xref: /openbmc/linux/drivers/dma/imx-sdma.c (revision 47010c04)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
10 //
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12 
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 #include <linux/semaphore.h>
24 #include <linux/spinlock.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/slab.h>
29 #include <linux/platform_device.h>
30 #include <linux/dmaengine.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_device.h>
34 #include <linux/of_dma.h>
35 #include <linux/workqueue.h>
36 
37 #include <asm/irq.h>
38 #include <linux/platform_data/dma-imx.h>
39 #include <linux/regmap.h>
40 #include <linux/mfd/syscon.h>
41 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
42 
43 #include "dmaengine.h"
44 #include "virt-dma.h"
45 
46 /* SDMA registers */
47 #define SDMA_H_C0PTR		0x000
48 #define SDMA_H_INTR		0x004
49 #define SDMA_H_STATSTOP		0x008
50 #define SDMA_H_START		0x00c
51 #define SDMA_H_EVTOVR		0x010
52 #define SDMA_H_DSPOVR		0x014
53 #define SDMA_H_HOSTOVR		0x018
54 #define SDMA_H_EVTPEND		0x01c
55 #define SDMA_H_DSPENBL		0x020
56 #define SDMA_H_RESET		0x024
57 #define SDMA_H_EVTERR		0x028
58 #define SDMA_H_INTRMSK		0x02c
59 #define SDMA_H_PSW		0x030
60 #define SDMA_H_EVTERRDBG	0x034
61 #define SDMA_H_CONFIG		0x038
62 #define SDMA_ONCE_ENB		0x040
63 #define SDMA_ONCE_DATA		0x044
64 #define SDMA_ONCE_INSTR		0x048
65 #define SDMA_ONCE_STAT		0x04c
66 #define SDMA_ONCE_CMD		0x050
67 #define SDMA_EVT_MIRROR		0x054
68 #define SDMA_ILLINSTADDR	0x058
69 #define SDMA_CHN0ADDR		0x05c
70 #define SDMA_ONCE_RTB		0x060
71 #define SDMA_XTRIG_CONF1	0x070
72 #define SDMA_XTRIG_CONF2	0x074
73 #define SDMA_CHNENBL0_IMX35	0x200
74 #define SDMA_CHNENBL0_IMX31	0x080
75 #define SDMA_CHNPRI_0		0x100
76 
77 /*
78  * Buffer descriptor status values.
79  */
80 #define BD_DONE  0x01
81 #define BD_WRAP  0x02
82 #define BD_CONT  0x04
83 #define BD_INTR  0x08
84 #define BD_RROR  0x10
85 #define BD_LAST  0x20
86 #define BD_EXTD  0x80
87 
88 /*
89  * Data Node descriptor status values.
90  */
91 #define DND_END_OF_FRAME  0x80
92 #define DND_END_OF_XFER   0x40
93 #define DND_DONE          0x20
94 #define DND_UNUSED        0x01
95 
96 /*
97  * IPCV2 descriptor status values.
98  */
99 #define BD_IPCV2_END_OF_FRAME  0x40
100 
101 #define IPCV2_MAX_NODES        50
102 /*
103  * Error bit set in the CCB status field by the SDMA,
104  * in setbd routine, in case of a transfer error
105  */
106 #define DATA_ERROR  0x10000000
107 
108 /*
109  * Buffer descriptor commands.
110  */
111 #define C0_ADDR             0x01
112 #define C0_LOAD             0x02
113 #define C0_DUMP             0x03
114 #define C0_SETCTX           0x07
115 #define C0_GETCTX           0x03
116 #define C0_SETDM            0x01
117 #define C0_SETPM            0x04
118 #define C0_GETDM            0x02
119 #define C0_GETPM            0x08
120 /*
121  * Change endianness indicator in the BD command field
122  */
123 #define CHANGE_ENDIANNESS   0x80
124 
125 /*
126  *  p_2_p watermark_level description
127  *	Bits		Name			Description
128  *	0-7		Lower WML		Lower watermark level
129  *	8		PS			1: Pad Swallowing
130  *						0: No Pad Swallowing
131  *	9		PA			1: Pad Adding
132  *						0: No Pad Adding
133  *	10		SPDIF			If this bit is set both source
134  *						and destination are on SPBA
135  *	11		Source Bit(SP)		1: Source on SPBA
136  *						0: Source on AIPS
137  *	12		Destination Bit(DP)	1: Destination on SPBA
138  *						0: Destination on AIPS
139  *	13-15		---------		MUST BE 0
140  *	16-23		Higher WML		HWML
141  *	24-27		N			Total number of samples after
142  *						which Pad adding/Swallowing
143  *						must be done. It must be odd.
144  *	28		Lower WML Event(LWE)	SDMA events reg to check for
145  *						LWML event mask
146  *						0: LWE in EVENTS register
147  *						1: LWE in EVENTS2 register
148  *	29		Higher WML Event(HWE)	SDMA events reg to check for
149  *						HWML event mask
150  *						0: HWE in EVENTS register
151  *						1: HWE in EVENTS2 register
152  *	30		---------		MUST BE 0
153  *	31		CONT			1: Amount of samples to be
154  *						transferred is unknown and
155  *						script will keep on
156  *						transferring samples as long as
157  *						both events are detected and
158  *						script must be manually stopped
159  *						by the application
160  *						0: The amount of samples to be
161  *						transferred is equal to the
162  *						count field of mode word
163  */
164 #define SDMA_WATERMARK_LEVEL_LWML	0xFF
165 #define SDMA_WATERMARK_LEVEL_PS		BIT(8)
166 #define SDMA_WATERMARK_LEVEL_PA		BIT(9)
167 #define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
168 #define SDMA_WATERMARK_LEVEL_SP		BIT(11)
169 #define SDMA_WATERMARK_LEVEL_DP		BIT(12)
170 #define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
171 #define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
172 #define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
173 #define SDMA_WATERMARK_LEVEL_CONT	BIT(31)
174 
175 #define SDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
176 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
177 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
178 
179 #define SDMA_DMA_DIRECTIONS	(BIT(DMA_DEV_TO_MEM) | \
180 				 BIT(DMA_MEM_TO_DEV) | \
181 				 BIT(DMA_DEV_TO_DEV))
182 
183 /**
184  * struct sdma_script_start_addrs - SDMA script start pointers
185  *
186  * start addresses of the different functions in the physical
187  * address space of the SDMA engine.
188  */
189 struct sdma_script_start_addrs {
190 	s32 ap_2_ap_addr;
191 	s32 ap_2_bp_addr;
192 	s32 ap_2_ap_fixed_addr;
193 	s32 bp_2_ap_addr;
194 	s32 loopback_on_dsp_side_addr;
195 	s32 mcu_interrupt_only_addr;
196 	s32 firi_2_per_addr;
197 	s32 firi_2_mcu_addr;
198 	s32 per_2_firi_addr;
199 	s32 mcu_2_firi_addr;
200 	s32 uart_2_per_addr;
201 	s32 uart_2_mcu_addr;
202 	s32 per_2_app_addr;
203 	s32 mcu_2_app_addr;
204 	s32 per_2_per_addr;
205 	s32 uartsh_2_per_addr;
206 	s32 uartsh_2_mcu_addr;
207 	s32 per_2_shp_addr;
208 	s32 mcu_2_shp_addr;
209 	s32 ata_2_mcu_addr;
210 	s32 mcu_2_ata_addr;
211 	s32 app_2_per_addr;
212 	s32 app_2_mcu_addr;
213 	s32 shp_2_per_addr;
214 	s32 shp_2_mcu_addr;
215 	s32 mshc_2_mcu_addr;
216 	s32 mcu_2_mshc_addr;
217 	s32 spdif_2_mcu_addr;
218 	s32 mcu_2_spdif_addr;
219 	s32 asrc_2_mcu_addr;
220 	s32 ext_mem_2_ipu_addr;
221 	s32 descrambler_addr;
222 	s32 dptc_dvfs_addr;
223 	s32 utra_addr;
224 	s32 ram_code_start_addr;
225 	/* End of v1 array */
226 	s32 mcu_2_ssish_addr;
227 	s32 ssish_2_mcu_addr;
228 	s32 hdmi_dma_addr;
229 	/* End of v2 array */
230 	s32 zcanfd_2_mcu_addr;
231 	s32 zqspi_2_mcu_addr;
232 	s32 mcu_2_ecspi_addr;
233 	s32 mcu_2_sai_addr;
234 	s32 sai_2_mcu_addr;
235 	s32 uart_2_mcu_rom_addr;
236 	s32 uartsh_2_mcu_rom_addr;
237 	/* End of v3 array */
238 	s32 mcu_2_zqspi_addr;
239 	/* End of v4 array */
240 };
241 
242 /*
243  * Mode/Count of data node descriptors - IPCv2
244  */
245 struct sdma_mode_count {
246 #define SDMA_BD_MAX_CNT	0xffff
247 	u32 count   : 16; /* size of the buffer pointed by this BD */
248 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
249 	u32 command :  8; /* command mostly used for channel 0 */
250 };
251 
252 /*
253  * Buffer descriptor
254  */
255 struct sdma_buffer_descriptor {
256 	struct sdma_mode_count  mode;
257 	u32 buffer_addr;	/* address of the buffer described */
258 	u32 ext_buffer_addr;	/* extended buffer address */
259 } __attribute__ ((packed));
260 
261 /**
262  * struct sdma_channel_control - Channel control Block
263  *
264  * @current_bd_ptr:	current buffer descriptor processed
265  * @base_bd_ptr:	first element of buffer descriptor array
266  * @unused:		padding. The SDMA engine expects an array of 128 byte
267  *			control blocks
268  */
269 struct sdma_channel_control {
270 	u32 current_bd_ptr;
271 	u32 base_bd_ptr;
272 	u32 unused[2];
273 } __attribute__ ((packed));
274 
275 /**
276  * struct sdma_state_registers - SDMA context for a channel
277  *
278  * @pc:		program counter
279  * @unused1:	unused
280  * @t:		test bit: status of arithmetic & test instruction
281  * @rpc:	return program counter
282  * @unused0:	unused
283  * @sf:		source fault while loading data
284  * @spc:	loop start program counter
285  * @unused2:	unused
286  * @df:		destination fault while storing data
287  * @epc:	loop end program counter
288  * @lm:		loop mode
289  */
290 struct sdma_state_registers {
291 	u32 pc     :14;
292 	u32 unused1: 1;
293 	u32 t      : 1;
294 	u32 rpc    :14;
295 	u32 unused0: 1;
296 	u32 sf     : 1;
297 	u32 spc    :14;
298 	u32 unused2: 1;
299 	u32 df     : 1;
300 	u32 epc    :14;
301 	u32 lm     : 2;
302 } __attribute__ ((packed));
303 
304 /**
305  * struct sdma_context_data - sdma context specific to a channel
306  *
307  * @channel_state:	channel state bits
308  * @gReg:		general registers
309  * @mda:		burst dma destination address register
310  * @msa:		burst dma source address register
311  * @ms:			burst dma status register
312  * @md:			burst dma data register
313  * @pda:		peripheral dma destination address register
314  * @psa:		peripheral dma source address register
315  * @ps:			peripheral dma status register
316  * @pd:			peripheral dma data register
317  * @ca:			CRC polynomial register
318  * @cs:			CRC accumulator register
319  * @dda:		dedicated core destination address register
320  * @dsa:		dedicated core source address register
321  * @ds:			dedicated core status register
322  * @dd:			dedicated core data register
323  * @scratch0:		1st word of dedicated ram for context switch
324  * @scratch1:		2nd word of dedicated ram for context switch
325  * @scratch2:		3rd word of dedicated ram for context switch
326  * @scratch3:		4th word of dedicated ram for context switch
327  * @scratch4:		5th word of dedicated ram for context switch
328  * @scratch5:		6th word of dedicated ram for context switch
329  * @scratch6:		7th word of dedicated ram for context switch
330  * @scratch7:		8th word of dedicated ram for context switch
331  */
332 struct sdma_context_data {
333 	struct sdma_state_registers  channel_state;
334 	u32  gReg[8];
335 	u32  mda;
336 	u32  msa;
337 	u32  ms;
338 	u32  md;
339 	u32  pda;
340 	u32  psa;
341 	u32  ps;
342 	u32  pd;
343 	u32  ca;
344 	u32  cs;
345 	u32  dda;
346 	u32  dsa;
347 	u32  ds;
348 	u32  dd;
349 	u32  scratch0;
350 	u32  scratch1;
351 	u32  scratch2;
352 	u32  scratch3;
353 	u32  scratch4;
354 	u32  scratch5;
355 	u32  scratch6;
356 	u32  scratch7;
357 } __attribute__ ((packed));
358 
359 
360 struct sdma_engine;
361 
362 /**
363  * struct sdma_desc - descriptor structor for one transfer
364  * @vd:			descriptor for virt dma
365  * @num_bd:		number of descriptors currently handling
366  * @bd_phys:		physical address of bd
367  * @buf_tail:		ID of the buffer that was processed
368  * @buf_ptail:		ID of the previous buffer that was processed
369  * @period_len:		period length, used in cyclic.
370  * @chn_real_count:	the real count updated from bd->mode.count
371  * @chn_count:		the transfer count set
372  * @sdmac:		sdma_channel pointer
373  * @bd:			pointer of allocate bd
374  */
375 struct sdma_desc {
376 	struct virt_dma_desc	vd;
377 	unsigned int		num_bd;
378 	dma_addr_t		bd_phys;
379 	unsigned int		buf_tail;
380 	unsigned int		buf_ptail;
381 	unsigned int		period_len;
382 	unsigned int		chn_real_count;
383 	unsigned int		chn_count;
384 	struct sdma_channel	*sdmac;
385 	struct sdma_buffer_descriptor *bd;
386 };
387 
388 /**
389  * struct sdma_channel - housekeeping for a SDMA channel
390  *
391  * @vc:			virt_dma base structure
392  * @desc:		sdma description including vd and other special member
393  * @sdma:		pointer to the SDMA engine for this channel
394  * @channel:		the channel number, matches dmaengine chan_id + 1
395  * @direction:		transfer type. Needed for setting SDMA script
396  * @slave_config:	Slave configuration
397  * @peripheral_type:	Peripheral type. Needed for setting SDMA script
398  * @event_id0:		aka dma request line
399  * @event_id1:		for channels that use 2 events
400  * @word_size:		peripheral access size
401  * @pc_from_device:	script address for those device_2_memory
402  * @pc_to_device:	script address for those memory_2_device
403  * @device_to_device:	script address for those device_2_device
404  * @pc_to_pc:		script address for those memory_2_memory
405  * @flags:		loop mode or not
406  * @per_address:	peripheral source or destination address in common case
407  *                      destination address in p_2_p case
408  * @per_address2:	peripheral source address in p_2_p case
409  * @event_mask:		event mask used in p_2_p script
410  * @watermark_level:	value for gReg[7], some script will extend it from
411  *			basic watermark such as p_2_p
412  * @shp_addr:		value for gReg[6]
413  * @per_addr:		value for gReg[2]
414  * @status:		status of dma channel
415  * @context_loaded:	ensure context is only loaded once
416  * @data:		specific sdma interface structure
417  * @bd_pool:		dma_pool for bd
418  * @terminate_worker:	used to call back into terminate work function
419  */
420 struct sdma_channel {
421 	struct virt_dma_chan		vc;
422 	struct sdma_desc		*desc;
423 	struct sdma_engine		*sdma;
424 	unsigned int			channel;
425 	enum dma_transfer_direction		direction;
426 	struct dma_slave_config		slave_config;
427 	enum sdma_peripheral_type	peripheral_type;
428 	unsigned int			event_id0;
429 	unsigned int			event_id1;
430 	enum dma_slave_buswidth		word_size;
431 	unsigned int			pc_from_device, pc_to_device;
432 	unsigned int			device_to_device;
433 	unsigned int                    pc_to_pc;
434 	unsigned long			flags;
435 	dma_addr_t			per_address, per_address2;
436 	unsigned long			event_mask[2];
437 	unsigned long			watermark_level;
438 	u32				shp_addr, per_addr;
439 	enum dma_status			status;
440 	struct imx_dma_data		data;
441 	struct work_struct		terminate_worker;
442 	struct list_head                terminated;
443 	bool				is_ram_script;
444 };
445 
446 #define IMX_DMA_SG_LOOP		BIT(0)
447 
448 #define MAX_DMA_CHANNELS 32
449 #define MXC_SDMA_DEFAULT_PRIORITY 1
450 #define MXC_SDMA_MIN_PRIORITY 1
451 #define MXC_SDMA_MAX_PRIORITY 7
452 
453 #define SDMA_FIRMWARE_MAGIC 0x414d4453
454 
455 /**
456  * struct sdma_firmware_header - Layout of the firmware image
457  *
458  * @magic:		"SDMA"
459  * @version_major:	increased whenever layout of struct
460  *			sdma_script_start_addrs changes.
461  * @version_minor:	firmware minor version (for binary compatible changes)
462  * @script_addrs_start:	offset of struct sdma_script_start_addrs in this image
463  * @num_script_addrs:	Number of script addresses in this image
464  * @ram_code_start:	offset of SDMA ram image in this firmware image
465  * @ram_code_size:	size of SDMA ram image
466  * @script_addrs:	Stores the start address of the SDMA scripts
467  *			(in SDMA memory space)
468  */
469 struct sdma_firmware_header {
470 	u32	magic;
471 	u32	version_major;
472 	u32	version_minor;
473 	u32	script_addrs_start;
474 	u32	num_script_addrs;
475 	u32	ram_code_start;
476 	u32	ram_code_size;
477 };
478 
479 struct sdma_driver_data {
480 	int chnenbl0;
481 	int num_events;
482 	struct sdma_script_start_addrs	*script_addrs;
483 	bool check_ratio;
484 	/*
485 	 * ecspi ERR009165 fixed should be done in sdma script
486 	 * and it has been fixed in soc from i.mx6ul.
487 	 * please get more information from the below link:
488 	 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
489 	 */
490 	bool ecspi_fixed;
491 };
492 
493 struct sdma_engine {
494 	struct device			*dev;
495 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
496 	struct sdma_channel_control	*channel_control;
497 	void __iomem			*regs;
498 	struct sdma_context_data	*context;
499 	dma_addr_t			context_phys;
500 	struct dma_device		dma_device;
501 	struct clk			*clk_ipg;
502 	struct clk			*clk_ahb;
503 	spinlock_t			channel_0_lock;
504 	u32				script_number;
505 	struct sdma_script_start_addrs	*script_addrs;
506 	const struct sdma_driver_data	*drvdata;
507 	u32				spba_start_addr;
508 	u32				spba_end_addr;
509 	unsigned int			irq;
510 	dma_addr_t			bd0_phys;
511 	struct sdma_buffer_descriptor	*bd0;
512 	/* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
513 	bool				clk_ratio;
514 	bool                            fw_loaded;
515 };
516 
517 static int sdma_config_write(struct dma_chan *chan,
518 		       struct dma_slave_config *dmaengine_cfg,
519 		       enum dma_transfer_direction direction);
520 
521 static struct sdma_driver_data sdma_imx31 = {
522 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
523 	.num_events = 32,
524 };
525 
526 static struct sdma_script_start_addrs sdma_script_imx25 = {
527 	.ap_2_ap_addr = 729,
528 	.uart_2_mcu_addr = 904,
529 	.per_2_app_addr = 1255,
530 	.mcu_2_app_addr = 834,
531 	.uartsh_2_mcu_addr = 1120,
532 	.per_2_shp_addr = 1329,
533 	.mcu_2_shp_addr = 1048,
534 	.ata_2_mcu_addr = 1560,
535 	.mcu_2_ata_addr = 1479,
536 	.app_2_per_addr = 1189,
537 	.app_2_mcu_addr = 770,
538 	.shp_2_per_addr = 1407,
539 	.shp_2_mcu_addr = 979,
540 };
541 
542 static struct sdma_driver_data sdma_imx25 = {
543 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
544 	.num_events = 48,
545 	.script_addrs = &sdma_script_imx25,
546 };
547 
548 static struct sdma_driver_data sdma_imx35 = {
549 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
550 	.num_events = 48,
551 };
552 
553 static struct sdma_script_start_addrs sdma_script_imx51 = {
554 	.ap_2_ap_addr = 642,
555 	.uart_2_mcu_addr = 817,
556 	.mcu_2_app_addr = 747,
557 	.mcu_2_shp_addr = 961,
558 	.ata_2_mcu_addr = 1473,
559 	.mcu_2_ata_addr = 1392,
560 	.app_2_per_addr = 1033,
561 	.app_2_mcu_addr = 683,
562 	.shp_2_per_addr = 1251,
563 	.shp_2_mcu_addr = 892,
564 };
565 
566 static struct sdma_driver_data sdma_imx51 = {
567 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
568 	.num_events = 48,
569 	.script_addrs = &sdma_script_imx51,
570 };
571 
572 static struct sdma_script_start_addrs sdma_script_imx53 = {
573 	.ap_2_ap_addr = 642,
574 	.app_2_mcu_addr = 683,
575 	.mcu_2_app_addr = 747,
576 	.uart_2_mcu_addr = 817,
577 	.shp_2_mcu_addr = 891,
578 	.mcu_2_shp_addr = 960,
579 	.uartsh_2_mcu_addr = 1032,
580 	.spdif_2_mcu_addr = 1100,
581 	.mcu_2_spdif_addr = 1134,
582 	.firi_2_mcu_addr = 1193,
583 	.mcu_2_firi_addr = 1290,
584 };
585 
586 static struct sdma_driver_data sdma_imx53 = {
587 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
588 	.num_events = 48,
589 	.script_addrs = &sdma_script_imx53,
590 };
591 
592 static struct sdma_script_start_addrs sdma_script_imx6q = {
593 	.ap_2_ap_addr = 642,
594 	.uart_2_mcu_addr = 817,
595 	.mcu_2_app_addr = 747,
596 	.per_2_per_addr = 6331,
597 	.uartsh_2_mcu_addr = 1032,
598 	.mcu_2_shp_addr = 960,
599 	.app_2_mcu_addr = 683,
600 	.shp_2_mcu_addr = 891,
601 	.spdif_2_mcu_addr = 1100,
602 	.mcu_2_spdif_addr = 1134,
603 };
604 
605 static struct sdma_driver_data sdma_imx6q = {
606 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
607 	.num_events = 48,
608 	.script_addrs = &sdma_script_imx6q,
609 };
610 
611 static struct sdma_driver_data sdma_imx6ul = {
612 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
613 	.num_events = 48,
614 	.script_addrs = &sdma_script_imx6q,
615 	.ecspi_fixed = true,
616 };
617 
618 static struct sdma_script_start_addrs sdma_script_imx7d = {
619 	.ap_2_ap_addr = 644,
620 	.uart_2_mcu_addr = 819,
621 	.mcu_2_app_addr = 749,
622 	.uartsh_2_mcu_addr = 1034,
623 	.mcu_2_shp_addr = 962,
624 	.app_2_mcu_addr = 685,
625 	.shp_2_mcu_addr = 893,
626 	.spdif_2_mcu_addr = 1102,
627 	.mcu_2_spdif_addr = 1136,
628 };
629 
630 static struct sdma_driver_data sdma_imx7d = {
631 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
632 	.num_events = 48,
633 	.script_addrs = &sdma_script_imx7d,
634 };
635 
636 static struct sdma_driver_data sdma_imx8mq = {
637 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
638 	.num_events = 48,
639 	.script_addrs = &sdma_script_imx7d,
640 	.check_ratio = 1,
641 };
642 
643 static const struct of_device_id sdma_dt_ids[] = {
644 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
645 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
646 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
647 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
648 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
649 	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
650 	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
651 	{ .compatible = "fsl,imx6ul-sdma", .data = &sdma_imx6ul, },
652 	{ .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
653 	{ /* sentinel */ }
654 };
655 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
656 
657 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
658 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
659 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
660 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
661 
662 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
663 {
664 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
665 	return chnenbl0 + event * 4;
666 }
667 
668 static int sdma_config_ownership(struct sdma_channel *sdmac,
669 		bool event_override, bool mcu_override, bool dsp_override)
670 {
671 	struct sdma_engine *sdma = sdmac->sdma;
672 	int channel = sdmac->channel;
673 	unsigned long evt, mcu, dsp;
674 
675 	if (event_override && mcu_override && dsp_override)
676 		return -EINVAL;
677 
678 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
679 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
680 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
681 
682 	if (dsp_override)
683 		__clear_bit(channel, &dsp);
684 	else
685 		__set_bit(channel, &dsp);
686 
687 	if (event_override)
688 		__clear_bit(channel, &evt);
689 	else
690 		__set_bit(channel, &evt);
691 
692 	if (mcu_override)
693 		__clear_bit(channel, &mcu);
694 	else
695 		__set_bit(channel, &mcu);
696 
697 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
698 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
699 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
700 
701 	return 0;
702 }
703 
704 static int is_sdma_channel_enabled(struct sdma_engine *sdma, int channel)
705 {
706 	return !!(readl(sdma->regs + SDMA_H_STATSTOP) & BIT(channel));
707 }
708 
709 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
710 {
711 	writel(BIT(channel), sdma->regs + SDMA_H_START);
712 }
713 
714 /*
715  * sdma_run_channel0 - run a channel and wait till it's done
716  */
717 static int sdma_run_channel0(struct sdma_engine *sdma)
718 {
719 	int ret;
720 	u32 reg;
721 
722 	sdma_enable_channel(sdma, 0);
723 
724 	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
725 						reg, !(reg & 1), 1, 500);
726 	if (ret)
727 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
728 
729 	/* Set bits of CONFIG register with dynamic context switching */
730 	reg = readl(sdma->regs + SDMA_H_CONFIG);
731 	if ((reg & SDMA_H_CONFIG_CSM) == 0) {
732 		reg |= SDMA_H_CONFIG_CSM;
733 		writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
734 	}
735 
736 	return ret;
737 }
738 
739 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
740 		u32 address)
741 {
742 	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
743 	void *buf_virt;
744 	dma_addr_t buf_phys;
745 	int ret;
746 	unsigned long flags;
747 
748 	buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
749 	if (!buf_virt)
750 		return -ENOMEM;
751 
752 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
753 
754 	bd0->mode.command = C0_SETPM;
755 	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
756 	bd0->mode.count = size / 2;
757 	bd0->buffer_addr = buf_phys;
758 	bd0->ext_buffer_addr = address;
759 
760 	memcpy(buf_virt, buf, size);
761 
762 	ret = sdma_run_channel0(sdma);
763 
764 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
765 
766 	dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
767 
768 	return ret;
769 }
770 
771 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
772 {
773 	struct sdma_engine *sdma = sdmac->sdma;
774 	int channel = sdmac->channel;
775 	unsigned long val;
776 	u32 chnenbl = chnenbl_ofs(sdma, event);
777 
778 	val = readl_relaxed(sdma->regs + chnenbl);
779 	__set_bit(channel, &val);
780 	writel_relaxed(val, sdma->regs + chnenbl);
781 }
782 
783 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
784 {
785 	struct sdma_engine *sdma = sdmac->sdma;
786 	int channel = sdmac->channel;
787 	u32 chnenbl = chnenbl_ofs(sdma, event);
788 	unsigned long val;
789 
790 	val = readl_relaxed(sdma->regs + chnenbl);
791 	__clear_bit(channel, &val);
792 	writel_relaxed(val, sdma->regs + chnenbl);
793 }
794 
795 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
796 {
797 	return container_of(t, struct sdma_desc, vd.tx);
798 }
799 
800 static void sdma_start_desc(struct sdma_channel *sdmac)
801 {
802 	struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
803 	struct sdma_desc *desc;
804 	struct sdma_engine *sdma = sdmac->sdma;
805 	int channel = sdmac->channel;
806 
807 	if (!vd) {
808 		sdmac->desc = NULL;
809 		return;
810 	}
811 	sdmac->desc = desc = to_sdma_desc(&vd->tx);
812 
813 	list_del(&vd->node);
814 
815 	sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
816 	sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
817 	sdma_enable_channel(sdma, sdmac->channel);
818 }
819 
820 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
821 {
822 	struct sdma_buffer_descriptor *bd;
823 	int error = 0;
824 	enum dma_status	old_status = sdmac->status;
825 
826 	/*
827 	 * loop mode. Iterate over descriptors, re-setup them and
828 	 * call callback function.
829 	 */
830 	while (sdmac->desc) {
831 		struct sdma_desc *desc = sdmac->desc;
832 
833 		bd = &desc->bd[desc->buf_tail];
834 
835 		if (bd->mode.status & BD_DONE)
836 			break;
837 
838 		if (bd->mode.status & BD_RROR) {
839 			bd->mode.status &= ~BD_RROR;
840 			sdmac->status = DMA_ERROR;
841 			error = -EIO;
842 		}
843 
844 	       /*
845 		* We use bd->mode.count to calculate the residue, since contains
846 		* the number of bytes present in the current buffer descriptor.
847 		*/
848 
849 		desc->chn_real_count = bd->mode.count;
850 		bd->mode.count = desc->period_len;
851 		desc->buf_ptail = desc->buf_tail;
852 		desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
853 
854 		/*
855 		 * The callback is called from the interrupt context in order
856 		 * to reduce latency and to avoid the risk of altering the
857 		 * SDMA transaction status by the time the client tasklet is
858 		 * executed.
859 		 */
860 		spin_unlock(&sdmac->vc.lock);
861 		dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
862 		spin_lock(&sdmac->vc.lock);
863 
864 		/* Assign buffer ownership to SDMA */
865 		bd->mode.status |= BD_DONE;
866 
867 		if (error)
868 			sdmac->status = old_status;
869 	}
870 
871 	/*
872 	 * SDMA stops cyclic channel when DMA request triggers a channel and no SDMA
873 	 * owned buffer is available (i.e. BD_DONE was set too late).
874 	 */
875 	if (!is_sdma_channel_enabled(sdmac->sdma, sdmac->channel)) {
876 		dev_warn(sdmac->sdma->dev, "restart cyclic channel %d\n", sdmac->channel);
877 		sdma_enable_channel(sdmac->sdma, sdmac->channel);
878 	}
879 }
880 
881 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
882 {
883 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
884 	struct sdma_buffer_descriptor *bd;
885 	int i, error = 0;
886 
887 	sdmac->desc->chn_real_count = 0;
888 	/*
889 	 * non loop mode. Iterate over all descriptors, collect
890 	 * errors and call callback function
891 	 */
892 	for (i = 0; i < sdmac->desc->num_bd; i++) {
893 		bd = &sdmac->desc->bd[i];
894 
895 		if (bd->mode.status & (BD_DONE | BD_RROR))
896 			error = -EIO;
897 		sdmac->desc->chn_real_count += bd->mode.count;
898 	}
899 
900 	if (error)
901 		sdmac->status = DMA_ERROR;
902 	else
903 		sdmac->status = DMA_COMPLETE;
904 }
905 
906 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
907 {
908 	struct sdma_engine *sdma = dev_id;
909 	unsigned long stat;
910 
911 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
912 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
913 	/* channel 0 is special and not handled here, see run_channel0() */
914 	stat &= ~1;
915 
916 	while (stat) {
917 		int channel = fls(stat) - 1;
918 		struct sdma_channel *sdmac = &sdma->channel[channel];
919 		struct sdma_desc *desc;
920 
921 		spin_lock(&sdmac->vc.lock);
922 		desc = sdmac->desc;
923 		if (desc) {
924 			if (sdmac->flags & IMX_DMA_SG_LOOP) {
925 				sdma_update_channel_loop(sdmac);
926 			} else {
927 				mxc_sdma_handle_channel_normal(sdmac);
928 				vchan_cookie_complete(&desc->vd);
929 				sdma_start_desc(sdmac);
930 			}
931 		}
932 
933 		spin_unlock(&sdmac->vc.lock);
934 		__clear_bit(channel, &stat);
935 	}
936 
937 	return IRQ_HANDLED;
938 }
939 
940 /*
941  * sets the pc of SDMA script according to the peripheral type
942  */
943 static void sdma_get_pc(struct sdma_channel *sdmac,
944 		enum sdma_peripheral_type peripheral_type)
945 {
946 	struct sdma_engine *sdma = sdmac->sdma;
947 	int per_2_emi = 0, emi_2_per = 0;
948 	/*
949 	 * These are needed once we start to support transfers between
950 	 * two peripherals or memory-to-memory transfers
951 	 */
952 	int per_2_per = 0, emi_2_emi = 0;
953 
954 	sdmac->pc_from_device = 0;
955 	sdmac->pc_to_device = 0;
956 	sdmac->device_to_device = 0;
957 	sdmac->pc_to_pc = 0;
958 	sdmac->is_ram_script = false;
959 
960 	switch (peripheral_type) {
961 	case IMX_DMATYPE_MEMORY:
962 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
963 		break;
964 	case IMX_DMATYPE_DSP:
965 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
966 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
967 		break;
968 	case IMX_DMATYPE_FIRI:
969 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
970 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
971 		break;
972 	case IMX_DMATYPE_UART:
973 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
974 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
975 		break;
976 	case IMX_DMATYPE_UART_SP:
977 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
978 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
979 		break;
980 	case IMX_DMATYPE_ATA:
981 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
982 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
983 		break;
984 	case IMX_DMATYPE_CSPI:
985 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
986 
987 		/* Use rom script mcu_2_app if ERR009165 fixed */
988 		if (sdmac->sdma->drvdata->ecspi_fixed) {
989 			emi_2_per = sdma->script_addrs->mcu_2_app_addr;
990 		} else {
991 			emi_2_per = sdma->script_addrs->mcu_2_ecspi_addr;
992 			sdmac->is_ram_script = true;
993 		}
994 
995 		break;
996 	case IMX_DMATYPE_EXT:
997 	case IMX_DMATYPE_SSI:
998 	case IMX_DMATYPE_SAI:
999 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1000 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1001 		break;
1002 	case IMX_DMATYPE_SSI_DUAL:
1003 		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
1004 		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
1005 		sdmac->is_ram_script = true;
1006 		break;
1007 	case IMX_DMATYPE_SSI_SP:
1008 	case IMX_DMATYPE_MMC:
1009 	case IMX_DMATYPE_SDHC:
1010 	case IMX_DMATYPE_CSPI_SP:
1011 	case IMX_DMATYPE_ESAI:
1012 	case IMX_DMATYPE_MSHC_SP:
1013 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1014 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1015 		break;
1016 	case IMX_DMATYPE_ASRC:
1017 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
1018 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
1019 		per_2_per = sdma->script_addrs->per_2_per_addr;
1020 		sdmac->is_ram_script = true;
1021 		break;
1022 	case IMX_DMATYPE_ASRC_SP:
1023 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1024 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1025 		per_2_per = sdma->script_addrs->per_2_per_addr;
1026 		break;
1027 	case IMX_DMATYPE_MSHC:
1028 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
1029 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
1030 		break;
1031 	case IMX_DMATYPE_CCM:
1032 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
1033 		break;
1034 	case IMX_DMATYPE_SPDIF:
1035 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
1036 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
1037 		break;
1038 	case IMX_DMATYPE_IPU_MEMORY:
1039 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
1040 		break;
1041 	default:
1042 		break;
1043 	}
1044 
1045 	sdmac->pc_from_device = per_2_emi;
1046 	sdmac->pc_to_device = emi_2_per;
1047 	sdmac->device_to_device = per_2_per;
1048 	sdmac->pc_to_pc = emi_2_emi;
1049 }
1050 
1051 static int sdma_load_context(struct sdma_channel *sdmac)
1052 {
1053 	struct sdma_engine *sdma = sdmac->sdma;
1054 	int channel = sdmac->channel;
1055 	int load_address;
1056 	struct sdma_context_data *context = sdma->context;
1057 	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
1058 	int ret;
1059 	unsigned long flags;
1060 
1061 	if (sdmac->direction == DMA_DEV_TO_MEM)
1062 		load_address = sdmac->pc_from_device;
1063 	else if (sdmac->direction == DMA_DEV_TO_DEV)
1064 		load_address = sdmac->device_to_device;
1065 	else if (sdmac->direction == DMA_MEM_TO_MEM)
1066 		load_address = sdmac->pc_to_pc;
1067 	else
1068 		load_address = sdmac->pc_to_device;
1069 
1070 	if (load_address < 0)
1071 		return load_address;
1072 
1073 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1074 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1075 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1076 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1077 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1078 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1079 
1080 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
1081 
1082 	memset(context, 0, sizeof(*context));
1083 	context->channel_state.pc = load_address;
1084 
1085 	/* Send by context the event mask,base address for peripheral
1086 	 * and watermark level
1087 	 */
1088 	context->gReg[0] = sdmac->event_mask[1];
1089 	context->gReg[1] = sdmac->event_mask[0];
1090 	context->gReg[2] = sdmac->per_addr;
1091 	context->gReg[6] = sdmac->shp_addr;
1092 	context->gReg[7] = sdmac->watermark_level;
1093 
1094 	bd0->mode.command = C0_SETDM;
1095 	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1096 	bd0->mode.count = sizeof(*context) / 4;
1097 	bd0->buffer_addr = sdma->context_phys;
1098 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1099 	ret = sdma_run_channel0(sdma);
1100 
1101 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1102 
1103 	return ret;
1104 }
1105 
1106 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1107 {
1108 	return container_of(chan, struct sdma_channel, vc.chan);
1109 }
1110 
1111 static int sdma_disable_channel(struct dma_chan *chan)
1112 {
1113 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1114 	struct sdma_engine *sdma = sdmac->sdma;
1115 	int channel = sdmac->channel;
1116 
1117 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1118 	sdmac->status = DMA_ERROR;
1119 
1120 	return 0;
1121 }
1122 static void sdma_channel_terminate_work(struct work_struct *work)
1123 {
1124 	struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1125 						  terminate_worker);
1126 	/*
1127 	 * According to NXP R&D team a delay of one BD SDMA cost time
1128 	 * (maximum is 1ms) should be added after disable of the channel
1129 	 * bit, to ensure SDMA core has really been stopped after SDMA
1130 	 * clients call .device_terminate_all.
1131 	 */
1132 	usleep_range(1000, 2000);
1133 
1134 	vchan_dma_desc_free_list(&sdmac->vc, &sdmac->terminated);
1135 }
1136 
1137 static int sdma_terminate_all(struct dma_chan *chan)
1138 {
1139 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1140 	unsigned long flags;
1141 
1142 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1143 
1144 	sdma_disable_channel(chan);
1145 
1146 	if (sdmac->desc) {
1147 		vchan_terminate_vdesc(&sdmac->desc->vd);
1148 		/*
1149 		 * move out current descriptor into terminated list so that
1150 		 * it could be free in sdma_channel_terminate_work alone
1151 		 * later without potential involving next descriptor raised
1152 		 * up before the last descriptor terminated.
1153 		 */
1154 		vchan_get_all_descriptors(&sdmac->vc, &sdmac->terminated);
1155 		sdmac->desc = NULL;
1156 		schedule_work(&sdmac->terminate_worker);
1157 	}
1158 
1159 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1160 
1161 	return 0;
1162 }
1163 
1164 static void sdma_channel_synchronize(struct dma_chan *chan)
1165 {
1166 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1167 
1168 	vchan_synchronize(&sdmac->vc);
1169 
1170 	flush_work(&sdmac->terminate_worker);
1171 }
1172 
1173 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1174 {
1175 	struct sdma_engine *sdma = sdmac->sdma;
1176 
1177 	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1178 	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1179 
1180 	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1181 	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1182 
1183 	if (sdmac->event_id0 > 31)
1184 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1185 
1186 	if (sdmac->event_id1 > 31)
1187 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1188 
1189 	/*
1190 	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1191 	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1192 	 * r0(event_mask[1]) and r1(event_mask[0]).
1193 	 */
1194 	if (lwml > hwml) {
1195 		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1196 						SDMA_WATERMARK_LEVEL_HWML);
1197 		sdmac->watermark_level |= hwml;
1198 		sdmac->watermark_level |= lwml << 16;
1199 		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1200 	}
1201 
1202 	if (sdmac->per_address2 >= sdma->spba_start_addr &&
1203 			sdmac->per_address2 <= sdma->spba_end_addr)
1204 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1205 
1206 	if (sdmac->per_address >= sdma->spba_start_addr &&
1207 			sdmac->per_address <= sdma->spba_end_addr)
1208 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1209 
1210 	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1211 }
1212 
1213 static int sdma_config_channel(struct dma_chan *chan)
1214 {
1215 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1216 
1217 	sdma_disable_channel(chan);
1218 
1219 	sdmac->event_mask[0] = 0;
1220 	sdmac->event_mask[1] = 0;
1221 	sdmac->shp_addr = 0;
1222 	sdmac->per_addr = 0;
1223 
1224 	switch (sdmac->peripheral_type) {
1225 	case IMX_DMATYPE_DSP:
1226 		sdma_config_ownership(sdmac, false, true, true);
1227 		break;
1228 	case IMX_DMATYPE_MEMORY:
1229 		sdma_config_ownership(sdmac, false, true, false);
1230 		break;
1231 	default:
1232 		sdma_config_ownership(sdmac, true, true, false);
1233 		break;
1234 	}
1235 
1236 	sdma_get_pc(sdmac, sdmac->peripheral_type);
1237 
1238 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1239 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1240 		/* Handle multiple event channels differently */
1241 		if (sdmac->event_id1) {
1242 			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1243 			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1244 				sdma_set_watermarklevel_for_p2p(sdmac);
1245 		} else {
1246 			__set_bit(sdmac->event_id0, sdmac->event_mask);
1247 		}
1248 
1249 		/* Address */
1250 		sdmac->shp_addr = sdmac->per_address;
1251 		sdmac->per_addr = sdmac->per_address2;
1252 	} else {
1253 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1254 	}
1255 
1256 	return 0;
1257 }
1258 
1259 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1260 				     unsigned int priority)
1261 {
1262 	struct sdma_engine *sdma = sdmac->sdma;
1263 	int channel = sdmac->channel;
1264 
1265 	if (priority < MXC_SDMA_MIN_PRIORITY
1266 	    || priority > MXC_SDMA_MAX_PRIORITY) {
1267 		return -EINVAL;
1268 	}
1269 
1270 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1271 
1272 	return 0;
1273 }
1274 
1275 static int sdma_request_channel0(struct sdma_engine *sdma)
1276 {
1277 	int ret = -EBUSY;
1278 
1279 	sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1280 				       GFP_NOWAIT);
1281 	if (!sdma->bd0) {
1282 		ret = -ENOMEM;
1283 		goto out;
1284 	}
1285 
1286 	sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1287 	sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1288 
1289 	sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1290 	return 0;
1291 out:
1292 
1293 	return ret;
1294 }
1295 
1296 
1297 static int sdma_alloc_bd(struct sdma_desc *desc)
1298 {
1299 	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1300 	int ret = 0;
1301 
1302 	desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1303 				      &desc->bd_phys, GFP_NOWAIT);
1304 	if (!desc->bd) {
1305 		ret = -ENOMEM;
1306 		goto out;
1307 	}
1308 out:
1309 	return ret;
1310 }
1311 
1312 static void sdma_free_bd(struct sdma_desc *desc)
1313 {
1314 	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1315 
1316 	dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1317 			  desc->bd_phys);
1318 }
1319 
1320 static void sdma_desc_free(struct virt_dma_desc *vd)
1321 {
1322 	struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1323 
1324 	sdma_free_bd(desc);
1325 	kfree(desc);
1326 }
1327 
1328 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1329 {
1330 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1331 	struct imx_dma_data *data = chan->private;
1332 	struct imx_dma_data mem_data;
1333 	int prio, ret;
1334 
1335 	/*
1336 	 * MEMCPY may never setup chan->private by filter function such as
1337 	 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1338 	 * Please note in any other slave case, you have to setup chan->private
1339 	 * with 'struct imx_dma_data' in your own filter function if you want to
1340 	 * request dma channel by dma_request_channel() rather than
1341 	 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1342 	 * to warn you to correct your filter function.
1343 	 */
1344 	if (!data) {
1345 		dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1346 		mem_data.priority = 2;
1347 		mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1348 		mem_data.dma_request = 0;
1349 		mem_data.dma_request2 = 0;
1350 		data = &mem_data;
1351 
1352 		sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1353 	}
1354 
1355 	switch (data->priority) {
1356 	case DMA_PRIO_HIGH:
1357 		prio = 3;
1358 		break;
1359 	case DMA_PRIO_MEDIUM:
1360 		prio = 2;
1361 		break;
1362 	case DMA_PRIO_LOW:
1363 	default:
1364 		prio = 1;
1365 		break;
1366 	}
1367 
1368 	sdmac->peripheral_type = data->peripheral_type;
1369 	sdmac->event_id0 = data->dma_request;
1370 	sdmac->event_id1 = data->dma_request2;
1371 
1372 	ret = clk_enable(sdmac->sdma->clk_ipg);
1373 	if (ret)
1374 		return ret;
1375 	ret = clk_enable(sdmac->sdma->clk_ahb);
1376 	if (ret)
1377 		goto disable_clk_ipg;
1378 
1379 	ret = sdma_set_channel_priority(sdmac, prio);
1380 	if (ret)
1381 		goto disable_clk_ahb;
1382 
1383 	return 0;
1384 
1385 disable_clk_ahb:
1386 	clk_disable(sdmac->sdma->clk_ahb);
1387 disable_clk_ipg:
1388 	clk_disable(sdmac->sdma->clk_ipg);
1389 	return ret;
1390 }
1391 
1392 static void sdma_free_chan_resources(struct dma_chan *chan)
1393 {
1394 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1395 	struct sdma_engine *sdma = sdmac->sdma;
1396 
1397 	sdma_terminate_all(chan);
1398 
1399 	sdma_channel_synchronize(chan);
1400 
1401 	sdma_event_disable(sdmac, sdmac->event_id0);
1402 	if (sdmac->event_id1)
1403 		sdma_event_disable(sdmac, sdmac->event_id1);
1404 
1405 	sdmac->event_id0 = 0;
1406 	sdmac->event_id1 = 0;
1407 
1408 	sdma_set_channel_priority(sdmac, 0);
1409 
1410 	clk_disable(sdma->clk_ipg);
1411 	clk_disable(sdma->clk_ahb);
1412 }
1413 
1414 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1415 				enum dma_transfer_direction direction, u32 bds)
1416 {
1417 	struct sdma_desc *desc;
1418 
1419 	if (!sdmac->sdma->fw_loaded && sdmac->is_ram_script) {
1420 		dev_warn_once(sdmac->sdma->dev, "sdma firmware not ready!\n");
1421 		goto err_out;
1422 	}
1423 
1424 	desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1425 	if (!desc)
1426 		goto err_out;
1427 
1428 	sdmac->status = DMA_IN_PROGRESS;
1429 	sdmac->direction = direction;
1430 	sdmac->flags = 0;
1431 
1432 	desc->chn_count = 0;
1433 	desc->chn_real_count = 0;
1434 	desc->buf_tail = 0;
1435 	desc->buf_ptail = 0;
1436 	desc->sdmac = sdmac;
1437 	desc->num_bd = bds;
1438 
1439 	if (sdma_alloc_bd(desc))
1440 		goto err_desc_out;
1441 
1442 	/* No slave_config called in MEMCPY case, so do here */
1443 	if (direction == DMA_MEM_TO_MEM)
1444 		sdma_config_ownership(sdmac, false, true, false);
1445 
1446 	if (sdma_load_context(sdmac))
1447 		goto err_desc_out;
1448 
1449 	return desc;
1450 
1451 err_desc_out:
1452 	kfree(desc);
1453 err_out:
1454 	return NULL;
1455 }
1456 
1457 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1458 		struct dma_chan *chan, dma_addr_t dma_dst,
1459 		dma_addr_t dma_src, size_t len, unsigned long flags)
1460 {
1461 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1462 	struct sdma_engine *sdma = sdmac->sdma;
1463 	int channel = sdmac->channel;
1464 	size_t count;
1465 	int i = 0, param;
1466 	struct sdma_buffer_descriptor *bd;
1467 	struct sdma_desc *desc;
1468 
1469 	if (!chan || !len)
1470 		return NULL;
1471 
1472 	dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1473 		&dma_src, &dma_dst, len, channel);
1474 
1475 	desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1476 					len / SDMA_BD_MAX_CNT + 1);
1477 	if (!desc)
1478 		return NULL;
1479 
1480 	do {
1481 		count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1482 		bd = &desc->bd[i];
1483 		bd->buffer_addr = dma_src;
1484 		bd->ext_buffer_addr = dma_dst;
1485 		bd->mode.count = count;
1486 		desc->chn_count += count;
1487 		bd->mode.command = 0;
1488 
1489 		dma_src += count;
1490 		dma_dst += count;
1491 		len -= count;
1492 		i++;
1493 
1494 		param = BD_DONE | BD_EXTD | BD_CONT;
1495 		/* last bd */
1496 		if (!len) {
1497 			param |= BD_INTR;
1498 			param |= BD_LAST;
1499 			param &= ~BD_CONT;
1500 		}
1501 
1502 		dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1503 				i, count, bd->buffer_addr,
1504 				param & BD_WRAP ? "wrap" : "",
1505 				param & BD_INTR ? " intr" : "");
1506 
1507 		bd->mode.status = param;
1508 	} while (len);
1509 
1510 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1511 }
1512 
1513 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1514 		struct dma_chan *chan, struct scatterlist *sgl,
1515 		unsigned int sg_len, enum dma_transfer_direction direction,
1516 		unsigned long flags, void *context)
1517 {
1518 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1519 	struct sdma_engine *sdma = sdmac->sdma;
1520 	int i, count;
1521 	int channel = sdmac->channel;
1522 	struct scatterlist *sg;
1523 	struct sdma_desc *desc;
1524 
1525 	sdma_config_write(chan, &sdmac->slave_config, direction);
1526 
1527 	desc = sdma_transfer_init(sdmac, direction, sg_len);
1528 	if (!desc)
1529 		goto err_out;
1530 
1531 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1532 			sg_len, channel);
1533 
1534 	for_each_sg(sgl, sg, sg_len, i) {
1535 		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1536 		int param;
1537 
1538 		bd->buffer_addr = sg->dma_address;
1539 
1540 		count = sg_dma_len(sg);
1541 
1542 		if (count > SDMA_BD_MAX_CNT) {
1543 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1544 					channel, count, SDMA_BD_MAX_CNT);
1545 			goto err_bd_out;
1546 		}
1547 
1548 		bd->mode.count = count;
1549 		desc->chn_count += count;
1550 
1551 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1552 			goto err_bd_out;
1553 
1554 		switch (sdmac->word_size) {
1555 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1556 			bd->mode.command = 0;
1557 			if (count & 3 || sg->dma_address & 3)
1558 				goto err_bd_out;
1559 			break;
1560 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1561 			bd->mode.command = 2;
1562 			if (count & 1 || sg->dma_address & 1)
1563 				goto err_bd_out;
1564 			break;
1565 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1566 			bd->mode.command = 1;
1567 			break;
1568 		default:
1569 			goto err_bd_out;
1570 		}
1571 
1572 		param = BD_DONE | BD_EXTD | BD_CONT;
1573 
1574 		if (i + 1 == sg_len) {
1575 			param |= BD_INTR;
1576 			param |= BD_LAST;
1577 			param &= ~BD_CONT;
1578 		}
1579 
1580 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1581 				i, count, (u64)sg->dma_address,
1582 				param & BD_WRAP ? "wrap" : "",
1583 				param & BD_INTR ? " intr" : "");
1584 
1585 		bd->mode.status = param;
1586 	}
1587 
1588 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1589 err_bd_out:
1590 	sdma_free_bd(desc);
1591 	kfree(desc);
1592 err_out:
1593 	sdmac->status = DMA_ERROR;
1594 	return NULL;
1595 }
1596 
1597 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1598 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1599 		size_t period_len, enum dma_transfer_direction direction,
1600 		unsigned long flags)
1601 {
1602 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1603 	struct sdma_engine *sdma = sdmac->sdma;
1604 	int num_periods = buf_len / period_len;
1605 	int channel = sdmac->channel;
1606 	int i = 0, buf = 0;
1607 	struct sdma_desc *desc;
1608 
1609 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1610 
1611 	sdma_config_write(chan, &sdmac->slave_config, direction);
1612 
1613 	desc = sdma_transfer_init(sdmac, direction, num_periods);
1614 	if (!desc)
1615 		goto err_out;
1616 
1617 	desc->period_len = period_len;
1618 
1619 	sdmac->flags |= IMX_DMA_SG_LOOP;
1620 
1621 	if (period_len > SDMA_BD_MAX_CNT) {
1622 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1623 				channel, period_len, SDMA_BD_MAX_CNT);
1624 		goto err_bd_out;
1625 	}
1626 
1627 	while (buf < buf_len) {
1628 		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1629 		int param;
1630 
1631 		bd->buffer_addr = dma_addr;
1632 
1633 		bd->mode.count = period_len;
1634 
1635 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1636 			goto err_bd_out;
1637 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1638 			bd->mode.command = 0;
1639 		else
1640 			bd->mode.command = sdmac->word_size;
1641 
1642 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1643 		if (i + 1 == num_periods)
1644 			param |= BD_WRAP;
1645 
1646 		dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1647 				i, period_len, (u64)dma_addr,
1648 				param & BD_WRAP ? "wrap" : "",
1649 				param & BD_INTR ? " intr" : "");
1650 
1651 		bd->mode.status = param;
1652 
1653 		dma_addr += period_len;
1654 		buf += period_len;
1655 
1656 		i++;
1657 	}
1658 
1659 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1660 err_bd_out:
1661 	sdma_free_bd(desc);
1662 	kfree(desc);
1663 err_out:
1664 	sdmac->status = DMA_ERROR;
1665 	return NULL;
1666 }
1667 
1668 static int sdma_config_write(struct dma_chan *chan,
1669 		       struct dma_slave_config *dmaengine_cfg,
1670 		       enum dma_transfer_direction direction)
1671 {
1672 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1673 
1674 	if (direction == DMA_DEV_TO_MEM) {
1675 		sdmac->per_address = dmaengine_cfg->src_addr;
1676 		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1677 			dmaengine_cfg->src_addr_width;
1678 		sdmac->word_size = dmaengine_cfg->src_addr_width;
1679 	} else if (direction == DMA_DEV_TO_DEV) {
1680 		sdmac->per_address2 = dmaengine_cfg->src_addr;
1681 		sdmac->per_address = dmaengine_cfg->dst_addr;
1682 		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1683 			SDMA_WATERMARK_LEVEL_LWML;
1684 		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1685 			SDMA_WATERMARK_LEVEL_HWML;
1686 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1687 	} else {
1688 		sdmac->per_address = dmaengine_cfg->dst_addr;
1689 		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1690 			dmaengine_cfg->dst_addr_width;
1691 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1692 	}
1693 	sdmac->direction = direction;
1694 	return sdma_config_channel(chan);
1695 }
1696 
1697 static int sdma_config(struct dma_chan *chan,
1698 		       struct dma_slave_config *dmaengine_cfg)
1699 {
1700 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1701 
1702 	memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1703 
1704 	/* Set ENBLn earlier to make sure dma request triggered after that */
1705 	if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1706 		return -EINVAL;
1707 	sdma_event_enable(sdmac, sdmac->event_id0);
1708 
1709 	if (sdmac->event_id1) {
1710 		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1711 			return -EINVAL;
1712 		sdma_event_enable(sdmac, sdmac->event_id1);
1713 	}
1714 
1715 	return 0;
1716 }
1717 
1718 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1719 				      dma_cookie_t cookie,
1720 				      struct dma_tx_state *txstate)
1721 {
1722 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1723 	struct sdma_desc *desc = NULL;
1724 	u32 residue;
1725 	struct virt_dma_desc *vd;
1726 	enum dma_status ret;
1727 	unsigned long flags;
1728 
1729 	ret = dma_cookie_status(chan, cookie, txstate);
1730 	if (ret == DMA_COMPLETE || !txstate)
1731 		return ret;
1732 
1733 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1734 
1735 	vd = vchan_find_desc(&sdmac->vc, cookie);
1736 	if (vd)
1737 		desc = to_sdma_desc(&vd->tx);
1738 	else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1739 		desc = sdmac->desc;
1740 
1741 	if (desc) {
1742 		if (sdmac->flags & IMX_DMA_SG_LOOP)
1743 			residue = (desc->num_bd - desc->buf_ptail) *
1744 				desc->period_len - desc->chn_real_count;
1745 		else
1746 			residue = desc->chn_count - desc->chn_real_count;
1747 	} else {
1748 		residue = 0;
1749 	}
1750 
1751 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1752 
1753 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1754 			 residue);
1755 
1756 	return sdmac->status;
1757 }
1758 
1759 static void sdma_issue_pending(struct dma_chan *chan)
1760 {
1761 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1762 	unsigned long flags;
1763 
1764 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1765 	if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1766 		sdma_start_desc(sdmac);
1767 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1768 }
1769 
1770 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1771 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1772 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	45
1773 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4	46
1774 
1775 static void sdma_add_scripts(struct sdma_engine *sdma,
1776 			     const struct sdma_script_start_addrs *addr)
1777 {
1778 	s32 *addr_arr = (u32 *)addr;
1779 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1780 	int i;
1781 
1782 	/* use the default firmware in ROM if missing external firmware */
1783 	if (!sdma->script_number)
1784 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1785 
1786 	if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1787 				  / sizeof(s32)) {
1788 		dev_err(sdma->dev,
1789 			"SDMA script number %d not match with firmware.\n",
1790 			sdma->script_number);
1791 		return;
1792 	}
1793 
1794 	for (i = 0; i < sdma->script_number; i++)
1795 		if (addr_arr[i] > 0)
1796 			saddr_arr[i] = addr_arr[i];
1797 
1798 	/*
1799 	 * For compatibility with NXP internal legacy kernel before 4.19 which
1800 	 * is based on uart ram script and mainline kernel based on uart rom
1801 	 * script, both uart ram/rom scripts are present in newer sdma
1802 	 * firmware. Use the rom versions if they are present (V3 or newer).
1803 	 */
1804 	if (sdma->script_number >= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3) {
1805 		if (addr->uart_2_mcu_rom_addr)
1806 			sdma->script_addrs->uart_2_mcu_addr = addr->uart_2_mcu_rom_addr;
1807 		if (addr->uartsh_2_mcu_rom_addr)
1808 			sdma->script_addrs->uartsh_2_mcu_addr = addr->uartsh_2_mcu_rom_addr;
1809 	}
1810 }
1811 
1812 static void sdma_load_firmware(const struct firmware *fw, void *context)
1813 {
1814 	struct sdma_engine *sdma = context;
1815 	const struct sdma_firmware_header *header;
1816 	const struct sdma_script_start_addrs *addr;
1817 	unsigned short *ram_code;
1818 
1819 	if (!fw) {
1820 		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1821 		/* In this case we just use the ROM firmware. */
1822 		return;
1823 	}
1824 
1825 	if (fw->size < sizeof(*header))
1826 		goto err_firmware;
1827 
1828 	header = (struct sdma_firmware_header *)fw->data;
1829 
1830 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1831 		goto err_firmware;
1832 	if (header->ram_code_start + header->ram_code_size > fw->size)
1833 		goto err_firmware;
1834 	switch (header->version_major) {
1835 	case 1:
1836 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1837 		break;
1838 	case 2:
1839 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1840 		break;
1841 	case 3:
1842 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1843 		break;
1844 	case 4:
1845 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1846 		break;
1847 	default:
1848 		dev_err(sdma->dev, "unknown firmware version\n");
1849 		goto err_firmware;
1850 	}
1851 
1852 	addr = (void *)header + header->script_addrs_start;
1853 	ram_code = (void *)header + header->ram_code_start;
1854 
1855 	clk_enable(sdma->clk_ipg);
1856 	clk_enable(sdma->clk_ahb);
1857 	/* download the RAM image for SDMA */
1858 	sdma_load_script(sdma, ram_code,
1859 			 header->ram_code_size,
1860 			 addr->ram_code_start_addr);
1861 	clk_disable(sdma->clk_ipg);
1862 	clk_disable(sdma->clk_ahb);
1863 
1864 	sdma_add_scripts(sdma, addr);
1865 
1866 	sdma->fw_loaded = true;
1867 
1868 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1869 		 header->version_major,
1870 		 header->version_minor);
1871 
1872 err_firmware:
1873 	release_firmware(fw);
1874 }
1875 
1876 #define EVENT_REMAP_CELLS 3
1877 
1878 static int sdma_event_remap(struct sdma_engine *sdma)
1879 {
1880 	struct device_node *np = sdma->dev->of_node;
1881 	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1882 	struct property *event_remap;
1883 	struct regmap *gpr;
1884 	char propname[] = "fsl,sdma-event-remap";
1885 	u32 reg, val, shift, num_map, i;
1886 	int ret = 0;
1887 
1888 	if (IS_ERR(np) || !gpr_np)
1889 		goto out;
1890 
1891 	event_remap = of_find_property(np, propname, NULL);
1892 	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1893 	if (!num_map) {
1894 		dev_dbg(sdma->dev, "no event needs to be remapped\n");
1895 		goto out;
1896 	} else if (num_map % EVENT_REMAP_CELLS) {
1897 		dev_err(sdma->dev, "the property %s must modulo %d\n",
1898 				propname, EVENT_REMAP_CELLS);
1899 		ret = -EINVAL;
1900 		goto out;
1901 	}
1902 
1903 	gpr = syscon_node_to_regmap(gpr_np);
1904 	if (IS_ERR(gpr)) {
1905 		dev_err(sdma->dev, "failed to get gpr regmap\n");
1906 		ret = PTR_ERR(gpr);
1907 		goto out;
1908 	}
1909 
1910 	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1911 		ret = of_property_read_u32_index(np, propname, i, &reg);
1912 		if (ret) {
1913 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1914 					propname, i);
1915 			goto out;
1916 		}
1917 
1918 		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1919 		if (ret) {
1920 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1921 					propname, i + 1);
1922 			goto out;
1923 		}
1924 
1925 		ret = of_property_read_u32_index(np, propname, i + 2, &val);
1926 		if (ret) {
1927 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1928 					propname, i + 2);
1929 			goto out;
1930 		}
1931 
1932 		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1933 	}
1934 
1935 out:
1936 	if (gpr_np)
1937 		of_node_put(gpr_np);
1938 
1939 	return ret;
1940 }
1941 
1942 static int sdma_get_firmware(struct sdma_engine *sdma,
1943 		const char *fw_name)
1944 {
1945 	int ret;
1946 
1947 	ret = request_firmware_nowait(THIS_MODULE,
1948 			FW_ACTION_UEVENT, fw_name, sdma->dev,
1949 			GFP_KERNEL, sdma, sdma_load_firmware);
1950 
1951 	return ret;
1952 }
1953 
1954 static int sdma_init(struct sdma_engine *sdma)
1955 {
1956 	int i, ret;
1957 	dma_addr_t ccb_phys;
1958 
1959 	ret = clk_enable(sdma->clk_ipg);
1960 	if (ret)
1961 		return ret;
1962 	ret = clk_enable(sdma->clk_ahb);
1963 	if (ret)
1964 		goto disable_clk_ipg;
1965 
1966 	if (sdma->drvdata->check_ratio &&
1967 	    (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
1968 		sdma->clk_ratio = 1;
1969 
1970 	/* Be sure SDMA has not started yet */
1971 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1972 
1973 	sdma->channel_control = dma_alloc_coherent(sdma->dev,
1974 			MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control) +
1975 			sizeof(struct sdma_context_data),
1976 			&ccb_phys, GFP_KERNEL);
1977 
1978 	if (!sdma->channel_control) {
1979 		ret = -ENOMEM;
1980 		goto err_dma_alloc;
1981 	}
1982 
1983 	sdma->context = (void *)sdma->channel_control +
1984 		MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
1985 	sdma->context_phys = ccb_phys +
1986 		MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
1987 
1988 	/* disable all channels */
1989 	for (i = 0; i < sdma->drvdata->num_events; i++)
1990 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1991 
1992 	/* All channels have priority 0 */
1993 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1994 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1995 
1996 	ret = sdma_request_channel0(sdma);
1997 	if (ret)
1998 		goto err_dma_alloc;
1999 
2000 	sdma_config_ownership(&sdma->channel[0], false, true, false);
2001 
2002 	/* Set Command Channel (Channel Zero) */
2003 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
2004 
2005 	/* Set bits of CONFIG register but with static context switching */
2006 	if (sdma->clk_ratio)
2007 		writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
2008 	else
2009 		writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
2010 
2011 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
2012 
2013 	/* Initializes channel's priorities */
2014 	sdma_set_channel_priority(&sdma->channel[0], 7);
2015 
2016 	clk_disable(sdma->clk_ipg);
2017 	clk_disable(sdma->clk_ahb);
2018 
2019 	return 0;
2020 
2021 err_dma_alloc:
2022 	clk_disable(sdma->clk_ahb);
2023 disable_clk_ipg:
2024 	clk_disable(sdma->clk_ipg);
2025 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
2026 	return ret;
2027 }
2028 
2029 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
2030 {
2031 	struct sdma_channel *sdmac = to_sdma_chan(chan);
2032 	struct imx_dma_data *data = fn_param;
2033 
2034 	if (!imx_dma_is_general_purpose(chan))
2035 		return false;
2036 
2037 	sdmac->data = *data;
2038 	chan->private = &sdmac->data;
2039 
2040 	return true;
2041 }
2042 
2043 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
2044 				   struct of_dma *ofdma)
2045 {
2046 	struct sdma_engine *sdma = ofdma->of_dma_data;
2047 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
2048 	struct imx_dma_data data;
2049 
2050 	if (dma_spec->args_count != 3)
2051 		return NULL;
2052 
2053 	data.dma_request = dma_spec->args[0];
2054 	data.peripheral_type = dma_spec->args[1];
2055 	data.priority = dma_spec->args[2];
2056 	/*
2057 	 * init dma_request2 to zero, which is not used by the dts.
2058 	 * For P2P, dma_request2 is init from dma_request_channel(),
2059 	 * chan->private will point to the imx_dma_data, and in
2060 	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
2061 	 * be set to sdmac->event_id1.
2062 	 */
2063 	data.dma_request2 = 0;
2064 
2065 	return __dma_request_channel(&mask, sdma_filter_fn, &data,
2066 				     ofdma->of_node);
2067 }
2068 
2069 static int sdma_probe(struct platform_device *pdev)
2070 {
2071 	struct device_node *np = pdev->dev.of_node;
2072 	struct device_node *spba_bus;
2073 	const char *fw_name;
2074 	int ret;
2075 	int irq;
2076 	struct resource *iores;
2077 	struct resource spba_res;
2078 	int i;
2079 	struct sdma_engine *sdma;
2080 	s32 *saddr_arr;
2081 
2082 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2083 	if (ret)
2084 		return ret;
2085 
2086 	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2087 	if (!sdma)
2088 		return -ENOMEM;
2089 
2090 	spin_lock_init(&sdma->channel_0_lock);
2091 
2092 	sdma->dev = &pdev->dev;
2093 	sdma->drvdata = of_device_get_match_data(sdma->dev);
2094 
2095 	irq = platform_get_irq(pdev, 0);
2096 	if (irq < 0)
2097 		return irq;
2098 
2099 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2100 	sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
2101 	if (IS_ERR(sdma->regs))
2102 		return PTR_ERR(sdma->regs);
2103 
2104 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2105 	if (IS_ERR(sdma->clk_ipg))
2106 		return PTR_ERR(sdma->clk_ipg);
2107 
2108 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2109 	if (IS_ERR(sdma->clk_ahb))
2110 		return PTR_ERR(sdma->clk_ahb);
2111 
2112 	ret = clk_prepare(sdma->clk_ipg);
2113 	if (ret)
2114 		return ret;
2115 
2116 	ret = clk_prepare(sdma->clk_ahb);
2117 	if (ret)
2118 		goto err_clk;
2119 
2120 	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
2121 			       sdma);
2122 	if (ret)
2123 		goto err_irq;
2124 
2125 	sdma->irq = irq;
2126 
2127 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2128 	if (!sdma->script_addrs) {
2129 		ret = -ENOMEM;
2130 		goto err_irq;
2131 	}
2132 
2133 	/* initially no scripts available */
2134 	saddr_arr = (s32 *)sdma->script_addrs;
2135 	for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2136 		saddr_arr[i] = -EINVAL;
2137 
2138 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2139 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2140 	dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2141 
2142 	INIT_LIST_HEAD(&sdma->dma_device.channels);
2143 	/* Initialize channel parameters */
2144 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2145 		struct sdma_channel *sdmac = &sdma->channel[i];
2146 
2147 		sdmac->sdma = sdma;
2148 
2149 		sdmac->channel = i;
2150 		sdmac->vc.desc_free = sdma_desc_free;
2151 		INIT_LIST_HEAD(&sdmac->terminated);
2152 		INIT_WORK(&sdmac->terminate_worker,
2153 				sdma_channel_terminate_work);
2154 		/*
2155 		 * Add the channel to the DMAC list. Do not add channel 0 though
2156 		 * because we need it internally in the SDMA driver. This also means
2157 		 * that channel 0 in dmaengine counting matches sdma channel 1.
2158 		 */
2159 		if (i)
2160 			vchan_init(&sdmac->vc, &sdma->dma_device);
2161 	}
2162 
2163 	ret = sdma_init(sdma);
2164 	if (ret)
2165 		goto err_init;
2166 
2167 	ret = sdma_event_remap(sdma);
2168 	if (ret)
2169 		goto err_init;
2170 
2171 	if (sdma->drvdata->script_addrs)
2172 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2173 
2174 	sdma->dma_device.dev = &pdev->dev;
2175 
2176 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2177 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2178 	sdma->dma_device.device_tx_status = sdma_tx_status;
2179 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2180 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2181 	sdma->dma_device.device_config = sdma_config;
2182 	sdma->dma_device.device_terminate_all = sdma_terminate_all;
2183 	sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2184 	sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2185 	sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2186 	sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2187 	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2188 	sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2189 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
2190 	sdma->dma_device.copy_align = 2;
2191 	dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2192 
2193 	platform_set_drvdata(pdev, sdma);
2194 
2195 	ret = dma_async_device_register(&sdma->dma_device);
2196 	if (ret) {
2197 		dev_err(&pdev->dev, "unable to register\n");
2198 		goto err_init;
2199 	}
2200 
2201 	if (np) {
2202 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
2203 		if (ret) {
2204 			dev_err(&pdev->dev, "failed to register controller\n");
2205 			goto err_register;
2206 		}
2207 
2208 		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2209 		ret = of_address_to_resource(spba_bus, 0, &spba_res);
2210 		if (!ret) {
2211 			sdma->spba_start_addr = spba_res.start;
2212 			sdma->spba_end_addr = spba_res.end;
2213 		}
2214 		of_node_put(spba_bus);
2215 	}
2216 
2217 	/*
2218 	 * Because that device tree does not encode ROM script address,
2219 	 * the RAM script in firmware is mandatory for device tree
2220 	 * probe, otherwise it fails.
2221 	 */
2222 	ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2223 				      &fw_name);
2224 	if (ret) {
2225 		dev_warn(&pdev->dev, "failed to get firmware name\n");
2226 	} else {
2227 		ret = sdma_get_firmware(sdma, fw_name);
2228 		if (ret)
2229 			dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2230 	}
2231 
2232 	return 0;
2233 
2234 err_register:
2235 	dma_async_device_unregister(&sdma->dma_device);
2236 err_init:
2237 	kfree(sdma->script_addrs);
2238 err_irq:
2239 	clk_unprepare(sdma->clk_ahb);
2240 err_clk:
2241 	clk_unprepare(sdma->clk_ipg);
2242 	return ret;
2243 }
2244 
2245 static int sdma_remove(struct platform_device *pdev)
2246 {
2247 	struct sdma_engine *sdma = platform_get_drvdata(pdev);
2248 	int i;
2249 
2250 	devm_free_irq(&pdev->dev, sdma->irq, sdma);
2251 	dma_async_device_unregister(&sdma->dma_device);
2252 	kfree(sdma->script_addrs);
2253 	clk_unprepare(sdma->clk_ahb);
2254 	clk_unprepare(sdma->clk_ipg);
2255 	/* Kill the tasklet */
2256 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2257 		struct sdma_channel *sdmac = &sdma->channel[i];
2258 
2259 		tasklet_kill(&sdmac->vc.task);
2260 		sdma_free_chan_resources(&sdmac->vc.chan);
2261 	}
2262 
2263 	platform_set_drvdata(pdev, NULL);
2264 	return 0;
2265 }
2266 
2267 static struct platform_driver sdma_driver = {
2268 	.driver		= {
2269 		.name	= "imx-sdma",
2270 		.of_match_table = sdma_dt_ids,
2271 	},
2272 	.remove		= sdma_remove,
2273 	.probe		= sdma_probe,
2274 };
2275 
2276 module_platform_driver(sdma_driver);
2277 
2278 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2279 MODULE_DESCRIPTION("i.MX SDMA driver");
2280 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2281 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2282 #endif
2283 #if IS_ENABLED(CONFIG_SOC_IMX7D)
2284 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2285 #endif
2286 MODULE_LICENSE("GPL");
2287