xref: /openbmc/linux/drivers/dma/imx-sdma.c (revision 62e7ca52)
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19 
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39 #include <linux/of_dma.h>
40 
41 #include <asm/irq.h>
42 #include <linux/platform_data/dma-imx-sdma.h>
43 #include <linux/platform_data/dma-imx.h>
44 
45 #include "dmaengine.h"
46 
47 /* SDMA registers */
48 #define SDMA_H_C0PTR		0x000
49 #define SDMA_H_INTR		0x004
50 #define SDMA_H_STATSTOP		0x008
51 #define SDMA_H_START		0x00c
52 #define SDMA_H_EVTOVR		0x010
53 #define SDMA_H_DSPOVR		0x014
54 #define SDMA_H_HOSTOVR		0x018
55 #define SDMA_H_EVTPEND		0x01c
56 #define SDMA_H_DSPENBL		0x020
57 #define SDMA_H_RESET		0x024
58 #define SDMA_H_EVTERR		0x028
59 #define SDMA_H_INTRMSK		0x02c
60 #define SDMA_H_PSW		0x030
61 #define SDMA_H_EVTERRDBG	0x034
62 #define SDMA_H_CONFIG		0x038
63 #define SDMA_ONCE_ENB		0x040
64 #define SDMA_ONCE_DATA		0x044
65 #define SDMA_ONCE_INSTR		0x048
66 #define SDMA_ONCE_STAT		0x04c
67 #define SDMA_ONCE_CMD		0x050
68 #define SDMA_EVT_MIRROR		0x054
69 #define SDMA_ILLINSTADDR	0x058
70 #define SDMA_CHN0ADDR		0x05c
71 #define SDMA_ONCE_RTB		0x060
72 #define SDMA_XTRIG_CONF1	0x070
73 #define SDMA_XTRIG_CONF2	0x074
74 #define SDMA_CHNENBL0_IMX35	0x200
75 #define SDMA_CHNENBL0_IMX31	0x080
76 #define SDMA_CHNPRI_0		0x100
77 
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88 
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96 
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101 
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108 
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125 
126 /*
127  * Mode/Count of data node descriptors - IPCv2
128  */
129 struct sdma_mode_count {
130 	u32 count   : 16; /* size of the buffer pointed by this BD */
131 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
132 	u32 command :  8; /* command mostlky used for channel 0 */
133 };
134 
135 /*
136  * Buffer descriptor
137  */
138 struct sdma_buffer_descriptor {
139 	struct sdma_mode_count  mode;
140 	u32 buffer_addr;	/* address of the buffer described */
141 	u32 ext_buffer_addr;	/* extended buffer address */
142 } __attribute__ ((packed));
143 
144 /**
145  * struct sdma_channel_control - Channel control Block
146  *
147  * @current_bd_ptr	current buffer descriptor processed
148  * @base_bd_ptr		first element of buffer descriptor array
149  * @unused		padding. The SDMA engine expects an array of 128 byte
150  *			control blocks
151  */
152 struct sdma_channel_control {
153 	u32 current_bd_ptr;
154 	u32 base_bd_ptr;
155 	u32 unused[2];
156 } __attribute__ ((packed));
157 
158 /**
159  * struct sdma_state_registers - SDMA context for a channel
160  *
161  * @pc:		program counter
162  * @t:		test bit: status of arithmetic & test instruction
163  * @rpc:	return program counter
164  * @sf:		source fault while loading data
165  * @spc:	loop start program counter
166  * @df:		destination fault while storing data
167  * @epc:	loop end program counter
168  * @lm:		loop mode
169  */
170 struct sdma_state_registers {
171 	u32 pc     :14;
172 	u32 unused1: 1;
173 	u32 t      : 1;
174 	u32 rpc    :14;
175 	u32 unused0: 1;
176 	u32 sf     : 1;
177 	u32 spc    :14;
178 	u32 unused2: 1;
179 	u32 df     : 1;
180 	u32 epc    :14;
181 	u32 lm     : 2;
182 } __attribute__ ((packed));
183 
184 /**
185  * struct sdma_context_data - sdma context specific to a channel
186  *
187  * @channel_state:	channel state bits
188  * @gReg:		general registers
189  * @mda:		burst dma destination address register
190  * @msa:		burst dma source address register
191  * @ms:			burst dma status register
192  * @md:			burst dma data register
193  * @pda:		peripheral dma destination address register
194  * @psa:		peripheral dma source address register
195  * @ps:			peripheral dma status register
196  * @pd:			peripheral dma data register
197  * @ca:			CRC polynomial register
198  * @cs:			CRC accumulator register
199  * @dda:		dedicated core destination address register
200  * @dsa:		dedicated core source address register
201  * @ds:			dedicated core status register
202  * @dd:			dedicated core data register
203  */
204 struct sdma_context_data {
205 	struct sdma_state_registers  channel_state;
206 	u32  gReg[8];
207 	u32  mda;
208 	u32  msa;
209 	u32  ms;
210 	u32  md;
211 	u32  pda;
212 	u32  psa;
213 	u32  ps;
214 	u32  pd;
215 	u32  ca;
216 	u32  cs;
217 	u32  dda;
218 	u32  dsa;
219 	u32  ds;
220 	u32  dd;
221 	u32  scratch0;
222 	u32  scratch1;
223 	u32  scratch2;
224 	u32  scratch3;
225 	u32  scratch4;
226 	u32  scratch5;
227 	u32  scratch6;
228 	u32  scratch7;
229 } __attribute__ ((packed));
230 
231 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
232 
233 struct sdma_engine;
234 
235 /**
236  * struct sdma_channel - housekeeping for a SDMA channel
237  *
238  * @sdma		pointer to the SDMA engine for this channel
239  * @channel		the channel number, matches dmaengine chan_id + 1
240  * @direction		transfer type. Needed for setting SDMA script
241  * @peripheral_type	Peripheral type. Needed for setting SDMA script
242  * @event_id0		aka dma request line
243  * @event_id1		for channels that use 2 events
244  * @word_size		peripheral access size
245  * @buf_tail		ID of the buffer that was processed
246  * @num_bd		max NUM_BD. number of descriptors currently handling
247  */
248 struct sdma_channel {
249 	struct sdma_engine		*sdma;
250 	unsigned int			channel;
251 	enum dma_transfer_direction		direction;
252 	enum sdma_peripheral_type	peripheral_type;
253 	unsigned int			event_id0;
254 	unsigned int			event_id1;
255 	enum dma_slave_buswidth		word_size;
256 	unsigned int			buf_tail;
257 	unsigned int			num_bd;
258 	unsigned int			period_len;
259 	struct sdma_buffer_descriptor	*bd;
260 	dma_addr_t			bd_phys;
261 	unsigned int			pc_from_device, pc_to_device;
262 	unsigned long			flags;
263 	dma_addr_t			per_address;
264 	unsigned long			event_mask[2];
265 	unsigned long			watermark_level;
266 	u32				shp_addr, per_addr;
267 	struct dma_chan			chan;
268 	spinlock_t			lock;
269 	struct dma_async_tx_descriptor	desc;
270 	enum dma_status			status;
271 	unsigned int			chn_count;
272 	unsigned int			chn_real_count;
273 	struct tasklet_struct		tasklet;
274 };
275 
276 #define IMX_DMA_SG_LOOP		BIT(0)
277 
278 #define MAX_DMA_CHANNELS 32
279 #define MXC_SDMA_DEFAULT_PRIORITY 1
280 #define MXC_SDMA_MIN_PRIORITY 1
281 #define MXC_SDMA_MAX_PRIORITY 7
282 
283 #define SDMA_FIRMWARE_MAGIC 0x414d4453
284 
285 /**
286  * struct sdma_firmware_header - Layout of the firmware image
287  *
288  * @magic		"SDMA"
289  * @version_major	increased whenever layout of struct sdma_script_start_addrs
290  *			changes.
291  * @version_minor	firmware minor version (for binary compatible changes)
292  * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
293  * @num_script_addrs	Number of script addresses in this image
294  * @ram_code_start	offset of SDMA ram image in this firmware image
295  * @ram_code_size	size of SDMA ram image
296  * @script_addrs	Stores the start address of the SDMA scripts
297  *			(in SDMA memory space)
298  */
299 struct sdma_firmware_header {
300 	u32	magic;
301 	u32	version_major;
302 	u32	version_minor;
303 	u32	script_addrs_start;
304 	u32	num_script_addrs;
305 	u32	ram_code_start;
306 	u32	ram_code_size;
307 };
308 
309 struct sdma_driver_data {
310 	int chnenbl0;
311 	int num_events;
312 	struct sdma_script_start_addrs	*script_addrs;
313 };
314 
315 struct sdma_engine {
316 	struct device			*dev;
317 	struct device_dma_parameters	dma_parms;
318 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
319 	struct sdma_channel_control	*channel_control;
320 	void __iomem			*regs;
321 	struct sdma_context_data	*context;
322 	dma_addr_t			context_phys;
323 	struct dma_device		dma_device;
324 	struct clk			*clk_ipg;
325 	struct clk			*clk_ahb;
326 	spinlock_t			channel_0_lock;
327 	u32				script_number;
328 	struct sdma_script_start_addrs	*script_addrs;
329 	const struct sdma_driver_data	*drvdata;
330 };
331 
332 static struct sdma_driver_data sdma_imx31 = {
333 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
334 	.num_events = 32,
335 };
336 
337 static struct sdma_script_start_addrs sdma_script_imx25 = {
338 	.ap_2_ap_addr = 729,
339 	.uart_2_mcu_addr = 904,
340 	.per_2_app_addr = 1255,
341 	.mcu_2_app_addr = 834,
342 	.uartsh_2_mcu_addr = 1120,
343 	.per_2_shp_addr = 1329,
344 	.mcu_2_shp_addr = 1048,
345 	.ata_2_mcu_addr = 1560,
346 	.mcu_2_ata_addr = 1479,
347 	.app_2_per_addr = 1189,
348 	.app_2_mcu_addr = 770,
349 	.shp_2_per_addr = 1407,
350 	.shp_2_mcu_addr = 979,
351 };
352 
353 static struct sdma_driver_data sdma_imx25 = {
354 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
355 	.num_events = 48,
356 	.script_addrs = &sdma_script_imx25,
357 };
358 
359 static struct sdma_driver_data sdma_imx35 = {
360 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
361 	.num_events = 48,
362 };
363 
364 static struct sdma_script_start_addrs sdma_script_imx51 = {
365 	.ap_2_ap_addr = 642,
366 	.uart_2_mcu_addr = 817,
367 	.mcu_2_app_addr = 747,
368 	.mcu_2_shp_addr = 961,
369 	.ata_2_mcu_addr = 1473,
370 	.mcu_2_ata_addr = 1392,
371 	.app_2_per_addr = 1033,
372 	.app_2_mcu_addr = 683,
373 	.shp_2_per_addr = 1251,
374 	.shp_2_mcu_addr = 892,
375 };
376 
377 static struct sdma_driver_data sdma_imx51 = {
378 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
379 	.num_events = 48,
380 	.script_addrs = &sdma_script_imx51,
381 };
382 
383 static struct sdma_script_start_addrs sdma_script_imx53 = {
384 	.ap_2_ap_addr = 642,
385 	.app_2_mcu_addr = 683,
386 	.mcu_2_app_addr = 747,
387 	.uart_2_mcu_addr = 817,
388 	.shp_2_mcu_addr = 891,
389 	.mcu_2_shp_addr = 960,
390 	.uartsh_2_mcu_addr = 1032,
391 	.spdif_2_mcu_addr = 1100,
392 	.mcu_2_spdif_addr = 1134,
393 	.firi_2_mcu_addr = 1193,
394 	.mcu_2_firi_addr = 1290,
395 };
396 
397 static struct sdma_driver_data sdma_imx53 = {
398 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
399 	.num_events = 48,
400 	.script_addrs = &sdma_script_imx53,
401 };
402 
403 static struct sdma_script_start_addrs sdma_script_imx6q = {
404 	.ap_2_ap_addr = 642,
405 	.uart_2_mcu_addr = 817,
406 	.mcu_2_app_addr = 747,
407 	.per_2_per_addr = 6331,
408 	.uartsh_2_mcu_addr = 1032,
409 	.mcu_2_shp_addr = 960,
410 	.app_2_mcu_addr = 683,
411 	.shp_2_mcu_addr = 891,
412 	.spdif_2_mcu_addr = 1100,
413 	.mcu_2_spdif_addr = 1134,
414 };
415 
416 static struct sdma_driver_data sdma_imx6q = {
417 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
418 	.num_events = 48,
419 	.script_addrs = &sdma_script_imx6q,
420 };
421 
422 static struct platform_device_id sdma_devtypes[] = {
423 	{
424 		.name = "imx25-sdma",
425 		.driver_data = (unsigned long)&sdma_imx25,
426 	}, {
427 		.name = "imx31-sdma",
428 		.driver_data = (unsigned long)&sdma_imx31,
429 	}, {
430 		.name = "imx35-sdma",
431 		.driver_data = (unsigned long)&sdma_imx35,
432 	}, {
433 		.name = "imx51-sdma",
434 		.driver_data = (unsigned long)&sdma_imx51,
435 	}, {
436 		.name = "imx53-sdma",
437 		.driver_data = (unsigned long)&sdma_imx53,
438 	}, {
439 		.name = "imx6q-sdma",
440 		.driver_data = (unsigned long)&sdma_imx6q,
441 	}, {
442 		/* sentinel */
443 	}
444 };
445 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
446 
447 static const struct of_device_id sdma_dt_ids[] = {
448 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
449 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
450 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
451 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
452 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
453 	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
454 	{ /* sentinel */ }
455 };
456 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
457 
458 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
459 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
460 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
461 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
462 
463 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
464 {
465 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
466 	return chnenbl0 + event * 4;
467 }
468 
469 static int sdma_config_ownership(struct sdma_channel *sdmac,
470 		bool event_override, bool mcu_override, bool dsp_override)
471 {
472 	struct sdma_engine *sdma = sdmac->sdma;
473 	int channel = sdmac->channel;
474 	unsigned long evt, mcu, dsp;
475 
476 	if (event_override && mcu_override && dsp_override)
477 		return -EINVAL;
478 
479 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
480 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
481 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
482 
483 	if (dsp_override)
484 		__clear_bit(channel, &dsp);
485 	else
486 		__set_bit(channel, &dsp);
487 
488 	if (event_override)
489 		__clear_bit(channel, &evt);
490 	else
491 		__set_bit(channel, &evt);
492 
493 	if (mcu_override)
494 		__clear_bit(channel, &mcu);
495 	else
496 		__set_bit(channel, &mcu);
497 
498 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
499 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
500 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
501 
502 	return 0;
503 }
504 
505 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
506 {
507 	writel(BIT(channel), sdma->regs + SDMA_H_START);
508 }
509 
510 /*
511  * sdma_run_channel0 - run a channel and wait till it's done
512  */
513 static int sdma_run_channel0(struct sdma_engine *sdma)
514 {
515 	int ret;
516 	unsigned long timeout = 500;
517 
518 	sdma_enable_channel(sdma, 0);
519 
520 	while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
521 		if (timeout-- <= 0)
522 			break;
523 		udelay(1);
524 	}
525 
526 	if (ret) {
527 		/* Clear the interrupt status */
528 		writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
529 	} else {
530 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
531 	}
532 
533 	return ret ? 0 : -ETIMEDOUT;
534 }
535 
536 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
537 		u32 address)
538 {
539 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
540 	void *buf_virt;
541 	dma_addr_t buf_phys;
542 	int ret;
543 	unsigned long flags;
544 
545 	buf_virt = dma_alloc_coherent(NULL,
546 			size,
547 			&buf_phys, GFP_KERNEL);
548 	if (!buf_virt) {
549 		return -ENOMEM;
550 	}
551 
552 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
553 
554 	bd0->mode.command = C0_SETPM;
555 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
556 	bd0->mode.count = size / 2;
557 	bd0->buffer_addr = buf_phys;
558 	bd0->ext_buffer_addr = address;
559 
560 	memcpy(buf_virt, buf, size);
561 
562 	ret = sdma_run_channel0(sdma);
563 
564 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
565 
566 	dma_free_coherent(NULL, size, buf_virt, buf_phys);
567 
568 	return ret;
569 }
570 
571 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
572 {
573 	struct sdma_engine *sdma = sdmac->sdma;
574 	int channel = sdmac->channel;
575 	unsigned long val;
576 	u32 chnenbl = chnenbl_ofs(sdma, event);
577 
578 	val = readl_relaxed(sdma->regs + chnenbl);
579 	__set_bit(channel, &val);
580 	writel_relaxed(val, sdma->regs + chnenbl);
581 }
582 
583 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
584 {
585 	struct sdma_engine *sdma = sdmac->sdma;
586 	int channel = sdmac->channel;
587 	u32 chnenbl = chnenbl_ofs(sdma, event);
588 	unsigned long val;
589 
590 	val = readl_relaxed(sdma->regs + chnenbl);
591 	__clear_bit(channel, &val);
592 	writel_relaxed(val, sdma->regs + chnenbl);
593 }
594 
595 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
596 {
597 	if (sdmac->desc.callback)
598 		sdmac->desc.callback(sdmac->desc.callback_param);
599 }
600 
601 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
602 {
603 	struct sdma_buffer_descriptor *bd;
604 
605 	/*
606 	 * loop mode. Iterate over descriptors, re-setup them and
607 	 * call callback function.
608 	 */
609 	while (1) {
610 		bd = &sdmac->bd[sdmac->buf_tail];
611 
612 		if (bd->mode.status & BD_DONE)
613 			break;
614 
615 		if (bd->mode.status & BD_RROR)
616 			sdmac->status = DMA_ERROR;
617 
618 		bd->mode.status |= BD_DONE;
619 		sdmac->buf_tail++;
620 		sdmac->buf_tail %= sdmac->num_bd;
621 	}
622 }
623 
624 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
625 {
626 	struct sdma_buffer_descriptor *bd;
627 	int i, error = 0;
628 
629 	sdmac->chn_real_count = 0;
630 	/*
631 	 * non loop mode. Iterate over all descriptors, collect
632 	 * errors and call callback function
633 	 */
634 	for (i = 0; i < sdmac->num_bd; i++) {
635 		bd = &sdmac->bd[i];
636 
637 		 if (bd->mode.status & (BD_DONE | BD_RROR))
638 			error = -EIO;
639 		 sdmac->chn_real_count += bd->mode.count;
640 	}
641 
642 	if (error)
643 		sdmac->status = DMA_ERROR;
644 	else
645 		sdmac->status = DMA_COMPLETE;
646 
647 	dma_cookie_complete(&sdmac->desc);
648 	if (sdmac->desc.callback)
649 		sdmac->desc.callback(sdmac->desc.callback_param);
650 }
651 
652 static void sdma_tasklet(unsigned long data)
653 {
654 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
655 
656 	if (sdmac->flags & IMX_DMA_SG_LOOP)
657 		sdma_handle_channel_loop(sdmac);
658 	else
659 		mxc_sdma_handle_channel_normal(sdmac);
660 }
661 
662 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
663 {
664 	struct sdma_engine *sdma = dev_id;
665 	unsigned long stat;
666 
667 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
668 	/* not interested in channel 0 interrupts */
669 	stat &= ~1;
670 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
671 
672 	while (stat) {
673 		int channel = fls(stat) - 1;
674 		struct sdma_channel *sdmac = &sdma->channel[channel];
675 
676 		if (sdmac->flags & IMX_DMA_SG_LOOP)
677 			sdma_update_channel_loop(sdmac);
678 
679 		tasklet_schedule(&sdmac->tasklet);
680 
681 		__clear_bit(channel, &stat);
682 	}
683 
684 	return IRQ_HANDLED;
685 }
686 
687 /*
688  * sets the pc of SDMA script according to the peripheral type
689  */
690 static void sdma_get_pc(struct sdma_channel *sdmac,
691 		enum sdma_peripheral_type peripheral_type)
692 {
693 	struct sdma_engine *sdma = sdmac->sdma;
694 	int per_2_emi = 0, emi_2_per = 0;
695 	/*
696 	 * These are needed once we start to support transfers between
697 	 * two peripherals or memory-to-memory transfers
698 	 */
699 	int per_2_per = 0, emi_2_emi = 0;
700 
701 	sdmac->pc_from_device = 0;
702 	sdmac->pc_to_device = 0;
703 
704 	switch (peripheral_type) {
705 	case IMX_DMATYPE_MEMORY:
706 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
707 		break;
708 	case IMX_DMATYPE_DSP:
709 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
710 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
711 		break;
712 	case IMX_DMATYPE_FIRI:
713 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
714 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
715 		break;
716 	case IMX_DMATYPE_UART:
717 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
718 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
719 		break;
720 	case IMX_DMATYPE_UART_SP:
721 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
722 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
723 		break;
724 	case IMX_DMATYPE_ATA:
725 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
726 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
727 		break;
728 	case IMX_DMATYPE_CSPI:
729 	case IMX_DMATYPE_EXT:
730 	case IMX_DMATYPE_SSI:
731 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
732 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
733 		break;
734 	case IMX_DMATYPE_SSI_DUAL:
735 		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
736 		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
737 		break;
738 	case IMX_DMATYPE_SSI_SP:
739 	case IMX_DMATYPE_MMC:
740 	case IMX_DMATYPE_SDHC:
741 	case IMX_DMATYPE_CSPI_SP:
742 	case IMX_DMATYPE_ESAI:
743 	case IMX_DMATYPE_MSHC_SP:
744 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
745 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
746 		break;
747 	case IMX_DMATYPE_ASRC:
748 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
749 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
750 		per_2_per = sdma->script_addrs->per_2_per_addr;
751 		break;
752 	case IMX_DMATYPE_MSHC:
753 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
754 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
755 		break;
756 	case IMX_DMATYPE_CCM:
757 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
758 		break;
759 	case IMX_DMATYPE_SPDIF:
760 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
761 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
762 		break;
763 	case IMX_DMATYPE_IPU_MEMORY:
764 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
765 		break;
766 	default:
767 		break;
768 	}
769 
770 	sdmac->pc_from_device = per_2_emi;
771 	sdmac->pc_to_device = emi_2_per;
772 }
773 
774 static int sdma_load_context(struct sdma_channel *sdmac)
775 {
776 	struct sdma_engine *sdma = sdmac->sdma;
777 	int channel = sdmac->channel;
778 	int load_address;
779 	struct sdma_context_data *context = sdma->context;
780 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
781 	int ret;
782 	unsigned long flags;
783 
784 	if (sdmac->direction == DMA_DEV_TO_MEM) {
785 		load_address = sdmac->pc_from_device;
786 	} else {
787 		load_address = sdmac->pc_to_device;
788 	}
789 
790 	if (load_address < 0)
791 		return load_address;
792 
793 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
794 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
795 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
796 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
797 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
798 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
799 
800 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
801 
802 	memset(context, 0, sizeof(*context));
803 	context->channel_state.pc = load_address;
804 
805 	/* Send by context the event mask,base address for peripheral
806 	 * and watermark level
807 	 */
808 	context->gReg[0] = sdmac->event_mask[1];
809 	context->gReg[1] = sdmac->event_mask[0];
810 	context->gReg[2] = sdmac->per_addr;
811 	context->gReg[6] = sdmac->shp_addr;
812 	context->gReg[7] = sdmac->watermark_level;
813 
814 	bd0->mode.command = C0_SETDM;
815 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
816 	bd0->mode.count = sizeof(*context) / 4;
817 	bd0->buffer_addr = sdma->context_phys;
818 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
819 	ret = sdma_run_channel0(sdma);
820 
821 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
822 
823 	return ret;
824 }
825 
826 static void sdma_disable_channel(struct sdma_channel *sdmac)
827 {
828 	struct sdma_engine *sdma = sdmac->sdma;
829 	int channel = sdmac->channel;
830 
831 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
832 	sdmac->status = DMA_ERROR;
833 }
834 
835 static int sdma_config_channel(struct sdma_channel *sdmac)
836 {
837 	int ret;
838 
839 	sdma_disable_channel(sdmac);
840 
841 	sdmac->event_mask[0] = 0;
842 	sdmac->event_mask[1] = 0;
843 	sdmac->shp_addr = 0;
844 	sdmac->per_addr = 0;
845 
846 	if (sdmac->event_id0) {
847 		if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
848 			return -EINVAL;
849 		sdma_event_enable(sdmac, sdmac->event_id0);
850 	}
851 
852 	switch (sdmac->peripheral_type) {
853 	case IMX_DMATYPE_DSP:
854 		sdma_config_ownership(sdmac, false, true, true);
855 		break;
856 	case IMX_DMATYPE_MEMORY:
857 		sdma_config_ownership(sdmac, false, true, false);
858 		break;
859 	default:
860 		sdma_config_ownership(sdmac, true, true, false);
861 		break;
862 	}
863 
864 	sdma_get_pc(sdmac, sdmac->peripheral_type);
865 
866 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
867 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
868 		/* Handle multiple event channels differently */
869 		if (sdmac->event_id1) {
870 			sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
871 			if (sdmac->event_id1 > 31)
872 				__set_bit(31, &sdmac->watermark_level);
873 			sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
874 			if (sdmac->event_id0 > 31)
875 				__set_bit(30, &sdmac->watermark_level);
876 		} else {
877 			__set_bit(sdmac->event_id0, sdmac->event_mask);
878 		}
879 		/* Watermark Level */
880 		sdmac->watermark_level |= sdmac->watermark_level;
881 		/* Address */
882 		sdmac->shp_addr = sdmac->per_address;
883 	} else {
884 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
885 	}
886 
887 	ret = sdma_load_context(sdmac);
888 
889 	return ret;
890 }
891 
892 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
893 		unsigned int priority)
894 {
895 	struct sdma_engine *sdma = sdmac->sdma;
896 	int channel = sdmac->channel;
897 
898 	if (priority < MXC_SDMA_MIN_PRIORITY
899 	    || priority > MXC_SDMA_MAX_PRIORITY) {
900 		return -EINVAL;
901 	}
902 
903 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
904 
905 	return 0;
906 }
907 
908 static int sdma_request_channel(struct sdma_channel *sdmac)
909 {
910 	struct sdma_engine *sdma = sdmac->sdma;
911 	int channel = sdmac->channel;
912 	int ret = -EBUSY;
913 
914 	sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
915 	if (!sdmac->bd) {
916 		ret = -ENOMEM;
917 		goto out;
918 	}
919 
920 	memset(sdmac->bd, 0, PAGE_SIZE);
921 
922 	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
923 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
924 
925 	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
926 	return 0;
927 out:
928 
929 	return ret;
930 }
931 
932 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
933 {
934 	return container_of(chan, struct sdma_channel, chan);
935 }
936 
937 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
938 {
939 	unsigned long flags;
940 	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
941 	dma_cookie_t cookie;
942 
943 	spin_lock_irqsave(&sdmac->lock, flags);
944 
945 	cookie = dma_cookie_assign(tx);
946 
947 	spin_unlock_irqrestore(&sdmac->lock, flags);
948 
949 	return cookie;
950 }
951 
952 static int sdma_alloc_chan_resources(struct dma_chan *chan)
953 {
954 	struct sdma_channel *sdmac = to_sdma_chan(chan);
955 	struct imx_dma_data *data = chan->private;
956 	int prio, ret;
957 
958 	if (!data)
959 		return -EINVAL;
960 
961 	switch (data->priority) {
962 	case DMA_PRIO_HIGH:
963 		prio = 3;
964 		break;
965 	case DMA_PRIO_MEDIUM:
966 		prio = 2;
967 		break;
968 	case DMA_PRIO_LOW:
969 	default:
970 		prio = 1;
971 		break;
972 	}
973 
974 	sdmac->peripheral_type = data->peripheral_type;
975 	sdmac->event_id0 = data->dma_request;
976 
977 	clk_enable(sdmac->sdma->clk_ipg);
978 	clk_enable(sdmac->sdma->clk_ahb);
979 
980 	ret = sdma_request_channel(sdmac);
981 	if (ret)
982 		return ret;
983 
984 	ret = sdma_set_channel_priority(sdmac, prio);
985 	if (ret)
986 		return ret;
987 
988 	dma_async_tx_descriptor_init(&sdmac->desc, chan);
989 	sdmac->desc.tx_submit = sdma_tx_submit;
990 	/* txd.flags will be overwritten in prep funcs */
991 	sdmac->desc.flags = DMA_CTRL_ACK;
992 
993 	return 0;
994 }
995 
996 static void sdma_free_chan_resources(struct dma_chan *chan)
997 {
998 	struct sdma_channel *sdmac = to_sdma_chan(chan);
999 	struct sdma_engine *sdma = sdmac->sdma;
1000 
1001 	sdma_disable_channel(sdmac);
1002 
1003 	if (sdmac->event_id0)
1004 		sdma_event_disable(sdmac, sdmac->event_id0);
1005 	if (sdmac->event_id1)
1006 		sdma_event_disable(sdmac, sdmac->event_id1);
1007 
1008 	sdmac->event_id0 = 0;
1009 	sdmac->event_id1 = 0;
1010 
1011 	sdma_set_channel_priority(sdmac, 0);
1012 
1013 	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1014 
1015 	clk_disable(sdma->clk_ipg);
1016 	clk_disable(sdma->clk_ahb);
1017 }
1018 
1019 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1020 		struct dma_chan *chan, struct scatterlist *sgl,
1021 		unsigned int sg_len, enum dma_transfer_direction direction,
1022 		unsigned long flags, void *context)
1023 {
1024 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1025 	struct sdma_engine *sdma = sdmac->sdma;
1026 	int ret, i, count;
1027 	int channel = sdmac->channel;
1028 	struct scatterlist *sg;
1029 
1030 	if (sdmac->status == DMA_IN_PROGRESS)
1031 		return NULL;
1032 	sdmac->status = DMA_IN_PROGRESS;
1033 
1034 	sdmac->flags = 0;
1035 
1036 	sdmac->buf_tail = 0;
1037 
1038 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1039 			sg_len, channel);
1040 
1041 	sdmac->direction = direction;
1042 	ret = sdma_load_context(sdmac);
1043 	if (ret)
1044 		goto err_out;
1045 
1046 	if (sg_len > NUM_BD) {
1047 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1048 				channel, sg_len, NUM_BD);
1049 		ret = -EINVAL;
1050 		goto err_out;
1051 	}
1052 
1053 	sdmac->chn_count = 0;
1054 	for_each_sg(sgl, sg, sg_len, i) {
1055 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1056 		int param;
1057 
1058 		bd->buffer_addr = sg->dma_address;
1059 
1060 		count = sg_dma_len(sg);
1061 
1062 		if (count > 0xffff) {
1063 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1064 					channel, count, 0xffff);
1065 			ret = -EINVAL;
1066 			goto err_out;
1067 		}
1068 
1069 		bd->mode.count = count;
1070 		sdmac->chn_count += count;
1071 
1072 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1073 			ret =  -EINVAL;
1074 			goto err_out;
1075 		}
1076 
1077 		switch (sdmac->word_size) {
1078 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1079 			bd->mode.command = 0;
1080 			if (count & 3 || sg->dma_address & 3)
1081 				return NULL;
1082 			break;
1083 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1084 			bd->mode.command = 2;
1085 			if (count & 1 || sg->dma_address & 1)
1086 				return NULL;
1087 			break;
1088 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1089 			bd->mode.command = 1;
1090 			break;
1091 		default:
1092 			return NULL;
1093 		}
1094 
1095 		param = BD_DONE | BD_EXTD | BD_CONT;
1096 
1097 		if (i + 1 == sg_len) {
1098 			param |= BD_INTR;
1099 			param |= BD_LAST;
1100 			param &= ~BD_CONT;
1101 		}
1102 
1103 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1104 				i, count, (u64)sg->dma_address,
1105 				param & BD_WRAP ? "wrap" : "",
1106 				param & BD_INTR ? " intr" : "");
1107 
1108 		bd->mode.status = param;
1109 	}
1110 
1111 	sdmac->num_bd = sg_len;
1112 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1113 
1114 	return &sdmac->desc;
1115 err_out:
1116 	sdmac->status = DMA_ERROR;
1117 	return NULL;
1118 }
1119 
1120 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1121 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1122 		size_t period_len, enum dma_transfer_direction direction,
1123 		unsigned long flags, void *context)
1124 {
1125 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1126 	struct sdma_engine *sdma = sdmac->sdma;
1127 	int num_periods = buf_len / period_len;
1128 	int channel = sdmac->channel;
1129 	int ret, i = 0, buf = 0;
1130 
1131 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1132 
1133 	if (sdmac->status == DMA_IN_PROGRESS)
1134 		return NULL;
1135 
1136 	sdmac->status = DMA_IN_PROGRESS;
1137 
1138 	sdmac->buf_tail = 0;
1139 	sdmac->period_len = period_len;
1140 
1141 	sdmac->flags |= IMX_DMA_SG_LOOP;
1142 	sdmac->direction = direction;
1143 	ret = sdma_load_context(sdmac);
1144 	if (ret)
1145 		goto err_out;
1146 
1147 	if (num_periods > NUM_BD) {
1148 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1149 				channel, num_periods, NUM_BD);
1150 		goto err_out;
1151 	}
1152 
1153 	if (period_len > 0xffff) {
1154 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1155 				channel, period_len, 0xffff);
1156 		goto err_out;
1157 	}
1158 
1159 	while (buf < buf_len) {
1160 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1161 		int param;
1162 
1163 		bd->buffer_addr = dma_addr;
1164 
1165 		bd->mode.count = period_len;
1166 
1167 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1168 			goto err_out;
1169 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1170 			bd->mode.command = 0;
1171 		else
1172 			bd->mode.command = sdmac->word_size;
1173 
1174 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1175 		if (i + 1 == num_periods)
1176 			param |= BD_WRAP;
1177 
1178 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1179 				i, period_len, (u64)dma_addr,
1180 				param & BD_WRAP ? "wrap" : "",
1181 				param & BD_INTR ? " intr" : "");
1182 
1183 		bd->mode.status = param;
1184 
1185 		dma_addr += period_len;
1186 		buf += period_len;
1187 
1188 		i++;
1189 	}
1190 
1191 	sdmac->num_bd = num_periods;
1192 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1193 
1194 	return &sdmac->desc;
1195 err_out:
1196 	sdmac->status = DMA_ERROR;
1197 	return NULL;
1198 }
1199 
1200 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1201 		unsigned long arg)
1202 {
1203 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1204 	struct dma_slave_config *dmaengine_cfg = (void *)arg;
1205 
1206 	switch (cmd) {
1207 	case DMA_TERMINATE_ALL:
1208 		sdma_disable_channel(sdmac);
1209 		return 0;
1210 	case DMA_SLAVE_CONFIG:
1211 		if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1212 			sdmac->per_address = dmaengine_cfg->src_addr;
1213 			sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1214 						dmaengine_cfg->src_addr_width;
1215 			sdmac->word_size = dmaengine_cfg->src_addr_width;
1216 		} else {
1217 			sdmac->per_address = dmaengine_cfg->dst_addr;
1218 			sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1219 						dmaengine_cfg->dst_addr_width;
1220 			sdmac->word_size = dmaengine_cfg->dst_addr_width;
1221 		}
1222 		sdmac->direction = dmaengine_cfg->direction;
1223 		return sdma_config_channel(sdmac);
1224 	default:
1225 		return -ENOSYS;
1226 	}
1227 
1228 	return -EINVAL;
1229 }
1230 
1231 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1232 				      dma_cookie_t cookie,
1233 				      struct dma_tx_state *txstate)
1234 {
1235 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1236 	u32 residue;
1237 
1238 	if (sdmac->flags & IMX_DMA_SG_LOOP)
1239 		residue = (sdmac->num_bd - sdmac->buf_tail) * sdmac->period_len;
1240 	else
1241 		residue = sdmac->chn_count - sdmac->chn_real_count;
1242 
1243 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1244 			 residue);
1245 
1246 	return sdmac->status;
1247 }
1248 
1249 static void sdma_issue_pending(struct dma_chan *chan)
1250 {
1251 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1252 	struct sdma_engine *sdma = sdmac->sdma;
1253 
1254 	if (sdmac->status == DMA_IN_PROGRESS)
1255 		sdma_enable_channel(sdma, sdmac->channel);
1256 }
1257 
1258 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1259 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1260 
1261 static void sdma_add_scripts(struct sdma_engine *sdma,
1262 		const struct sdma_script_start_addrs *addr)
1263 {
1264 	s32 *addr_arr = (u32 *)addr;
1265 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1266 	int i;
1267 
1268 	/* use the default firmware in ROM if missing external firmware */
1269 	if (!sdma->script_number)
1270 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1271 
1272 	for (i = 0; i < sdma->script_number; i++)
1273 		if (addr_arr[i] > 0)
1274 			saddr_arr[i] = addr_arr[i];
1275 }
1276 
1277 static void sdma_load_firmware(const struct firmware *fw, void *context)
1278 {
1279 	struct sdma_engine *sdma = context;
1280 	const struct sdma_firmware_header *header;
1281 	const struct sdma_script_start_addrs *addr;
1282 	unsigned short *ram_code;
1283 
1284 	if (!fw) {
1285 		dev_err(sdma->dev, "firmware not found\n");
1286 		return;
1287 	}
1288 
1289 	if (fw->size < sizeof(*header))
1290 		goto err_firmware;
1291 
1292 	header = (struct sdma_firmware_header *)fw->data;
1293 
1294 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1295 		goto err_firmware;
1296 	if (header->ram_code_start + header->ram_code_size > fw->size)
1297 		goto err_firmware;
1298 	switch (header->version_major) {
1299 		case 1:
1300 			sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1301 			break;
1302 		case 2:
1303 			sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1304 			break;
1305 		default:
1306 			dev_err(sdma->dev, "unknown firmware version\n");
1307 			goto err_firmware;
1308 	}
1309 
1310 	addr = (void *)header + header->script_addrs_start;
1311 	ram_code = (void *)header + header->ram_code_start;
1312 
1313 	clk_enable(sdma->clk_ipg);
1314 	clk_enable(sdma->clk_ahb);
1315 	/* download the RAM image for SDMA */
1316 	sdma_load_script(sdma, ram_code,
1317 			header->ram_code_size,
1318 			addr->ram_code_start_addr);
1319 	clk_disable(sdma->clk_ipg);
1320 	clk_disable(sdma->clk_ahb);
1321 
1322 	sdma_add_scripts(sdma, addr);
1323 
1324 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1325 			header->version_major,
1326 			header->version_minor);
1327 
1328 err_firmware:
1329 	release_firmware(fw);
1330 }
1331 
1332 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1333 		const char *fw_name)
1334 {
1335 	int ret;
1336 
1337 	ret = request_firmware_nowait(THIS_MODULE,
1338 			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1339 			GFP_KERNEL, sdma, sdma_load_firmware);
1340 
1341 	return ret;
1342 }
1343 
1344 static int __init sdma_init(struct sdma_engine *sdma)
1345 {
1346 	int i, ret;
1347 	dma_addr_t ccb_phys;
1348 
1349 	clk_enable(sdma->clk_ipg);
1350 	clk_enable(sdma->clk_ahb);
1351 
1352 	/* Be sure SDMA has not started yet */
1353 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1354 
1355 	sdma->channel_control = dma_alloc_coherent(NULL,
1356 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1357 			sizeof(struct sdma_context_data),
1358 			&ccb_phys, GFP_KERNEL);
1359 
1360 	if (!sdma->channel_control) {
1361 		ret = -ENOMEM;
1362 		goto err_dma_alloc;
1363 	}
1364 
1365 	sdma->context = (void *)sdma->channel_control +
1366 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1367 	sdma->context_phys = ccb_phys +
1368 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1369 
1370 	/* Zero-out the CCB structures array just allocated */
1371 	memset(sdma->channel_control, 0,
1372 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1373 
1374 	/* disable all channels */
1375 	for (i = 0; i < sdma->drvdata->num_events; i++)
1376 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1377 
1378 	/* All channels have priority 0 */
1379 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1380 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1381 
1382 	ret = sdma_request_channel(&sdma->channel[0]);
1383 	if (ret)
1384 		goto err_dma_alloc;
1385 
1386 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1387 
1388 	/* Set Command Channel (Channel Zero) */
1389 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1390 
1391 	/* Set bits of CONFIG register but with static context switching */
1392 	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1393 	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1394 
1395 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1396 
1397 	/* Set bits of CONFIG register with given context switching mode */
1398 	writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1399 
1400 	/* Initializes channel's priorities */
1401 	sdma_set_channel_priority(&sdma->channel[0], 7);
1402 
1403 	clk_disable(sdma->clk_ipg);
1404 	clk_disable(sdma->clk_ahb);
1405 
1406 	return 0;
1407 
1408 err_dma_alloc:
1409 	clk_disable(sdma->clk_ipg);
1410 	clk_disable(sdma->clk_ahb);
1411 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1412 	return ret;
1413 }
1414 
1415 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1416 {
1417 	struct imx_dma_data *data = fn_param;
1418 
1419 	if (!imx_dma_is_general_purpose(chan))
1420 		return false;
1421 
1422 	chan->private = data;
1423 
1424 	return true;
1425 }
1426 
1427 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1428 				   struct of_dma *ofdma)
1429 {
1430 	struct sdma_engine *sdma = ofdma->of_dma_data;
1431 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1432 	struct imx_dma_data data;
1433 
1434 	if (dma_spec->args_count != 3)
1435 		return NULL;
1436 
1437 	data.dma_request = dma_spec->args[0];
1438 	data.peripheral_type = dma_spec->args[1];
1439 	data.priority = dma_spec->args[2];
1440 
1441 	return dma_request_channel(mask, sdma_filter_fn, &data);
1442 }
1443 
1444 static int __init sdma_probe(struct platform_device *pdev)
1445 {
1446 	const struct of_device_id *of_id =
1447 			of_match_device(sdma_dt_ids, &pdev->dev);
1448 	struct device_node *np = pdev->dev.of_node;
1449 	const char *fw_name;
1450 	int ret;
1451 	int irq;
1452 	struct resource *iores;
1453 	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1454 	int i;
1455 	struct sdma_engine *sdma;
1456 	s32 *saddr_arr;
1457 	const struct sdma_driver_data *drvdata = NULL;
1458 
1459 	if (of_id)
1460 		drvdata = of_id->data;
1461 	else if (pdev->id_entry)
1462 		drvdata = (void *)pdev->id_entry->driver_data;
1463 
1464 	if (!drvdata) {
1465 		dev_err(&pdev->dev, "unable to find driver data\n");
1466 		return -EINVAL;
1467 	}
1468 
1469 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1470 	if (ret)
1471 		return ret;
1472 
1473 	sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1474 	if (!sdma)
1475 		return -ENOMEM;
1476 
1477 	spin_lock_init(&sdma->channel_0_lock);
1478 
1479 	sdma->dev = &pdev->dev;
1480 	sdma->drvdata = drvdata;
1481 
1482 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1483 	irq = platform_get_irq(pdev, 0);
1484 	if (!iores || irq < 0) {
1485 		ret = -EINVAL;
1486 		goto err_irq;
1487 	}
1488 
1489 	if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1490 		ret = -EBUSY;
1491 		goto err_request_region;
1492 	}
1493 
1494 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1495 	if (IS_ERR(sdma->clk_ipg)) {
1496 		ret = PTR_ERR(sdma->clk_ipg);
1497 		goto err_clk;
1498 	}
1499 
1500 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1501 	if (IS_ERR(sdma->clk_ahb)) {
1502 		ret = PTR_ERR(sdma->clk_ahb);
1503 		goto err_clk;
1504 	}
1505 
1506 	clk_prepare(sdma->clk_ipg);
1507 	clk_prepare(sdma->clk_ahb);
1508 
1509 	sdma->regs = ioremap(iores->start, resource_size(iores));
1510 	if (!sdma->regs) {
1511 		ret = -ENOMEM;
1512 		goto err_ioremap;
1513 	}
1514 
1515 	ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1516 	if (ret)
1517 		goto err_request_irq;
1518 
1519 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1520 	if (!sdma->script_addrs) {
1521 		ret = -ENOMEM;
1522 		goto err_alloc;
1523 	}
1524 
1525 	/* initially no scripts available */
1526 	saddr_arr = (s32 *)sdma->script_addrs;
1527 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1528 		saddr_arr[i] = -EINVAL;
1529 
1530 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1531 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1532 
1533 	INIT_LIST_HEAD(&sdma->dma_device.channels);
1534 	/* Initialize channel parameters */
1535 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1536 		struct sdma_channel *sdmac = &sdma->channel[i];
1537 
1538 		sdmac->sdma = sdma;
1539 		spin_lock_init(&sdmac->lock);
1540 
1541 		sdmac->chan.device = &sdma->dma_device;
1542 		dma_cookie_init(&sdmac->chan);
1543 		sdmac->channel = i;
1544 
1545 		tasklet_init(&sdmac->tasklet, sdma_tasklet,
1546 			     (unsigned long) sdmac);
1547 		/*
1548 		 * Add the channel to the DMAC list. Do not add channel 0 though
1549 		 * because we need it internally in the SDMA driver. This also means
1550 		 * that channel 0 in dmaengine counting matches sdma channel 1.
1551 		 */
1552 		if (i)
1553 			list_add_tail(&sdmac->chan.device_node,
1554 					&sdma->dma_device.channels);
1555 	}
1556 
1557 	ret = sdma_init(sdma);
1558 	if (ret)
1559 		goto err_init;
1560 
1561 	if (sdma->drvdata->script_addrs)
1562 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1563 	if (pdata && pdata->script_addrs)
1564 		sdma_add_scripts(sdma, pdata->script_addrs);
1565 
1566 	if (pdata) {
1567 		ret = sdma_get_firmware(sdma, pdata->fw_name);
1568 		if (ret)
1569 			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1570 	} else {
1571 		/*
1572 		 * Because that device tree does not encode ROM script address,
1573 		 * the RAM script in firmware is mandatory for device tree
1574 		 * probe, otherwise it fails.
1575 		 */
1576 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1577 					      &fw_name);
1578 		if (ret)
1579 			dev_warn(&pdev->dev, "failed to get firmware name\n");
1580 		else {
1581 			ret = sdma_get_firmware(sdma, fw_name);
1582 			if (ret)
1583 				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1584 		}
1585 	}
1586 
1587 	sdma->dma_device.dev = &pdev->dev;
1588 
1589 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1590 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1591 	sdma->dma_device.device_tx_status = sdma_tx_status;
1592 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1593 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1594 	sdma->dma_device.device_control = sdma_control;
1595 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1596 	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1597 	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1598 
1599 	ret = dma_async_device_register(&sdma->dma_device);
1600 	if (ret) {
1601 		dev_err(&pdev->dev, "unable to register\n");
1602 		goto err_init;
1603 	}
1604 
1605 	if (np) {
1606 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
1607 		if (ret) {
1608 			dev_err(&pdev->dev, "failed to register controller\n");
1609 			goto err_register;
1610 		}
1611 	}
1612 
1613 	dev_info(sdma->dev, "initialized\n");
1614 
1615 	return 0;
1616 
1617 err_register:
1618 	dma_async_device_unregister(&sdma->dma_device);
1619 err_init:
1620 	kfree(sdma->script_addrs);
1621 err_alloc:
1622 	free_irq(irq, sdma);
1623 err_request_irq:
1624 	iounmap(sdma->regs);
1625 err_ioremap:
1626 err_clk:
1627 	release_mem_region(iores->start, resource_size(iores));
1628 err_request_region:
1629 err_irq:
1630 	kfree(sdma);
1631 	return ret;
1632 }
1633 
1634 static int sdma_remove(struct platform_device *pdev)
1635 {
1636 	return -EBUSY;
1637 }
1638 
1639 static struct platform_driver sdma_driver = {
1640 	.driver		= {
1641 		.name	= "imx-sdma",
1642 		.of_match_table = sdma_dt_ids,
1643 	},
1644 	.id_table	= sdma_devtypes,
1645 	.remove		= sdma_remove,
1646 };
1647 
1648 static int __init sdma_module_init(void)
1649 {
1650 	return platform_driver_probe(&sdma_driver, sdma_probe);
1651 }
1652 module_init(sdma_module_init);
1653 
1654 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1655 MODULE_DESCRIPTION("i.MX SDMA driver");
1656 MODULE_LICENSE("GPL");
1657