xref: /openbmc/linux/drivers/dma/imx-sdma.c (revision 8631f940b81bf0da3d375fce166d381fa8c47bb2)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
10 //
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12 
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 #include <linux/semaphore.h>
24 #include <linux/spinlock.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/slab.h>
29 #include <linux/platform_device.h>
30 #include <linux/dmaengine.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_device.h>
34 #include <linux/of_dma.h>
35 #include <linux/workqueue.h>
36 
37 #include <asm/irq.h>
38 #include <linux/platform_data/dma-imx-sdma.h>
39 #include <linux/platform_data/dma-imx.h>
40 #include <linux/regmap.h>
41 #include <linux/mfd/syscon.h>
42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
43 
44 #include "dmaengine.h"
45 #include "virt-dma.h"
46 
47 /* SDMA registers */
48 #define SDMA_H_C0PTR		0x000
49 #define SDMA_H_INTR		0x004
50 #define SDMA_H_STATSTOP		0x008
51 #define SDMA_H_START		0x00c
52 #define SDMA_H_EVTOVR		0x010
53 #define SDMA_H_DSPOVR		0x014
54 #define SDMA_H_HOSTOVR		0x018
55 #define SDMA_H_EVTPEND		0x01c
56 #define SDMA_H_DSPENBL		0x020
57 #define SDMA_H_RESET		0x024
58 #define SDMA_H_EVTERR		0x028
59 #define SDMA_H_INTRMSK		0x02c
60 #define SDMA_H_PSW		0x030
61 #define SDMA_H_EVTERRDBG	0x034
62 #define SDMA_H_CONFIG		0x038
63 #define SDMA_ONCE_ENB		0x040
64 #define SDMA_ONCE_DATA		0x044
65 #define SDMA_ONCE_INSTR		0x048
66 #define SDMA_ONCE_STAT		0x04c
67 #define SDMA_ONCE_CMD		0x050
68 #define SDMA_EVT_MIRROR		0x054
69 #define SDMA_ILLINSTADDR	0x058
70 #define SDMA_CHN0ADDR		0x05c
71 #define SDMA_ONCE_RTB		0x060
72 #define SDMA_XTRIG_CONF1	0x070
73 #define SDMA_XTRIG_CONF2	0x074
74 #define SDMA_CHNENBL0_IMX35	0x200
75 #define SDMA_CHNENBL0_IMX31	0x080
76 #define SDMA_CHNPRI_0		0x100
77 
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88 
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96 
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101 
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108 
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125 
126 /*
127  *  p_2_p watermark_level description
128  *	Bits		Name			Description
129  *	0-7		Lower WML		Lower watermark level
130  *	8		PS			1: Pad Swallowing
131  *						0: No Pad Swallowing
132  *	9		PA			1: Pad Adding
133  *						0: No Pad Adding
134  *	10		SPDIF			If this bit is set both source
135  *						and destination are on SPBA
136  *	11		Source Bit(SP)		1: Source on SPBA
137  *						0: Source on AIPS
138  *	12		Destination Bit(DP)	1: Destination on SPBA
139  *						0: Destination on AIPS
140  *	13-15		---------		MUST BE 0
141  *	16-23		Higher WML		HWML
142  *	24-27		N			Total number of samples after
143  *						which Pad adding/Swallowing
144  *						must be done. It must be odd.
145  *	28		Lower WML Event(LWE)	SDMA events reg to check for
146  *						LWML event mask
147  *						0: LWE in EVENTS register
148  *						1: LWE in EVENTS2 register
149  *	29		Higher WML Event(HWE)	SDMA events reg to check for
150  *						HWML event mask
151  *						0: HWE in EVENTS register
152  *						1: HWE in EVENTS2 register
153  *	30		---------		MUST BE 0
154  *	31		CONT			1: Amount of samples to be
155  *						transferred is unknown and
156  *						script will keep on
157  *						transferring samples as long as
158  *						both events are detected and
159  *						script must be manually stopped
160  *						by the application
161  *						0: The amount of samples to be
162  *						transferred is equal to the
163  *						count field of mode word
164  */
165 #define SDMA_WATERMARK_LEVEL_LWML	0xFF
166 #define SDMA_WATERMARK_LEVEL_PS		BIT(8)
167 #define SDMA_WATERMARK_LEVEL_PA		BIT(9)
168 #define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
169 #define SDMA_WATERMARK_LEVEL_SP		BIT(11)
170 #define SDMA_WATERMARK_LEVEL_DP		BIT(12)
171 #define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
172 #define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
173 #define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
174 #define SDMA_WATERMARK_LEVEL_CONT	BIT(31)
175 
176 #define SDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
177 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
178 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
179 
180 #define SDMA_DMA_DIRECTIONS	(BIT(DMA_DEV_TO_MEM) | \
181 				 BIT(DMA_MEM_TO_DEV) | \
182 				 BIT(DMA_DEV_TO_DEV))
183 
184 /*
185  * Mode/Count of data node descriptors - IPCv2
186  */
187 struct sdma_mode_count {
188 #define SDMA_BD_MAX_CNT	0xffff
189 	u32 count   : 16; /* size of the buffer pointed by this BD */
190 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
191 	u32 command :  8; /* command mostly used for channel 0 */
192 };
193 
194 /*
195  * Buffer descriptor
196  */
197 struct sdma_buffer_descriptor {
198 	struct sdma_mode_count  mode;
199 	u32 buffer_addr;	/* address of the buffer described */
200 	u32 ext_buffer_addr;	/* extended buffer address */
201 } __attribute__ ((packed));
202 
203 /**
204  * struct sdma_channel_control - Channel control Block
205  *
206  * @current_bd_ptr:	current buffer descriptor processed
207  * @base_bd_ptr:	first element of buffer descriptor array
208  * @unused:		padding. The SDMA engine expects an array of 128 byte
209  *			control blocks
210  */
211 struct sdma_channel_control {
212 	u32 current_bd_ptr;
213 	u32 base_bd_ptr;
214 	u32 unused[2];
215 } __attribute__ ((packed));
216 
217 /**
218  * struct sdma_state_registers - SDMA context for a channel
219  *
220  * @pc:		program counter
221  * @unused1:	unused
222  * @t:		test bit: status of arithmetic & test instruction
223  * @rpc:	return program counter
224  * @unused0:	unused
225  * @sf:		source fault while loading data
226  * @spc:	loop start program counter
227  * @unused2:	unused
228  * @df:		destination fault while storing data
229  * @epc:	loop end program counter
230  * @lm:		loop mode
231  */
232 struct sdma_state_registers {
233 	u32 pc     :14;
234 	u32 unused1: 1;
235 	u32 t      : 1;
236 	u32 rpc    :14;
237 	u32 unused0: 1;
238 	u32 sf     : 1;
239 	u32 spc    :14;
240 	u32 unused2: 1;
241 	u32 df     : 1;
242 	u32 epc    :14;
243 	u32 lm     : 2;
244 } __attribute__ ((packed));
245 
246 /**
247  * struct sdma_context_data - sdma context specific to a channel
248  *
249  * @channel_state:	channel state bits
250  * @gReg:		general registers
251  * @mda:		burst dma destination address register
252  * @msa:		burst dma source address register
253  * @ms:			burst dma status register
254  * @md:			burst dma data register
255  * @pda:		peripheral dma destination address register
256  * @psa:		peripheral dma source address register
257  * @ps:			peripheral dma status register
258  * @pd:			peripheral dma data register
259  * @ca:			CRC polynomial register
260  * @cs:			CRC accumulator register
261  * @dda:		dedicated core destination address register
262  * @dsa:		dedicated core source address register
263  * @ds:			dedicated core status register
264  * @dd:			dedicated core data register
265  * @scratch0:		1st word of dedicated ram for context switch
266  * @scratch1:		2nd word of dedicated ram for context switch
267  * @scratch2:		3rd word of dedicated ram for context switch
268  * @scratch3:		4th word of dedicated ram for context switch
269  * @scratch4:		5th word of dedicated ram for context switch
270  * @scratch5:		6th word of dedicated ram for context switch
271  * @scratch6:		7th word of dedicated ram for context switch
272  * @scratch7:		8th word of dedicated ram for context switch
273  */
274 struct sdma_context_data {
275 	struct sdma_state_registers  channel_state;
276 	u32  gReg[8];
277 	u32  mda;
278 	u32  msa;
279 	u32  ms;
280 	u32  md;
281 	u32  pda;
282 	u32  psa;
283 	u32  ps;
284 	u32  pd;
285 	u32  ca;
286 	u32  cs;
287 	u32  dda;
288 	u32  dsa;
289 	u32  ds;
290 	u32  dd;
291 	u32  scratch0;
292 	u32  scratch1;
293 	u32  scratch2;
294 	u32  scratch3;
295 	u32  scratch4;
296 	u32  scratch5;
297 	u32  scratch6;
298 	u32  scratch7;
299 } __attribute__ ((packed));
300 
301 
302 struct sdma_engine;
303 
304 /**
305  * struct sdma_desc - descriptor structor for one transfer
306  * @vd:			descriptor for virt dma
307  * @num_bd:		number of descriptors currently handling
308  * @bd_phys:		physical address of bd
309  * @buf_tail:		ID of the buffer that was processed
310  * @buf_ptail:		ID of the previous buffer that was processed
311  * @period_len:		period length, used in cyclic.
312  * @chn_real_count:	the real count updated from bd->mode.count
313  * @chn_count:		the transfer count set
314  * @sdmac:		sdma_channel pointer
315  * @bd:			pointer of allocate bd
316  */
317 struct sdma_desc {
318 	struct virt_dma_desc	vd;
319 	unsigned int		num_bd;
320 	dma_addr_t		bd_phys;
321 	unsigned int		buf_tail;
322 	unsigned int		buf_ptail;
323 	unsigned int		period_len;
324 	unsigned int		chn_real_count;
325 	unsigned int		chn_count;
326 	struct sdma_channel	*sdmac;
327 	struct sdma_buffer_descriptor *bd;
328 };
329 
330 /**
331  * struct sdma_channel - housekeeping for a SDMA channel
332  *
333  * @vc:			virt_dma base structure
334  * @desc:		sdma description including vd and other special member
335  * @sdma:		pointer to the SDMA engine for this channel
336  * @channel:		the channel number, matches dmaengine chan_id + 1
337  * @direction:		transfer type. Needed for setting SDMA script
338  * @slave_config	Slave configuration
339  * @peripheral_type:	Peripheral type. Needed for setting SDMA script
340  * @event_id0:		aka dma request line
341  * @event_id1:		for channels that use 2 events
342  * @word_size:		peripheral access size
343  * @pc_from_device:	script address for those device_2_memory
344  * @pc_to_device:	script address for those memory_2_device
345  * @device_to_device:	script address for those device_2_device
346  * @pc_to_pc:		script address for those memory_2_memory
347  * @flags:		loop mode or not
348  * @per_address:	peripheral source or destination address in common case
349  *                      destination address in p_2_p case
350  * @per_address2:	peripheral source address in p_2_p case
351  * @event_mask:		event mask used in p_2_p script
352  * @watermark_level:	value for gReg[7], some script will extend it from
353  *			basic watermark such as p_2_p
354  * @shp_addr:		value for gReg[6]
355  * @per_addr:		value for gReg[2]
356  * @status:		status of dma channel
357  * @data:		specific sdma interface structure
358  * @bd_pool:		dma_pool for bd
359  */
360 struct sdma_channel {
361 	struct virt_dma_chan		vc;
362 	struct sdma_desc		*desc;
363 	struct sdma_engine		*sdma;
364 	unsigned int			channel;
365 	enum dma_transfer_direction		direction;
366 	struct dma_slave_config		slave_config;
367 	enum sdma_peripheral_type	peripheral_type;
368 	unsigned int			event_id0;
369 	unsigned int			event_id1;
370 	enum dma_slave_buswidth		word_size;
371 	unsigned int			pc_from_device, pc_to_device;
372 	unsigned int			device_to_device;
373 	unsigned int                    pc_to_pc;
374 	unsigned long			flags;
375 	dma_addr_t			per_address, per_address2;
376 	unsigned long			event_mask[2];
377 	unsigned long			watermark_level;
378 	u32				shp_addr, per_addr;
379 	enum dma_status			status;
380 	struct imx_dma_data		data;
381 	struct work_struct		terminate_worker;
382 };
383 
384 #define IMX_DMA_SG_LOOP		BIT(0)
385 
386 #define MAX_DMA_CHANNELS 32
387 #define MXC_SDMA_DEFAULT_PRIORITY 1
388 #define MXC_SDMA_MIN_PRIORITY 1
389 #define MXC_SDMA_MAX_PRIORITY 7
390 
391 #define SDMA_FIRMWARE_MAGIC 0x414d4453
392 
393 /**
394  * struct sdma_firmware_header - Layout of the firmware image
395  *
396  * @magic:		"SDMA"
397  * @version_major:	increased whenever layout of struct
398  *			sdma_script_start_addrs changes.
399  * @version_minor:	firmware minor version (for binary compatible changes)
400  * @script_addrs_start:	offset of struct sdma_script_start_addrs in this image
401  * @num_script_addrs:	Number of script addresses in this image
402  * @ram_code_start:	offset of SDMA ram image in this firmware image
403  * @ram_code_size:	size of SDMA ram image
404  * @script_addrs:	Stores the start address of the SDMA scripts
405  *			(in SDMA memory space)
406  */
407 struct sdma_firmware_header {
408 	u32	magic;
409 	u32	version_major;
410 	u32	version_minor;
411 	u32	script_addrs_start;
412 	u32	num_script_addrs;
413 	u32	ram_code_start;
414 	u32	ram_code_size;
415 };
416 
417 struct sdma_driver_data {
418 	int chnenbl0;
419 	int num_events;
420 	struct sdma_script_start_addrs	*script_addrs;
421 };
422 
423 struct sdma_engine {
424 	struct device			*dev;
425 	struct device_dma_parameters	dma_parms;
426 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
427 	struct sdma_channel_control	*channel_control;
428 	void __iomem			*regs;
429 	struct sdma_context_data	*context;
430 	dma_addr_t			context_phys;
431 	struct dma_device		dma_device;
432 	struct clk			*clk_ipg;
433 	struct clk			*clk_ahb;
434 	spinlock_t			channel_0_lock;
435 	u32				script_number;
436 	struct sdma_script_start_addrs	*script_addrs;
437 	const struct sdma_driver_data	*drvdata;
438 	u32				spba_start_addr;
439 	u32				spba_end_addr;
440 	unsigned int			irq;
441 	dma_addr_t			bd0_phys;
442 	struct sdma_buffer_descriptor	*bd0;
443 };
444 
445 static int sdma_config_write(struct dma_chan *chan,
446 		       struct dma_slave_config *dmaengine_cfg,
447 		       enum dma_transfer_direction direction);
448 
449 static struct sdma_driver_data sdma_imx31 = {
450 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
451 	.num_events = 32,
452 };
453 
454 static struct sdma_script_start_addrs sdma_script_imx25 = {
455 	.ap_2_ap_addr = 729,
456 	.uart_2_mcu_addr = 904,
457 	.per_2_app_addr = 1255,
458 	.mcu_2_app_addr = 834,
459 	.uartsh_2_mcu_addr = 1120,
460 	.per_2_shp_addr = 1329,
461 	.mcu_2_shp_addr = 1048,
462 	.ata_2_mcu_addr = 1560,
463 	.mcu_2_ata_addr = 1479,
464 	.app_2_per_addr = 1189,
465 	.app_2_mcu_addr = 770,
466 	.shp_2_per_addr = 1407,
467 	.shp_2_mcu_addr = 979,
468 };
469 
470 static struct sdma_driver_data sdma_imx25 = {
471 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
472 	.num_events = 48,
473 	.script_addrs = &sdma_script_imx25,
474 };
475 
476 static struct sdma_driver_data sdma_imx35 = {
477 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
478 	.num_events = 48,
479 };
480 
481 static struct sdma_script_start_addrs sdma_script_imx51 = {
482 	.ap_2_ap_addr = 642,
483 	.uart_2_mcu_addr = 817,
484 	.mcu_2_app_addr = 747,
485 	.mcu_2_shp_addr = 961,
486 	.ata_2_mcu_addr = 1473,
487 	.mcu_2_ata_addr = 1392,
488 	.app_2_per_addr = 1033,
489 	.app_2_mcu_addr = 683,
490 	.shp_2_per_addr = 1251,
491 	.shp_2_mcu_addr = 892,
492 };
493 
494 static struct sdma_driver_data sdma_imx51 = {
495 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
496 	.num_events = 48,
497 	.script_addrs = &sdma_script_imx51,
498 };
499 
500 static struct sdma_script_start_addrs sdma_script_imx53 = {
501 	.ap_2_ap_addr = 642,
502 	.app_2_mcu_addr = 683,
503 	.mcu_2_app_addr = 747,
504 	.uart_2_mcu_addr = 817,
505 	.shp_2_mcu_addr = 891,
506 	.mcu_2_shp_addr = 960,
507 	.uartsh_2_mcu_addr = 1032,
508 	.spdif_2_mcu_addr = 1100,
509 	.mcu_2_spdif_addr = 1134,
510 	.firi_2_mcu_addr = 1193,
511 	.mcu_2_firi_addr = 1290,
512 };
513 
514 static struct sdma_driver_data sdma_imx53 = {
515 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
516 	.num_events = 48,
517 	.script_addrs = &sdma_script_imx53,
518 };
519 
520 static struct sdma_script_start_addrs sdma_script_imx6q = {
521 	.ap_2_ap_addr = 642,
522 	.uart_2_mcu_addr = 817,
523 	.mcu_2_app_addr = 747,
524 	.per_2_per_addr = 6331,
525 	.uartsh_2_mcu_addr = 1032,
526 	.mcu_2_shp_addr = 960,
527 	.app_2_mcu_addr = 683,
528 	.shp_2_mcu_addr = 891,
529 	.spdif_2_mcu_addr = 1100,
530 	.mcu_2_spdif_addr = 1134,
531 };
532 
533 static struct sdma_driver_data sdma_imx6q = {
534 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
535 	.num_events = 48,
536 	.script_addrs = &sdma_script_imx6q,
537 };
538 
539 static struct sdma_script_start_addrs sdma_script_imx7d = {
540 	.ap_2_ap_addr = 644,
541 	.uart_2_mcu_addr = 819,
542 	.mcu_2_app_addr = 749,
543 	.uartsh_2_mcu_addr = 1034,
544 	.mcu_2_shp_addr = 962,
545 	.app_2_mcu_addr = 685,
546 	.shp_2_mcu_addr = 893,
547 	.spdif_2_mcu_addr = 1102,
548 	.mcu_2_spdif_addr = 1136,
549 };
550 
551 static struct sdma_driver_data sdma_imx7d = {
552 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
553 	.num_events = 48,
554 	.script_addrs = &sdma_script_imx7d,
555 };
556 
557 static const struct platform_device_id sdma_devtypes[] = {
558 	{
559 		.name = "imx25-sdma",
560 		.driver_data = (unsigned long)&sdma_imx25,
561 	}, {
562 		.name = "imx31-sdma",
563 		.driver_data = (unsigned long)&sdma_imx31,
564 	}, {
565 		.name = "imx35-sdma",
566 		.driver_data = (unsigned long)&sdma_imx35,
567 	}, {
568 		.name = "imx51-sdma",
569 		.driver_data = (unsigned long)&sdma_imx51,
570 	}, {
571 		.name = "imx53-sdma",
572 		.driver_data = (unsigned long)&sdma_imx53,
573 	}, {
574 		.name = "imx6q-sdma",
575 		.driver_data = (unsigned long)&sdma_imx6q,
576 	}, {
577 		.name = "imx7d-sdma",
578 		.driver_data = (unsigned long)&sdma_imx7d,
579 	}, {
580 		/* sentinel */
581 	}
582 };
583 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
584 
585 static const struct of_device_id sdma_dt_ids[] = {
586 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
587 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
588 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
589 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
590 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
591 	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
592 	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
593 	{ /* sentinel */ }
594 };
595 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
596 
597 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
598 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
599 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
600 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
601 
602 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
603 {
604 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
605 	return chnenbl0 + event * 4;
606 }
607 
608 static int sdma_config_ownership(struct sdma_channel *sdmac,
609 		bool event_override, bool mcu_override, bool dsp_override)
610 {
611 	struct sdma_engine *sdma = sdmac->sdma;
612 	int channel = sdmac->channel;
613 	unsigned long evt, mcu, dsp;
614 
615 	if (event_override && mcu_override && dsp_override)
616 		return -EINVAL;
617 
618 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
619 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
620 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
621 
622 	if (dsp_override)
623 		__clear_bit(channel, &dsp);
624 	else
625 		__set_bit(channel, &dsp);
626 
627 	if (event_override)
628 		__clear_bit(channel, &evt);
629 	else
630 		__set_bit(channel, &evt);
631 
632 	if (mcu_override)
633 		__clear_bit(channel, &mcu);
634 	else
635 		__set_bit(channel, &mcu);
636 
637 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
638 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
639 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
640 
641 	return 0;
642 }
643 
644 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
645 {
646 	writel(BIT(channel), sdma->regs + SDMA_H_START);
647 }
648 
649 /*
650  * sdma_run_channel0 - run a channel and wait till it's done
651  */
652 static int sdma_run_channel0(struct sdma_engine *sdma)
653 {
654 	int ret;
655 	u32 reg;
656 
657 	sdma_enable_channel(sdma, 0);
658 
659 	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
660 						reg, !(reg & 1), 1, 500);
661 	if (ret)
662 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
663 
664 	/* Set bits of CONFIG register with dynamic context switching */
665 	if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
666 		writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
667 
668 	return ret;
669 }
670 
671 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
672 		u32 address)
673 {
674 	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
675 	void *buf_virt;
676 	dma_addr_t buf_phys;
677 	int ret;
678 	unsigned long flags;
679 
680 	buf_virt = dma_alloc_coherent(NULL, size, &buf_phys, GFP_KERNEL);
681 	if (!buf_virt) {
682 		return -ENOMEM;
683 	}
684 
685 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
686 
687 	bd0->mode.command = C0_SETPM;
688 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
689 	bd0->mode.count = size / 2;
690 	bd0->buffer_addr = buf_phys;
691 	bd0->ext_buffer_addr = address;
692 
693 	memcpy(buf_virt, buf, size);
694 
695 	ret = sdma_run_channel0(sdma);
696 
697 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
698 
699 	dma_free_coherent(NULL, size, buf_virt, buf_phys);
700 
701 	return ret;
702 }
703 
704 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
705 {
706 	struct sdma_engine *sdma = sdmac->sdma;
707 	int channel = sdmac->channel;
708 	unsigned long val;
709 	u32 chnenbl = chnenbl_ofs(sdma, event);
710 
711 	val = readl_relaxed(sdma->regs + chnenbl);
712 	__set_bit(channel, &val);
713 	writel_relaxed(val, sdma->regs + chnenbl);
714 }
715 
716 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
717 {
718 	struct sdma_engine *sdma = sdmac->sdma;
719 	int channel = sdmac->channel;
720 	u32 chnenbl = chnenbl_ofs(sdma, event);
721 	unsigned long val;
722 
723 	val = readl_relaxed(sdma->regs + chnenbl);
724 	__clear_bit(channel, &val);
725 	writel_relaxed(val, sdma->regs + chnenbl);
726 }
727 
728 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
729 {
730 	return container_of(t, struct sdma_desc, vd.tx);
731 }
732 
733 static void sdma_start_desc(struct sdma_channel *sdmac)
734 {
735 	struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
736 	struct sdma_desc *desc;
737 	struct sdma_engine *sdma = sdmac->sdma;
738 	int channel = sdmac->channel;
739 
740 	if (!vd) {
741 		sdmac->desc = NULL;
742 		return;
743 	}
744 	sdmac->desc = desc = to_sdma_desc(&vd->tx);
745 	/*
746 	 * Do not delete the node in desc_issued list in cyclic mode, otherwise
747 	 * the desc allocated will never be freed in vchan_dma_desc_free_list
748 	 */
749 	if (!(sdmac->flags & IMX_DMA_SG_LOOP))
750 		list_del(&vd->node);
751 
752 	sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
753 	sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
754 	sdma_enable_channel(sdma, sdmac->channel);
755 }
756 
757 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
758 {
759 	struct sdma_buffer_descriptor *bd;
760 	int error = 0;
761 	enum dma_status	old_status = sdmac->status;
762 
763 	/*
764 	 * loop mode. Iterate over descriptors, re-setup them and
765 	 * call callback function.
766 	 */
767 	while (sdmac->desc) {
768 		struct sdma_desc *desc = sdmac->desc;
769 
770 		bd = &desc->bd[desc->buf_tail];
771 
772 		if (bd->mode.status & BD_DONE)
773 			break;
774 
775 		if (bd->mode.status & BD_RROR) {
776 			bd->mode.status &= ~BD_RROR;
777 			sdmac->status = DMA_ERROR;
778 			error = -EIO;
779 		}
780 
781 	       /*
782 		* We use bd->mode.count to calculate the residue, since contains
783 		* the number of bytes present in the current buffer descriptor.
784 		*/
785 
786 		desc->chn_real_count = bd->mode.count;
787 		bd->mode.status |= BD_DONE;
788 		bd->mode.count = desc->period_len;
789 		desc->buf_ptail = desc->buf_tail;
790 		desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
791 
792 		/*
793 		 * The callback is called from the interrupt context in order
794 		 * to reduce latency and to avoid the risk of altering the
795 		 * SDMA transaction status by the time the client tasklet is
796 		 * executed.
797 		 */
798 		spin_unlock(&sdmac->vc.lock);
799 		dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
800 		spin_lock(&sdmac->vc.lock);
801 
802 		if (error)
803 			sdmac->status = old_status;
804 	}
805 }
806 
807 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
808 {
809 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
810 	struct sdma_buffer_descriptor *bd;
811 	int i, error = 0;
812 
813 	sdmac->desc->chn_real_count = 0;
814 	/*
815 	 * non loop mode. Iterate over all descriptors, collect
816 	 * errors and call callback function
817 	 */
818 	for (i = 0; i < sdmac->desc->num_bd; i++) {
819 		bd = &sdmac->desc->bd[i];
820 
821 		 if (bd->mode.status & (BD_DONE | BD_RROR))
822 			error = -EIO;
823 		 sdmac->desc->chn_real_count += bd->mode.count;
824 	}
825 
826 	if (error)
827 		sdmac->status = DMA_ERROR;
828 	else
829 		sdmac->status = DMA_COMPLETE;
830 }
831 
832 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
833 {
834 	struct sdma_engine *sdma = dev_id;
835 	unsigned long stat;
836 
837 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
838 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
839 	/* channel 0 is special and not handled here, see run_channel0() */
840 	stat &= ~1;
841 
842 	while (stat) {
843 		int channel = fls(stat) - 1;
844 		struct sdma_channel *sdmac = &sdma->channel[channel];
845 		struct sdma_desc *desc;
846 
847 		spin_lock(&sdmac->vc.lock);
848 		desc = sdmac->desc;
849 		if (desc) {
850 			if (sdmac->flags & IMX_DMA_SG_LOOP) {
851 				sdma_update_channel_loop(sdmac);
852 			} else {
853 				mxc_sdma_handle_channel_normal(sdmac);
854 				vchan_cookie_complete(&desc->vd);
855 				sdma_start_desc(sdmac);
856 			}
857 		}
858 
859 		spin_unlock(&sdmac->vc.lock);
860 		__clear_bit(channel, &stat);
861 	}
862 
863 	return IRQ_HANDLED;
864 }
865 
866 /*
867  * sets the pc of SDMA script according to the peripheral type
868  */
869 static void sdma_get_pc(struct sdma_channel *sdmac,
870 		enum sdma_peripheral_type peripheral_type)
871 {
872 	struct sdma_engine *sdma = sdmac->sdma;
873 	int per_2_emi = 0, emi_2_per = 0;
874 	/*
875 	 * These are needed once we start to support transfers between
876 	 * two peripherals or memory-to-memory transfers
877 	 */
878 	int per_2_per = 0, emi_2_emi = 0;
879 
880 	sdmac->pc_from_device = 0;
881 	sdmac->pc_to_device = 0;
882 	sdmac->device_to_device = 0;
883 	sdmac->pc_to_pc = 0;
884 
885 	switch (peripheral_type) {
886 	case IMX_DMATYPE_MEMORY:
887 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
888 		break;
889 	case IMX_DMATYPE_DSP:
890 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
891 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
892 		break;
893 	case IMX_DMATYPE_FIRI:
894 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
895 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
896 		break;
897 	case IMX_DMATYPE_UART:
898 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
899 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
900 		break;
901 	case IMX_DMATYPE_UART_SP:
902 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
903 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
904 		break;
905 	case IMX_DMATYPE_ATA:
906 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
907 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
908 		break;
909 	case IMX_DMATYPE_CSPI:
910 	case IMX_DMATYPE_EXT:
911 	case IMX_DMATYPE_SSI:
912 	case IMX_DMATYPE_SAI:
913 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
914 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
915 		break;
916 	case IMX_DMATYPE_SSI_DUAL:
917 		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
918 		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
919 		break;
920 	case IMX_DMATYPE_SSI_SP:
921 	case IMX_DMATYPE_MMC:
922 	case IMX_DMATYPE_SDHC:
923 	case IMX_DMATYPE_CSPI_SP:
924 	case IMX_DMATYPE_ESAI:
925 	case IMX_DMATYPE_MSHC_SP:
926 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
927 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
928 		break;
929 	case IMX_DMATYPE_ASRC:
930 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
931 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
932 		per_2_per = sdma->script_addrs->per_2_per_addr;
933 		break;
934 	case IMX_DMATYPE_ASRC_SP:
935 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
936 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
937 		per_2_per = sdma->script_addrs->per_2_per_addr;
938 		break;
939 	case IMX_DMATYPE_MSHC:
940 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
941 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
942 		break;
943 	case IMX_DMATYPE_CCM:
944 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
945 		break;
946 	case IMX_DMATYPE_SPDIF:
947 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
948 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
949 		break;
950 	case IMX_DMATYPE_IPU_MEMORY:
951 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
952 		break;
953 	default:
954 		break;
955 	}
956 
957 	sdmac->pc_from_device = per_2_emi;
958 	sdmac->pc_to_device = emi_2_per;
959 	sdmac->device_to_device = per_2_per;
960 	sdmac->pc_to_pc = emi_2_emi;
961 }
962 
963 static int sdma_load_context(struct sdma_channel *sdmac)
964 {
965 	struct sdma_engine *sdma = sdmac->sdma;
966 	int channel = sdmac->channel;
967 	int load_address;
968 	struct sdma_context_data *context = sdma->context;
969 	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
970 	int ret;
971 	unsigned long flags;
972 
973 	if (sdmac->direction == DMA_DEV_TO_MEM)
974 		load_address = sdmac->pc_from_device;
975 	else if (sdmac->direction == DMA_DEV_TO_DEV)
976 		load_address = sdmac->device_to_device;
977 	else if (sdmac->direction == DMA_MEM_TO_MEM)
978 		load_address = sdmac->pc_to_pc;
979 	else
980 		load_address = sdmac->pc_to_device;
981 
982 	if (load_address < 0)
983 		return load_address;
984 
985 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
986 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
987 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
988 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
989 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
990 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
991 
992 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
993 
994 	memset(context, 0, sizeof(*context));
995 	context->channel_state.pc = load_address;
996 
997 	/* Send by context the event mask,base address for peripheral
998 	 * and watermark level
999 	 */
1000 	context->gReg[0] = sdmac->event_mask[1];
1001 	context->gReg[1] = sdmac->event_mask[0];
1002 	context->gReg[2] = sdmac->per_addr;
1003 	context->gReg[6] = sdmac->shp_addr;
1004 	context->gReg[7] = sdmac->watermark_level;
1005 
1006 	bd0->mode.command = C0_SETDM;
1007 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
1008 	bd0->mode.count = sizeof(*context) / 4;
1009 	bd0->buffer_addr = sdma->context_phys;
1010 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1011 	ret = sdma_run_channel0(sdma);
1012 
1013 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1014 
1015 	return ret;
1016 }
1017 
1018 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1019 {
1020 	return container_of(chan, struct sdma_channel, vc.chan);
1021 }
1022 
1023 static int sdma_disable_channel(struct dma_chan *chan)
1024 {
1025 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1026 	struct sdma_engine *sdma = sdmac->sdma;
1027 	int channel = sdmac->channel;
1028 
1029 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1030 	sdmac->status = DMA_ERROR;
1031 
1032 	return 0;
1033 }
1034 static void sdma_channel_terminate_work(struct work_struct *work)
1035 {
1036 	struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1037 						  terminate_worker);
1038 	unsigned long flags;
1039 	LIST_HEAD(head);
1040 
1041 	/*
1042 	 * According to NXP R&D team a delay of one BD SDMA cost time
1043 	 * (maximum is 1ms) should be added after disable of the channel
1044 	 * bit, to ensure SDMA core has really been stopped after SDMA
1045 	 * clients call .device_terminate_all.
1046 	 */
1047 	usleep_range(1000, 2000);
1048 
1049 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1050 	vchan_get_all_descriptors(&sdmac->vc, &head);
1051 	sdmac->desc = NULL;
1052 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1053 	vchan_dma_desc_free_list(&sdmac->vc, &head);
1054 }
1055 
1056 static int sdma_disable_channel_async(struct dma_chan *chan)
1057 {
1058 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1059 
1060 	sdma_disable_channel(chan);
1061 
1062 	if (sdmac->desc)
1063 		schedule_work(&sdmac->terminate_worker);
1064 
1065 	return 0;
1066 }
1067 
1068 static void sdma_channel_synchronize(struct dma_chan *chan)
1069 {
1070 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1071 
1072 	vchan_synchronize(&sdmac->vc);
1073 
1074 	flush_work(&sdmac->terminate_worker);
1075 }
1076 
1077 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1078 {
1079 	struct sdma_engine *sdma = sdmac->sdma;
1080 
1081 	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1082 	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1083 
1084 	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1085 	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1086 
1087 	if (sdmac->event_id0 > 31)
1088 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1089 
1090 	if (sdmac->event_id1 > 31)
1091 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1092 
1093 	/*
1094 	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1095 	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1096 	 * r0(event_mask[1]) and r1(event_mask[0]).
1097 	 */
1098 	if (lwml > hwml) {
1099 		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1100 						SDMA_WATERMARK_LEVEL_HWML);
1101 		sdmac->watermark_level |= hwml;
1102 		sdmac->watermark_level |= lwml << 16;
1103 		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1104 	}
1105 
1106 	if (sdmac->per_address2 >= sdma->spba_start_addr &&
1107 			sdmac->per_address2 <= sdma->spba_end_addr)
1108 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1109 
1110 	if (sdmac->per_address >= sdma->spba_start_addr &&
1111 			sdmac->per_address <= sdma->spba_end_addr)
1112 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1113 
1114 	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1115 }
1116 
1117 static int sdma_config_channel(struct dma_chan *chan)
1118 {
1119 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1120 	int ret;
1121 
1122 	sdma_disable_channel(chan);
1123 
1124 	sdmac->event_mask[0] = 0;
1125 	sdmac->event_mask[1] = 0;
1126 	sdmac->shp_addr = 0;
1127 	sdmac->per_addr = 0;
1128 
1129 	switch (sdmac->peripheral_type) {
1130 	case IMX_DMATYPE_DSP:
1131 		sdma_config_ownership(sdmac, false, true, true);
1132 		break;
1133 	case IMX_DMATYPE_MEMORY:
1134 		sdma_config_ownership(sdmac, false, true, false);
1135 		break;
1136 	default:
1137 		sdma_config_ownership(sdmac, true, true, false);
1138 		break;
1139 	}
1140 
1141 	sdma_get_pc(sdmac, sdmac->peripheral_type);
1142 
1143 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1144 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1145 		/* Handle multiple event channels differently */
1146 		if (sdmac->event_id1) {
1147 			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1148 			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1149 				sdma_set_watermarklevel_for_p2p(sdmac);
1150 		} else
1151 			__set_bit(sdmac->event_id0, sdmac->event_mask);
1152 
1153 		/* Address */
1154 		sdmac->shp_addr = sdmac->per_address;
1155 		sdmac->per_addr = sdmac->per_address2;
1156 	} else {
1157 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1158 	}
1159 
1160 	ret = sdma_load_context(sdmac);
1161 
1162 	return ret;
1163 }
1164 
1165 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1166 		unsigned int priority)
1167 {
1168 	struct sdma_engine *sdma = sdmac->sdma;
1169 	int channel = sdmac->channel;
1170 
1171 	if (priority < MXC_SDMA_MIN_PRIORITY
1172 	    || priority > MXC_SDMA_MAX_PRIORITY) {
1173 		return -EINVAL;
1174 	}
1175 
1176 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1177 
1178 	return 0;
1179 }
1180 
1181 static int sdma_request_channel0(struct sdma_engine *sdma)
1182 {
1183 	int ret = -EBUSY;
1184 
1185 	sdma->bd0 = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdma->bd0_phys,
1186 					GFP_NOWAIT);
1187 	if (!sdma->bd0) {
1188 		ret = -ENOMEM;
1189 		goto out;
1190 	}
1191 
1192 	sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1193 	sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1194 
1195 	sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1196 	return 0;
1197 out:
1198 
1199 	return ret;
1200 }
1201 
1202 
1203 static int sdma_alloc_bd(struct sdma_desc *desc)
1204 {
1205 	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1206 	int ret = 0;
1207 
1208 	desc->bd = dma_zalloc_coherent(NULL, bd_size, &desc->bd_phys,
1209 					GFP_NOWAIT);
1210 	if (!desc->bd) {
1211 		ret = -ENOMEM;
1212 		goto out;
1213 	}
1214 out:
1215 	return ret;
1216 }
1217 
1218 static void sdma_free_bd(struct sdma_desc *desc)
1219 {
1220 	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1221 
1222 	dma_free_coherent(NULL, bd_size, desc->bd, desc->bd_phys);
1223 }
1224 
1225 static void sdma_desc_free(struct virt_dma_desc *vd)
1226 {
1227 	struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1228 
1229 	sdma_free_bd(desc);
1230 	kfree(desc);
1231 }
1232 
1233 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1234 {
1235 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1236 	struct imx_dma_data *data = chan->private;
1237 	struct imx_dma_data mem_data;
1238 	int prio, ret;
1239 
1240 	/*
1241 	 * MEMCPY may never setup chan->private by filter function such as
1242 	 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1243 	 * Please note in any other slave case, you have to setup chan->private
1244 	 * with 'struct imx_dma_data' in your own filter function if you want to
1245 	 * request dma channel by dma_request_channel() rather than
1246 	 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1247 	 * to warn you to correct your filter function.
1248 	 */
1249 	if (!data) {
1250 		dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1251 		mem_data.priority = 2;
1252 		mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1253 		mem_data.dma_request = 0;
1254 		mem_data.dma_request2 = 0;
1255 		data = &mem_data;
1256 
1257 		sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1258 	}
1259 
1260 	switch (data->priority) {
1261 	case DMA_PRIO_HIGH:
1262 		prio = 3;
1263 		break;
1264 	case DMA_PRIO_MEDIUM:
1265 		prio = 2;
1266 		break;
1267 	case DMA_PRIO_LOW:
1268 	default:
1269 		prio = 1;
1270 		break;
1271 	}
1272 
1273 	sdmac->peripheral_type = data->peripheral_type;
1274 	sdmac->event_id0 = data->dma_request;
1275 	sdmac->event_id1 = data->dma_request2;
1276 
1277 	ret = clk_enable(sdmac->sdma->clk_ipg);
1278 	if (ret)
1279 		return ret;
1280 	ret = clk_enable(sdmac->sdma->clk_ahb);
1281 	if (ret)
1282 		goto disable_clk_ipg;
1283 
1284 	ret = sdma_set_channel_priority(sdmac, prio);
1285 	if (ret)
1286 		goto disable_clk_ahb;
1287 
1288 	return 0;
1289 
1290 disable_clk_ahb:
1291 	clk_disable(sdmac->sdma->clk_ahb);
1292 disable_clk_ipg:
1293 	clk_disable(sdmac->sdma->clk_ipg);
1294 	return ret;
1295 }
1296 
1297 static void sdma_free_chan_resources(struct dma_chan *chan)
1298 {
1299 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1300 	struct sdma_engine *sdma = sdmac->sdma;
1301 
1302 	sdma_disable_channel_async(chan);
1303 
1304 	sdma_channel_synchronize(chan);
1305 
1306 	if (sdmac->event_id0)
1307 		sdma_event_disable(sdmac, sdmac->event_id0);
1308 	if (sdmac->event_id1)
1309 		sdma_event_disable(sdmac, sdmac->event_id1);
1310 
1311 	sdmac->event_id0 = 0;
1312 	sdmac->event_id1 = 0;
1313 
1314 	sdma_set_channel_priority(sdmac, 0);
1315 
1316 	clk_disable(sdma->clk_ipg);
1317 	clk_disable(sdma->clk_ahb);
1318 }
1319 
1320 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1321 				enum dma_transfer_direction direction, u32 bds)
1322 {
1323 	struct sdma_desc *desc;
1324 
1325 	desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1326 	if (!desc)
1327 		goto err_out;
1328 
1329 	sdmac->status = DMA_IN_PROGRESS;
1330 	sdmac->direction = direction;
1331 	sdmac->flags = 0;
1332 
1333 	desc->chn_count = 0;
1334 	desc->chn_real_count = 0;
1335 	desc->buf_tail = 0;
1336 	desc->buf_ptail = 0;
1337 	desc->sdmac = sdmac;
1338 	desc->num_bd = bds;
1339 
1340 	if (sdma_alloc_bd(desc))
1341 		goto err_desc_out;
1342 
1343 	/* No slave_config called in MEMCPY case, so do here */
1344 	if (direction == DMA_MEM_TO_MEM)
1345 		sdma_config_ownership(sdmac, false, true, false);
1346 
1347 	if (sdma_load_context(sdmac))
1348 		goto err_desc_out;
1349 
1350 	return desc;
1351 
1352 err_desc_out:
1353 	kfree(desc);
1354 err_out:
1355 	return NULL;
1356 }
1357 
1358 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1359 		struct dma_chan *chan, dma_addr_t dma_dst,
1360 		dma_addr_t dma_src, size_t len, unsigned long flags)
1361 {
1362 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1363 	struct sdma_engine *sdma = sdmac->sdma;
1364 	int channel = sdmac->channel;
1365 	size_t count;
1366 	int i = 0, param;
1367 	struct sdma_buffer_descriptor *bd;
1368 	struct sdma_desc *desc;
1369 
1370 	if (!chan || !len)
1371 		return NULL;
1372 
1373 	dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1374 		&dma_src, &dma_dst, len, channel);
1375 
1376 	desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1377 					len / SDMA_BD_MAX_CNT + 1);
1378 	if (!desc)
1379 		return NULL;
1380 
1381 	do {
1382 		count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1383 		bd = &desc->bd[i];
1384 		bd->buffer_addr = dma_src;
1385 		bd->ext_buffer_addr = dma_dst;
1386 		bd->mode.count = count;
1387 		desc->chn_count += count;
1388 		bd->mode.command = 0;
1389 
1390 		dma_src += count;
1391 		dma_dst += count;
1392 		len -= count;
1393 		i++;
1394 
1395 		param = BD_DONE | BD_EXTD | BD_CONT;
1396 		/* last bd */
1397 		if (!len) {
1398 			param |= BD_INTR;
1399 			param |= BD_LAST;
1400 			param &= ~BD_CONT;
1401 		}
1402 
1403 		dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1404 				i, count, bd->buffer_addr,
1405 				param & BD_WRAP ? "wrap" : "",
1406 				param & BD_INTR ? " intr" : "");
1407 
1408 		bd->mode.status = param;
1409 	} while (len);
1410 
1411 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1412 }
1413 
1414 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1415 		struct dma_chan *chan, struct scatterlist *sgl,
1416 		unsigned int sg_len, enum dma_transfer_direction direction,
1417 		unsigned long flags, void *context)
1418 {
1419 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1420 	struct sdma_engine *sdma = sdmac->sdma;
1421 	int i, count;
1422 	int channel = sdmac->channel;
1423 	struct scatterlist *sg;
1424 	struct sdma_desc *desc;
1425 
1426 	sdma_config_write(chan, &sdmac->slave_config, direction);
1427 
1428 	desc = sdma_transfer_init(sdmac, direction, sg_len);
1429 	if (!desc)
1430 		goto err_out;
1431 
1432 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1433 			sg_len, channel);
1434 
1435 	for_each_sg(sgl, sg, sg_len, i) {
1436 		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1437 		int param;
1438 
1439 		bd->buffer_addr = sg->dma_address;
1440 
1441 		count = sg_dma_len(sg);
1442 
1443 		if (count > SDMA_BD_MAX_CNT) {
1444 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1445 					channel, count, SDMA_BD_MAX_CNT);
1446 			goto err_bd_out;
1447 		}
1448 
1449 		bd->mode.count = count;
1450 		desc->chn_count += count;
1451 
1452 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1453 			goto err_bd_out;
1454 
1455 		switch (sdmac->word_size) {
1456 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1457 			bd->mode.command = 0;
1458 			if (count & 3 || sg->dma_address & 3)
1459 				goto err_bd_out;
1460 			break;
1461 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1462 			bd->mode.command = 2;
1463 			if (count & 1 || sg->dma_address & 1)
1464 				goto err_bd_out;
1465 			break;
1466 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1467 			bd->mode.command = 1;
1468 			break;
1469 		default:
1470 			goto err_bd_out;
1471 		}
1472 
1473 		param = BD_DONE | BD_EXTD | BD_CONT;
1474 
1475 		if (i + 1 == sg_len) {
1476 			param |= BD_INTR;
1477 			param |= BD_LAST;
1478 			param &= ~BD_CONT;
1479 		}
1480 
1481 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1482 				i, count, (u64)sg->dma_address,
1483 				param & BD_WRAP ? "wrap" : "",
1484 				param & BD_INTR ? " intr" : "");
1485 
1486 		bd->mode.status = param;
1487 	}
1488 
1489 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1490 err_bd_out:
1491 	sdma_free_bd(desc);
1492 	kfree(desc);
1493 err_out:
1494 	sdmac->status = DMA_ERROR;
1495 	return NULL;
1496 }
1497 
1498 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1499 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1500 		size_t period_len, enum dma_transfer_direction direction,
1501 		unsigned long flags)
1502 {
1503 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1504 	struct sdma_engine *sdma = sdmac->sdma;
1505 	int num_periods = buf_len / period_len;
1506 	int channel = sdmac->channel;
1507 	int i = 0, buf = 0;
1508 	struct sdma_desc *desc;
1509 
1510 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1511 
1512 	sdma_config_write(chan, &sdmac->slave_config, direction);
1513 
1514 	desc = sdma_transfer_init(sdmac, direction, num_periods);
1515 	if (!desc)
1516 		goto err_out;
1517 
1518 	desc->period_len = period_len;
1519 
1520 	sdmac->flags |= IMX_DMA_SG_LOOP;
1521 
1522 	if (period_len > SDMA_BD_MAX_CNT) {
1523 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1524 				channel, period_len, SDMA_BD_MAX_CNT);
1525 		goto err_bd_out;
1526 	}
1527 
1528 	while (buf < buf_len) {
1529 		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1530 		int param;
1531 
1532 		bd->buffer_addr = dma_addr;
1533 
1534 		bd->mode.count = period_len;
1535 
1536 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1537 			goto err_bd_out;
1538 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1539 			bd->mode.command = 0;
1540 		else
1541 			bd->mode.command = sdmac->word_size;
1542 
1543 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1544 		if (i + 1 == num_periods)
1545 			param |= BD_WRAP;
1546 
1547 		dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1548 				i, period_len, (u64)dma_addr,
1549 				param & BD_WRAP ? "wrap" : "",
1550 				param & BD_INTR ? " intr" : "");
1551 
1552 		bd->mode.status = param;
1553 
1554 		dma_addr += period_len;
1555 		buf += period_len;
1556 
1557 		i++;
1558 	}
1559 
1560 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1561 err_bd_out:
1562 	sdma_free_bd(desc);
1563 	kfree(desc);
1564 err_out:
1565 	sdmac->status = DMA_ERROR;
1566 	return NULL;
1567 }
1568 
1569 static int sdma_config_write(struct dma_chan *chan,
1570 		       struct dma_slave_config *dmaengine_cfg,
1571 		       enum dma_transfer_direction direction)
1572 {
1573 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1574 
1575 	if (direction == DMA_DEV_TO_MEM) {
1576 		sdmac->per_address = dmaengine_cfg->src_addr;
1577 		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1578 			dmaengine_cfg->src_addr_width;
1579 		sdmac->word_size = dmaengine_cfg->src_addr_width;
1580 	} else if (direction == DMA_DEV_TO_DEV) {
1581 		sdmac->per_address2 = dmaengine_cfg->src_addr;
1582 		sdmac->per_address = dmaengine_cfg->dst_addr;
1583 		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1584 			SDMA_WATERMARK_LEVEL_LWML;
1585 		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1586 			SDMA_WATERMARK_LEVEL_HWML;
1587 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1588 	} else {
1589 		sdmac->per_address = dmaengine_cfg->dst_addr;
1590 		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1591 			dmaengine_cfg->dst_addr_width;
1592 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1593 	}
1594 	sdmac->direction = direction;
1595 	return sdma_config_channel(chan);
1596 }
1597 
1598 static int sdma_config(struct dma_chan *chan,
1599 		       struct dma_slave_config *dmaengine_cfg)
1600 {
1601 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1602 
1603 	memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1604 
1605 	/* Set ENBLn earlier to make sure dma request triggered after that */
1606 	if (sdmac->event_id0) {
1607 		if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1608 			return -EINVAL;
1609 		sdma_event_enable(sdmac, sdmac->event_id0);
1610 	}
1611 
1612 	if (sdmac->event_id1) {
1613 		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1614 			return -EINVAL;
1615 		sdma_event_enable(sdmac, sdmac->event_id1);
1616 	}
1617 
1618 	return 0;
1619 }
1620 
1621 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1622 				      dma_cookie_t cookie,
1623 				      struct dma_tx_state *txstate)
1624 {
1625 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1626 	struct sdma_desc *desc;
1627 	u32 residue;
1628 	struct virt_dma_desc *vd;
1629 	enum dma_status ret;
1630 	unsigned long flags;
1631 
1632 	ret = dma_cookie_status(chan, cookie, txstate);
1633 	if (ret == DMA_COMPLETE || !txstate)
1634 		return ret;
1635 
1636 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1637 	vd = vchan_find_desc(&sdmac->vc, cookie);
1638 	if (vd) {
1639 		desc = to_sdma_desc(&vd->tx);
1640 		if (sdmac->flags & IMX_DMA_SG_LOOP)
1641 			residue = (desc->num_bd - desc->buf_ptail) *
1642 				desc->period_len - desc->chn_real_count;
1643 		else
1644 			residue = desc->chn_count - desc->chn_real_count;
1645 	} else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie) {
1646 		residue = sdmac->desc->chn_count - sdmac->desc->chn_real_count;
1647 	} else {
1648 		residue = 0;
1649 	}
1650 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1651 
1652 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1653 			 residue);
1654 
1655 	return sdmac->status;
1656 }
1657 
1658 static void sdma_issue_pending(struct dma_chan *chan)
1659 {
1660 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1661 	unsigned long flags;
1662 
1663 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1664 	if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1665 		sdma_start_desc(sdmac);
1666 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1667 }
1668 
1669 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1670 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1671 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	41
1672 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4	42
1673 
1674 static void sdma_add_scripts(struct sdma_engine *sdma,
1675 		const struct sdma_script_start_addrs *addr)
1676 {
1677 	s32 *addr_arr = (u32 *)addr;
1678 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1679 	int i;
1680 
1681 	/* use the default firmware in ROM if missing external firmware */
1682 	if (!sdma->script_number)
1683 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1684 
1685 	for (i = 0; i < sdma->script_number; i++)
1686 		if (addr_arr[i] > 0)
1687 			saddr_arr[i] = addr_arr[i];
1688 }
1689 
1690 static void sdma_load_firmware(const struct firmware *fw, void *context)
1691 {
1692 	struct sdma_engine *sdma = context;
1693 	const struct sdma_firmware_header *header;
1694 	const struct sdma_script_start_addrs *addr;
1695 	unsigned short *ram_code;
1696 
1697 	if (!fw) {
1698 		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1699 		/* In this case we just use the ROM firmware. */
1700 		return;
1701 	}
1702 
1703 	if (fw->size < sizeof(*header))
1704 		goto err_firmware;
1705 
1706 	header = (struct sdma_firmware_header *)fw->data;
1707 
1708 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1709 		goto err_firmware;
1710 	if (header->ram_code_start + header->ram_code_size > fw->size)
1711 		goto err_firmware;
1712 	switch (header->version_major) {
1713 	case 1:
1714 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1715 		break;
1716 	case 2:
1717 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1718 		break;
1719 	case 3:
1720 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1721 		break;
1722 	case 4:
1723 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1724 		break;
1725 	default:
1726 		dev_err(sdma->dev, "unknown firmware version\n");
1727 		goto err_firmware;
1728 	}
1729 
1730 	addr = (void *)header + header->script_addrs_start;
1731 	ram_code = (void *)header + header->ram_code_start;
1732 
1733 	clk_enable(sdma->clk_ipg);
1734 	clk_enable(sdma->clk_ahb);
1735 	/* download the RAM image for SDMA */
1736 	sdma_load_script(sdma, ram_code,
1737 			header->ram_code_size,
1738 			addr->ram_code_start_addr);
1739 	clk_disable(sdma->clk_ipg);
1740 	clk_disable(sdma->clk_ahb);
1741 
1742 	sdma_add_scripts(sdma, addr);
1743 
1744 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1745 			header->version_major,
1746 			header->version_minor);
1747 
1748 err_firmware:
1749 	release_firmware(fw);
1750 }
1751 
1752 #define EVENT_REMAP_CELLS 3
1753 
1754 static int sdma_event_remap(struct sdma_engine *sdma)
1755 {
1756 	struct device_node *np = sdma->dev->of_node;
1757 	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1758 	struct property *event_remap;
1759 	struct regmap *gpr;
1760 	char propname[] = "fsl,sdma-event-remap";
1761 	u32 reg, val, shift, num_map, i;
1762 	int ret = 0;
1763 
1764 	if (IS_ERR(np) || IS_ERR(gpr_np))
1765 		goto out;
1766 
1767 	event_remap = of_find_property(np, propname, NULL);
1768 	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1769 	if (!num_map) {
1770 		dev_dbg(sdma->dev, "no event needs to be remapped\n");
1771 		goto out;
1772 	} else if (num_map % EVENT_REMAP_CELLS) {
1773 		dev_err(sdma->dev, "the property %s must modulo %d\n",
1774 				propname, EVENT_REMAP_CELLS);
1775 		ret = -EINVAL;
1776 		goto out;
1777 	}
1778 
1779 	gpr = syscon_node_to_regmap(gpr_np);
1780 	if (IS_ERR(gpr)) {
1781 		dev_err(sdma->dev, "failed to get gpr regmap\n");
1782 		ret = PTR_ERR(gpr);
1783 		goto out;
1784 	}
1785 
1786 	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1787 		ret = of_property_read_u32_index(np, propname, i, &reg);
1788 		if (ret) {
1789 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1790 					propname, i);
1791 			goto out;
1792 		}
1793 
1794 		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1795 		if (ret) {
1796 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1797 					propname, i + 1);
1798 			goto out;
1799 		}
1800 
1801 		ret = of_property_read_u32_index(np, propname, i + 2, &val);
1802 		if (ret) {
1803 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1804 					propname, i + 2);
1805 			goto out;
1806 		}
1807 
1808 		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1809 	}
1810 
1811 out:
1812 	if (!IS_ERR(gpr_np))
1813 		of_node_put(gpr_np);
1814 
1815 	return ret;
1816 }
1817 
1818 static int sdma_get_firmware(struct sdma_engine *sdma,
1819 		const char *fw_name)
1820 {
1821 	int ret;
1822 
1823 	ret = request_firmware_nowait(THIS_MODULE,
1824 			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1825 			GFP_KERNEL, sdma, sdma_load_firmware);
1826 
1827 	return ret;
1828 }
1829 
1830 static int sdma_init(struct sdma_engine *sdma)
1831 {
1832 	int i, ret;
1833 	dma_addr_t ccb_phys;
1834 
1835 	ret = clk_enable(sdma->clk_ipg);
1836 	if (ret)
1837 		return ret;
1838 	ret = clk_enable(sdma->clk_ahb);
1839 	if (ret)
1840 		goto disable_clk_ipg;
1841 
1842 	/* Be sure SDMA has not started yet */
1843 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1844 
1845 	sdma->channel_control = dma_alloc_coherent(NULL,
1846 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1847 			sizeof(struct sdma_context_data),
1848 			&ccb_phys, GFP_KERNEL);
1849 
1850 	if (!sdma->channel_control) {
1851 		ret = -ENOMEM;
1852 		goto err_dma_alloc;
1853 	}
1854 
1855 	sdma->context = (void *)sdma->channel_control +
1856 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1857 	sdma->context_phys = ccb_phys +
1858 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1859 
1860 	/* Zero-out the CCB structures array just allocated */
1861 	memset(sdma->channel_control, 0,
1862 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1863 
1864 	/* disable all channels */
1865 	for (i = 0; i < sdma->drvdata->num_events; i++)
1866 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1867 
1868 	/* All channels have priority 0 */
1869 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1870 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1871 
1872 	ret = sdma_request_channel0(sdma);
1873 	if (ret)
1874 		goto err_dma_alloc;
1875 
1876 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1877 
1878 	/* Set Command Channel (Channel Zero) */
1879 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1880 
1881 	/* Set bits of CONFIG register but with static context switching */
1882 	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1883 	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1884 
1885 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1886 
1887 	/* Initializes channel's priorities */
1888 	sdma_set_channel_priority(&sdma->channel[0], 7);
1889 
1890 	clk_disable(sdma->clk_ipg);
1891 	clk_disable(sdma->clk_ahb);
1892 
1893 	return 0;
1894 
1895 err_dma_alloc:
1896 	clk_disable(sdma->clk_ahb);
1897 disable_clk_ipg:
1898 	clk_disable(sdma->clk_ipg);
1899 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1900 	return ret;
1901 }
1902 
1903 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1904 {
1905 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1906 	struct imx_dma_data *data = fn_param;
1907 
1908 	if (!imx_dma_is_general_purpose(chan))
1909 		return false;
1910 
1911 	sdmac->data = *data;
1912 	chan->private = &sdmac->data;
1913 
1914 	return true;
1915 }
1916 
1917 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1918 				   struct of_dma *ofdma)
1919 {
1920 	struct sdma_engine *sdma = ofdma->of_dma_data;
1921 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1922 	struct imx_dma_data data;
1923 
1924 	if (dma_spec->args_count != 3)
1925 		return NULL;
1926 
1927 	data.dma_request = dma_spec->args[0];
1928 	data.peripheral_type = dma_spec->args[1];
1929 	data.priority = dma_spec->args[2];
1930 	/*
1931 	 * init dma_request2 to zero, which is not used by the dts.
1932 	 * For P2P, dma_request2 is init from dma_request_channel(),
1933 	 * chan->private will point to the imx_dma_data, and in
1934 	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1935 	 * be set to sdmac->event_id1.
1936 	 */
1937 	data.dma_request2 = 0;
1938 
1939 	return dma_request_channel(mask, sdma_filter_fn, &data);
1940 }
1941 
1942 static int sdma_probe(struct platform_device *pdev)
1943 {
1944 	const struct of_device_id *of_id =
1945 			of_match_device(sdma_dt_ids, &pdev->dev);
1946 	struct device_node *np = pdev->dev.of_node;
1947 	struct device_node *spba_bus;
1948 	const char *fw_name;
1949 	int ret;
1950 	int irq;
1951 	struct resource *iores;
1952 	struct resource spba_res;
1953 	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1954 	int i;
1955 	struct sdma_engine *sdma;
1956 	s32 *saddr_arr;
1957 	const struct sdma_driver_data *drvdata = NULL;
1958 
1959 	if (of_id)
1960 		drvdata = of_id->data;
1961 	else if (pdev->id_entry)
1962 		drvdata = (void *)pdev->id_entry->driver_data;
1963 
1964 	if (!drvdata) {
1965 		dev_err(&pdev->dev, "unable to find driver data\n");
1966 		return -EINVAL;
1967 	}
1968 
1969 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1970 	if (ret)
1971 		return ret;
1972 
1973 	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1974 	if (!sdma)
1975 		return -ENOMEM;
1976 
1977 	spin_lock_init(&sdma->channel_0_lock);
1978 
1979 	sdma->dev = &pdev->dev;
1980 	sdma->drvdata = drvdata;
1981 
1982 	irq = platform_get_irq(pdev, 0);
1983 	if (irq < 0)
1984 		return irq;
1985 
1986 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1987 	sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1988 	if (IS_ERR(sdma->regs))
1989 		return PTR_ERR(sdma->regs);
1990 
1991 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1992 	if (IS_ERR(sdma->clk_ipg))
1993 		return PTR_ERR(sdma->clk_ipg);
1994 
1995 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1996 	if (IS_ERR(sdma->clk_ahb))
1997 		return PTR_ERR(sdma->clk_ahb);
1998 
1999 	ret = clk_prepare(sdma->clk_ipg);
2000 	if (ret)
2001 		return ret;
2002 
2003 	ret = clk_prepare(sdma->clk_ahb);
2004 	if (ret)
2005 		goto err_clk;
2006 
2007 	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
2008 			       sdma);
2009 	if (ret)
2010 		goto err_irq;
2011 
2012 	sdma->irq = irq;
2013 
2014 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2015 	if (!sdma->script_addrs) {
2016 		ret = -ENOMEM;
2017 		goto err_irq;
2018 	}
2019 
2020 	/* initially no scripts available */
2021 	saddr_arr = (s32 *)sdma->script_addrs;
2022 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
2023 		saddr_arr[i] = -EINVAL;
2024 
2025 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2026 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2027 	dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2028 
2029 	INIT_LIST_HEAD(&sdma->dma_device.channels);
2030 	/* Initialize channel parameters */
2031 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2032 		struct sdma_channel *sdmac = &sdma->channel[i];
2033 
2034 		sdmac->sdma = sdma;
2035 
2036 		sdmac->channel = i;
2037 		sdmac->vc.desc_free = sdma_desc_free;
2038 		INIT_WORK(&sdmac->terminate_worker,
2039 				sdma_channel_terminate_work);
2040 		/*
2041 		 * Add the channel to the DMAC list. Do not add channel 0 though
2042 		 * because we need it internally in the SDMA driver. This also means
2043 		 * that channel 0 in dmaengine counting matches sdma channel 1.
2044 		 */
2045 		if (i)
2046 			vchan_init(&sdmac->vc, &sdma->dma_device);
2047 	}
2048 
2049 	ret = sdma_init(sdma);
2050 	if (ret)
2051 		goto err_init;
2052 
2053 	ret = sdma_event_remap(sdma);
2054 	if (ret)
2055 		goto err_init;
2056 
2057 	if (sdma->drvdata->script_addrs)
2058 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2059 	if (pdata && pdata->script_addrs)
2060 		sdma_add_scripts(sdma, pdata->script_addrs);
2061 
2062 	if (pdata) {
2063 		ret = sdma_get_firmware(sdma, pdata->fw_name);
2064 		if (ret)
2065 			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
2066 	} else {
2067 		/*
2068 		 * Because that device tree does not encode ROM script address,
2069 		 * the RAM script in firmware is mandatory for device tree
2070 		 * probe, otherwise it fails.
2071 		 */
2072 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2073 					      &fw_name);
2074 		if (ret)
2075 			dev_warn(&pdev->dev, "failed to get firmware name\n");
2076 		else {
2077 			ret = sdma_get_firmware(sdma, fw_name);
2078 			if (ret)
2079 				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2080 		}
2081 	}
2082 
2083 	sdma->dma_device.dev = &pdev->dev;
2084 
2085 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2086 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2087 	sdma->dma_device.device_tx_status = sdma_tx_status;
2088 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2089 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2090 	sdma->dma_device.device_config = sdma_config;
2091 	sdma->dma_device.device_terminate_all = sdma_disable_channel_async;
2092 	sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2093 	sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2094 	sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2095 	sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2096 	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2097 	sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2098 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
2099 	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
2100 	dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2101 
2102 	platform_set_drvdata(pdev, sdma);
2103 
2104 	ret = dma_async_device_register(&sdma->dma_device);
2105 	if (ret) {
2106 		dev_err(&pdev->dev, "unable to register\n");
2107 		goto err_init;
2108 	}
2109 
2110 	if (np) {
2111 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
2112 		if (ret) {
2113 			dev_err(&pdev->dev, "failed to register controller\n");
2114 			goto err_register;
2115 		}
2116 
2117 		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2118 		ret = of_address_to_resource(spba_bus, 0, &spba_res);
2119 		if (!ret) {
2120 			sdma->spba_start_addr = spba_res.start;
2121 			sdma->spba_end_addr = spba_res.end;
2122 		}
2123 		of_node_put(spba_bus);
2124 	}
2125 
2126 	return 0;
2127 
2128 err_register:
2129 	dma_async_device_unregister(&sdma->dma_device);
2130 err_init:
2131 	kfree(sdma->script_addrs);
2132 err_irq:
2133 	clk_unprepare(sdma->clk_ahb);
2134 err_clk:
2135 	clk_unprepare(sdma->clk_ipg);
2136 	return ret;
2137 }
2138 
2139 static int sdma_remove(struct platform_device *pdev)
2140 {
2141 	struct sdma_engine *sdma = platform_get_drvdata(pdev);
2142 	int i;
2143 
2144 	devm_free_irq(&pdev->dev, sdma->irq, sdma);
2145 	dma_async_device_unregister(&sdma->dma_device);
2146 	kfree(sdma->script_addrs);
2147 	clk_unprepare(sdma->clk_ahb);
2148 	clk_unprepare(sdma->clk_ipg);
2149 	/* Kill the tasklet */
2150 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2151 		struct sdma_channel *sdmac = &sdma->channel[i];
2152 
2153 		tasklet_kill(&sdmac->vc.task);
2154 		sdma_free_chan_resources(&sdmac->vc.chan);
2155 	}
2156 
2157 	platform_set_drvdata(pdev, NULL);
2158 	return 0;
2159 }
2160 
2161 static struct platform_driver sdma_driver = {
2162 	.driver		= {
2163 		.name	= "imx-sdma",
2164 		.of_match_table = sdma_dt_ids,
2165 	},
2166 	.id_table	= sdma_devtypes,
2167 	.remove		= sdma_remove,
2168 	.probe		= sdma_probe,
2169 };
2170 
2171 module_platform_driver(sdma_driver);
2172 
2173 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2174 MODULE_DESCRIPTION("i.MX SDMA driver");
2175 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2176 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2177 #endif
2178 #if IS_ENABLED(CONFIG_SOC_IMX7D)
2179 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2180 #endif
2181 MODULE_LICENSE("GPL");
2182