burst dma destination address register
319  * @msa:		burst dma source address register
320  * @ms:			burst dma status register
321  * @md:			burst dma data register
322  * @pda:		peripheral dma destination address register
323  * @psa:		peripheral dma source address register
324  * @ps:			peripheral dma status register
325  * @pd:			peripheral dma data register
326  * @ca:			CRC polynomial register
327  * @cs:			CRC accumulator register
328  * @dda:		dedicated core destination address register
329  * @dsa:		dedicated core source address register
330  * @ds:			dedicated core status register
331  * @dd:			dedicated core data register
332  * @scratch0:		1st word of dedicated ram for context switch
333  * @scratch1:		2nd word of dedicated ram for context switch
334  * @scratch2:		3rd word of dedicated ram for context switch
335  * @scratch3:		4th word of dedicated ram for context switch
336  * @scratch4:		5th word of dedicated ram for context switch
337  * @scratch5:		6th word of dedicated ram for context switch
338  * @scratch6:		7th word of dedicated ram for context switch
339  * @scratch7:		8th word of dedicated ram for context switch
340  */
341 struct sdma_context_data {
342 	struct sdma_state_registers  channel_state;
343 	u32  gReg[8];
344 	u32  mda;
345 	u32  msa;
346 	u32  ms;
347 	u32  md;
348 	u32  pda;
349 	u32  psa;
350 	u32  ps;
351 	u32  pd;
352 	u32  ca;
353 	u32  cs;
354 	u32  dda;
355 	u32  dsa;
356 	u32  ds;
357 	u32  dd;
358 	u32  scratch0;
359 	u32  scratch1;
360 	u32  scratch2;
361 	u32  scratch3;
362 	u32  scratch4;
363 	u32  scratch5;
364 	u32  scratch6;
365 	u32  scratch7;
366 } __attribute__ ((packed));
367 
368 
369 struct sdma_engine;
370 
371 /**
372  * struct sdma_desc - descriptor structor for one transfer
373  * @vd:			descriptor for virt dma
374  * @num_bd:		number of descriptors currently handling
375  * @bd_phys:		physical address of bd
376  * @buf_tail:		ID of the buffer that was processed
377  * @buf_ptail:		ID of the previous buffer that was processed
378  * @period_len:		period length, used in cyclic.
379  * @chn_real_count:	the real count updated from bd->mode.count
380  * @chn_count:		the transfer count set
381  * @sdmac:		sdma_channel pointer
382  * @bd:			pointer of allocate bd
383  */
384 struct sdma_desc {
385 	struct virt_dma_desc	vd;
386 	unsigned int		num_bd;
387 	dma_addr_t		bd_phys;
388 	unsigned int		buf_tail;
389 	unsigned int		buf_ptail;
390 	unsigned int		period_len;
391 	unsigned int		chn_real_count;
392 	unsigned int		chn_count;
393 	struct sdma_channel	*sdmac;
394 	struct sdma_buffer_descriptor *bd;
395 };
396 
397 /**
398  * struct sdma_channel - housekeeping for a SDMA channel
399  *
400  * @vc:			virt_dma base structure
401  * @desc:		sdma description including vd and other special member
402  * @sdma:		pointer to the SDMA engine for this channel
403  * @channel:		the channel number, matches dmaengine chan_id + 1
404  * @direction:		transfer type. Needed for setting SDMA script
405  * @slave_config:	Slave configuration
406  * @peripheral_type:	Peripheral type. Needed for setting SDMA script
407  * @event_id0:		aka dma request line
408  * @event_id1:		for channels that use 2 events
409  * @word_size:		peripheral access size
410  * @pc_from_device:	script address for those device_2_memory
411  * @pc_to_device:	script address for those memory_2_device
412  * @device_to_device:	script address for those device_2_device
413  * @pc_to_pc:		script address for those memory_2_memory
414  * @flags:		loop mode or not
415  * @per_address:	peripheral source or destination address in common case
416  *                      destination address in p_2_p case
417  * @per_address2:	peripheral source address in p_2_p case
418  * @event_mask:		event mask used in p_2_p script
419  * @watermark_level:	value for gReg[7], some script will extend it from
420  *			basic watermark such as p_2_p
421  * @shp_addr:		value for gReg[6]
422  * @per_addr:		value for gReg[2]
423  * @status:		status of dma channel
424  * @context_loaded:	ensure context is only loaded once
425  * @data:		specific sdma interface structure
426  * @bd_pool:		dma_pool for bd
427  * @terminate_worker:	used to call back into terminate work function
428  * @terminated:		terminated list
429  * @is_ram_script:	flag for script in ram
430  * @n_fifos_src:	number of source device fifos
431  * @n_fifos_dst:	number of destination device fifos
432  * @sw_done:		software done flag
433  * @stride_fifos_src:	stride for source device FIFOs
434  * @stride_fifos_dst:	stride for destination device FIFOs
435  * @words_per_fifo:	copy number of words one time for one FIFO
436  */
437 struct sdma_channel {
438 	struct virt_dma_chan		vc;
439 	struct sdma_desc		*desc;
440 	struct sdma_engine		*sdma;
441 	unsigned int			channel;
442 	enum dma_transfer_direction		direction;
443 	struct dma_slave_config		slave_config;
444 	enum sdma_peripheral_type	peripheral_type;
445 	unsigned int			event_id0;
446 	unsigned int			event_id1;
447 	enum dma_slave_buswidth		word_size;
448 	unsigned int			pc_from_device, pc_to_device;
449 	unsigned int			device_to_device;
450 	unsigned int                    pc_to_pc;
451 	unsigned long			flags;
452 	dma_addr_t			per_address, per_address2;
453 	unsigned long			event_mask[2];
454 	unsigned long			watermark_level;
455 	u32				shp_addr, per_addr;
456 	enum dma_status			status;
457 	struct imx_dma_data		data;
458 	struct work_struct		terminate_worker;
459 	struct list_head                terminated;
460 	bool				is_ram_script;
461 	unsigned int			n_fifos_src;
462 	unsigned int			n_fifos_dst;
463 	unsigned int			stride_fifos_src;
464 	unsigned int			stride_fifos_dst;
465 	unsigned int			words_per_fifo;
466 	bool				sw_done;
467 };
468 
469 #define IMX_DMA_SG_LOOP		BIT(0)
470 
471 #define MAX_DMA_CHANNELS 32
472 #define MXC_SDMA_DEFAULT_PRIORITY 1
473 #define MXC_SDMA_MIN_PRIORITY 1
474 #define MXC_SDMA_MAX_PRIORITY 7
475 
476 #define SDMA_FIRMWARE_MAGIC 0x414d4453
477 
478 /**
479  * struct sdma_firmware_header - Layout of the firmware image
480  *
481  * @magic:		"SDMA"
482  * @version_major:	increased whenever layout of struct
483  *			sdma_script_start_addrs changes.
484  * @version_minor:	firmware minor version (for binary compatible changes)
485  * @script_addrs_start:	offset of struct sdma_script_start_addrs in this image
486  * @num_script_addrs:	Number of script addresses in this image
487  * @ram_code_start:	offset of SDMA ram image in this firmware image
488  * @ram_code_size:	size of SDMA ram image
489  * @script_addrs:	Stores the start address of the SDMA scripts
490  *			(in SDMA memory space)
491  */
492 struct sdma_firmware_header {
493 	u32	magic;
494 	u32	version_major;
495 	u32	version_minor;
496 	u32	script_addrs_start;
497 	u32	num_script_addrs;
498 	u32	ram_code_start;
499 	u32	ram_code_size;
500 };
501 
502 struct sdma_driver_data {
503 	int chnenbl0;
504 	int num_events;
505 	struct sdma_script_start_addrs	*script_addrs;
506 	bool check_ratio;
507 	/*
508 	 * ecspi ERR009165 fixed should be done in sdma script
509 	 * and it has been fixed in soc from i.mx6ul.
510 	 * please get more information from the below link:
511 	 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
512 	 */
513 	bool ecspi_fixed;
514 };
515 
516 struct sdma_engine {
517 	struct device			*dev;
518 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
519 	struct sdma_channel_control	*channel_control;
520 	void __iomem			*regs;
521 	struct sdma_context_data	*context;
522 	dma_addr_t			context_phys;
523 	struct dma_device		dma_device;
524 	struct clk			*clk_ipg;
525 	struct clk			*clk_ahb;
526 	spinlock_t			channel_0_lock;
527 	u32				script_number;
528 	struct sdma_script_start_addrs	*script_addrs;
529 	const struct sdma_driver_data	*drvdata;
530 	u32				spba_start_addr;
531 	u32				spba_end_addr;
532 	unsigned int			irq;
533 	dma_addr_t			bd0_phys;
534 	struct sdma_buffer_descriptor	*bd0;
535 	/* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
536 	bool				clk_ratio;
537 	bool                            fw_loaded;
538 };
539 
540 static int sdma_config_write(struct dma_chan *chan,
541 		       struct dma_slave_config *dmaengine_cfg,
542 		       enum dma_transfer_direction direction);
543 
544 static struct sdma_driver_data sdma_imx31 = {
545 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
546 	.num_events = 32,
547 };
548 
549 static struct sdma_script_start_addrs sdma_script_imx25 = {
550 	.ap_2_ap_addr = 729,
551 	.uart_2_mcu_addr = 904,
552 	.per_2_app_addr = 1255,
553 	.mcu_2_app_addr = 834,
554 	.uartsh_2_mcu_addr = 1120,
555 	.per_2_shp_addr = 1329,
556 	.mcu_2_shp_addr = 1048,
557 	.ata_2_mcu_addr = 1560,
558 	.mcu_2_ata_addr = 1479,
559 	.app_2_per_addr = 1189,
560 	.app_2_mcu_addr = 770,
561 	.shp_2_per_addr = 1407,
562 	.shp_2_mcu_addr = 979,
563 };
564 
565 static struct sdma_driver_data sdma_imx25 = {
566 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
567 	.num_events = 48,
568 	.script_addrs = &sdma_script_imx25,
569 };
570 
571 static struct sdma_driver_data sdma_imx35 = {
572 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
573 	.num_events = 48,
574 };
575 
576 static struct sdma_script_start_addrs sdma_script_imx51 = {
577 	.ap_2_ap_addr = 642,
578 	.uart_2_mcu_addr = 817,
579 	.mcu_2_app_addr = 747,
580 	.mcu_2_shp_addr = 961,
581 	.ata_2_mcu_addr = 1473,
582 	.mcu_2_ata_addr = 1392,
583 	.app_2_per_addr = 1033,
584 	.app_2_mcu_addr = 683,
585 	.shp_2_per_addr = 1251,
586 	.shp_2_mcu_addr = 892,
587 };
588 
589 static struct sdma_driver_data sdma_imx51 = {
590 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
591 	.num_events = 48,
592 	.script_addrs = &sdma_script_imx51,
593 };
594 
595 static struct sdma_script_start_addrs sdma_script_imx53 = {
596 	.ap_2_ap_addr = 642,
597 	.app_2_mcu_addr = 683,
598 	.mcu_2_app_addr = 747,
599 	.uart_2_mcu_addr = 817,
600 	.shp_2_mcu_addr = 891,
601 	.mcu_2_shp_addr = 960,
602 	.uartsh_2_mcu_addr = 1032,
603 	.spdif_2_mcu_addr = 1100,
604 	.mcu_2_spdif_addr = 1134,
605 	.firi_2_mcu_addr = 1193,
606 	.mcu_2_firi_addr = 1290,
607 };
608 
609 static struct sdma_driver_data sdma_imx53 = {
610 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
611 	.num_events = 48,
612 	.script_addrs = &sdma_script_imx53,
613 };
614 
615 static struct sdma_script_start_addrs sdma_script_imx6q = {
616 	.ap_2_ap_addr = 642,
617 	.uart_2_mcu_addr = 817,
618 	.mcu_2_app_addr = 747,
619 	.per_2_per_addr = 6331,
620 	.uartsh_2_mcu_addr = 1032,
621 	.mcu_2_shp_addr = 960,
622 	.app_2_mcu_addr = 683,
623 	.shp_2_mcu_addr = 891,
624 	.spdif_2_mcu_addr = 1100,
625 	.mcu_2_spdif_addr = 1134,
626 };
627 
628 static struct sdma_driver_data sdma_imx6q = {
629 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
630 	.num_events = 48,
631 	.script_addrs = &sdma_script_imx6q,
632 };
633 
634 static struct sdma_driver_data sdma_imx6ul = {
635 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
636 	.num_events = 48,
637 	.script_addrs = &sdma_script_imx6q,
638 	.ecspi_fixed = true,
639 };
640 
641 static struct sdma_script_start_addrs sdma_script_imx7d = {
642 	.ap_2_ap_addr = 644,
643 	.uart_2_mcu_addr = 819,
644 	.mcu_2_app_addr = 749,
645 	.uartsh_2_mcu_addr = 1034,
646 	.mcu_2_shp_addr = 962,
647 	.app_2_mcu_addr = 685,
648 	.shp_2_mcu_addr = 893,
649 	.spdif_2_mcu_addr = 1102,
650 	.mcu_2_spdif_addr = 1136,
651 };
652 
653 static struct sdma_driver_data sdma_imx7d = {
654 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
655 	.num_events = 48,
656 	.script_addrs = &sdma_script_imx7d,
657 };
658 
659 static struct sdma_driver_data sdma_imx8mq = {
660 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
661 	.num_events = 48,
662 	.script_addrs = &sdma_script_imx7d,
663 	.check_ratio = 1,
664 };
665 
666 static const struct of_device_id sdma_dt_ids[] = {
667 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
668 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
669 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
670 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
671 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
672 	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
673 	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
674 	{ .compatible = "fsl,imx6ul-sdma", .data = &sdma_imx6ul, },
675 	{ .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
676 	{ /* sentinel */ }
677 };
678 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
679 
680 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
681 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
682 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
683 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
684 
685 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
686 {
687 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
688 	return chnenbl0 + event * 4;
689 }
690 
691 static int sdma_config_ownership(struct sdma_channel *sdmac,
692 		bool event_override, bool mcu_override, bool dsp_override)
693 {
694 	struct sdma_engine *sdma = sdmac->sdma;
695 	int channel = sdmac->channel;
696 	unsigned long evt, mcu, dsp;
697 
698 	if (event_override && mcu_override && dsp_override)
699 		return -EINVAL;
700 
701 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
702 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
703 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
704 
705 	if (dsp_override)
706 		__clear_bit(channel, &dsp);
707 	else
708 		__set_bit(channel, &dsp);
709 
710 	if (event_override)
711 		__clear_bit(channel, &evt);
712 	else
713 		__set_bit(channel, &evt);
714 
715 	if (mcu_override)
716 		__clear_bit(channel, &mcu);
717 	else
718 		__set_bit(channel, &mcu);
719 
720 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
721 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
722 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
723 
724 	return 0;
725 }
726 
727 static int is_sdma_channel_enabled(struct sdma_engine *sdma, int channel)
728 {
729 	return !!(readl(sdma->regs + SDMA_H_STATSTOP) & BIT(channel));
730 }
731 
732 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
733 {
734 	writel(BIT(channel), sdma->regs + SDMA_H_START);
735 }
736 
737 /*
738  * sdma_run_channel0 - run a channel and wait till it's done
739  */
740 static int sdma_run_channel0(struct sdma_engine *sdma)
741 {
742 	int ret;
743 	u32 reg;
744 
745 	sdma_enable_channel(sdma, 0);
746 
747 	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
748 						reg, !(reg & 1), 1, 500);
749 	if (ret)
750 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
751 
752 	/* Set bits of CONFIG register with dynamic context switching */
753 	reg = readl(sdma->regs + SDMA_H_CONFIG);
754 	if ((reg & SDMA_H_CONFIG_CSM) == 0) {
755 		reg |= SDMA_H_CONFIG_CSM;
756 		writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
757 	}
758 
759 	return ret;
760 }
761 
762 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
763 		u32 address)
764 {
765 	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
766 	void *buf_virt;
767 	dma_addr_t buf_phys;
768 	int ret;
769 	unsigned long flags;
770 
771 	buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
772 	if (!buf_virt)
773 		return -ENOMEM;
774 
775 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
776 
777 	bd0->mode.command = C0_SETPM;
778 	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
779 	bd0->mode.count = size / 2;
780 	bd0->buffer_addr = buf_phys;
781 	bd0->ext_buffer_addr = address;
782 
783 	memcpy(buf_virt, buf, size);
784 
785 	ret = sdma_run_channel0(sdma);
786 
787 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
788 
789 	dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
790 
791 	return ret;
792 }
793 
794 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
795 {
796 	struct sdma_engine *sdma = sdmac->sdma;
797 	int channel = sdmac->channel;
798 	unsigned long val;
799 	u32 chnenbl = chnenbl_ofs(sdma, event);
800 
801 	val = readl_relaxed(sdma->regs + chnenbl);
802 	__set_bit(channel, &val);
803 	writel_relaxed(val, sdma->regs + chnenbl);
804 
805 	/* Set SDMA_DONEx_CONFIG is sw_done enabled */
806 	if (sdmac->sw_done) {
807 		val = readl_relaxed(sdma->regs + SDMA_DONE0_CONFIG);
808 		val |= SDMA_DONE0_CONFIG_DONE_SEL;
809 		val &= ~SDMA_DONE0_CONFIG_DONE_DIS;
810 		writel_relaxed(val, sdma->regs + SDMA_DONE0_CONFIG);
811 	}
812 }
813 
814 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
815 {
816 	struct sdma_engine *sdma = sdmac->sdma;
817 	int channel = sdmac->channel;
818 	u32 chnenbl = chnenbl_ofs(sdma, event);
819 	unsigned long val;
820 
821 	val = readl_relaxed(sdma->regs + chnenbl);
822 	__clear_bit(channel, &val);
823 	writel_relaxed(val, sdma->regs + chnenbl);
824 }
825 
826 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
827 {
828 	return container_of(t, struct sdma_desc, vd.tx);
829 }
830 
831 static void sdma_start_desc(struct sdma_channel *sdmac)
832 {
833 	struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
834 	struct sdma_desc *desc;
835 	struct sdma_engine *sdma = sdmac->sdma;
836 	int channel = sdmac->channel;
837 
838 	if (!vd) {
839 		sdmac->desc = NULL;
840 		return;
841 	}
842 	sdmac->desc = desc = to_sdma_desc(&vd->tx);
843 
844 	list_del(&vd->node);
845 
846 	sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
847 	sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
848 	sdma_enable_channel(sdma, sdmac->channel);
849 }
850 
851 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
852 {
853 	struct sdma_buffer_descriptor *bd;
854 	int error = 0;
855 	enum dma_status	old_status = sdmac->status;
856 
857 	/*
858 	 * loop mode. Iterate over descriptors, re-setup them and
859 	 * call callback function.
860 	 */
861 	while (sdmac->desc) {
862 		struct sdma_desc *desc = sdmac->desc;
863 
864 		bd = &desc->bd[desc->buf_tail];
865 
866 		if (bd->mode.status & BD_DONE)
867 			break;
868 
869 		if (bd->mode.status & BD_RROR) {
870 			bd->mode.status &= ~BD_RROR;
871 			sdmac->status = DMA_ERROR;
872 			error = -EIO;
873 		}
874 
875 	       /*
876 		* We use bd->mode.count to calculate the residue, since contains
877 		* the number of bytes present in the current buffer descriptor.
878 		*/
879 
880 		desc->chn_real_count = bd->mode.count;
881 		bd->mode.count = desc->period_len;
882 		desc->buf_ptail = desc->buf_tail;
883 		desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
884 
885 		/*
886 		 * The callback is called from the interrupt context in order
887 		 * to reduce latency and to avoid the risk of altering the
888 		 * SDMA transaction status by the time the client tasklet is
889 		 * executed.
890 		 */
891 		spin_unlock(&sdmac->vc.lock);
892 		dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
893 		spin_lock(&sdmac->vc.lock);
894 
895 		/* Assign buffer ownership to SDMA */
896 		bd->mode.status |= BD_DONE;
897 
898 		if (error)
899 			sdmac->status = old_status;
900 	}
901 
902 	/*
903 	 * SDMA stops cyclic channel when DMA request triggers a channel and no SDMA
904 	 * owned buffer is available (i.e. BD_DONE was set too late).
905 	 */
906 	if (sdmac->desc && !is_sdma_channel_enabled(sdmac->sdma, sdmac->channel)) {
907 		dev_warn(sdmac->sdma->dev, "restart cyclic channel %d\n", sdmac->channel);
908 		sdma_enable_channel(sdmac->sdma, sdmac->channel);
909 	}
910 }
911 
912 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
913 {
914 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
915 	struct sdma_buffer_descriptor *bd;
916 	int i, error = 0;
917 
918 	sdmac->desc->chn_real_count = 0;
919 	/*
920 	 * non loop mode. Iterate over all descriptors, collect
921 	 * errors and call callback function
922 	 */
923 	for (i = 0; i < sdmac->desc->num_bd; i++) {
924 		bd = &sdmac->desc->bd[i];
925 
926 		if (bd->mode.status & (BD_DONE | BD_RROR))
927 			error = -EIO;
928 		sdmac->desc->chn_real_count += bd->mode.count;
929 	}
930 
931 	if (error)
932 		sdmac->status = DMA_ERROR;
933 	else
934 		sdmac->status = DMA_COMPLETE;
935 }
936 
937 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
938 {
939 	struct sdma_engine *sdma = dev_id;
940 	unsigned long stat;
941 
942 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
943 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
944 	/* channel 0 is special and not handled here, see run_channel0() */
945 	stat &= ~1;
946 
947 	while (stat) {
948 		int channel = fls(stat) - 1;
949 		struct sdma_channel *sdmac = &sdma->channel[channel];
950 		struct sdma_desc *desc;
951 
952 		spin_lock(&sdmac->vc.lock);
953 		desc = sdmac->desc;
954 		if (desc) {
955 			if (sdmac->flags & IMX_DMA_SG_LOOP) {
956 				if (sdmac->peripheral_type != IMX_DMATYPE_HDMI)
957 					sdma_update_channel_loop(sdmac);
958 				else
959 					vchan_cyclic_callback(&desc->vd);
960 			} else {
961 				mxc_sdma_handle_channel_normal(sdmac);
962 				vchan_cookie_complete(&desc->vd);
963 				sdma_start_desc(sdmac);
964 			}
965 		}
966 
967 		spin_unlock(&sdmac->vc.lock);
968 		__clear_bit(channel, &stat);
969 	}
970 
971 	return IRQ_HANDLED;
972 }
973 
974 /*
975  * sets the pc of SDMA script according to the peripheral type
976  */
977 static int sdma_get_pc(struct sdma_channel *sdmac,
978 		enum sdma_peripheral_type peripheral_type)
979 {
980 	struct sdma_engine *sdma = sdmac->sdma;
981 	int per_2_emi = 0, emi_2_per = 0;
982 	/*
983 	 * These are needed once we start to support transfers between
984 	 * two peripherals or memory-to-memory transfers
985 	 */
986 	int per_2_per = 0, emi_2_emi = 0;
987 
988 	sdmac->pc_from_device = 0;
989 	sdmac->pc_to_device = 0;
990 	sdmac->device_to_device = 0;
991 	sdmac->pc_to_pc = 0;
992 	sdmac->is_ram_script = false;
993 
994 	switch (peripheral_type) {
995 	case IMX_DMATYPE_MEMORY:
996 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
997 		break;
998 	case IMX_DMATYPE_DSP:
999 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
1000 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
1001 		break;
1002 	case IMX_DMATYPE_FIRI:
1003 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
1004 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
1005 		break;
1006 	case IMX_DMATYPE_UART:
1007 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
1008 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1009 		break;
1010 	case IMX_DMATYPE_UART_SP:
1011 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
1012 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1013 		break;
1014 	case IMX_DMATYPE_ATA:
1015 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
1016 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
1017 		break;
1018 	case IMX_DMATYPE_CSPI:
1019 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1020 
1021 		/* Use rom script mcu_2_app if ERR009165 fixed */
1022 		if (sdmac->sdma->drvdata->ecspi_fixed) {
1023 			emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1024 		} else {
1025 			emi_2_per = sdma->script_addrs->mcu_2_ecspi_addr;
1026 			sdmac->is_ram_script = true;
1027 		}
1028 
1029 		break;
1030 	case IMX_DMATYPE_EXT:
1031 	case IMX_DMATYPE_SSI:
1032 	case IMX_DMATYPE_SAI:
1033 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1034 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1035 		break;
1036 	case IMX_DMATYPE_SSI_DUAL:
1037 		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
1038 		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
1039 		sdmac->is_ram_script = true;
1040 		break;
1041 	case IMX_DMATYPE_SSI_SP:
1042 	case IMX_DMATYPE_MMC:
1043 	case IMX_DMATYPE_SDHC:
1044 	case IMX_DMATYPE_CSPI_SP:
1045 	case IMX_DMATYPE_ESAI:
1046 	case IMX_DMATYPE_MSHC_SP:
1047 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1048 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1049 		break;
1050 	case IMX_DMATYPE_ASRC:
1051 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
1052 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
1053 		per_2_per = sdma->script_addrs->per_2_per_addr;
1054 		sdmac->is_ram_script = true;
1055 		break;
1056 	case IMX_DMATYPE_ASRC_SP:
1057 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1058 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1059 		per_2_per = sdma->script_addrs->per_2_per_addr;
1060 		break;
1061 	case IMX_DMATYPE_MSHC:
1062 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
1063 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
1064 		break;
1065 	case IMX_DMATYPE_CCM:
1066 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
1067 		break;
1068 	case IMX_DMATYPE_SPDIF:
1069 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
1070 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
1071 		break;
1072 	case IMX_DMATYPE_IPU_MEMORY:
1073 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
1074 		break;
1075 	case IMX_DMATYPE_MULTI_SAI:
1076 		per_2_emi = sdma->script_addrs->sai_2_mcu_addr;
1077 		emi_2_per = sdma->script_addrs->mcu_2_sai_addr;
1078 		break;
1079 	case IMX_DMATYPE_HDMI:
1080 		emi_2_per = sdma->script_addrs->hdmi_dma_addr;
1081 		sdmac->is_ram_script = true;
1082 		break;
1083 	default:
1084 		dev_err(sdma->dev, "Unsupported transfer type %d\n",
1085 			peripheral_type);
1086 		return -EINVAL;
1087 	}
1088 
1089 	sdmac->pc_from_device = per_2_emi;
1090 	sdmac->pc_to_device = emi_2_per;
1091 	sdmac->device_to_device = per_2_per;
1092 	sdmac->pc_to_pc = emi_2_emi;
1093 
1094 	return 0;
1095 }
1096 
1097 static int sdma_load_context(struct sdma_channel *sdmac)
1098 {
1099 	struct sdma_engine *sdma = sdmac->sdma;
1100 	int channel = sdmac->channel;
1101 	int load_address;
1102 	struct sdma_context_data *context = sdma->context;
1103 	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
1104 	int ret;
1105 	unsigned long flags;
1106 
1107 	if (sdmac->direction == DMA_DEV_TO_MEM)
1108 		load_address = sdmac->pc_from_device;
1109 	else if (sdmac->direction == DMA_DEV_TO_DEV)
1110 		load_address = sdmac->device_to_device;
1111 	else if (sdmac->direction == DMA_MEM_TO_MEM)
1112 		load_address = sdmac->pc_to_pc;
1113 	else
1114 		load_address = sdmac->pc_to_device;
1115 
1116 	if (load_address < 0)
1117 		return load_address;
1118 
1119 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1120 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1121 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1122 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1123 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1124 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1125 
1126 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
1127 
1128 	memset(context, 0, sizeof(*context));
1129 	context->channel_state.pc = load_address;
1130 
1131 	/* Send by context the event mask,base address for peripheral
1132 	 * and watermark level
1133 	 */
1134 	if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) {
1135 		context->gReg[4] = sdmac->per_addr;
1136 		context->gReg[6] = sdmac->shp_addr;
1137 	} else {
1138 		context->gReg[0] = sdmac->event_mask[1];
1139 		context->gReg[1] = sdmac->event_mask[0];
1140 		context->gReg[2] = sdmac->per_addr;
1141 		context->gReg[6] = sdmac->shp_addr;
1142 		context->gReg[7] = sdmac->watermark_level;
1143 	}
1144 
1145 	bd0->mode.command = C0_SETDM;
1146 	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1147 	bd0->mode.count = sizeof(*context) / 4;
1148 	bd0->buffer_addr = sdma->context_phys;
1149 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1150 	ret = sdma_run_channel0(sdma);
1151 
1152 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1153 
1154 	return ret;
1155 }
1156 
1157 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1158 {
1159 	return container_of(chan, struct sdma_channel, vc.chan);
1160 }
1161 
1162 static int sdma_disable_channel(struct dma_chan *chan)
1163 {
1164 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1165 	struct sdma_engine *sdma = sdmac->sdma;
1166 	int channel = sdmac->channel;
1167 
1168 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1169 	sdmac->status = DMA_ERROR;
1170 
1171 	return 0;
1172 }
1173 static void sdma_channel_terminate_work(struct work_struct *work)
1174 {
1175 	struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1176 						  terminate_worker);
1177 	/*
1178 	 * According to NXP R&D team a delay of one BD SDMA cost time
1179 	 * (maximum is 1ms) should be added after disable of the channel
1180 	 * bit, to ensure SDMA core has really been stopped after SDMA
1181 	 * clients call .device_terminate_all.
1182 	 */
1183 	usleep_range(1000, 2000);
1184 
1185 	vchan_dma_desc_free_list(&sdmac->vc, &sdmac->terminated);
1186 }
1187 
1188 static int sdma_terminate_all(struct dma_chan *chan)
1189 {
1190 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1191 	unsigned long flags;
1192 
1193 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1194 
1195 	sdma_disable_channel(chan);
1196 
1197 	if (sdmac->desc) {
1198 		vchan_terminate_vdesc(&sdmac->desc->vd);
1199 		/*
1200 		 * move out current descriptor into terminated list so that
1201 		 * it could be free in sdma_channel_terminate_work alone
1202 		 * later without potential involving next descriptor raised
1203 		 * up before the last descriptor terminated.
1204 		 */
1205 		vchan_get_all_descriptors(&sdmac->vc, &sdmac->terminated);
1206 		sdmac->desc = NULL;
1207 		schedule_work(&sdmac->terminate_worker);
1208 	}
1209 
1210 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1211 
1212 	return 0;
1213 }
1214 
1215 static void sdma_channel_synchronize(struct dma_chan *chan)
1216 {
1217 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1218 
1219 	vchan_synchronize(&sdmac->vc);
1220 
1221 	flush_work(&sdmac->terminate_worker);
1222 }
1223 
1224 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1225 {
1226 	struct sdma_engine *sdma = sdmac->sdma;
1227 
1228 	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1229 	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1230 
1231 	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1232 	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1233 
1234 	if (sdmac->event_id0 > 31)
1235 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1236 
1237 	if (sdmac->event_id1 > 31)
1238 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1239 
1240 	/*
1241 	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1242 	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1243 	 * r0(event_mask[1]) and r1(event_mask[0]).
1244 	 */
1245 	if (lwml > hwml) {
1246 		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1247 						SDMA_WATERMARK_LEVEL_HWML);
1248 		sdmac->watermark_level |= hwml;
1249 		sdmac->watermark_level |= lwml << 16;
1250 		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1251 	}
1252 
1253 	if (sdmac->per_address2 >= sdma->spba_start_addr &&
1254 			sdmac->per_address2 <= sdma->spba_end_addr)
1255 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1256 
1257 	if (sdmac->per_address >= sdma->spba_start_addr &&
1258 			sdmac->per_address <= sdma->spba_end_addr)
1259 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1260 
1261 	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1262 }
1263 
1264 static void sdma_set_watermarklevel_for_sais(struct sdma_channel *sdmac)
1265 {
1266 	unsigned int n_fifos;
1267 	unsigned int stride_fifos;
1268 	unsigned int words_per_fifo;
1269 
1270 	if (sdmac->sw_done)
1271 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SW_DONE;
1272 
1273 	if (sdmac->direction == DMA_DEV_TO_MEM) {
1274 		n_fifos = sdmac->n_fifos_src;
1275 		stride_fifos = sdmac->stride_fifos_src;
1276 	} else {
1277 		n_fifos = sdmac->n_fifos_dst;
1278 		stride_fifos = sdmac->stride_fifos_dst;
1279 	}
1280 
1281 	words_per_fifo = sdmac->words_per_fifo;
1282 
1283 	sdmac->watermark_level |=
1284 			FIELD_PREP(SDMA_WATERMARK_LEVEL_N_FIFOS, n_fifos);
1285 	sdmac->watermark_level |=
1286 			FIELD_PREP(SDMA_WATERMARK_LEVEL_OFF_FIFOS, stride_fifos);
1287 	if (words_per_fifo)
1288 		sdmac->watermark_level |=
1289 			FIELD_PREP(SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO, (words_per_fifo - 1));
1290 }
1291 
1292 static int sdma_config_channel(struct dma_chan *chan)
1293 {
1294 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1295 	int ret;
1296 
1297 	sdma_disable_channel(chan);
1298 
1299 	sdmac->event_mask[0] = 0;
1300 	sdmac->event_mask[1] = 0;
1301 	sdmac->shp_addr = 0;
1302 	sdmac->per_addr = 0;
1303 
1304 	switch (sdmac->peripheral_type) {
1305 	case IMX_DMATYPE_DSP:
1306 		sdma_config_ownership(sdmac, false, true, true);
1307 		break;
1308 	case IMX_DMATYPE_MEMORY:
1309 		sdma_config_ownership(sdmac, false, true, false);
1310 		break;
1311 	default:
1312 		sdma_config_ownership(sdmac, true, true, false);
1313 		break;
1314 	}
1315 
1316 	ret = sdma_get_pc(sdmac, sdmac->peripheral_type);
1317 	if (ret)
1318 		return ret;
1319 
1320 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1321 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1322 		/* Handle multiple event channels differently */
1323 		if (sdmac->event_id1) {
1324 			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1325 			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1326 				sdma_set_watermarklevel_for_p2p(sdmac);
1327 		} else {
1328 			if (sdmac->peripheral_type ==
1329 					IMX_DMATYPE_MULTI_SAI)
1330 				sdma_set_watermarklevel_for_sais(sdmac);
1331 
1332 			__set_bit(sdmac->event_id0, sdmac->event_mask);
1333 		}
1334 
1335 		/* Address */
1336 		sdmac->shp_addr = sdmac->per_address;
1337 		sdmac->per_addr = sdmac->per_address2;
1338 	} else {
1339 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1340 	}
1341 
1342 	return 0;
1343 }
1344 
1345 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1346 				     unsigned int priority)
1347 {
1348 	struct sdma_engine *sdma = sdmac->sdma;
1349 	int channel = sdmac->channel;
1350 
1351 	if (priority < MXC_SDMA_MIN_PRIORITY
1352 	    || priority > MXC_SDMA_MAX_PRIORITY) {
1353 		return -EINVAL;
1354 	}
1355 
1356 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1357 
1358 	return 0;
1359 }
1360 
1361 static int sdma_request_channel0(struct sdma_engine *sdma)
1362 {
1363 	int ret = -EBUSY;
1364 
1365 	sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1366 				       GFP_NOWAIT);
1367 	if (!sdma->bd0) {
1368 		ret = -ENOMEM;
1369 		goto out;
1370 	}
1371 
1372 	sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1373 	sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1374 
1375 	sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1376 	return 0;
1377 out:
1378 
1379 	return ret;
1380 }
1381 
1382 
1383 static int sdma_alloc_bd(struct sdma_desc *desc)
1384 {
1385 	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1386 	int ret = 0;
1387 
1388 	desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1389 				      &desc->bd_phys, GFP_NOWAIT);
1390 	if (!desc->bd) {
1391 		ret = -ENOMEM;
1392 		goto out;
1393 	}
1394 out:
1395 	return ret;
1396 }
1397 
1398 static void sdma_free_bd(struct sdma_desc *desc)
1399 {
1400 	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1401 
1402 	dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1403 			  desc->bd_phys);
1404 }
1405 
1406 static void sdma_desc_free(struct virt_dma_desc *vd)
1407 {
1408 	struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1409 
1410 	sdma_free_bd(desc);
1411 	kfree(desc);
1412 }
1413 
1414 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1415 {
1416 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1417 	struct imx_dma_data *data = chan->private;
1418 	struct imx_dma_data mem_data;
1419 	int prio, ret;
1420 
1421 	/*
1422 	 * MEMCPY may never setup chan->private by filter function such as
1423 	 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1424 	 * Please note in any other slave case, you have to setup chan->private
1425 	 * with 'struct imx_dma_data' in your own filter function if you want to
1426 	 * request dma channel by dma_request_channel() rather than
1427 	 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1428 	 * to warn you to correct your filter function.
1429 	 */
1430 	if (!data) {
1431 		dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1432 		mem_data.priority = 2;
1433 		mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1434 		mem_data.dma_request = 0;
1435 		mem_data.dma_request2 = 0;
1436 		data = &mem_data;
1437 
1438 		ret = sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1439 		if (ret)
1440 			return ret;
1441 	}
1442 
1443 	switch (data->priority) {
1444 	case DMA_PRIO_HIGH:
1445 		prio = 3;
1446 		break;
1447 	case DMA_PRIO_MEDIUM:
1448 		prio = 2;
1449 		break;
1450 	case DMA_PRIO_LOW:
1451 	default:
1452 		prio = 1;
1453 		break;
1454 	}
1455 
1456 	sdmac->peripheral_type = data->peripheral_type;
1457 	sdmac->event_id0 = data->dma_request;
1458 	sdmac->event_id1 = data->dma_request2;
1459 
1460 	ret = clk_enable(sdmac->sdma->clk_ipg);
1461 	if (ret)
1462 		return ret;
1463 	ret = clk_enable(sdmac->sdma->clk_ahb);
1464 	if (ret)
1465 		goto disable_clk_ipg;
1466 
1467 	ret = sdma_set_channel_priority(sdmac, prio);
1468 	if (ret)
1469 		goto disable_clk_ahb;
1470 
1471 	return 0;
1472 
1473 disable_clk_ahb:
1474 	clk_disable(sdmac->sdma->clk_ahb);
1475 disable_clk_ipg:
1476 	clk_disable(sdmac->sdma->clk_ipg);
1477 	return ret;
1478 }
1479 
1480 static void sdma_free_chan_resources(struct dma_chan *chan)
1481 {
1482 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1483 	struct sdma_engine *sdma = sdmac->sdma;
1484 
1485 	sdma_terminate_all(chan);
1486 
1487 	sdma_channel_synchronize(chan);
1488 
1489 	sdma_event_disable(sdmac, sdmac->event_id0);
1490 	if (sdmac->event_id1)
1491 		sdma_event_disable(sdmac, sdmac->event_id1);
1492 
1493 	sdmac->event_id0 = 0;
1494 	sdmac->event_id1 = 0;
1495 
1496 	sdma_set_channel_priority(sdmac, 0);
1497 
1498 	clk_disable(sdma->clk_ipg);
1499 	clk_disable(sdma->clk_ahb);
1500 }
1501 
1502 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1503 				enum dma_transfer_direction direction, u32 bds)
1504 {
1505 	struct sdma_desc *desc;
1506 
1507 	if (!sdmac->sdma->fw_loaded && sdmac->is_ram_script) {
1508 		dev_warn_once(sdmac->sdma->dev, "sdma firmware not ready!\n");
1509 		goto err_out;
1510 	}
1511 
1512 	desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1513 	if (!desc)
1514 		goto err_out;
1515 
1516 	sdmac->status = DMA_IN_PROGRESS;
1517 	sdmac->direction = direction;
1518 	sdmac->flags = 0;
1519 
1520 	desc->chn_count = 0;
1521 	desc->chn_real_count = 0;
1522 	desc->buf_tail = 0;
1523 	desc->buf_ptail = 0;
1524 	desc->sdmac = sdmac;
1525 	desc->num_bd = bds;
1526 
1527 	if (bds && sdma_alloc_bd(desc))
1528 		goto err_desc_out;
1529 
1530 	/* No slave_config called in MEMCPY case, so do here */
1531 	if (direction == DMA_MEM_TO_MEM)
1532 		sdma_config_ownership(sdmac, false, true, false);
1533 
1534 	if (sdma_load_context(sdmac))
1535 		goto err_bd_out;
1536 
1537 	return desc;
1538 
1539 err_bd_out:
1540 	sdma_free_bd(desc);
1541 err_desc_out:
1542 	kfree(desc);
1543 err_out:
1544 	return NULL;
1545 }
1546 
1547 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1548 		struct dma_chan *chan, dma_addr_t dma_dst,
1549 		dma_addr_t dma_src, size_t len, unsigned long flags)
1550 {
1551 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1552 	struct sdma_engine *sdma = sdmac->sdma;
1553 	int channel = sdmac->channel;
1554 	size_t count;
1555 	int i = 0, param;
1556 	struct sdma_buffer_descriptor *bd;
1557 	struct sdma_desc *desc;
1558 
1559 	if (!chan || !len)
1560 		return NULL;
1561 
1562 	dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1563 		&dma_src, &dma_dst, len, channel);
1564 
1565 	desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1566 					len / SDMA_BD_MAX_CNT + 1);
1567 	if (!desc)
1568 		return NULL;
1569 
1570 	do {
1571 		count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1572 		bd = &desc->bd[i];
1573 		bd->buffer_addr = dma_src;
1574 		bd->ext_buffer_addr = dma_dst;
1575 		bd->mode.count = count;
1576 		desc->chn_count += count;
1577 		bd->mode.command = 0;
1578 
1579 		dma_src += count;
1580 		dma_dst += count;
1581 		len -= count;
1582 		i++;
1583 
1584 		param = BD_DONE | BD_EXTD | BD_CONT;
1585 		/* last bd */
1586 		if (!len) {
1587 			param |= BD_INTR;
1588 			param |= BD_LAST;
1589 			param &= ~BD_CONT;
1590 		}
1591 
1592 		dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1593 				i, count, bd->buffer_addr,
1594 				param & BD_WRAP ? "wrap" : "",
1595 				param & BD_INTR ? " intr" : "");
1596 
1597 		bd->mode.status = param;
1598 	} while (len);
1599 
1600 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1601 }
1602 
1603 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1604 		struct dma_chan *chan, struct scatterlist *sgl,
1605 		unsigned int sg_len, enum dma_transfer_direction direction,
1606 		unsigned long flags, void *context)
1607 {
1608 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1609 	struct sdma_engine *sdma = sdmac->sdma;
1610 	int i, count;
1611 	int channel = sdmac->channel;
1612 	struct scatterlist *sg;
1613 	struct sdma_desc *desc;
1614 
1615 	sdma_config_write(chan, &sdmac->slave_config, direction);
1616 
1617 	desc = sdma_transfer_init(sdmac, direction, sg_len);
1618 	if (!desc)
1619 		goto err_out;
1620 
1621 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1622 			sg_len, channel);
1623 
1624 	for_each_sg(sgl, sg, sg_len, i) {
1625 		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1626 		int param;
1627 
1628 		bd->buffer_addr = sg->dma_address;
1629 
1630 		count = sg_dma_len(sg);
1631 
1632 		if (count > SDMA_BD_MAX_CNT) {
1633 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1634 					channel, count, SDMA_BD_MAX_CNT);
1635 			goto err_bd_out;
1636 		}
1637 
1638 		bd->mode.count = count;
1639 		desc->chn_count += count;
1640 
1641 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1642 			goto err_bd_out;
1643 
1644 		switch (sdmac->word_size) {
1645 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1646 			bd->mode.command = 0;
1647 			if (count & 3 || sg->dma_address & 3)
1648 				goto err_bd_out;
1649 			break;
1650 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1651 			bd->mode.command = 2;
1652 			if (count & 1 || sg->dma_address & 1)
1653 				goto err_bd_out;
1654 			break;
1655 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1656 			bd->mode.command = 1;
1657 			break;
1658 		default:
1659 			goto err_bd_out;
1660 		}
1661 
1662 		param = BD_DONE | BD_EXTD | BD_CONT;
1663 
1664 		if (i + 1 == sg_len) {
1665 			param |= BD_INTR;
1666 			param |= BD_LAST;
1667 			param &= ~BD_CONT;
1668 		}
1669 
1670 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1671 				i, count, (u64)sg->dma_address,
1672 				param & BD_WRAP ? "wrap" : "",
1673 				param & BD_INTR ? " intr" : "");
1674 
1675 		bd->mode.status = param;
1676 	}
1677 
1678 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1679 err_bd_out:
1680 	sdma_free_bd(desc);
1681 	kfree(desc);
1682 err_out:
1683 	sdmac->status = DMA_ERROR;
1684 	return NULL;
1685 }
1686 
1687 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1688 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1689 		size_t period_len, enum dma_transfer_direction direction,
1690 		unsigned long flags)
1691 {
1692 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1693 	struct sdma_engine *sdma = sdmac->sdma;
1694 	int num_periods = 0;
1695 	int channel = sdmac->channel;
1696 	int i = 0, buf = 0;
1697 	struct sdma_desc *desc;
1698 
1699 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1700 
1701 	if (sdmac->peripheral_type != IMX_DMATYPE_HDMI)
1702 		num_periods = buf_len / period_len;
1703 
1704 	sdma_config_write(chan, &sdmac->slave_config, direction);
1705 
1706 	desc = sdma_transfer_init(sdmac, direction, num_periods);
1707 	if (!desc)
1708 		goto err_out;
1709 
1710 	desc->period_len = period_len;
1711 
1712 	sdmac->flags |= IMX_DMA_SG_LOOP;
1713 
1714 	if (period_len > SDMA_BD_MAX_CNT) {
1715 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1716 				channel, period_len, SDMA_BD_MAX_CNT);
1717 		goto err_bd_out;
1718 	}
1719 
1720 	if (sdmac->peripheral_type == IMX_DMATYPE_HDMI)
1721 		return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1722 
1723 	while (buf < buf_len) {
1724 		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1725 		int param;
1726 
1727 		bd->buffer_addr = dma_addr;
1728 
1729 		bd->mode.count = period_len;
1730 
1731 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1732 			goto err_bd_out;
1733 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1734 			bd->mode.command = 0;
1735 		else
1736 			bd->mode.command = sdmac->word_size;
1737 
1738 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1739 		if (i + 1 == num_periods)
1740 			param |= BD_WRAP;
1741 
1742 		dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1743 				i, period_len, (u64)dma_addr,
1744 				param & BD_WRAP ? "wrap" : "",
1745 				param & BD_INTR ? " intr" : "");
1746 
1747 		bd->mode.status = param;
1748 
1749 		dma_addr += period_len;
1750 		buf += period_len;
1751 
1752 		i++;
1753 	}
1754 
1755 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1756 err_bd_out:
1757 	sdma_free_bd(desc);
1758 	kfree(desc);
1759 err_out:
1760 	sdmac->status = DMA_ERROR;
1761 	return NULL;
1762 }
1763 
1764 static int sdma_config_write(struct dma_chan *chan,
1765 		       struct dma_slave_config *dmaengine_cfg,
1766 		       enum dma_transfer_direction direction)
1767 {
1768 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1769 
1770 	if (direction == DMA_DEV_TO_MEM) {
1771 		sdmac->per_address = dmaengine_cfg->src_addr;
1772 		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1773 			dmaengine_cfg->src_addr_width;
1774 		sdmac->word_size = dmaengine_cfg->src_addr_width;
1775 	} else if (direction == DMA_DEV_TO_DEV) {
1776 		sdmac->per_address2 = dmaengine_cfg->src_addr;
1777 		sdmac->per_address = dmaengine_cfg->dst_addr;
1778 		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1779 			SDMA_WATERMARK_LEVEL_LWML;
1780 		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1781 			SDMA_WATERMARK_LEVEL_HWML;
1782 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1783 	} else if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) {
1784 		sdmac->per_address = dmaengine_cfg->dst_addr;
1785 		sdmac->per_address2 = dmaengine_cfg->src_addr;
1786 		sdmac->watermark_level = 0;
1787 	} else {
1788 		sdmac->per_address = dmaengine_cfg->dst_addr;
1789 		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1790 			dmaengine_cfg->dst_addr_width;
1791 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1792 	}
1793 	sdmac->direction = direction;
1794 	return sdma_config_channel(chan);
1795 }
1796 
1797 static int sdma_config(struct dma_chan *chan,
1798 		       struct dma_slave_config *dmaengine_cfg)
1799 {
1800 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1801 	struct sdma_engine *sdma = sdmac->sdma;
1802 
1803 	memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1804 
1805 	if (dmaengine_cfg->peripheral_config) {
1806 		struct sdma_peripheral_config *sdmacfg = dmaengine_cfg->peripheral_config;
1807 		if (dmaengine_cfg->peripheral_size != sizeof(struct sdma_peripheral_config)) {
1808 			dev_err(sdma->dev, "Invalid peripheral size %zu, expected %zu\n",
1809 				dmaengine_cfg->peripheral_size,
1810 				sizeof(struct sdma_peripheral_config));
1811 			return -EINVAL;
1812 		}
1813 		sdmac->n_fifos_src = sdmacfg->n_fifos_src;
1814 		sdmac->n_fifos_dst = sdmacfg->n_fifos_dst;
1815 		sdmac->stride_fifos_src = sdmacfg->stride_fifos_src;
1816 		sdmac->stride_fifos_dst = sdmacfg->stride_fifos_dst;
1817 		sdmac->words_per_fifo = sdmacfg->words_per_fifo;
1818 		sdmac->sw_done = sdmacfg->sw_done;
1819 	}
1820 
1821 	/* Set ENBLn earlier to make sure dma request triggered after that */
1822 	if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1823 		return -EINVAL;
1824 	sdma_event_enable(sdmac, sdmac->event_id0);
1825 
1826 	if (sdmac->event_id1) {
1827 		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1828 			return -EINVAL;
1829 		sdma_event_enable(sdmac, sdmac->event_id1);
1830 	}
1831 
1832 	return 0;
1833 }
1834 
1835 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1836 				      dma_cookie_t cookie,
1837 				      struct dma_tx_state *txstate)
1838 {
1839 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1840 	struct sdma_desc *desc = NULL;
1841 	u32 residue;
1842 	struct virt_dma_desc *vd;
1843 	enum dma_status ret;
1844 	unsigned long flags;
1845 
1846 	ret = dma_cookie_status(chan, cookie, txstate);
1847 	if (ret == DMA_COMPLETE || !txstate)
1848 		return ret;
1849 
1850 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1851 
1852 	vd = vchan_find_desc(&sdmac->vc, cookie);
1853 	if (vd)
1854 		desc = to_sdma_desc(&vd->tx);
1855 	else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1856 		desc = sdmac->desc;
1857 
1858 	if (desc) {
1859 		if (sdmac->flags & IMX_DMA_SG_LOOP)
1860 			residue = (desc->num_bd - desc->buf_ptail) *
1861 				desc->period_len - desc->chn_real_count;
1862 		else
1863 			residue = desc->chn_count - desc->chn_real_count;
1864 	} else {
1865 		residue = 0;
1866 	}
1867 
1868 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1869 
1870 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1871 			 residue);
1872 
1873 	return sdmac->status;
1874 }
1875 
1876 static void sdma_issue_pending(struct dma_chan *chan)
1877 {
1878 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1879 	unsigned long flags;
1880 
1881 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1882 	if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1883 		sdma_start_desc(sdmac);
1884 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1885 }
1886 
1887 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1888 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1889 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	45
1890 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4	46
1891 
1892 static void sdma_add_scripts(struct sdma_engine *sdma,
1893 			     const struct sdma_script_start_addrs *addr)
1894 {
1895 	s32 *addr_arr = (u32 *)addr;
1896 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1897 	int i;
1898 
1899 	/* use the default firmware in ROM if missing external firmware */
1900 	if (!sdma->script_number)
1901 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1902 
1903 	if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1904 				  / sizeof(s32)) {
1905 		dev_err(sdma->dev,
1906 			"SDMA script number %d not match with firmware.\n",
1907 			sdma->script_number);
1908 		return;
1909 	}
1910 
1911 	for (i = 0; i < sdma->script_number; i++)
1912 		if (addr_arr[i] > 0)
1913 			saddr_arr[i] = addr_arr[i];
1914 
1915 	/*
1916 	 * For compatibility with NXP internal legacy kernel before 4.19 which
1917 	 * is based on uart ram script and mainline kernel based on uart rom
1918 	 * script, both uart ram/rom scripts are present in newer sdma
1919 	 * firmware. Use the rom versions if they are present (V3 or newer).
1920 	 */
1921 	if (sdma->script_number >= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3) {
1922 		if (addr->uart_2_mcu_rom_addr)
1923 			sdma->script_addrs->uart_2_mcu_addr = addr->uart_2_mcu_rom_addr;
1924 		if (addr->uartsh_2_mcu_rom_addr)
1925 			sdma->script_addrs->uartsh_2_mcu_addr = addr->uartsh_2_mcu_rom_addr;
1926 	}
1927 }
1928 
1929 static void sdma_load_firmware(const struct firmware *fw, void *context)
1930 {
1931 	struct sdma_engine *sdma = context;
1932 	const struct sdma_firmware_header *header;
1933 	const struct sdma_script_start_addrs *addr;
1934 	unsigned short *ram_code;
1935 
1936 	if (!fw) {
1937 		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1938 		/* In this case we just use the ROM firmware. */
1939 		return;
1940 	}
1941 
1942 	if (fw->size < sizeof(*header))
1943 		goto err_firmware;
1944 
1945 	header = (struct sdma_firmware_header *)fw->data;
1946 
1947 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1948 		goto err_firmware;
1949 	if (header->ram_code_start + header->ram_code_size > fw->size)
1950 		goto err_firmware;
1951 	switch (header->version_major) {
1952 	case 1:
1953 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1954 		break;
1955 	case 2:
1956 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1957 		break;
1958 	case 3:
1959 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1960 		break;
1961 	case 4:
1962 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1963 		break;
1964 	default:
1965 		dev_err(sdma->dev, "unknown firmware version\n");
1966 		goto err_firmware;
1967 	}
1968 
1969 	addr = (void *)header + header->script_addrs_start;
1970 	ram_code = (void *)header + header->ram_code_start;
1971 
1972 	clk_enable(sdma->clk_ipg);
1973 	clk_enable(sdma->clk_ahb);
1974 	/* download the RAM image for SDMA */
1975 	sdma_load_script(sdma, ram_code,
1976 			 header->ram_code_size,
1977 			 addr->ram_code_start_addr);
1978 	clk_disable(sdma->clk_ipg);
1979 	clk_disable(sdma->clk_ahb);
1980 
1981 	sdma_add_scripts(sdma, addr);
1982 
1983 	sdma->fw_loaded = true;
1984 
1985 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1986 		 header->version_major,
1987 		 header->version_minor);
1988 
1989 err_firmware:
1990 	release_firmware(fw);
1991 }
1992 
1993 #define EVENT_REMAP_CELLS 3
1994 
1995 static int sdma_event_remap(struct sdma_engine *sdma)
1996 {
1997 	struct device_node *np = sdma->dev->of_node;
1998 	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1999 	struct property *event_remap;
2000 	struct regmap *gpr;
2001 	char propname[] = "fsl,sdma-event-remap";
2002 	u32 reg, val, shift, num_map, i;
2003 	int ret = 0;
2004 
2005 	if (IS_ERR(np) || !gpr_np)
2006 		goto out;
2007 
2008 	event_remap = of_find_property(np, propname, NULL);
2009 	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
2010 	if (!num_map) {
2011 		dev_dbg(sdma->dev, "no event needs to be remapped\n");
2012 		goto out;
2013 	} else if (num_map % EVENT_REMAP_CELLS) {
2014 		dev_err(sdma->dev, "the property %s must modulo %d\n",
2015 				propname, EVENT_REMAP_CELLS);
2016 		ret = -EINVAL;
2017 		goto out;
2018 	}
2019 
2020 	gpr = syscon_node_to_regmap(gpr_np);
2021 	if (IS_ERR(gpr)) {
2022 		dev_err(sdma->dev, "failed to get gpr regmap\n");
2023 		ret = PTR_ERR(gpr);
2024 		goto out;
2025 	}
2026 
2027 	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
2028 		ret = of_property_read_u32_index(np, propname, i, &reg);
2029 		if (ret) {
2030 			dev_err(sdma->dev, "failed to read property %s index %d\n",
2031 					propname, i);
2032 			goto out;
2033 		}
2034 
2035 		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
2036 		if (ret) {
2037 			dev_err(sdma->dev, "failed to read property %s index %d\n",
2038 					propname, i + 1);
2039 			goto out;
2040 		}
2041 
2042 		ret = of_property_read_u32_index(np, propname, i + 2, &val);
2043 		if (ret) {
2044 			dev_err(sdma->dev, "failed to read property %s index %d\n",
2045 					propname, i + 2);
2046 			goto out;
2047 		}
2048 
2049 		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
2050 	}
2051 
2052 out:
2053 	if (gpr_np)
2054 		of_node_put(gpr_np);
2055 
2056 	return ret;
2057 }
2058 
2059 static int sdma_get_firmware(struct sdma_engine *sdma,
2060 		const char *fw_name)
2061 {
2062 	int ret;
2063 
2064 	ret = request_firmware_nowait(THIS_MODULE,
2065 			FW_ACTION_UEVENT, fw_name, sdma->dev,
2066 			GFP_KERNEL, sdma, sdma_load_firmware);
2067 
2068 	return ret;
2069 }
2070 
2071 static int sdma_init(struct sdma_engine *sdma)
2072 {
2073 	int i, ret;
2074 	dma_addr_t ccb_phys;
2075 
2076 	ret = clk_enable(sdma->clk_ipg);
2077 	if (ret)
2078 		return ret;
2079 	ret = clk_enable(sdma->clk_ahb);
2080 	if (ret)
2081 		goto disable_clk_ipg;
2082 
2083 	if (sdma->drvdata->check_ratio &&
2084 	    (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
2085 		sdma->clk_ratio = 1;
2086 
2087 	/* Be sure SDMA has not started yet */
2088 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
2089 
2090 	sdma->channel_control = dma_alloc_coherent(sdma->dev,
2091 			MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control) +
2092 			sizeof(struct sdma_context_data),
2093 			&ccb_phys, GFP_KERNEL);
2094 
2095 	if (!sdma->channel_control) {
2096 		ret = -ENOMEM;
2097 		goto err_dma_alloc;
2098 	}
2099 
2100 	sdma->context = (void *)sdma->channel_control +
2101 		MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2102 	sdma->context_phys = ccb_phys +
2103 		MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2104 
2105 	/* disable all channels */
2106 	for (i = 0; i < sdma->drvdata->num_events; i++)
2107 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
2108 
2109 	/* All channels have priority 0 */
2110 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
2111 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
2112 
2113 	ret = sdma_request_channel0(sdma);
2114 	if (ret)
2115 		goto err_dma_alloc;
2116 
2117 	sdma_config_ownership(&sdma->channel[0], false, true, false);
2118 
2119 	/* Set Command Channel (Channel Zero) */
2120 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
2121 
2122 	/* Set bits of CONFIG register but with static context switching */
2123 	if (sdma->clk_ratio)
2124 		writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
2125 	else
2126 		writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
2127 
2128 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
2129 
2130 	/* Initializes channel's priorities */
2131 	sdma_set_channel_priority(&sdma->channel[0], 7);
2132 
2133 	clk_disable(sdma->clk_ipg);
2134 	clk_disable(sdma->clk_ahb);
2135 
2136 	return 0;
2137 
2138 err_dma_alloc:
2139 	clk_disable(sdma->clk_ahb);
2140 disable_clk_ipg:
2141 	clk_disable(sdma->clk_ipg);
2142 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
2143 	return ret;
2144 }
2145 
2146 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
2147 {
2148 	struct sdma_channel *sdmac = to_sdma_chan(chan);
2149 	struct imx_dma_data *data = fn_param;
2150 
2151 	if (!imx_dma_is_general_purpose(chan))
2152 		return false;
2153 
2154 	sdmac->data = *data;
2155 	chan->private = &sdmac->data;
2156 
2157 	return true;
2158 }
2159 
2160 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
2161 				   struct of_dma *ofdma)
2162 {
2163 	struct sdma_engine *sdma = ofdma->of_dma_data;
2164 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
2165 	struct imx_dma_data data;
2166 
2167 	if (dma_spec->args_count != 3)
2168 		return NULL;
2169 
2170 	data.dma_request = dma_spec->args[0];
2171 	data.peripheral_type = dma_spec->args[1];
2172 	data.priority = dma_spec->args[2];
2173 	/*
2174 	 * init dma_request2 to zero, which is not used by the dts.
2175 	 * For P2P, dma_request2 is init from dma_request_channel(),
2176 	 * chan->private will point to the imx_dma_data, and in
2177 	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
2178 	 * be set to sdmac->event_id1.
2179 	 */
2180 	data.dma_request2 = 0;
2181 
2182 	return __dma_request_channel(&mask, sdma_filter_fn, &data,
2183 				     ofdma->of_node);
2184 }
2185 
2186 static int sdma_probe(struct platform_device *pdev)
2187 {
2188 	struct device_node *np = pdev->dev.of_node;
2189 	struct device_node *spba_bus;
2190 	const char *fw_name;
2191 	int ret;
2192 	int irq;
2193 	struct resource spba_res;
2194 	int i;
2195 	struct sdma_engine *sdma;
2196 	s32 *saddr_arr;
2197 
2198 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2199 	if (ret)
2200 		return ret;
2201 
2202 	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2203 	if (!sdma)
2204 		return -ENOMEM;
2205 
2206 	spin_lock_init(&sdma->channel_0_lock);
2207 
2208 	sdma->dev = &pdev->dev;
2209 	sdma->drvdata = of_device_get_match_data(sdma->dev);
2210 
2211 	irq = platform_get_irq(pdev, 0);
2212 	if (irq < 0)
2213 		return irq;
2214 
2215 	sdma->regs = devm_platform_ioremap_resource(pdev, 0);
2216 	if (IS_ERR(sdma->regs))
2217 		return PTR_ERR(sdma->regs);
2218 
2219 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2220 	if (IS_ERR(sdma->clk_ipg))
2221 		return PTR_ERR(sdma->clk_ipg);
2222 
2223 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2224 	if (IS_ERR(sdma->clk_ahb))
2225 		return PTR_ERR(sdma->clk_ahb);
2226 
2227 	ret = clk_prepare(sdma->clk_ipg);
2228 	if (ret)
2229 		return ret;
2230 
2231 	ret = clk_prepare(sdma->clk_ahb);
2232 	if (ret)
2233 		goto err_clk;
2234 
2235 	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0,
2236 				dev_name(&pdev->dev), sdma);
2237 	if (ret)
2238 		goto err_irq;
2239 
2240 	sdma->irq = irq;
2241 
2242 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2243 	if (!sdma->script_addrs) {
2244 		ret = -ENOMEM;
2245 		goto err_irq;
2246 	}
2247 
2248 	/* initially no scripts available */
2249 	saddr_arr = (s32 *)sdma->script_addrs;
2250 	for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2251 		saddr_arr[i] = -EINVAL;
2252 
2253 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2254 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2255 	dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2256 	dma_cap_set(DMA_PRIVATE, sdma->dma_device.cap_mask);
2257 
2258 	INIT_LIST_HEAD(&sdma->dma_device.channels);
2259 	/* Initialize channel parameters */
2260 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2261 		struct sdma_channel *sdmac = &sdma->channel[i];
2262 
2263 		sdmac->sdma = sdma;
2264 
2265 		sdmac->channel = i;
2266 		sdmac->vc.desc_free = sdma_desc_free;
2267 		INIT_LIST_HEAD(&sdmac->terminated);
2268 		INIT_WORK(&sdmac->terminate_worker,
2269 				sdma_channel_terminate_work);
2270 		/*
2271 		 * Add the channel to the DMAC list. Do not add channel 0 though
2272 		 * because we need it internally in the SDMA driver. This also means
2273 		 * that channel 0 in dmaengine counting matches sdma channel 1.
2274 		 */
2275 		if (i)
2276 			vchan_init(&sdmac->vc, &sdma->dma_device);
2277 	}
2278 
2279 	ret = sdma_init(sdma);
2280 	if (ret)
2281 		goto err_init;
2282 
2283 	ret = sdma_event_remap(sdma);
2284 	if (ret)
2285 		goto err_init;
2286 
2287 	if (sdma->drvdata->script_addrs)
2288 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2289 
2290 	sdma->dma_device.dev = &pdev->dev;
2291 
2292 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2293 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2294 	sdma->dma_device.device_tx_status = sdma_tx_status;
2295 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2296 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2297 	sdma->dma_device.device_config = sdma_config;
2298 	sdma->dma_device.device_terminate_all = sdma_terminate_all;
2299 	sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2300 	sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2301 	sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2302 	sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2303 	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2304 	sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2305 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
2306 	sdma->dma_device.copy_align = 2;
2307 	dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2308 
2309 	platform_set_drvdata(pdev, sdma);
2310 
2311 	ret = dma_async_device_register(&sdma->dma_device);
2312 	if (ret) {
2313 		dev_err(&pdev->dev, "unable to register\n");
2314 		goto err_init;
2315 	}
2316 
2317 	if (np) {
2318 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
2319 		if (ret) {
2320 			dev_err(&pdev->dev, "failed to register controller\n");
2321 			goto err_register;
2322 		}
2323 
2324 		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2325 		ret = of_address_to_resource(spba_bus, 0, &spba_res);
2326 		if (!ret) {
2327 			sdma->spba_start_addr = spba_res.start;
2328 			sdma->spba_end_addr = spba_res.end;
2329 		}
2330 		of_node_put(spba_bus);
2331 	}
2332 
2333 	/*
2334 	 * Because that device tree does not encode ROM script address,
2335 	 * the RAM script in firmware is mandatory for device tree
2336 	 * probe, otherwise it fails.
2337 	 */
2338 	ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2339 				      &fw_name);
2340 	if (ret) {
2341 		dev_warn(&pdev->dev, "failed to get firmware name\n");
2342 	} else {
2343 		ret = sdma_get_firmware(sdma, fw_name);
2344 		if (ret)
2345 			dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2346 	}
2347 
2348 	return 0;
2349 
2350 err_register:
2351 	dma_async_device_unregister(&sdma->dma_device);
2352 err_init:
2353 	kfree(sdma->script_addrs);
2354 err_irq:
2355 	clk_unprepare(sdma->clk_ahb);
2356 err_clk:
2357 	clk_unprepare(sdma->clk_ipg);
2358 	return ret;
2359 }
2360 
2361 static int sdma_remove(struct platform_device *pdev)
2362 {
2363 	struct sdma_engine *sdma = platform_get_drvdata(pdev);
2364 	int i;
2365 
2366 	devm_free_irq(&pdev->dev, sdma->irq, sdma);
2367 	dma_async_device_unregister(&sdma->dma_device);
2368 	kfree(sdma->script_addrs);
2369 	clk_unprepare(sdma->clk_ahb);
2370 	clk_unprepare(sdma->clk_ipg);
2371 	/* Kill the tasklet */
2372 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2373 		struct sdma_channel *sdmac = &sdma->channel[i];
2374 
2375 		tasklet_kill(&sdmac->vc.task);
2376 		sdma_free_chan_resources(&sdmac->vc.chan);
2377 	}
2378 
2379 	platform_set_drvdata(pdev, NULL);
2380 	return 0;
2381 }
2382 
2383 static struct platform_driver sdma_driver = {
2384 	.driver		= {
2385 		.name	= "imx-sdma",
2386 		.of_match_table = sdma_dt_ids,
2387 	},
2388 	.remove		= sdma_remove,
2389 	.probe		= sdma_probe,
2390 };
2391 
2392 module_platform_driver(sdma_driver);
2393 
2394 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2395 MODULE_DESCRIPTION("i.MX SDMA driver");
2396 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2397 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2398 #endif
2399 #if IS_ENABLED(CONFIG_SOC_IMX7D) || IS_ENABLED(CONFIG_SOC_IMX8M)
2400 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2401 #endif
2402 MODULE_LICENSE("GPL");
2403