xref: /openbmc/linux/drivers/dma/imx-sdma.c (revision 7af6fbdd)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
10 //
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12 
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 #include <linux/semaphore.h>
24 #include <linux/spinlock.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/slab.h>
29 #include <linux/platform_device.h>
30 #include <linux/dmaengine.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_device.h>
34 #include <linux/of_dma.h>
35 #include <linux/workqueue.h>
36 
37 #include <asm/irq.h>
38 #include <linux/platform_data/dma-imx-sdma.h>
39 #include <linux/platform_data/dma-imx.h>
40 #include <linux/regmap.h>
41 #include <linux/mfd/syscon.h>
42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
43 
44 #include "dmaengine.h"
45 #include "virt-dma.h"
46 
47 /* SDMA registers */
48 #define SDMA_H_C0PTR		0x000
49 #define SDMA_H_INTR		0x004
50 #define SDMA_H_STATSTOP		0x008
51 #define SDMA_H_START		0x00c
52 #define SDMA_H_EVTOVR		0x010
53 #define SDMA_H_DSPOVR		0x014
54 #define SDMA_H_HOSTOVR		0x018
55 #define SDMA_H_EVTPEND		0x01c
56 #define SDMA_H_DSPENBL		0x020
57 #define SDMA_H_RESET		0x024
58 #define SDMA_H_EVTERR		0x028
59 #define SDMA_H_INTRMSK		0x02c
60 #define SDMA_H_PSW		0x030
61 #define SDMA_H_EVTERRDBG	0x034
62 #define SDMA_H_CONFIG		0x038
63 #define SDMA_ONCE_ENB		0x040
64 #define SDMA_ONCE_DATA		0x044
65 #define SDMA_ONCE_INSTR		0x048
66 #define SDMA_ONCE_STAT		0x04c
67 #define SDMA_ONCE_CMD		0x050
68 #define SDMA_EVT_MIRROR		0x054
69 #define SDMA_ILLINSTADDR	0x058
70 #define SDMA_CHN0ADDR		0x05c
71 #define SDMA_ONCE_RTB		0x060
72 #define SDMA_XTRIG_CONF1	0x070
73 #define SDMA_XTRIG_CONF2	0x074
74 #define SDMA_CHNENBL0_IMX35	0x200
75 #define SDMA_CHNENBL0_IMX31	0x080
76 #define SDMA_CHNPRI_0		0x100
77 
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88 
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96 
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101 
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108 
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125 
126 /*
127  *  p_2_p watermark_level description
128  *	Bits		Name			Description
129  *	0-7		Lower WML		Lower watermark level
130  *	8		PS			1: Pad Swallowing
131  *						0: No Pad Swallowing
132  *	9		PA			1: Pad Adding
133  *						0: No Pad Adding
134  *	10		SPDIF			If this bit is set both source
135  *						and destination are on SPBA
136  *	11		Source Bit(SP)		1: Source on SPBA
137  *						0: Source on AIPS
138  *	12		Destination Bit(DP)	1: Destination on SPBA
139  *						0: Destination on AIPS
140  *	13-15		---------		MUST BE 0
141  *	16-23		Higher WML		HWML
142  *	24-27		N			Total number of samples after
143  *						which Pad adding/Swallowing
144  *						must be done. It must be odd.
145  *	28		Lower WML Event(LWE)	SDMA events reg to check for
146  *						LWML event mask
147  *						0: LWE in EVENTS register
148  *						1: LWE in EVENTS2 register
149  *	29		Higher WML Event(HWE)	SDMA events reg to check for
150  *						HWML event mask
151  *						0: HWE in EVENTS register
152  *						1: HWE in EVENTS2 register
153  *	30		---------		MUST BE 0
154  *	31		CONT			1: Amount of samples to be
155  *						transferred is unknown and
156  *						script will keep on
157  *						transferring samples as long as
158  *						both events are detected and
159  *						script must be manually stopped
160  *						by the application
161  *						0: The amount of samples to be
162  *						transferred is equal to the
163  *						count field of mode word
164  */
165 #define SDMA_WATERMARK_LEVEL_LWML	0xFF
166 #define SDMA_WATERMARK_LEVEL_PS		BIT(8)
167 #define SDMA_WATERMARK_LEVEL_PA		BIT(9)
168 #define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
169 #define SDMA_WATERMARK_LEVEL_SP		BIT(11)
170 #define SDMA_WATERMARK_LEVEL_DP		BIT(12)
171 #define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
172 #define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
173 #define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
174 #define SDMA_WATERMARK_LEVEL_CONT	BIT(31)
175 
176 #define SDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
177 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
178 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
179 
180 #define SDMA_DMA_DIRECTIONS	(BIT(DMA_DEV_TO_MEM) | \
181 				 BIT(DMA_MEM_TO_DEV) | \
182 				 BIT(DMA_DEV_TO_DEV))
183 
184 /*
185  * Mode/Count of data node descriptors - IPCv2
186  */
187 struct sdma_mode_count {
188 #define SDMA_BD_MAX_CNT	0xffff
189 	u32 count   : 16; /* size of the buffer pointed by this BD */
190 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
191 	u32 command :  8; /* command mostly used for channel 0 */
192 };
193 
194 /*
195  * Buffer descriptor
196  */
197 struct sdma_buffer_descriptor {
198 	struct sdma_mode_count  mode;
199 	u32 buffer_addr;	/* address of the buffer described */
200 	u32 ext_buffer_addr;	/* extended buffer address */
201 } __attribute__ ((packed));
202 
203 /**
204  * struct sdma_channel_control - Channel control Block
205  *
206  * @current_bd_ptr:	current buffer descriptor processed
207  * @base_bd_ptr:	first element of buffer descriptor array
208  * @unused:		padding. The SDMA engine expects an array of 128 byte
209  *			control blocks
210  */
211 struct sdma_channel_control {
212 	u32 current_bd_ptr;
213 	u32 base_bd_ptr;
214 	u32 unused[2];
215 } __attribute__ ((packed));
216 
217 /**
218  * struct sdma_state_registers - SDMA context for a channel
219  *
220  * @pc:		program counter
221  * @unused1:	unused
222  * @t:		test bit: status of arithmetic & test instruction
223  * @rpc:	return program counter
224  * @unused0:	unused
225  * @sf:		source fault while loading data
226  * @spc:	loop start program counter
227  * @unused2:	unused
228  * @df:		destination fault while storing data
229  * @epc:	loop end program counter
230  * @lm:		loop mode
231  */
232 struct sdma_state_registers {
233 	u32 pc     :14;
234 	u32 unused1: 1;
235 	u32 t      : 1;
236 	u32 rpc    :14;
237 	u32 unused0: 1;
238 	u32 sf     : 1;
239 	u32 spc    :14;
240 	u32 unused2: 1;
241 	u32 df     : 1;
242 	u32 epc    :14;
243 	u32 lm     : 2;
244 } __attribute__ ((packed));
245 
246 /**
247  * struct sdma_context_data - sdma context specific to a channel
248  *
249  * @channel_state:	channel state bits
250  * @gReg:		general registers
251  * @mda:		burst dma destination address register
252  * @msa:		burst dma source address register
253  * @ms:			burst dma status register
254  * @md:			burst dma data register
255  * @pda:		peripheral dma destination address register
256  * @psa:		peripheral dma source address register
257  * @ps:			peripheral dma status register
258  * @pd:			peripheral dma data register
259  * @ca:			CRC polynomial register
260  * @cs:			CRC accumulator register
261  * @dda:		dedicated core destination address register
262  * @dsa:		dedicated core source address register
263  * @ds:			dedicated core status register
264  * @dd:			dedicated core data register
265  * @scratch0:		1st word of dedicated ram for context switch
266  * @scratch1:		2nd word of dedicated ram for context switch
267  * @scratch2:		3rd word of dedicated ram for context switch
268  * @scratch3:		4th word of dedicated ram for context switch
269  * @scratch4:		5th word of dedicated ram for context switch
270  * @scratch5:		6th word of dedicated ram for context switch
271  * @scratch6:		7th word of dedicated ram for context switch
272  * @scratch7:		8th word of dedicated ram for context switch
273  */
274 struct sdma_context_data {
275 	struct sdma_state_registers  channel_state;
276 	u32  gReg[8];
277 	u32  mda;
278 	u32  msa;
279 	u32  ms;
280 	u32  md;
281 	u32  pda;
282 	u32  psa;
283 	u32  ps;
284 	u32  pd;
285 	u32  ca;
286 	u32  cs;
287 	u32  dda;
288 	u32  dsa;
289 	u32  ds;
290 	u32  dd;
291 	u32  scratch0;
292 	u32  scratch1;
293 	u32  scratch2;
294 	u32  scratch3;
295 	u32  scratch4;
296 	u32  scratch5;
297 	u32  scratch6;
298 	u32  scratch7;
299 } __attribute__ ((packed));
300 
301 
302 struct sdma_engine;
303 
304 /**
305  * struct sdma_desc - descriptor structor for one transfer
306  * @vd:			descriptor for virt dma
307  * @num_bd:		number of descriptors currently handling
308  * @bd_phys:		physical address of bd
309  * @buf_tail:		ID of the buffer that was processed
310  * @buf_ptail:		ID of the previous buffer that was processed
311  * @period_len:		period length, used in cyclic.
312  * @chn_real_count:	the real count updated from bd->mode.count
313  * @chn_count:		the transfer count set
314  * @sdmac:		sdma_channel pointer
315  * @bd:			pointer of allocate bd
316  */
317 struct sdma_desc {
318 	struct virt_dma_desc	vd;
319 	unsigned int		num_bd;
320 	dma_addr_t		bd_phys;
321 	unsigned int		buf_tail;
322 	unsigned int		buf_ptail;
323 	unsigned int		period_len;
324 	unsigned int		chn_real_count;
325 	unsigned int		chn_count;
326 	struct sdma_channel	*sdmac;
327 	struct sdma_buffer_descriptor *bd;
328 };
329 
330 /**
331  * struct sdma_channel - housekeeping for a SDMA channel
332  *
333  * @vc:			virt_dma base structure
334  * @desc:		sdma description including vd and other special member
335  * @sdma:		pointer to the SDMA engine for this channel
336  * @channel:		the channel number, matches dmaengine chan_id + 1
337  * @direction:		transfer type. Needed for setting SDMA script
338  * @slave_config:	Slave configuration
339  * @peripheral_type:	Peripheral type. Needed for setting SDMA script
340  * @event_id0:		aka dma request line
341  * @event_id1:		for channels that use 2 events
342  * @word_size:		peripheral access size
343  * @pc_from_device:	script address for those device_2_memory
344  * @pc_to_device:	script address for those memory_2_device
345  * @device_to_device:	script address for those device_2_device
346  * @pc_to_pc:		script address for those memory_2_memory
347  * @flags:		loop mode or not
348  * @per_address:	peripheral source or destination address in common case
349  *                      destination address in p_2_p case
350  * @per_address2:	peripheral source address in p_2_p case
351  * @event_mask:		event mask used in p_2_p script
352  * @watermark_level:	value for gReg[7], some script will extend it from
353  *			basic watermark such as p_2_p
354  * @shp_addr:		value for gReg[6]
355  * @per_addr:		value for gReg[2]
356  * @status:		status of dma channel
357  * @context_loaded:	ensure context is only loaded once
358  * @data:		specific sdma interface structure
359  * @bd_pool:		dma_pool for bd
360  * @terminate_worker:	used to call back into terminate work function
361  */
362 struct sdma_channel {
363 	struct virt_dma_chan		vc;
364 	struct sdma_desc		*desc;
365 	struct sdma_engine		*sdma;
366 	unsigned int			channel;
367 	enum dma_transfer_direction		direction;
368 	struct dma_slave_config		slave_config;
369 	enum sdma_peripheral_type	peripheral_type;
370 	unsigned int			event_id0;
371 	unsigned int			event_id1;
372 	enum dma_slave_buswidth		word_size;
373 	unsigned int			pc_from_device, pc_to_device;
374 	unsigned int			device_to_device;
375 	unsigned int                    pc_to_pc;
376 	unsigned long			flags;
377 	dma_addr_t			per_address, per_address2;
378 	unsigned long			event_mask[2];
379 	unsigned long			watermark_level;
380 	u32				shp_addr, per_addr;
381 	enum dma_status			status;
382 	bool				context_loaded;
383 	struct imx_dma_data		data;
384 	struct work_struct		terminate_worker;
385 };
386 
387 #define IMX_DMA_SG_LOOP		BIT(0)
388 
389 #define MAX_DMA_CHANNELS 32
390 #define MXC_SDMA_DEFAULT_PRIORITY 1
391 #define MXC_SDMA_MIN_PRIORITY 1
392 #define MXC_SDMA_MAX_PRIORITY 7
393 
394 #define SDMA_FIRMWARE_MAGIC 0x414d4453
395 
396 /**
397  * struct sdma_firmware_header - Layout of the firmware image
398  *
399  * @magic:		"SDMA"
400  * @version_major:	increased whenever layout of struct
401  *			sdma_script_start_addrs changes.
402  * @version_minor:	firmware minor version (for binary compatible changes)
403  * @script_addrs_start:	offset of struct sdma_script_start_addrs in this image
404  * @num_script_addrs:	Number of script addresses in this image
405  * @ram_code_start:	offset of SDMA ram image in this firmware image
406  * @ram_code_size:	size of SDMA ram image
407  * @script_addrs:	Stores the start address of the SDMA scripts
408  *			(in SDMA memory space)
409  */
410 struct sdma_firmware_header {
411 	u32	magic;
412 	u32	version_major;
413 	u32	version_minor;
414 	u32	script_addrs_start;
415 	u32	num_script_addrs;
416 	u32	ram_code_start;
417 	u32	ram_code_size;
418 };
419 
420 struct sdma_driver_data {
421 	int chnenbl0;
422 	int num_events;
423 	struct sdma_script_start_addrs	*script_addrs;
424 	bool check_ratio;
425 };
426 
427 struct sdma_engine {
428 	struct device			*dev;
429 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
430 	struct sdma_channel_control	*channel_control;
431 	void __iomem			*regs;
432 	struct sdma_context_data	*context;
433 	dma_addr_t			context_phys;
434 	struct dma_device		dma_device;
435 	struct clk			*clk_ipg;
436 	struct clk			*clk_ahb;
437 	spinlock_t			channel_0_lock;
438 	u32				script_number;
439 	struct sdma_script_start_addrs	*script_addrs;
440 	const struct sdma_driver_data	*drvdata;
441 	u32				spba_start_addr;
442 	u32				spba_end_addr;
443 	unsigned int			irq;
444 	dma_addr_t			bd0_phys;
445 	struct sdma_buffer_descriptor	*bd0;
446 	/* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
447 	bool				clk_ratio;
448 };
449 
450 static int sdma_config_write(struct dma_chan *chan,
451 		       struct dma_slave_config *dmaengine_cfg,
452 		       enum dma_transfer_direction direction);
453 
454 static struct sdma_driver_data sdma_imx31 = {
455 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
456 	.num_events = 32,
457 };
458 
459 static struct sdma_script_start_addrs sdma_script_imx25 = {
460 	.ap_2_ap_addr = 729,
461 	.uart_2_mcu_addr = 904,
462 	.per_2_app_addr = 1255,
463 	.mcu_2_app_addr = 834,
464 	.uartsh_2_mcu_addr = 1120,
465 	.per_2_shp_addr = 1329,
466 	.mcu_2_shp_addr = 1048,
467 	.ata_2_mcu_addr = 1560,
468 	.mcu_2_ata_addr = 1479,
469 	.app_2_per_addr = 1189,
470 	.app_2_mcu_addr = 770,
471 	.shp_2_per_addr = 1407,
472 	.shp_2_mcu_addr = 979,
473 };
474 
475 static struct sdma_driver_data sdma_imx25 = {
476 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
477 	.num_events = 48,
478 	.script_addrs = &sdma_script_imx25,
479 };
480 
481 static struct sdma_driver_data sdma_imx35 = {
482 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
483 	.num_events = 48,
484 };
485 
486 static struct sdma_script_start_addrs sdma_script_imx51 = {
487 	.ap_2_ap_addr = 642,
488 	.uart_2_mcu_addr = 817,
489 	.mcu_2_app_addr = 747,
490 	.mcu_2_shp_addr = 961,
491 	.ata_2_mcu_addr = 1473,
492 	.mcu_2_ata_addr = 1392,
493 	.app_2_per_addr = 1033,
494 	.app_2_mcu_addr = 683,
495 	.shp_2_per_addr = 1251,
496 	.shp_2_mcu_addr = 892,
497 };
498 
499 static struct sdma_driver_data sdma_imx51 = {
500 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
501 	.num_events = 48,
502 	.script_addrs = &sdma_script_imx51,
503 };
504 
505 static struct sdma_script_start_addrs sdma_script_imx53 = {
506 	.ap_2_ap_addr = 642,
507 	.app_2_mcu_addr = 683,
508 	.mcu_2_app_addr = 747,
509 	.uart_2_mcu_addr = 817,
510 	.shp_2_mcu_addr = 891,
511 	.mcu_2_shp_addr = 960,
512 	.uartsh_2_mcu_addr = 1032,
513 	.spdif_2_mcu_addr = 1100,
514 	.mcu_2_spdif_addr = 1134,
515 	.firi_2_mcu_addr = 1193,
516 	.mcu_2_firi_addr = 1290,
517 };
518 
519 static struct sdma_driver_data sdma_imx53 = {
520 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
521 	.num_events = 48,
522 	.script_addrs = &sdma_script_imx53,
523 };
524 
525 static struct sdma_script_start_addrs sdma_script_imx6q = {
526 	.ap_2_ap_addr = 642,
527 	.uart_2_mcu_addr = 817,
528 	.mcu_2_app_addr = 747,
529 	.per_2_per_addr = 6331,
530 	.uartsh_2_mcu_addr = 1032,
531 	.mcu_2_shp_addr = 960,
532 	.app_2_mcu_addr = 683,
533 	.shp_2_mcu_addr = 891,
534 	.spdif_2_mcu_addr = 1100,
535 	.mcu_2_spdif_addr = 1134,
536 };
537 
538 static struct sdma_driver_data sdma_imx6q = {
539 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
540 	.num_events = 48,
541 	.script_addrs = &sdma_script_imx6q,
542 };
543 
544 static struct sdma_script_start_addrs sdma_script_imx7d = {
545 	.ap_2_ap_addr = 644,
546 	.uart_2_mcu_addr = 819,
547 	.mcu_2_app_addr = 749,
548 	.uartsh_2_mcu_addr = 1034,
549 	.mcu_2_shp_addr = 962,
550 	.app_2_mcu_addr = 685,
551 	.shp_2_mcu_addr = 893,
552 	.spdif_2_mcu_addr = 1102,
553 	.mcu_2_spdif_addr = 1136,
554 };
555 
556 static struct sdma_driver_data sdma_imx7d = {
557 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
558 	.num_events = 48,
559 	.script_addrs = &sdma_script_imx7d,
560 };
561 
562 static struct sdma_driver_data sdma_imx8mq = {
563 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
564 	.num_events = 48,
565 	.script_addrs = &sdma_script_imx7d,
566 	.check_ratio = 1,
567 };
568 
569 static const struct platform_device_id sdma_devtypes[] = {
570 	{
571 		.name = "imx25-sdma",
572 		.driver_data = (unsigned long)&sdma_imx25,
573 	}, {
574 		.name = "imx31-sdma",
575 		.driver_data = (unsigned long)&sdma_imx31,
576 	}, {
577 		.name = "imx35-sdma",
578 		.driver_data = (unsigned long)&sdma_imx35,
579 	}, {
580 		.name = "imx51-sdma",
581 		.driver_data = (unsigned long)&sdma_imx51,
582 	}, {
583 		.name = "imx53-sdma",
584 		.driver_data = (unsigned long)&sdma_imx53,
585 	}, {
586 		.name = "imx6q-sdma",
587 		.driver_data = (unsigned long)&sdma_imx6q,
588 	}, {
589 		.name = "imx7d-sdma",
590 		.driver_data = (unsigned long)&sdma_imx7d,
591 	}, {
592 		.name = "imx8mq-sdma",
593 		.driver_data = (unsigned long)&sdma_imx8mq,
594 	}, {
595 		/* sentinel */
596 	}
597 };
598 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
599 
600 static const struct of_device_id sdma_dt_ids[] = {
601 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
602 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
603 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
604 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
605 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
606 	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
607 	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
608 	{ .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
609 	{ /* sentinel */ }
610 };
611 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
612 
613 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
614 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
615 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
616 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
617 
618 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
619 {
620 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
621 	return chnenbl0 + event * 4;
622 }
623 
624 static int sdma_config_ownership(struct sdma_channel *sdmac,
625 		bool event_override, bool mcu_override, bool dsp_override)
626 {
627 	struct sdma_engine *sdma = sdmac->sdma;
628 	int channel = sdmac->channel;
629 	unsigned long evt, mcu, dsp;
630 
631 	if (event_override && mcu_override && dsp_override)
632 		return -EINVAL;
633 
634 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
635 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
636 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
637 
638 	if (dsp_override)
639 		__clear_bit(channel, &dsp);
640 	else
641 		__set_bit(channel, &dsp);
642 
643 	if (event_override)
644 		__clear_bit(channel, &evt);
645 	else
646 		__set_bit(channel, &evt);
647 
648 	if (mcu_override)
649 		__clear_bit(channel, &mcu);
650 	else
651 		__set_bit(channel, &mcu);
652 
653 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
654 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
655 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
656 
657 	return 0;
658 }
659 
660 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
661 {
662 	writel(BIT(channel), sdma->regs + SDMA_H_START);
663 }
664 
665 /*
666  * sdma_run_channel0 - run a channel and wait till it's done
667  */
668 static int sdma_run_channel0(struct sdma_engine *sdma)
669 {
670 	int ret;
671 	u32 reg;
672 
673 	sdma_enable_channel(sdma, 0);
674 
675 	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
676 						reg, !(reg & 1), 1, 500);
677 	if (ret)
678 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
679 
680 	/* Set bits of CONFIG register with dynamic context switching */
681 	reg = readl(sdma->regs + SDMA_H_CONFIG);
682 	if ((reg & SDMA_H_CONFIG_CSM) == 0) {
683 		reg |= SDMA_H_CONFIG_CSM;
684 		writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
685 	}
686 
687 	return ret;
688 }
689 
690 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
691 		u32 address)
692 {
693 	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
694 	void *buf_virt;
695 	dma_addr_t buf_phys;
696 	int ret;
697 	unsigned long flags;
698 
699 	buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
700 	if (!buf_virt) {
701 		return -ENOMEM;
702 	}
703 
704 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
705 
706 	bd0->mode.command = C0_SETPM;
707 	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
708 	bd0->mode.count = size / 2;
709 	bd0->buffer_addr = buf_phys;
710 	bd0->ext_buffer_addr = address;
711 
712 	memcpy(buf_virt, buf, size);
713 
714 	ret = sdma_run_channel0(sdma);
715 
716 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
717 
718 	dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
719 
720 	return ret;
721 }
722 
723 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
724 {
725 	struct sdma_engine *sdma = sdmac->sdma;
726 	int channel = sdmac->channel;
727 	unsigned long val;
728 	u32 chnenbl = chnenbl_ofs(sdma, event);
729 
730 	val = readl_relaxed(sdma->regs + chnenbl);
731 	__set_bit(channel, &val);
732 	writel_relaxed(val, sdma->regs + chnenbl);
733 }
734 
735 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
736 {
737 	struct sdma_engine *sdma = sdmac->sdma;
738 	int channel = sdmac->channel;
739 	u32 chnenbl = chnenbl_ofs(sdma, event);
740 	unsigned long val;
741 
742 	val = readl_relaxed(sdma->regs + chnenbl);
743 	__clear_bit(channel, &val);
744 	writel_relaxed(val, sdma->regs + chnenbl);
745 }
746 
747 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
748 {
749 	return container_of(t, struct sdma_desc, vd.tx);
750 }
751 
752 static void sdma_start_desc(struct sdma_channel *sdmac)
753 {
754 	struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
755 	struct sdma_desc *desc;
756 	struct sdma_engine *sdma = sdmac->sdma;
757 	int channel = sdmac->channel;
758 
759 	if (!vd) {
760 		sdmac->desc = NULL;
761 		return;
762 	}
763 	sdmac->desc = desc = to_sdma_desc(&vd->tx);
764 
765 	list_del(&vd->node);
766 
767 	sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
768 	sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
769 	sdma_enable_channel(sdma, sdmac->channel);
770 }
771 
772 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
773 {
774 	struct sdma_buffer_descriptor *bd;
775 	int error = 0;
776 	enum dma_status	old_status = sdmac->status;
777 
778 	/*
779 	 * loop mode. Iterate over descriptors, re-setup them and
780 	 * call callback function.
781 	 */
782 	while (sdmac->desc) {
783 		struct sdma_desc *desc = sdmac->desc;
784 
785 		bd = &desc->bd[desc->buf_tail];
786 
787 		if (bd->mode.status & BD_DONE)
788 			break;
789 
790 		if (bd->mode.status & BD_RROR) {
791 			bd->mode.status &= ~BD_RROR;
792 			sdmac->status = DMA_ERROR;
793 			error = -EIO;
794 		}
795 
796 	       /*
797 		* We use bd->mode.count to calculate the residue, since contains
798 		* the number of bytes present in the current buffer descriptor.
799 		*/
800 
801 		desc->chn_real_count = bd->mode.count;
802 		bd->mode.status |= BD_DONE;
803 		bd->mode.count = desc->period_len;
804 		desc->buf_ptail = desc->buf_tail;
805 		desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
806 
807 		/*
808 		 * The callback is called from the interrupt context in order
809 		 * to reduce latency and to avoid the risk of altering the
810 		 * SDMA transaction status by the time the client tasklet is
811 		 * executed.
812 		 */
813 		spin_unlock(&sdmac->vc.lock);
814 		dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
815 		spin_lock(&sdmac->vc.lock);
816 
817 		if (error)
818 			sdmac->status = old_status;
819 	}
820 }
821 
822 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
823 {
824 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
825 	struct sdma_buffer_descriptor *bd;
826 	int i, error = 0;
827 
828 	sdmac->desc->chn_real_count = 0;
829 	/*
830 	 * non loop mode. Iterate over all descriptors, collect
831 	 * errors and call callback function
832 	 */
833 	for (i = 0; i < sdmac->desc->num_bd; i++) {
834 		bd = &sdmac->desc->bd[i];
835 
836 		 if (bd->mode.status & (BD_DONE | BD_RROR))
837 			error = -EIO;
838 		 sdmac->desc->chn_real_count += bd->mode.count;
839 	}
840 
841 	if (error)
842 		sdmac->status = DMA_ERROR;
843 	else
844 		sdmac->status = DMA_COMPLETE;
845 }
846 
847 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
848 {
849 	struct sdma_engine *sdma = dev_id;
850 	unsigned long stat;
851 
852 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
853 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
854 	/* channel 0 is special and not handled here, see run_channel0() */
855 	stat &= ~1;
856 
857 	while (stat) {
858 		int channel = fls(stat) - 1;
859 		struct sdma_channel *sdmac = &sdma->channel[channel];
860 		struct sdma_desc *desc;
861 
862 		spin_lock(&sdmac->vc.lock);
863 		desc = sdmac->desc;
864 		if (desc) {
865 			if (sdmac->flags & IMX_DMA_SG_LOOP) {
866 				sdma_update_channel_loop(sdmac);
867 			} else {
868 				mxc_sdma_handle_channel_normal(sdmac);
869 				vchan_cookie_complete(&desc->vd);
870 				sdma_start_desc(sdmac);
871 			}
872 		}
873 
874 		spin_unlock(&sdmac->vc.lock);
875 		__clear_bit(channel, &stat);
876 	}
877 
878 	return IRQ_HANDLED;
879 }
880 
881 /*
882  * sets the pc of SDMA script according to the peripheral type
883  */
884 static void sdma_get_pc(struct sdma_channel *sdmac,
885 		enum sdma_peripheral_type peripheral_type)
886 {
887 	struct sdma_engine *sdma = sdmac->sdma;
888 	int per_2_emi = 0, emi_2_per = 0;
889 	/*
890 	 * These are needed once we start to support transfers between
891 	 * two peripherals or memory-to-memory transfers
892 	 */
893 	int per_2_per = 0, emi_2_emi = 0;
894 
895 	sdmac->pc_from_device = 0;
896 	sdmac->pc_to_device = 0;
897 	sdmac->device_to_device = 0;
898 	sdmac->pc_to_pc = 0;
899 
900 	switch (peripheral_type) {
901 	case IMX_DMATYPE_MEMORY:
902 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
903 		break;
904 	case IMX_DMATYPE_DSP:
905 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
906 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
907 		break;
908 	case IMX_DMATYPE_FIRI:
909 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
910 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
911 		break;
912 	case IMX_DMATYPE_UART:
913 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
914 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
915 		break;
916 	case IMX_DMATYPE_UART_SP:
917 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
918 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
919 		break;
920 	case IMX_DMATYPE_ATA:
921 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
922 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
923 		break;
924 	case IMX_DMATYPE_CSPI:
925 	case IMX_DMATYPE_EXT:
926 	case IMX_DMATYPE_SSI:
927 	case IMX_DMATYPE_SAI:
928 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
929 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
930 		break;
931 	case IMX_DMATYPE_SSI_DUAL:
932 		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
933 		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
934 		break;
935 	case IMX_DMATYPE_SSI_SP:
936 	case IMX_DMATYPE_MMC:
937 	case IMX_DMATYPE_SDHC:
938 	case IMX_DMATYPE_CSPI_SP:
939 	case IMX_DMATYPE_ESAI:
940 	case IMX_DMATYPE_MSHC_SP:
941 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
942 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
943 		break;
944 	case IMX_DMATYPE_ASRC:
945 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
946 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
947 		per_2_per = sdma->script_addrs->per_2_per_addr;
948 		break;
949 	case IMX_DMATYPE_ASRC_SP:
950 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
951 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
952 		per_2_per = sdma->script_addrs->per_2_per_addr;
953 		break;
954 	case IMX_DMATYPE_MSHC:
955 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
956 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
957 		break;
958 	case IMX_DMATYPE_CCM:
959 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
960 		break;
961 	case IMX_DMATYPE_SPDIF:
962 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
963 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
964 		break;
965 	case IMX_DMATYPE_IPU_MEMORY:
966 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
967 		break;
968 	default:
969 		break;
970 	}
971 
972 	sdmac->pc_from_device = per_2_emi;
973 	sdmac->pc_to_device = emi_2_per;
974 	sdmac->device_to_device = per_2_per;
975 	sdmac->pc_to_pc = emi_2_emi;
976 }
977 
978 static int sdma_load_context(struct sdma_channel *sdmac)
979 {
980 	struct sdma_engine *sdma = sdmac->sdma;
981 	int channel = sdmac->channel;
982 	int load_address;
983 	struct sdma_context_data *context = sdma->context;
984 	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
985 	int ret;
986 	unsigned long flags;
987 
988 	if (sdmac->context_loaded)
989 		return 0;
990 
991 	if (sdmac->direction == DMA_DEV_TO_MEM)
992 		load_address = sdmac->pc_from_device;
993 	else if (sdmac->direction == DMA_DEV_TO_DEV)
994 		load_address = sdmac->device_to_device;
995 	else if (sdmac->direction == DMA_MEM_TO_MEM)
996 		load_address = sdmac->pc_to_pc;
997 	else
998 		load_address = sdmac->pc_to_device;
999 
1000 	if (load_address < 0)
1001 		return load_address;
1002 
1003 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1004 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1005 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1006 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1007 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1008 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1009 
1010 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
1011 
1012 	memset(context, 0, sizeof(*context));
1013 	context->channel_state.pc = load_address;
1014 
1015 	/* Send by context the event mask,base address for peripheral
1016 	 * and watermark level
1017 	 */
1018 	context->gReg[0] = sdmac->event_mask[1];
1019 	context->gReg[1] = sdmac->event_mask[0];
1020 	context->gReg[2] = sdmac->per_addr;
1021 	context->gReg[6] = sdmac->shp_addr;
1022 	context->gReg[7] = sdmac->watermark_level;
1023 
1024 	bd0->mode.command = C0_SETDM;
1025 	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1026 	bd0->mode.count = sizeof(*context) / 4;
1027 	bd0->buffer_addr = sdma->context_phys;
1028 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1029 	ret = sdma_run_channel0(sdma);
1030 
1031 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1032 
1033 	sdmac->context_loaded = true;
1034 
1035 	return ret;
1036 }
1037 
1038 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1039 {
1040 	return container_of(chan, struct sdma_channel, vc.chan);
1041 }
1042 
1043 static int sdma_disable_channel(struct dma_chan *chan)
1044 {
1045 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1046 	struct sdma_engine *sdma = sdmac->sdma;
1047 	int channel = sdmac->channel;
1048 
1049 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1050 	sdmac->status = DMA_ERROR;
1051 
1052 	return 0;
1053 }
1054 static void sdma_channel_terminate_work(struct work_struct *work)
1055 {
1056 	struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1057 						  terminate_worker);
1058 	unsigned long flags;
1059 	LIST_HEAD(head);
1060 
1061 	/*
1062 	 * According to NXP R&D team a delay of one BD SDMA cost time
1063 	 * (maximum is 1ms) should be added after disable of the channel
1064 	 * bit, to ensure SDMA core has really been stopped after SDMA
1065 	 * clients call .device_terminate_all.
1066 	 */
1067 	usleep_range(1000, 2000);
1068 
1069 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1070 	vchan_get_all_descriptors(&sdmac->vc, &head);
1071 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1072 	vchan_dma_desc_free_list(&sdmac->vc, &head);
1073 	sdmac->context_loaded = false;
1074 }
1075 
1076 static int sdma_terminate_all(struct dma_chan *chan)
1077 {
1078 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1079 	unsigned long flags;
1080 
1081 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1082 
1083 	sdma_disable_channel(chan);
1084 
1085 	if (sdmac->desc) {
1086 		vchan_terminate_vdesc(&sdmac->desc->vd);
1087 		sdmac->desc = NULL;
1088 		schedule_work(&sdmac->terminate_worker);
1089 	}
1090 
1091 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1092 
1093 	return 0;
1094 }
1095 
1096 static void sdma_channel_synchronize(struct dma_chan *chan)
1097 {
1098 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1099 
1100 	vchan_synchronize(&sdmac->vc);
1101 
1102 	flush_work(&sdmac->terminate_worker);
1103 }
1104 
1105 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1106 {
1107 	struct sdma_engine *sdma = sdmac->sdma;
1108 
1109 	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1110 	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1111 
1112 	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1113 	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1114 
1115 	if (sdmac->event_id0 > 31)
1116 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1117 
1118 	if (sdmac->event_id1 > 31)
1119 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1120 
1121 	/*
1122 	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1123 	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1124 	 * r0(event_mask[1]) and r1(event_mask[0]).
1125 	 */
1126 	if (lwml > hwml) {
1127 		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1128 						SDMA_WATERMARK_LEVEL_HWML);
1129 		sdmac->watermark_level |= hwml;
1130 		sdmac->watermark_level |= lwml << 16;
1131 		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1132 	}
1133 
1134 	if (sdmac->per_address2 >= sdma->spba_start_addr &&
1135 			sdmac->per_address2 <= sdma->spba_end_addr)
1136 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1137 
1138 	if (sdmac->per_address >= sdma->spba_start_addr &&
1139 			sdmac->per_address <= sdma->spba_end_addr)
1140 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1141 
1142 	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1143 }
1144 
1145 static int sdma_config_channel(struct dma_chan *chan)
1146 {
1147 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1148 	int ret;
1149 
1150 	sdma_disable_channel(chan);
1151 
1152 	sdmac->event_mask[0] = 0;
1153 	sdmac->event_mask[1] = 0;
1154 	sdmac->shp_addr = 0;
1155 	sdmac->per_addr = 0;
1156 
1157 	switch (sdmac->peripheral_type) {
1158 	case IMX_DMATYPE_DSP:
1159 		sdma_config_ownership(sdmac, false, true, true);
1160 		break;
1161 	case IMX_DMATYPE_MEMORY:
1162 		sdma_config_ownership(sdmac, false, true, false);
1163 		break;
1164 	default:
1165 		sdma_config_ownership(sdmac, true, true, false);
1166 		break;
1167 	}
1168 
1169 	sdma_get_pc(sdmac, sdmac->peripheral_type);
1170 
1171 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1172 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1173 		/* Handle multiple event channels differently */
1174 		if (sdmac->event_id1) {
1175 			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1176 			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1177 				sdma_set_watermarklevel_for_p2p(sdmac);
1178 		} else
1179 			__set_bit(sdmac->event_id0, sdmac->event_mask);
1180 
1181 		/* Address */
1182 		sdmac->shp_addr = sdmac->per_address;
1183 		sdmac->per_addr = sdmac->per_address2;
1184 	} else {
1185 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1186 	}
1187 
1188 	ret = sdma_load_context(sdmac);
1189 
1190 	return ret;
1191 }
1192 
1193 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1194 		unsigned int priority)
1195 {
1196 	struct sdma_engine *sdma = sdmac->sdma;
1197 	int channel = sdmac->channel;
1198 
1199 	if (priority < MXC_SDMA_MIN_PRIORITY
1200 	    || priority > MXC_SDMA_MAX_PRIORITY) {
1201 		return -EINVAL;
1202 	}
1203 
1204 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1205 
1206 	return 0;
1207 }
1208 
1209 static int sdma_request_channel0(struct sdma_engine *sdma)
1210 {
1211 	int ret = -EBUSY;
1212 
1213 	sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1214 					GFP_NOWAIT);
1215 	if (!sdma->bd0) {
1216 		ret = -ENOMEM;
1217 		goto out;
1218 	}
1219 
1220 	sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1221 	sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1222 
1223 	sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1224 	return 0;
1225 out:
1226 
1227 	return ret;
1228 }
1229 
1230 
1231 static int sdma_alloc_bd(struct sdma_desc *desc)
1232 {
1233 	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1234 	int ret = 0;
1235 
1236 	desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1237 				       &desc->bd_phys, GFP_NOWAIT);
1238 	if (!desc->bd) {
1239 		ret = -ENOMEM;
1240 		goto out;
1241 	}
1242 out:
1243 	return ret;
1244 }
1245 
1246 static void sdma_free_bd(struct sdma_desc *desc)
1247 {
1248 	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1249 
1250 	dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1251 			  desc->bd_phys);
1252 }
1253 
1254 static void sdma_desc_free(struct virt_dma_desc *vd)
1255 {
1256 	struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1257 
1258 	sdma_free_bd(desc);
1259 	kfree(desc);
1260 }
1261 
1262 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1263 {
1264 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1265 	struct imx_dma_data *data = chan->private;
1266 	struct imx_dma_data mem_data;
1267 	int prio, ret;
1268 
1269 	/*
1270 	 * MEMCPY may never setup chan->private by filter function such as
1271 	 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1272 	 * Please note in any other slave case, you have to setup chan->private
1273 	 * with 'struct imx_dma_data' in your own filter function if you want to
1274 	 * request dma channel by dma_request_channel() rather than
1275 	 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1276 	 * to warn you to correct your filter function.
1277 	 */
1278 	if (!data) {
1279 		dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1280 		mem_data.priority = 2;
1281 		mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1282 		mem_data.dma_request = 0;
1283 		mem_data.dma_request2 = 0;
1284 		data = &mem_data;
1285 
1286 		sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1287 	}
1288 
1289 	switch (data->priority) {
1290 	case DMA_PRIO_HIGH:
1291 		prio = 3;
1292 		break;
1293 	case DMA_PRIO_MEDIUM:
1294 		prio = 2;
1295 		break;
1296 	case DMA_PRIO_LOW:
1297 	default:
1298 		prio = 1;
1299 		break;
1300 	}
1301 
1302 	sdmac->peripheral_type = data->peripheral_type;
1303 	sdmac->event_id0 = data->dma_request;
1304 	sdmac->event_id1 = data->dma_request2;
1305 
1306 	ret = clk_enable(sdmac->sdma->clk_ipg);
1307 	if (ret)
1308 		return ret;
1309 	ret = clk_enable(sdmac->sdma->clk_ahb);
1310 	if (ret)
1311 		goto disable_clk_ipg;
1312 
1313 	ret = sdma_set_channel_priority(sdmac, prio);
1314 	if (ret)
1315 		goto disable_clk_ahb;
1316 
1317 	return 0;
1318 
1319 disable_clk_ahb:
1320 	clk_disable(sdmac->sdma->clk_ahb);
1321 disable_clk_ipg:
1322 	clk_disable(sdmac->sdma->clk_ipg);
1323 	return ret;
1324 }
1325 
1326 static void sdma_free_chan_resources(struct dma_chan *chan)
1327 {
1328 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1329 	struct sdma_engine *sdma = sdmac->sdma;
1330 
1331 	sdma_terminate_all(chan);
1332 
1333 	sdma_channel_synchronize(chan);
1334 
1335 	sdma_event_disable(sdmac, sdmac->event_id0);
1336 	if (sdmac->event_id1)
1337 		sdma_event_disable(sdmac, sdmac->event_id1);
1338 
1339 	sdmac->event_id0 = 0;
1340 	sdmac->event_id1 = 0;
1341 	sdmac->context_loaded = false;
1342 
1343 	sdma_set_channel_priority(sdmac, 0);
1344 
1345 	clk_disable(sdma->clk_ipg);
1346 	clk_disable(sdma->clk_ahb);
1347 }
1348 
1349 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1350 				enum dma_transfer_direction direction, u32 bds)
1351 {
1352 	struct sdma_desc *desc;
1353 
1354 	desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1355 	if (!desc)
1356 		goto err_out;
1357 
1358 	sdmac->status = DMA_IN_PROGRESS;
1359 	sdmac->direction = direction;
1360 	sdmac->flags = 0;
1361 
1362 	desc->chn_count = 0;
1363 	desc->chn_real_count = 0;
1364 	desc->buf_tail = 0;
1365 	desc->buf_ptail = 0;
1366 	desc->sdmac = sdmac;
1367 	desc->num_bd = bds;
1368 
1369 	if (sdma_alloc_bd(desc))
1370 		goto err_desc_out;
1371 
1372 	/* No slave_config called in MEMCPY case, so do here */
1373 	if (direction == DMA_MEM_TO_MEM)
1374 		sdma_config_ownership(sdmac, false, true, false);
1375 
1376 	if (sdma_load_context(sdmac))
1377 		goto err_desc_out;
1378 
1379 	return desc;
1380 
1381 err_desc_out:
1382 	kfree(desc);
1383 err_out:
1384 	return NULL;
1385 }
1386 
1387 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1388 		struct dma_chan *chan, dma_addr_t dma_dst,
1389 		dma_addr_t dma_src, size_t len, unsigned long flags)
1390 {
1391 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1392 	struct sdma_engine *sdma = sdmac->sdma;
1393 	int channel = sdmac->channel;
1394 	size_t count;
1395 	int i = 0, param;
1396 	struct sdma_buffer_descriptor *bd;
1397 	struct sdma_desc *desc;
1398 
1399 	if (!chan || !len)
1400 		return NULL;
1401 
1402 	dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1403 		&dma_src, &dma_dst, len, channel);
1404 
1405 	desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1406 					len / SDMA_BD_MAX_CNT + 1);
1407 	if (!desc)
1408 		return NULL;
1409 
1410 	do {
1411 		count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1412 		bd = &desc->bd[i];
1413 		bd->buffer_addr = dma_src;
1414 		bd->ext_buffer_addr = dma_dst;
1415 		bd->mode.count = count;
1416 		desc->chn_count += count;
1417 		bd->mode.command = 0;
1418 
1419 		dma_src += count;
1420 		dma_dst += count;
1421 		len -= count;
1422 		i++;
1423 
1424 		param = BD_DONE | BD_EXTD | BD_CONT;
1425 		/* last bd */
1426 		if (!len) {
1427 			param |= BD_INTR;
1428 			param |= BD_LAST;
1429 			param &= ~BD_CONT;
1430 		}
1431 
1432 		dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1433 				i, count, bd->buffer_addr,
1434 				param & BD_WRAP ? "wrap" : "",
1435 				param & BD_INTR ? " intr" : "");
1436 
1437 		bd->mode.status = param;
1438 	} while (len);
1439 
1440 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1441 }
1442 
1443 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1444 		struct dma_chan *chan, struct scatterlist *sgl,
1445 		unsigned int sg_len, enum dma_transfer_direction direction,
1446 		unsigned long flags, void *context)
1447 {
1448 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1449 	struct sdma_engine *sdma = sdmac->sdma;
1450 	int i, count;
1451 	int channel = sdmac->channel;
1452 	struct scatterlist *sg;
1453 	struct sdma_desc *desc;
1454 
1455 	sdma_config_write(chan, &sdmac->slave_config, direction);
1456 
1457 	desc = sdma_transfer_init(sdmac, direction, sg_len);
1458 	if (!desc)
1459 		goto err_out;
1460 
1461 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1462 			sg_len, channel);
1463 
1464 	for_each_sg(sgl, sg, sg_len, i) {
1465 		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1466 		int param;
1467 
1468 		bd->buffer_addr = sg->dma_address;
1469 
1470 		count = sg_dma_len(sg);
1471 
1472 		if (count > SDMA_BD_MAX_CNT) {
1473 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1474 					channel, count, SDMA_BD_MAX_CNT);
1475 			goto err_bd_out;
1476 		}
1477 
1478 		bd->mode.count = count;
1479 		desc->chn_count += count;
1480 
1481 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1482 			goto err_bd_out;
1483 
1484 		switch (sdmac->word_size) {
1485 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1486 			bd->mode.command = 0;
1487 			if (count & 3 || sg->dma_address & 3)
1488 				goto err_bd_out;
1489 			break;
1490 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1491 			bd->mode.command = 2;
1492 			if (count & 1 || sg->dma_address & 1)
1493 				goto err_bd_out;
1494 			break;
1495 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1496 			bd->mode.command = 1;
1497 			break;
1498 		default:
1499 			goto err_bd_out;
1500 		}
1501 
1502 		param = BD_DONE | BD_EXTD | BD_CONT;
1503 
1504 		if (i + 1 == sg_len) {
1505 			param |= BD_INTR;
1506 			param |= BD_LAST;
1507 			param &= ~BD_CONT;
1508 		}
1509 
1510 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1511 				i, count, (u64)sg->dma_address,
1512 				param & BD_WRAP ? "wrap" : "",
1513 				param & BD_INTR ? " intr" : "");
1514 
1515 		bd->mode.status = param;
1516 	}
1517 
1518 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1519 err_bd_out:
1520 	sdma_free_bd(desc);
1521 	kfree(desc);
1522 err_out:
1523 	sdmac->status = DMA_ERROR;
1524 	return NULL;
1525 }
1526 
1527 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1528 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1529 		size_t period_len, enum dma_transfer_direction direction,
1530 		unsigned long flags)
1531 {
1532 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1533 	struct sdma_engine *sdma = sdmac->sdma;
1534 	int num_periods = buf_len / period_len;
1535 	int channel = sdmac->channel;
1536 	int i = 0, buf = 0;
1537 	struct sdma_desc *desc;
1538 
1539 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1540 
1541 	sdma_config_write(chan, &sdmac->slave_config, direction);
1542 
1543 	desc = sdma_transfer_init(sdmac, direction, num_periods);
1544 	if (!desc)
1545 		goto err_out;
1546 
1547 	desc->period_len = period_len;
1548 
1549 	sdmac->flags |= IMX_DMA_SG_LOOP;
1550 
1551 	if (period_len > SDMA_BD_MAX_CNT) {
1552 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1553 				channel, period_len, SDMA_BD_MAX_CNT);
1554 		goto err_bd_out;
1555 	}
1556 
1557 	while (buf < buf_len) {
1558 		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1559 		int param;
1560 
1561 		bd->buffer_addr = dma_addr;
1562 
1563 		bd->mode.count = period_len;
1564 
1565 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1566 			goto err_bd_out;
1567 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1568 			bd->mode.command = 0;
1569 		else
1570 			bd->mode.command = sdmac->word_size;
1571 
1572 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1573 		if (i + 1 == num_periods)
1574 			param |= BD_WRAP;
1575 
1576 		dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1577 				i, period_len, (u64)dma_addr,
1578 				param & BD_WRAP ? "wrap" : "",
1579 				param & BD_INTR ? " intr" : "");
1580 
1581 		bd->mode.status = param;
1582 
1583 		dma_addr += period_len;
1584 		buf += period_len;
1585 
1586 		i++;
1587 	}
1588 
1589 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1590 err_bd_out:
1591 	sdma_free_bd(desc);
1592 	kfree(desc);
1593 err_out:
1594 	sdmac->status = DMA_ERROR;
1595 	return NULL;
1596 }
1597 
1598 static int sdma_config_write(struct dma_chan *chan,
1599 		       struct dma_slave_config *dmaengine_cfg,
1600 		       enum dma_transfer_direction direction)
1601 {
1602 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1603 
1604 	if (direction == DMA_DEV_TO_MEM) {
1605 		sdmac->per_address = dmaengine_cfg->src_addr;
1606 		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1607 			dmaengine_cfg->src_addr_width;
1608 		sdmac->word_size = dmaengine_cfg->src_addr_width;
1609 	} else if (direction == DMA_DEV_TO_DEV) {
1610 		sdmac->per_address2 = dmaengine_cfg->src_addr;
1611 		sdmac->per_address = dmaengine_cfg->dst_addr;
1612 		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1613 			SDMA_WATERMARK_LEVEL_LWML;
1614 		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1615 			SDMA_WATERMARK_LEVEL_HWML;
1616 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1617 	} else {
1618 		sdmac->per_address = dmaengine_cfg->dst_addr;
1619 		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1620 			dmaengine_cfg->dst_addr_width;
1621 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1622 	}
1623 	sdmac->direction = direction;
1624 	return sdma_config_channel(chan);
1625 }
1626 
1627 static int sdma_config(struct dma_chan *chan,
1628 		       struct dma_slave_config *dmaengine_cfg)
1629 {
1630 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1631 
1632 	memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1633 
1634 	/* Set ENBLn earlier to make sure dma request triggered after that */
1635 	if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1636 		return -EINVAL;
1637 	sdma_event_enable(sdmac, sdmac->event_id0);
1638 
1639 	if (sdmac->event_id1) {
1640 		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1641 			return -EINVAL;
1642 		sdma_event_enable(sdmac, sdmac->event_id1);
1643 	}
1644 
1645 	return 0;
1646 }
1647 
1648 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1649 				      dma_cookie_t cookie,
1650 				      struct dma_tx_state *txstate)
1651 {
1652 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1653 	struct sdma_desc *desc = NULL;
1654 	u32 residue;
1655 	struct virt_dma_desc *vd;
1656 	enum dma_status ret;
1657 	unsigned long flags;
1658 
1659 	ret = dma_cookie_status(chan, cookie, txstate);
1660 	if (ret == DMA_COMPLETE || !txstate)
1661 		return ret;
1662 
1663 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1664 
1665 	vd = vchan_find_desc(&sdmac->vc, cookie);
1666 	if (vd)
1667 		desc = to_sdma_desc(&vd->tx);
1668 	else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1669 		desc = sdmac->desc;
1670 
1671 	if (desc) {
1672 		if (sdmac->flags & IMX_DMA_SG_LOOP)
1673 			residue = (desc->num_bd - desc->buf_ptail) *
1674 				desc->period_len - desc->chn_real_count;
1675 		else
1676 			residue = desc->chn_count - desc->chn_real_count;
1677 	} else {
1678 		residue = 0;
1679 	}
1680 
1681 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1682 
1683 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1684 			 residue);
1685 
1686 	return sdmac->status;
1687 }
1688 
1689 static void sdma_issue_pending(struct dma_chan *chan)
1690 {
1691 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1692 	unsigned long flags;
1693 
1694 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1695 	if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1696 		sdma_start_desc(sdmac);
1697 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1698 }
1699 
1700 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1701 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1702 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	41
1703 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4	42
1704 
1705 static void sdma_add_scripts(struct sdma_engine *sdma,
1706 		const struct sdma_script_start_addrs *addr)
1707 {
1708 	s32 *addr_arr = (u32 *)addr;
1709 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1710 	int i;
1711 
1712 	/* use the default firmware in ROM if missing external firmware */
1713 	if (!sdma->script_number)
1714 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1715 
1716 	if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1717 				  / sizeof(s32)) {
1718 		dev_err(sdma->dev,
1719 			"SDMA script number %d not match with firmware.\n",
1720 			sdma->script_number);
1721 		return;
1722 	}
1723 
1724 	for (i = 0; i < sdma->script_number; i++)
1725 		if (addr_arr[i] > 0)
1726 			saddr_arr[i] = addr_arr[i];
1727 }
1728 
1729 static void sdma_load_firmware(const struct firmware *fw, void *context)
1730 {
1731 	struct sdma_engine *sdma = context;
1732 	const struct sdma_firmware_header *header;
1733 	const struct sdma_script_start_addrs *addr;
1734 	unsigned short *ram_code;
1735 
1736 	if (!fw) {
1737 		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1738 		/* In this case we just use the ROM firmware. */
1739 		return;
1740 	}
1741 
1742 	if (fw->size < sizeof(*header))
1743 		goto err_firmware;
1744 
1745 	header = (struct sdma_firmware_header *)fw->data;
1746 
1747 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1748 		goto err_firmware;
1749 	if (header->ram_code_start + header->ram_code_size > fw->size)
1750 		goto err_firmware;
1751 	switch (header->version_major) {
1752 	case 1:
1753 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1754 		break;
1755 	case 2:
1756 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1757 		break;
1758 	case 3:
1759 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1760 		break;
1761 	case 4:
1762 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1763 		break;
1764 	default:
1765 		dev_err(sdma->dev, "unknown firmware version\n");
1766 		goto err_firmware;
1767 	}
1768 
1769 	addr = (void *)header + header->script_addrs_start;
1770 	ram_code = (void *)header + header->ram_code_start;
1771 
1772 	clk_enable(sdma->clk_ipg);
1773 	clk_enable(sdma->clk_ahb);
1774 	/* download the RAM image for SDMA */
1775 	sdma_load_script(sdma, ram_code,
1776 			header->ram_code_size,
1777 			addr->ram_code_start_addr);
1778 	clk_disable(sdma->clk_ipg);
1779 	clk_disable(sdma->clk_ahb);
1780 
1781 	sdma_add_scripts(sdma, addr);
1782 
1783 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1784 			header->version_major,
1785 			header->version_minor);
1786 
1787 err_firmware:
1788 	release_firmware(fw);
1789 }
1790 
1791 #define EVENT_REMAP_CELLS 3
1792 
1793 static int sdma_event_remap(struct sdma_engine *sdma)
1794 {
1795 	struct device_node *np = sdma->dev->of_node;
1796 	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1797 	struct property *event_remap;
1798 	struct regmap *gpr;
1799 	char propname[] = "fsl,sdma-event-remap";
1800 	u32 reg, val, shift, num_map, i;
1801 	int ret = 0;
1802 
1803 	if (IS_ERR(np) || IS_ERR(gpr_np))
1804 		goto out;
1805 
1806 	event_remap = of_find_property(np, propname, NULL);
1807 	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1808 	if (!num_map) {
1809 		dev_dbg(sdma->dev, "no event needs to be remapped\n");
1810 		goto out;
1811 	} else if (num_map % EVENT_REMAP_CELLS) {
1812 		dev_err(sdma->dev, "the property %s must modulo %d\n",
1813 				propname, EVENT_REMAP_CELLS);
1814 		ret = -EINVAL;
1815 		goto out;
1816 	}
1817 
1818 	gpr = syscon_node_to_regmap(gpr_np);
1819 	if (IS_ERR(gpr)) {
1820 		dev_err(sdma->dev, "failed to get gpr regmap\n");
1821 		ret = PTR_ERR(gpr);
1822 		goto out;
1823 	}
1824 
1825 	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1826 		ret = of_property_read_u32_index(np, propname, i, &reg);
1827 		if (ret) {
1828 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1829 					propname, i);
1830 			goto out;
1831 		}
1832 
1833 		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1834 		if (ret) {
1835 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1836 					propname, i + 1);
1837 			goto out;
1838 		}
1839 
1840 		ret = of_property_read_u32_index(np, propname, i + 2, &val);
1841 		if (ret) {
1842 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1843 					propname, i + 2);
1844 			goto out;
1845 		}
1846 
1847 		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1848 	}
1849 
1850 out:
1851 	if (!IS_ERR(gpr_np))
1852 		of_node_put(gpr_np);
1853 
1854 	return ret;
1855 }
1856 
1857 static int sdma_get_firmware(struct sdma_engine *sdma,
1858 		const char *fw_name)
1859 {
1860 	int ret;
1861 
1862 	ret = request_firmware_nowait(THIS_MODULE,
1863 			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1864 			GFP_KERNEL, sdma, sdma_load_firmware);
1865 
1866 	return ret;
1867 }
1868 
1869 static int sdma_init(struct sdma_engine *sdma)
1870 {
1871 	int i, ret;
1872 	dma_addr_t ccb_phys;
1873 
1874 	ret = clk_enable(sdma->clk_ipg);
1875 	if (ret)
1876 		return ret;
1877 	ret = clk_enable(sdma->clk_ahb);
1878 	if (ret)
1879 		goto disable_clk_ipg;
1880 
1881 	if (sdma->drvdata->check_ratio &&
1882 	    (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
1883 		sdma->clk_ratio = 1;
1884 
1885 	/* Be sure SDMA has not started yet */
1886 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1887 
1888 	sdma->channel_control = dma_alloc_coherent(sdma->dev,
1889 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1890 			sizeof(struct sdma_context_data),
1891 			&ccb_phys, GFP_KERNEL);
1892 
1893 	if (!sdma->channel_control) {
1894 		ret = -ENOMEM;
1895 		goto err_dma_alloc;
1896 	}
1897 
1898 	sdma->context = (void *)sdma->channel_control +
1899 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1900 	sdma->context_phys = ccb_phys +
1901 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1902 
1903 	/* disable all channels */
1904 	for (i = 0; i < sdma->drvdata->num_events; i++)
1905 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1906 
1907 	/* All channels have priority 0 */
1908 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1909 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1910 
1911 	ret = sdma_request_channel0(sdma);
1912 	if (ret)
1913 		goto err_dma_alloc;
1914 
1915 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1916 
1917 	/* Set Command Channel (Channel Zero) */
1918 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1919 
1920 	/* Set bits of CONFIG register but with static context switching */
1921 	if (sdma->clk_ratio)
1922 		writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
1923 	else
1924 		writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1925 
1926 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1927 
1928 	/* Initializes channel's priorities */
1929 	sdma_set_channel_priority(&sdma->channel[0], 7);
1930 
1931 	clk_disable(sdma->clk_ipg);
1932 	clk_disable(sdma->clk_ahb);
1933 
1934 	return 0;
1935 
1936 err_dma_alloc:
1937 	clk_disable(sdma->clk_ahb);
1938 disable_clk_ipg:
1939 	clk_disable(sdma->clk_ipg);
1940 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1941 	return ret;
1942 }
1943 
1944 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1945 {
1946 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1947 	struct imx_dma_data *data = fn_param;
1948 
1949 	if (!imx_dma_is_general_purpose(chan))
1950 		return false;
1951 
1952 	sdmac->data = *data;
1953 	chan->private = &sdmac->data;
1954 
1955 	return true;
1956 }
1957 
1958 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1959 				   struct of_dma *ofdma)
1960 {
1961 	struct sdma_engine *sdma = ofdma->of_dma_data;
1962 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1963 	struct imx_dma_data data;
1964 
1965 	if (dma_spec->args_count != 3)
1966 		return NULL;
1967 
1968 	data.dma_request = dma_spec->args[0];
1969 	data.peripheral_type = dma_spec->args[1];
1970 	data.priority = dma_spec->args[2];
1971 	/*
1972 	 * init dma_request2 to zero, which is not used by the dts.
1973 	 * For P2P, dma_request2 is init from dma_request_channel(),
1974 	 * chan->private will point to the imx_dma_data, and in
1975 	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1976 	 * be set to sdmac->event_id1.
1977 	 */
1978 	data.dma_request2 = 0;
1979 
1980 	return __dma_request_channel(&mask, sdma_filter_fn, &data,
1981 				     ofdma->of_node);
1982 }
1983 
1984 static int sdma_probe(struct platform_device *pdev)
1985 {
1986 	const struct of_device_id *of_id =
1987 			of_match_device(sdma_dt_ids, &pdev->dev);
1988 	struct device_node *np = pdev->dev.of_node;
1989 	struct device_node *spba_bus;
1990 	const char *fw_name;
1991 	int ret;
1992 	int irq;
1993 	struct resource *iores;
1994 	struct resource spba_res;
1995 	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1996 	int i;
1997 	struct sdma_engine *sdma;
1998 	s32 *saddr_arr;
1999 	const struct sdma_driver_data *drvdata = NULL;
2000 
2001 	if (of_id)
2002 		drvdata = of_id->data;
2003 	else if (pdev->id_entry)
2004 		drvdata = (void *)pdev->id_entry->driver_data;
2005 
2006 	if (!drvdata) {
2007 		dev_err(&pdev->dev, "unable to find driver data\n");
2008 		return -EINVAL;
2009 	}
2010 
2011 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2012 	if (ret)
2013 		return ret;
2014 
2015 	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2016 	if (!sdma)
2017 		return -ENOMEM;
2018 
2019 	spin_lock_init(&sdma->channel_0_lock);
2020 
2021 	sdma->dev = &pdev->dev;
2022 	sdma->drvdata = drvdata;
2023 
2024 	irq = platform_get_irq(pdev, 0);
2025 	if (irq < 0)
2026 		return irq;
2027 
2028 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2029 	sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
2030 	if (IS_ERR(sdma->regs))
2031 		return PTR_ERR(sdma->regs);
2032 
2033 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2034 	if (IS_ERR(sdma->clk_ipg))
2035 		return PTR_ERR(sdma->clk_ipg);
2036 
2037 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2038 	if (IS_ERR(sdma->clk_ahb))
2039 		return PTR_ERR(sdma->clk_ahb);
2040 
2041 	ret = clk_prepare(sdma->clk_ipg);
2042 	if (ret)
2043 		return ret;
2044 
2045 	ret = clk_prepare(sdma->clk_ahb);
2046 	if (ret)
2047 		goto err_clk;
2048 
2049 	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
2050 			       sdma);
2051 	if (ret)
2052 		goto err_irq;
2053 
2054 	sdma->irq = irq;
2055 
2056 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2057 	if (!sdma->script_addrs) {
2058 		ret = -ENOMEM;
2059 		goto err_irq;
2060 	}
2061 
2062 	/* initially no scripts available */
2063 	saddr_arr = (s32 *)sdma->script_addrs;
2064 	for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2065 		saddr_arr[i] = -EINVAL;
2066 
2067 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2068 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2069 	dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2070 
2071 	INIT_LIST_HEAD(&sdma->dma_device.channels);
2072 	/* Initialize channel parameters */
2073 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2074 		struct sdma_channel *sdmac = &sdma->channel[i];
2075 
2076 		sdmac->sdma = sdma;
2077 
2078 		sdmac->channel = i;
2079 		sdmac->vc.desc_free = sdma_desc_free;
2080 		INIT_WORK(&sdmac->terminate_worker,
2081 				sdma_channel_terminate_work);
2082 		/*
2083 		 * Add the channel to the DMAC list. Do not add channel 0 though
2084 		 * because we need it internally in the SDMA driver. This also means
2085 		 * that channel 0 in dmaengine counting matches sdma channel 1.
2086 		 */
2087 		if (i)
2088 			vchan_init(&sdmac->vc, &sdma->dma_device);
2089 	}
2090 
2091 	ret = sdma_init(sdma);
2092 	if (ret)
2093 		goto err_init;
2094 
2095 	ret = sdma_event_remap(sdma);
2096 	if (ret)
2097 		goto err_init;
2098 
2099 	if (sdma->drvdata->script_addrs)
2100 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2101 	if (pdata && pdata->script_addrs)
2102 		sdma_add_scripts(sdma, pdata->script_addrs);
2103 
2104 	sdma->dma_device.dev = &pdev->dev;
2105 
2106 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2107 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2108 	sdma->dma_device.device_tx_status = sdma_tx_status;
2109 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2110 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2111 	sdma->dma_device.device_config = sdma_config;
2112 	sdma->dma_device.device_terminate_all = sdma_terminate_all;
2113 	sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2114 	sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2115 	sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2116 	sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2117 	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2118 	sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2119 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
2120 	sdma->dma_device.copy_align = 2;
2121 	dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2122 
2123 	platform_set_drvdata(pdev, sdma);
2124 
2125 	ret = dma_async_device_register(&sdma->dma_device);
2126 	if (ret) {
2127 		dev_err(&pdev->dev, "unable to register\n");
2128 		goto err_init;
2129 	}
2130 
2131 	if (np) {
2132 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
2133 		if (ret) {
2134 			dev_err(&pdev->dev, "failed to register controller\n");
2135 			goto err_register;
2136 		}
2137 
2138 		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2139 		ret = of_address_to_resource(spba_bus, 0, &spba_res);
2140 		if (!ret) {
2141 			sdma->spba_start_addr = spba_res.start;
2142 			sdma->spba_end_addr = spba_res.end;
2143 		}
2144 		of_node_put(spba_bus);
2145 	}
2146 
2147 	/*
2148 	 * Kick off firmware loading as the very last step:
2149 	 * attempt to load firmware only if we're not on the error path, because
2150 	 * the firmware callback requires a fully functional and allocated sdma
2151 	 * instance.
2152 	 */
2153 	if (pdata) {
2154 		ret = sdma_get_firmware(sdma, pdata->fw_name);
2155 		if (ret)
2156 			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
2157 	} else {
2158 		/*
2159 		 * Because that device tree does not encode ROM script address,
2160 		 * the RAM script in firmware is mandatory for device tree
2161 		 * probe, otherwise it fails.
2162 		 */
2163 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2164 					      &fw_name);
2165 		if (ret) {
2166 			dev_warn(&pdev->dev, "failed to get firmware name\n");
2167 		} else {
2168 			ret = sdma_get_firmware(sdma, fw_name);
2169 			if (ret)
2170 				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2171 		}
2172 	}
2173 
2174 	return 0;
2175 
2176 err_register:
2177 	dma_async_device_unregister(&sdma->dma_device);
2178 err_init:
2179 	kfree(sdma->script_addrs);
2180 err_irq:
2181 	clk_unprepare(sdma->clk_ahb);
2182 err_clk:
2183 	clk_unprepare(sdma->clk_ipg);
2184 	return ret;
2185 }
2186 
2187 static int sdma_remove(struct platform_device *pdev)
2188 {
2189 	struct sdma_engine *sdma = platform_get_drvdata(pdev);
2190 	int i;
2191 
2192 	devm_free_irq(&pdev->dev, sdma->irq, sdma);
2193 	dma_async_device_unregister(&sdma->dma_device);
2194 	kfree(sdma->script_addrs);
2195 	clk_unprepare(sdma->clk_ahb);
2196 	clk_unprepare(sdma->clk_ipg);
2197 	/* Kill the tasklet */
2198 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2199 		struct sdma_channel *sdmac = &sdma->channel[i];
2200 
2201 		tasklet_kill(&sdmac->vc.task);
2202 		sdma_free_chan_resources(&sdmac->vc.chan);
2203 	}
2204 
2205 	platform_set_drvdata(pdev, NULL);
2206 	return 0;
2207 }
2208 
2209 static struct platform_driver sdma_driver = {
2210 	.driver		= {
2211 		.name	= "imx-sdma",
2212 		.of_match_table = sdma_dt_ids,
2213 	},
2214 	.id_table	= sdma_devtypes,
2215 	.remove		= sdma_remove,
2216 	.probe		= sdma_probe,
2217 };
2218 
2219 module_platform_driver(sdma_driver);
2220 
2221 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2222 MODULE_DESCRIPTION("i.MX SDMA driver");
2223 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2224 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2225 #endif
2226 #if IS_ENABLED(CONFIG_SOC_IMX7D)
2227 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2228 #endif
2229 MODULE_LICENSE("GPL");
2230