xref: /openbmc/linux/drivers/dma/imx-sdma.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
10 //
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12 
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 #include <linux/semaphore.h>
24 #include <linux/spinlock.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/slab.h>
29 #include <linux/platform_device.h>
30 #include <linux/dmaengine.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_device.h>
34 #include <linux/of_dma.h>
35 #include <linux/workqueue.h>
36 
37 #include <asm/irq.h>
38 #include <linux/platform_data/dma-imx-sdma.h>
39 #include <linux/platform_data/dma-imx.h>
40 #include <linux/regmap.h>
41 #include <linux/mfd/syscon.h>
42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
43 
44 #include "dmaengine.h"
45 #include "virt-dma.h"
46 
47 /* SDMA registers */
48 #define SDMA_H_C0PTR		0x000
49 #define SDMA_H_INTR		0x004
50 #define SDMA_H_STATSTOP		0x008
51 #define SDMA_H_START		0x00c
52 #define SDMA_H_EVTOVR		0x010
53 #define SDMA_H_DSPOVR		0x014
54 #define SDMA_H_HOSTOVR		0x018
55 #define SDMA_H_EVTPEND		0x01c
56 #define SDMA_H_DSPENBL		0x020
57 #define SDMA_H_RESET		0x024
58 #define SDMA_H_EVTERR		0x028
59 #define SDMA_H_INTRMSK		0x02c
60 #define SDMA_H_PSW		0x030
61 #define SDMA_H_EVTERRDBG	0x034
62 #define SDMA_H_CONFIG		0x038
63 #define SDMA_ONCE_ENB		0x040
64 #define SDMA_ONCE_DATA		0x044
65 #define SDMA_ONCE_INSTR		0x048
66 #define SDMA_ONCE_STAT		0x04c
67 #define SDMA_ONCE_CMD		0x050
68 #define SDMA_EVT_MIRROR		0x054
69 #define SDMA_ILLINSTADDR	0x058
70 #define SDMA_CHN0ADDR		0x05c
71 #define SDMA_ONCE_RTB		0x060
72 #define SDMA_XTRIG_CONF1	0x070
73 #define SDMA_XTRIG_CONF2	0x074
74 #define SDMA_CHNENBL0_IMX35	0x200
75 #define SDMA_CHNENBL0_IMX31	0x080
76 #define SDMA_CHNPRI_0		0x100
77 
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88 
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96 
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101 
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108 
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125 
126 /*
127  *  p_2_p watermark_level description
128  *	Bits		Name			Description
129  *	0-7		Lower WML		Lower watermark level
130  *	8		PS			1: Pad Swallowing
131  *						0: No Pad Swallowing
132  *	9		PA			1: Pad Adding
133  *						0: No Pad Adding
134  *	10		SPDIF			If this bit is set both source
135  *						and destination are on SPBA
136  *	11		Source Bit(SP)		1: Source on SPBA
137  *						0: Source on AIPS
138  *	12		Destination Bit(DP)	1: Destination on SPBA
139  *						0: Destination on AIPS
140  *	13-15		---------		MUST BE 0
141  *	16-23		Higher WML		HWML
142  *	24-27		N			Total number of samples after
143  *						which Pad adding/Swallowing
144  *						must be done. It must be odd.
145  *	28		Lower WML Event(LWE)	SDMA events reg to check for
146  *						LWML event mask
147  *						0: LWE in EVENTS register
148  *						1: LWE in EVENTS2 register
149  *	29		Higher WML Event(HWE)	SDMA events reg to check for
150  *						HWML event mask
151  *						0: HWE in EVENTS register
152  *						1: HWE in EVENTS2 register
153  *	30		---------		MUST BE 0
154  *	31		CONT			1: Amount of samples to be
155  *						transferred is unknown and
156  *						script will keep on
157  *						transferring samples as long as
158  *						both events are detected and
159  *						script must be manually stopped
160  *						by the application
161  *						0: The amount of samples to be
162  *						transferred is equal to the
163  *						count field of mode word
164  */
165 #define SDMA_WATERMARK_LEVEL_LWML	0xFF
166 #define SDMA_WATERMARK_LEVEL_PS		BIT(8)
167 #define SDMA_WATERMARK_LEVEL_PA		BIT(9)
168 #define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
169 #define SDMA_WATERMARK_LEVEL_SP		BIT(11)
170 #define SDMA_WATERMARK_LEVEL_DP		BIT(12)
171 #define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
172 #define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
173 #define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
174 #define SDMA_WATERMARK_LEVEL_CONT	BIT(31)
175 
176 #define SDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
177 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
178 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
179 
180 #define SDMA_DMA_DIRECTIONS	(BIT(DMA_DEV_TO_MEM) | \
181 				 BIT(DMA_MEM_TO_DEV) | \
182 				 BIT(DMA_DEV_TO_DEV))
183 
184 /*
185  * Mode/Count of data node descriptors - IPCv2
186  */
187 struct sdma_mode_count {
188 #define SDMA_BD_MAX_CNT	0xffff
189 	u32 count   : 16; /* size of the buffer pointed by this BD */
190 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
191 	u32 command :  8; /* command mostly used for channel 0 */
192 };
193 
194 /*
195  * Buffer descriptor
196  */
197 struct sdma_buffer_descriptor {
198 	struct sdma_mode_count  mode;
199 	u32 buffer_addr;	/* address of the buffer described */
200 	u32 ext_buffer_addr;	/* extended buffer address */
201 } __attribute__ ((packed));
202 
203 /**
204  * struct sdma_channel_control - Channel control Block
205  *
206  * @current_bd_ptr:	current buffer descriptor processed
207  * @base_bd_ptr:	first element of buffer descriptor array
208  * @unused:		padding. The SDMA engine expects an array of 128 byte
209  *			control blocks
210  */
211 struct sdma_channel_control {
212 	u32 current_bd_ptr;
213 	u32 base_bd_ptr;
214 	u32 unused[2];
215 } __attribute__ ((packed));
216 
217 /**
218  * struct sdma_state_registers - SDMA context for a channel
219  *
220  * @pc:		program counter
221  * @unused1:	unused
222  * @t:		test bit: status of arithmetic & test instruction
223  * @rpc:	return program counter
224  * @unused0:	unused
225  * @sf:		source fault while loading data
226  * @spc:	loop start program counter
227  * @unused2:	unused
228  * @df:		destination fault while storing data
229  * @epc:	loop end program counter
230  * @lm:		loop mode
231  */
232 struct sdma_state_registers {
233 	u32 pc     :14;
234 	u32 unused1: 1;
235 	u32 t      : 1;
236 	u32 rpc    :14;
237 	u32 unused0: 1;
238 	u32 sf     : 1;
239 	u32 spc    :14;
240 	u32 unused2: 1;
241 	u32 df     : 1;
242 	u32 epc    :14;
243 	u32 lm     : 2;
244 } __attribute__ ((packed));
245 
246 /**
247  * struct sdma_context_data - sdma context specific to a channel
248  *
249  * @channel_state:	channel state bits
250  * @gReg:		general registers
251  * @mda:		burst dma destination address register
252  * @msa:		burst dma source address register
253  * @ms:			burst dma status register
254  * @md:			burst dma data register
255  * @pda:		peripheral dma destination address register
256  * @psa:		peripheral dma source address register
257  * @ps:			peripheral dma status register
258  * @pd:			peripheral dma data register
259  * @ca:			CRC polynomial register
260  * @cs:			CRC accumulator register
261  * @dda:		dedicated core destination address register
262  * @dsa:		dedicated core source address register
263  * @ds:			dedicated core status register
264  * @dd:			dedicated core data register
265  * @scratch0:		1st word of dedicated ram for context switch
266  * @scratch1:		2nd word of dedicated ram for context switch
267  * @scratch2:		3rd word of dedicated ram for context switch
268  * @scratch3:		4th word of dedicated ram for context switch
269  * @scratch4:		5th word of dedicated ram for context switch
270  * @scratch5:		6th word of dedicated ram for context switch
271  * @scratch6:		7th word of dedicated ram for context switch
272  * @scratch7:		8th word of dedicated ram for context switch
273  */
274 struct sdma_context_data {
275 	struct sdma_state_registers  channel_state;
276 	u32  gReg[8];
277 	u32  mda;
278 	u32  msa;
279 	u32  ms;
280 	u32  md;
281 	u32  pda;
282 	u32  psa;
283 	u32  ps;
284 	u32  pd;
285 	u32  ca;
286 	u32  cs;
287 	u32  dda;
288 	u32  dsa;
289 	u32  ds;
290 	u32  dd;
291 	u32  scratch0;
292 	u32  scratch1;
293 	u32  scratch2;
294 	u32  scratch3;
295 	u32  scratch4;
296 	u32  scratch5;
297 	u32  scratch6;
298 	u32  scratch7;
299 } __attribute__ ((packed));
300 
301 
302 struct sdma_engine;
303 
304 /**
305  * struct sdma_desc - descriptor structor for one transfer
306  * @vd:			descriptor for virt dma
307  * @num_bd:		number of descriptors currently handling
308  * @bd_phys:		physical address of bd
309  * @buf_tail:		ID of the buffer that was processed
310  * @buf_ptail:		ID of the previous buffer that was processed
311  * @period_len:		period length, used in cyclic.
312  * @chn_real_count:	the real count updated from bd->mode.count
313  * @chn_count:		the transfer count set
314  * @sdmac:		sdma_channel pointer
315  * @bd:			pointer of allocate bd
316  */
317 struct sdma_desc {
318 	struct virt_dma_desc	vd;
319 	unsigned int		num_bd;
320 	dma_addr_t		bd_phys;
321 	unsigned int		buf_tail;
322 	unsigned int		buf_ptail;
323 	unsigned int		period_len;
324 	unsigned int		chn_real_count;
325 	unsigned int		chn_count;
326 	struct sdma_channel	*sdmac;
327 	struct sdma_buffer_descriptor *bd;
328 };
329 
330 /**
331  * struct sdma_channel - housekeeping for a SDMA channel
332  *
333  * @vc:			virt_dma base structure
334  * @desc:		sdma description including vd and other special member
335  * @sdma:		pointer to the SDMA engine for this channel
336  * @channel:		the channel number, matches dmaengine chan_id + 1
337  * @direction:		transfer type. Needed for setting SDMA script
338  * @slave_config	Slave configuration
339  * @peripheral_type:	Peripheral type. Needed for setting SDMA script
340  * @event_id0:		aka dma request line
341  * @event_id1:		for channels that use 2 events
342  * @word_size:		peripheral access size
343  * @pc_from_device:	script address for those device_2_memory
344  * @pc_to_device:	script address for those memory_2_device
345  * @device_to_device:	script address for those device_2_device
346  * @pc_to_pc:		script address for those memory_2_memory
347  * @flags:		loop mode or not
348  * @per_address:	peripheral source or destination address in common case
349  *                      destination address in p_2_p case
350  * @per_address2:	peripheral source address in p_2_p case
351  * @event_mask:		event mask used in p_2_p script
352  * @watermark_level:	value for gReg[7], some script will extend it from
353  *			basic watermark such as p_2_p
354  * @shp_addr:		value for gReg[6]
355  * @per_addr:		value for gReg[2]
356  * @status:		status of dma channel
357  * @data:		specific sdma interface structure
358  * @bd_pool:		dma_pool for bd
359  */
360 struct sdma_channel {
361 	struct virt_dma_chan		vc;
362 	struct sdma_desc		*desc;
363 	struct sdma_engine		*sdma;
364 	unsigned int			channel;
365 	enum dma_transfer_direction		direction;
366 	struct dma_slave_config		slave_config;
367 	enum sdma_peripheral_type	peripheral_type;
368 	unsigned int			event_id0;
369 	unsigned int			event_id1;
370 	enum dma_slave_buswidth		word_size;
371 	unsigned int			pc_from_device, pc_to_device;
372 	unsigned int			device_to_device;
373 	unsigned int                    pc_to_pc;
374 	unsigned long			flags;
375 	dma_addr_t			per_address, per_address2;
376 	unsigned long			event_mask[2];
377 	unsigned long			watermark_level;
378 	u32				shp_addr, per_addr;
379 	enum dma_status			status;
380 	bool				context_loaded;
381 	struct imx_dma_data		data;
382 	struct work_struct		terminate_worker;
383 };
384 
385 #define IMX_DMA_SG_LOOP		BIT(0)
386 
387 #define MAX_DMA_CHANNELS 32
388 #define MXC_SDMA_DEFAULT_PRIORITY 1
389 #define MXC_SDMA_MIN_PRIORITY 1
390 #define MXC_SDMA_MAX_PRIORITY 7
391 
392 #define SDMA_FIRMWARE_MAGIC 0x414d4453
393 
394 /**
395  * struct sdma_firmware_header - Layout of the firmware image
396  *
397  * @magic:		"SDMA"
398  * @version_major:	increased whenever layout of struct
399  *			sdma_script_start_addrs changes.
400  * @version_minor:	firmware minor version (for binary compatible changes)
401  * @script_addrs_start:	offset of struct sdma_script_start_addrs in this image
402  * @num_script_addrs:	Number of script addresses in this image
403  * @ram_code_start:	offset of SDMA ram image in this firmware image
404  * @ram_code_size:	size of SDMA ram image
405  * @script_addrs:	Stores the start address of the SDMA scripts
406  *			(in SDMA memory space)
407  */
408 struct sdma_firmware_header {
409 	u32	magic;
410 	u32	version_major;
411 	u32	version_minor;
412 	u32	script_addrs_start;
413 	u32	num_script_addrs;
414 	u32	ram_code_start;
415 	u32	ram_code_size;
416 };
417 
418 struct sdma_driver_data {
419 	int chnenbl0;
420 	int num_events;
421 	struct sdma_script_start_addrs	*script_addrs;
422 	bool check_ratio;
423 };
424 
425 struct sdma_engine {
426 	struct device			*dev;
427 	struct device_dma_parameters	dma_parms;
428 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
429 	struct sdma_channel_control	*channel_control;
430 	void __iomem			*regs;
431 	struct sdma_context_data	*context;
432 	dma_addr_t			context_phys;
433 	struct dma_device		dma_device;
434 	struct clk			*clk_ipg;
435 	struct clk			*clk_ahb;
436 	spinlock_t			channel_0_lock;
437 	u32				script_number;
438 	struct sdma_script_start_addrs	*script_addrs;
439 	const struct sdma_driver_data	*drvdata;
440 	u32				spba_start_addr;
441 	u32				spba_end_addr;
442 	unsigned int			irq;
443 	dma_addr_t			bd0_phys;
444 	struct sdma_buffer_descriptor	*bd0;
445 	/* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
446 	bool				clk_ratio;
447 };
448 
449 static int sdma_config_write(struct dma_chan *chan,
450 		       struct dma_slave_config *dmaengine_cfg,
451 		       enum dma_transfer_direction direction);
452 
453 static struct sdma_driver_data sdma_imx31 = {
454 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
455 	.num_events = 32,
456 };
457 
458 static struct sdma_script_start_addrs sdma_script_imx25 = {
459 	.ap_2_ap_addr = 729,
460 	.uart_2_mcu_addr = 904,
461 	.per_2_app_addr = 1255,
462 	.mcu_2_app_addr = 834,
463 	.uartsh_2_mcu_addr = 1120,
464 	.per_2_shp_addr = 1329,
465 	.mcu_2_shp_addr = 1048,
466 	.ata_2_mcu_addr = 1560,
467 	.mcu_2_ata_addr = 1479,
468 	.app_2_per_addr = 1189,
469 	.app_2_mcu_addr = 770,
470 	.shp_2_per_addr = 1407,
471 	.shp_2_mcu_addr = 979,
472 };
473 
474 static struct sdma_driver_data sdma_imx25 = {
475 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
476 	.num_events = 48,
477 	.script_addrs = &sdma_script_imx25,
478 };
479 
480 static struct sdma_driver_data sdma_imx35 = {
481 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
482 	.num_events = 48,
483 };
484 
485 static struct sdma_script_start_addrs sdma_script_imx51 = {
486 	.ap_2_ap_addr = 642,
487 	.uart_2_mcu_addr = 817,
488 	.mcu_2_app_addr = 747,
489 	.mcu_2_shp_addr = 961,
490 	.ata_2_mcu_addr = 1473,
491 	.mcu_2_ata_addr = 1392,
492 	.app_2_per_addr = 1033,
493 	.app_2_mcu_addr = 683,
494 	.shp_2_per_addr = 1251,
495 	.shp_2_mcu_addr = 892,
496 };
497 
498 static struct sdma_driver_data sdma_imx51 = {
499 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
500 	.num_events = 48,
501 	.script_addrs = &sdma_script_imx51,
502 };
503 
504 static struct sdma_script_start_addrs sdma_script_imx53 = {
505 	.ap_2_ap_addr = 642,
506 	.app_2_mcu_addr = 683,
507 	.mcu_2_app_addr = 747,
508 	.uart_2_mcu_addr = 817,
509 	.shp_2_mcu_addr = 891,
510 	.mcu_2_shp_addr = 960,
511 	.uartsh_2_mcu_addr = 1032,
512 	.spdif_2_mcu_addr = 1100,
513 	.mcu_2_spdif_addr = 1134,
514 	.firi_2_mcu_addr = 1193,
515 	.mcu_2_firi_addr = 1290,
516 };
517 
518 static struct sdma_driver_data sdma_imx53 = {
519 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
520 	.num_events = 48,
521 	.script_addrs = &sdma_script_imx53,
522 };
523 
524 static struct sdma_script_start_addrs sdma_script_imx6q = {
525 	.ap_2_ap_addr = 642,
526 	.uart_2_mcu_addr = 817,
527 	.mcu_2_app_addr = 747,
528 	.per_2_per_addr = 6331,
529 	.uartsh_2_mcu_addr = 1032,
530 	.mcu_2_shp_addr = 960,
531 	.app_2_mcu_addr = 683,
532 	.shp_2_mcu_addr = 891,
533 	.spdif_2_mcu_addr = 1100,
534 	.mcu_2_spdif_addr = 1134,
535 };
536 
537 static struct sdma_driver_data sdma_imx6q = {
538 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
539 	.num_events = 48,
540 	.script_addrs = &sdma_script_imx6q,
541 };
542 
543 static struct sdma_script_start_addrs sdma_script_imx7d = {
544 	.ap_2_ap_addr = 644,
545 	.uart_2_mcu_addr = 819,
546 	.mcu_2_app_addr = 749,
547 	.uartsh_2_mcu_addr = 1034,
548 	.mcu_2_shp_addr = 962,
549 	.app_2_mcu_addr = 685,
550 	.shp_2_mcu_addr = 893,
551 	.spdif_2_mcu_addr = 1102,
552 	.mcu_2_spdif_addr = 1136,
553 };
554 
555 static struct sdma_driver_data sdma_imx7d = {
556 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
557 	.num_events = 48,
558 	.script_addrs = &sdma_script_imx7d,
559 };
560 
561 static struct sdma_driver_data sdma_imx8mq = {
562 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
563 	.num_events = 48,
564 	.script_addrs = &sdma_script_imx7d,
565 	.check_ratio = 1,
566 };
567 
568 static const struct platform_device_id sdma_devtypes[] = {
569 	{
570 		.name = "imx25-sdma",
571 		.driver_data = (unsigned long)&sdma_imx25,
572 	}, {
573 		.name = "imx31-sdma",
574 		.driver_data = (unsigned long)&sdma_imx31,
575 	}, {
576 		.name = "imx35-sdma",
577 		.driver_data = (unsigned long)&sdma_imx35,
578 	}, {
579 		.name = "imx51-sdma",
580 		.driver_data = (unsigned long)&sdma_imx51,
581 	}, {
582 		.name = "imx53-sdma",
583 		.driver_data = (unsigned long)&sdma_imx53,
584 	}, {
585 		.name = "imx6q-sdma",
586 		.driver_data = (unsigned long)&sdma_imx6q,
587 	}, {
588 		.name = "imx7d-sdma",
589 		.driver_data = (unsigned long)&sdma_imx7d,
590 	}, {
591 		.name = "imx8mq-sdma",
592 		.driver_data = (unsigned long)&sdma_imx8mq,
593 	}, {
594 		/* sentinel */
595 	}
596 };
597 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
598 
599 static const struct of_device_id sdma_dt_ids[] = {
600 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
601 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
602 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
603 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
604 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
605 	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
606 	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
607 	{ .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
608 	{ /* sentinel */ }
609 };
610 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
611 
612 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
613 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
614 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
615 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
616 
617 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
618 {
619 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
620 	return chnenbl0 + event * 4;
621 }
622 
623 static int sdma_config_ownership(struct sdma_channel *sdmac,
624 		bool event_override, bool mcu_override, bool dsp_override)
625 {
626 	struct sdma_engine *sdma = sdmac->sdma;
627 	int channel = sdmac->channel;
628 	unsigned long evt, mcu, dsp;
629 
630 	if (event_override && mcu_override && dsp_override)
631 		return -EINVAL;
632 
633 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
634 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
635 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
636 
637 	if (dsp_override)
638 		__clear_bit(channel, &dsp);
639 	else
640 		__set_bit(channel, &dsp);
641 
642 	if (event_override)
643 		__clear_bit(channel, &evt);
644 	else
645 		__set_bit(channel, &evt);
646 
647 	if (mcu_override)
648 		__clear_bit(channel, &mcu);
649 	else
650 		__set_bit(channel, &mcu);
651 
652 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
653 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
654 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
655 
656 	return 0;
657 }
658 
659 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
660 {
661 	writel(BIT(channel), sdma->regs + SDMA_H_START);
662 }
663 
664 /*
665  * sdma_run_channel0 - run a channel and wait till it's done
666  */
667 static int sdma_run_channel0(struct sdma_engine *sdma)
668 {
669 	int ret;
670 	u32 reg;
671 
672 	sdma_enable_channel(sdma, 0);
673 
674 	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
675 						reg, !(reg & 1), 1, 500);
676 	if (ret)
677 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
678 
679 	/* Set bits of CONFIG register with dynamic context switching */
680 	reg = readl(sdma->regs + SDMA_H_CONFIG);
681 	if ((reg & SDMA_H_CONFIG_CSM) == 0) {
682 		reg |= SDMA_H_CONFIG_CSM;
683 		writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
684 	}
685 
686 	return ret;
687 }
688 
689 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
690 		u32 address)
691 {
692 	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
693 	void *buf_virt;
694 	dma_addr_t buf_phys;
695 	int ret;
696 	unsigned long flags;
697 
698 	buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
699 	if (!buf_virt) {
700 		return -ENOMEM;
701 	}
702 
703 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
704 
705 	bd0->mode.command = C0_SETPM;
706 	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
707 	bd0->mode.count = size / 2;
708 	bd0->buffer_addr = buf_phys;
709 	bd0->ext_buffer_addr = address;
710 
711 	memcpy(buf_virt, buf, size);
712 
713 	ret = sdma_run_channel0(sdma);
714 
715 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
716 
717 	dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
718 
719 	return ret;
720 }
721 
722 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
723 {
724 	struct sdma_engine *sdma = sdmac->sdma;
725 	int channel = sdmac->channel;
726 	unsigned long val;
727 	u32 chnenbl = chnenbl_ofs(sdma, event);
728 
729 	val = readl_relaxed(sdma->regs + chnenbl);
730 	__set_bit(channel, &val);
731 	writel_relaxed(val, sdma->regs + chnenbl);
732 }
733 
734 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
735 {
736 	struct sdma_engine *sdma = sdmac->sdma;
737 	int channel = sdmac->channel;
738 	u32 chnenbl = chnenbl_ofs(sdma, event);
739 	unsigned long val;
740 
741 	val = readl_relaxed(sdma->regs + chnenbl);
742 	__clear_bit(channel, &val);
743 	writel_relaxed(val, sdma->regs + chnenbl);
744 }
745 
746 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
747 {
748 	return container_of(t, struct sdma_desc, vd.tx);
749 }
750 
751 static void sdma_start_desc(struct sdma_channel *sdmac)
752 {
753 	struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
754 	struct sdma_desc *desc;
755 	struct sdma_engine *sdma = sdmac->sdma;
756 	int channel = sdmac->channel;
757 
758 	if (!vd) {
759 		sdmac->desc = NULL;
760 		return;
761 	}
762 	sdmac->desc = desc = to_sdma_desc(&vd->tx);
763 
764 	list_del(&vd->node);
765 
766 	sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
767 	sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
768 	sdma_enable_channel(sdma, sdmac->channel);
769 }
770 
771 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
772 {
773 	struct sdma_buffer_descriptor *bd;
774 	int error = 0;
775 	enum dma_status	old_status = sdmac->status;
776 
777 	/*
778 	 * loop mode. Iterate over descriptors, re-setup them and
779 	 * call callback function.
780 	 */
781 	while (sdmac->desc) {
782 		struct sdma_desc *desc = sdmac->desc;
783 
784 		bd = &desc->bd[desc->buf_tail];
785 
786 		if (bd->mode.status & BD_DONE)
787 			break;
788 
789 		if (bd->mode.status & BD_RROR) {
790 			bd->mode.status &= ~BD_RROR;
791 			sdmac->status = DMA_ERROR;
792 			error = -EIO;
793 		}
794 
795 	       /*
796 		* We use bd->mode.count to calculate the residue, since contains
797 		* the number of bytes present in the current buffer descriptor.
798 		*/
799 
800 		desc->chn_real_count = bd->mode.count;
801 		bd->mode.status |= BD_DONE;
802 		bd->mode.count = desc->period_len;
803 		desc->buf_ptail = desc->buf_tail;
804 		desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
805 
806 		/*
807 		 * The callback is called from the interrupt context in order
808 		 * to reduce latency and to avoid the risk of altering the
809 		 * SDMA transaction status by the time the client tasklet is
810 		 * executed.
811 		 */
812 		spin_unlock(&sdmac->vc.lock);
813 		dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
814 		spin_lock(&sdmac->vc.lock);
815 
816 		if (error)
817 			sdmac->status = old_status;
818 	}
819 }
820 
821 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
822 {
823 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
824 	struct sdma_buffer_descriptor *bd;
825 	int i, error = 0;
826 
827 	sdmac->desc->chn_real_count = 0;
828 	/*
829 	 * non loop mode. Iterate over all descriptors, collect
830 	 * errors and call callback function
831 	 */
832 	for (i = 0; i < sdmac->desc->num_bd; i++) {
833 		bd = &sdmac->desc->bd[i];
834 
835 		 if (bd->mode.status & (BD_DONE | BD_RROR))
836 			error = -EIO;
837 		 sdmac->desc->chn_real_count += bd->mode.count;
838 	}
839 
840 	if (error)
841 		sdmac->status = DMA_ERROR;
842 	else
843 		sdmac->status = DMA_COMPLETE;
844 }
845 
846 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
847 {
848 	struct sdma_engine *sdma = dev_id;
849 	unsigned long stat;
850 
851 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
852 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
853 	/* channel 0 is special and not handled here, see run_channel0() */
854 	stat &= ~1;
855 
856 	while (stat) {
857 		int channel = fls(stat) - 1;
858 		struct sdma_channel *sdmac = &sdma->channel[channel];
859 		struct sdma_desc *desc;
860 
861 		spin_lock(&sdmac->vc.lock);
862 		desc = sdmac->desc;
863 		if (desc) {
864 			if (sdmac->flags & IMX_DMA_SG_LOOP) {
865 				sdma_update_channel_loop(sdmac);
866 			} else {
867 				mxc_sdma_handle_channel_normal(sdmac);
868 				vchan_cookie_complete(&desc->vd);
869 				sdma_start_desc(sdmac);
870 			}
871 		}
872 
873 		spin_unlock(&sdmac->vc.lock);
874 		__clear_bit(channel, &stat);
875 	}
876 
877 	return IRQ_HANDLED;
878 }
879 
880 /*
881  * sets the pc of SDMA script according to the peripheral type
882  */
883 static void sdma_get_pc(struct sdma_channel *sdmac,
884 		enum sdma_peripheral_type peripheral_type)
885 {
886 	struct sdma_engine *sdma = sdmac->sdma;
887 	int per_2_emi = 0, emi_2_per = 0;
888 	/*
889 	 * These are needed once we start to support transfers between
890 	 * two peripherals or memory-to-memory transfers
891 	 */
892 	int per_2_per = 0, emi_2_emi = 0;
893 
894 	sdmac->pc_from_device = 0;
895 	sdmac->pc_to_device = 0;
896 	sdmac->device_to_device = 0;
897 	sdmac->pc_to_pc = 0;
898 
899 	switch (peripheral_type) {
900 	case IMX_DMATYPE_MEMORY:
901 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
902 		break;
903 	case IMX_DMATYPE_DSP:
904 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
905 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
906 		break;
907 	case IMX_DMATYPE_FIRI:
908 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
909 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
910 		break;
911 	case IMX_DMATYPE_UART:
912 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
913 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
914 		break;
915 	case IMX_DMATYPE_UART_SP:
916 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
917 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
918 		break;
919 	case IMX_DMATYPE_ATA:
920 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
921 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
922 		break;
923 	case IMX_DMATYPE_CSPI:
924 	case IMX_DMATYPE_EXT:
925 	case IMX_DMATYPE_SSI:
926 	case IMX_DMATYPE_SAI:
927 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
928 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
929 		break;
930 	case IMX_DMATYPE_SSI_DUAL:
931 		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
932 		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
933 		break;
934 	case IMX_DMATYPE_SSI_SP:
935 	case IMX_DMATYPE_MMC:
936 	case IMX_DMATYPE_SDHC:
937 	case IMX_DMATYPE_CSPI_SP:
938 	case IMX_DMATYPE_ESAI:
939 	case IMX_DMATYPE_MSHC_SP:
940 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
941 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
942 		break;
943 	case IMX_DMATYPE_ASRC:
944 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
945 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
946 		per_2_per = sdma->script_addrs->per_2_per_addr;
947 		break;
948 	case IMX_DMATYPE_ASRC_SP:
949 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
950 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
951 		per_2_per = sdma->script_addrs->per_2_per_addr;
952 		break;
953 	case IMX_DMATYPE_MSHC:
954 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
955 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
956 		break;
957 	case IMX_DMATYPE_CCM:
958 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
959 		break;
960 	case IMX_DMATYPE_SPDIF:
961 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
962 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
963 		break;
964 	case IMX_DMATYPE_IPU_MEMORY:
965 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
966 		break;
967 	default:
968 		break;
969 	}
970 
971 	sdmac->pc_from_device = per_2_emi;
972 	sdmac->pc_to_device = emi_2_per;
973 	sdmac->device_to_device = per_2_per;
974 	sdmac->pc_to_pc = emi_2_emi;
975 }
976 
977 static int sdma_load_context(struct sdma_channel *sdmac)
978 {
979 	struct sdma_engine *sdma = sdmac->sdma;
980 	int channel = sdmac->channel;
981 	int load_address;
982 	struct sdma_context_data *context = sdma->context;
983 	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
984 	int ret;
985 	unsigned long flags;
986 
987 	if (sdmac->context_loaded)
988 		return 0;
989 
990 	if (sdmac->direction == DMA_DEV_TO_MEM)
991 		load_address = sdmac->pc_from_device;
992 	else if (sdmac->direction == DMA_DEV_TO_DEV)
993 		load_address = sdmac->device_to_device;
994 	else if (sdmac->direction == DMA_MEM_TO_MEM)
995 		load_address = sdmac->pc_to_pc;
996 	else
997 		load_address = sdmac->pc_to_device;
998 
999 	if (load_address < 0)
1000 		return load_address;
1001 
1002 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1003 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1004 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1005 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1006 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1007 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1008 
1009 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
1010 
1011 	memset(context, 0, sizeof(*context));
1012 	context->channel_state.pc = load_address;
1013 
1014 	/* Send by context the event mask,base address for peripheral
1015 	 * and watermark level
1016 	 */
1017 	context->gReg[0] = sdmac->event_mask[1];
1018 	context->gReg[1] = sdmac->event_mask[0];
1019 	context->gReg[2] = sdmac->per_addr;
1020 	context->gReg[6] = sdmac->shp_addr;
1021 	context->gReg[7] = sdmac->watermark_level;
1022 
1023 	bd0->mode.command = C0_SETDM;
1024 	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1025 	bd0->mode.count = sizeof(*context) / 4;
1026 	bd0->buffer_addr = sdma->context_phys;
1027 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1028 	ret = sdma_run_channel0(sdma);
1029 
1030 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1031 
1032 	sdmac->context_loaded = true;
1033 
1034 	return ret;
1035 }
1036 
1037 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1038 {
1039 	return container_of(chan, struct sdma_channel, vc.chan);
1040 }
1041 
1042 static int sdma_disable_channel(struct dma_chan *chan)
1043 {
1044 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1045 	struct sdma_engine *sdma = sdmac->sdma;
1046 	int channel = sdmac->channel;
1047 
1048 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1049 	sdmac->status = DMA_ERROR;
1050 
1051 	return 0;
1052 }
1053 static void sdma_channel_terminate_work(struct work_struct *work)
1054 {
1055 	struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1056 						  terminate_worker);
1057 	unsigned long flags;
1058 	LIST_HEAD(head);
1059 
1060 	/*
1061 	 * According to NXP R&D team a delay of one BD SDMA cost time
1062 	 * (maximum is 1ms) should be added after disable of the channel
1063 	 * bit, to ensure SDMA core has really been stopped after SDMA
1064 	 * clients call .device_terminate_all.
1065 	 */
1066 	usleep_range(1000, 2000);
1067 
1068 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1069 	vchan_get_all_descriptors(&sdmac->vc, &head);
1070 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1071 	vchan_dma_desc_free_list(&sdmac->vc, &head);
1072 	sdmac->context_loaded = false;
1073 }
1074 
1075 static int sdma_terminate_all(struct dma_chan *chan)
1076 {
1077 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1078 	unsigned long flags;
1079 
1080 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1081 
1082 	sdma_disable_channel(chan);
1083 
1084 	if (sdmac->desc) {
1085 		vchan_terminate_vdesc(&sdmac->desc->vd);
1086 		sdmac->desc = NULL;
1087 		schedule_work(&sdmac->terminate_worker);
1088 	}
1089 
1090 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1091 
1092 	return 0;
1093 }
1094 
1095 static void sdma_channel_synchronize(struct dma_chan *chan)
1096 {
1097 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1098 
1099 	vchan_synchronize(&sdmac->vc);
1100 
1101 	flush_work(&sdmac->terminate_worker);
1102 }
1103 
1104 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1105 {
1106 	struct sdma_engine *sdma = sdmac->sdma;
1107 
1108 	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1109 	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1110 
1111 	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1112 	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1113 
1114 	if (sdmac->event_id0 > 31)
1115 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1116 
1117 	if (sdmac->event_id1 > 31)
1118 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1119 
1120 	/*
1121 	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1122 	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1123 	 * r0(event_mask[1]) and r1(event_mask[0]).
1124 	 */
1125 	if (lwml > hwml) {
1126 		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1127 						SDMA_WATERMARK_LEVEL_HWML);
1128 		sdmac->watermark_level |= hwml;
1129 		sdmac->watermark_level |= lwml << 16;
1130 		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1131 	}
1132 
1133 	if (sdmac->per_address2 >= sdma->spba_start_addr &&
1134 			sdmac->per_address2 <= sdma->spba_end_addr)
1135 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1136 
1137 	if (sdmac->per_address >= sdma->spba_start_addr &&
1138 			sdmac->per_address <= sdma->spba_end_addr)
1139 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1140 
1141 	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1142 }
1143 
1144 static int sdma_config_channel(struct dma_chan *chan)
1145 {
1146 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1147 	int ret;
1148 
1149 	sdma_disable_channel(chan);
1150 
1151 	sdmac->event_mask[0] = 0;
1152 	sdmac->event_mask[1] = 0;
1153 	sdmac->shp_addr = 0;
1154 	sdmac->per_addr = 0;
1155 
1156 	switch (sdmac->peripheral_type) {
1157 	case IMX_DMATYPE_DSP:
1158 		sdma_config_ownership(sdmac, false, true, true);
1159 		break;
1160 	case IMX_DMATYPE_MEMORY:
1161 		sdma_config_ownership(sdmac, false, true, false);
1162 		break;
1163 	default:
1164 		sdma_config_ownership(sdmac, true, true, false);
1165 		break;
1166 	}
1167 
1168 	sdma_get_pc(sdmac, sdmac->peripheral_type);
1169 
1170 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1171 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1172 		/* Handle multiple event channels differently */
1173 		if (sdmac->event_id1) {
1174 			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1175 			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1176 				sdma_set_watermarklevel_for_p2p(sdmac);
1177 		} else
1178 			__set_bit(sdmac->event_id0, sdmac->event_mask);
1179 
1180 		/* Address */
1181 		sdmac->shp_addr = sdmac->per_address;
1182 		sdmac->per_addr = sdmac->per_address2;
1183 	} else {
1184 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1185 	}
1186 
1187 	ret = sdma_load_context(sdmac);
1188 
1189 	return ret;
1190 }
1191 
1192 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1193 		unsigned int priority)
1194 {
1195 	struct sdma_engine *sdma = sdmac->sdma;
1196 	int channel = sdmac->channel;
1197 
1198 	if (priority < MXC_SDMA_MIN_PRIORITY
1199 	    || priority > MXC_SDMA_MAX_PRIORITY) {
1200 		return -EINVAL;
1201 	}
1202 
1203 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1204 
1205 	return 0;
1206 }
1207 
1208 static int sdma_request_channel0(struct sdma_engine *sdma)
1209 {
1210 	int ret = -EBUSY;
1211 
1212 	sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1213 					GFP_NOWAIT);
1214 	if (!sdma->bd0) {
1215 		ret = -ENOMEM;
1216 		goto out;
1217 	}
1218 
1219 	sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1220 	sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1221 
1222 	sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1223 	return 0;
1224 out:
1225 
1226 	return ret;
1227 }
1228 
1229 
1230 static int sdma_alloc_bd(struct sdma_desc *desc)
1231 {
1232 	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1233 	int ret = 0;
1234 
1235 	desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1236 				       &desc->bd_phys, GFP_NOWAIT);
1237 	if (!desc->bd) {
1238 		ret = -ENOMEM;
1239 		goto out;
1240 	}
1241 out:
1242 	return ret;
1243 }
1244 
1245 static void sdma_free_bd(struct sdma_desc *desc)
1246 {
1247 	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1248 
1249 	dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1250 			  desc->bd_phys);
1251 }
1252 
1253 static void sdma_desc_free(struct virt_dma_desc *vd)
1254 {
1255 	struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1256 
1257 	sdma_free_bd(desc);
1258 	kfree(desc);
1259 }
1260 
1261 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1262 {
1263 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1264 	struct imx_dma_data *data = chan->private;
1265 	struct imx_dma_data mem_data;
1266 	int prio, ret;
1267 
1268 	/*
1269 	 * MEMCPY may never setup chan->private by filter function such as
1270 	 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1271 	 * Please note in any other slave case, you have to setup chan->private
1272 	 * with 'struct imx_dma_data' in your own filter function if you want to
1273 	 * request dma channel by dma_request_channel() rather than
1274 	 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1275 	 * to warn you to correct your filter function.
1276 	 */
1277 	if (!data) {
1278 		dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1279 		mem_data.priority = 2;
1280 		mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1281 		mem_data.dma_request = 0;
1282 		mem_data.dma_request2 = 0;
1283 		data = &mem_data;
1284 
1285 		sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1286 	}
1287 
1288 	switch (data->priority) {
1289 	case DMA_PRIO_HIGH:
1290 		prio = 3;
1291 		break;
1292 	case DMA_PRIO_MEDIUM:
1293 		prio = 2;
1294 		break;
1295 	case DMA_PRIO_LOW:
1296 	default:
1297 		prio = 1;
1298 		break;
1299 	}
1300 
1301 	sdmac->peripheral_type = data->peripheral_type;
1302 	sdmac->event_id0 = data->dma_request;
1303 	sdmac->event_id1 = data->dma_request2;
1304 
1305 	ret = clk_enable(sdmac->sdma->clk_ipg);
1306 	if (ret)
1307 		return ret;
1308 	ret = clk_enable(sdmac->sdma->clk_ahb);
1309 	if (ret)
1310 		goto disable_clk_ipg;
1311 
1312 	ret = sdma_set_channel_priority(sdmac, prio);
1313 	if (ret)
1314 		goto disable_clk_ahb;
1315 
1316 	return 0;
1317 
1318 disable_clk_ahb:
1319 	clk_disable(sdmac->sdma->clk_ahb);
1320 disable_clk_ipg:
1321 	clk_disable(sdmac->sdma->clk_ipg);
1322 	return ret;
1323 }
1324 
1325 static void sdma_free_chan_resources(struct dma_chan *chan)
1326 {
1327 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1328 	struct sdma_engine *sdma = sdmac->sdma;
1329 
1330 	sdma_terminate_all(chan);
1331 
1332 	sdma_channel_synchronize(chan);
1333 
1334 	if (sdmac->event_id0 >= 0)
1335 		sdma_event_disable(sdmac, sdmac->event_id0);
1336 	if (sdmac->event_id1)
1337 		sdma_event_disable(sdmac, sdmac->event_id1);
1338 
1339 	sdmac->event_id0 = 0;
1340 	sdmac->event_id1 = 0;
1341 	sdmac->context_loaded = false;
1342 
1343 	sdma_set_channel_priority(sdmac, 0);
1344 
1345 	clk_disable(sdma->clk_ipg);
1346 	clk_disable(sdma->clk_ahb);
1347 }
1348 
1349 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1350 				enum dma_transfer_direction direction, u32 bds)
1351 {
1352 	struct sdma_desc *desc;
1353 
1354 	desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1355 	if (!desc)
1356 		goto err_out;
1357 
1358 	sdmac->status = DMA_IN_PROGRESS;
1359 	sdmac->direction = direction;
1360 	sdmac->flags = 0;
1361 
1362 	desc->chn_count = 0;
1363 	desc->chn_real_count = 0;
1364 	desc->buf_tail = 0;
1365 	desc->buf_ptail = 0;
1366 	desc->sdmac = sdmac;
1367 	desc->num_bd = bds;
1368 
1369 	if (sdma_alloc_bd(desc))
1370 		goto err_desc_out;
1371 
1372 	/* No slave_config called in MEMCPY case, so do here */
1373 	if (direction == DMA_MEM_TO_MEM)
1374 		sdma_config_ownership(sdmac, false, true, false);
1375 
1376 	if (sdma_load_context(sdmac))
1377 		goto err_desc_out;
1378 
1379 	return desc;
1380 
1381 err_desc_out:
1382 	kfree(desc);
1383 err_out:
1384 	return NULL;
1385 }
1386 
1387 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1388 		struct dma_chan *chan, dma_addr_t dma_dst,
1389 		dma_addr_t dma_src, size_t len, unsigned long flags)
1390 {
1391 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1392 	struct sdma_engine *sdma = sdmac->sdma;
1393 	int channel = sdmac->channel;
1394 	size_t count;
1395 	int i = 0, param;
1396 	struct sdma_buffer_descriptor *bd;
1397 	struct sdma_desc *desc;
1398 
1399 	if (!chan || !len)
1400 		return NULL;
1401 
1402 	dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1403 		&dma_src, &dma_dst, len, channel);
1404 
1405 	desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1406 					len / SDMA_BD_MAX_CNT + 1);
1407 	if (!desc)
1408 		return NULL;
1409 
1410 	do {
1411 		count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1412 		bd = &desc->bd[i];
1413 		bd->buffer_addr = dma_src;
1414 		bd->ext_buffer_addr = dma_dst;
1415 		bd->mode.count = count;
1416 		desc->chn_count += count;
1417 		bd->mode.command = 0;
1418 
1419 		dma_src += count;
1420 		dma_dst += count;
1421 		len -= count;
1422 		i++;
1423 
1424 		param = BD_DONE | BD_EXTD | BD_CONT;
1425 		/* last bd */
1426 		if (!len) {
1427 			param |= BD_INTR;
1428 			param |= BD_LAST;
1429 			param &= ~BD_CONT;
1430 		}
1431 
1432 		dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1433 				i, count, bd->buffer_addr,
1434 				param & BD_WRAP ? "wrap" : "",
1435 				param & BD_INTR ? " intr" : "");
1436 
1437 		bd->mode.status = param;
1438 	} while (len);
1439 
1440 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1441 }
1442 
1443 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1444 		struct dma_chan *chan, struct scatterlist *sgl,
1445 		unsigned int sg_len, enum dma_transfer_direction direction,
1446 		unsigned long flags, void *context)
1447 {
1448 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1449 	struct sdma_engine *sdma = sdmac->sdma;
1450 	int i, count;
1451 	int channel = sdmac->channel;
1452 	struct scatterlist *sg;
1453 	struct sdma_desc *desc;
1454 
1455 	sdma_config_write(chan, &sdmac->slave_config, direction);
1456 
1457 	desc = sdma_transfer_init(sdmac, direction, sg_len);
1458 	if (!desc)
1459 		goto err_out;
1460 
1461 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1462 			sg_len, channel);
1463 
1464 	for_each_sg(sgl, sg, sg_len, i) {
1465 		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1466 		int param;
1467 
1468 		bd->buffer_addr = sg->dma_address;
1469 
1470 		count = sg_dma_len(sg);
1471 
1472 		if (count > SDMA_BD_MAX_CNT) {
1473 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1474 					channel, count, SDMA_BD_MAX_CNT);
1475 			goto err_bd_out;
1476 		}
1477 
1478 		bd->mode.count = count;
1479 		desc->chn_count += count;
1480 
1481 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1482 			goto err_bd_out;
1483 
1484 		switch (sdmac->word_size) {
1485 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1486 			bd->mode.command = 0;
1487 			if (count & 3 || sg->dma_address & 3)
1488 				goto err_bd_out;
1489 			break;
1490 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1491 			bd->mode.command = 2;
1492 			if (count & 1 || sg->dma_address & 1)
1493 				goto err_bd_out;
1494 			break;
1495 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1496 			bd->mode.command = 1;
1497 			break;
1498 		default:
1499 			goto err_bd_out;
1500 		}
1501 
1502 		param = BD_DONE | BD_EXTD | BD_CONT;
1503 
1504 		if (i + 1 == sg_len) {
1505 			param |= BD_INTR;
1506 			param |= BD_LAST;
1507 			param &= ~BD_CONT;
1508 		}
1509 
1510 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1511 				i, count, (u64)sg->dma_address,
1512 				param & BD_WRAP ? "wrap" : "",
1513 				param & BD_INTR ? " intr" : "");
1514 
1515 		bd->mode.status = param;
1516 	}
1517 
1518 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1519 err_bd_out:
1520 	sdma_free_bd(desc);
1521 	kfree(desc);
1522 err_out:
1523 	sdmac->status = DMA_ERROR;
1524 	return NULL;
1525 }
1526 
1527 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1528 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1529 		size_t period_len, enum dma_transfer_direction direction,
1530 		unsigned long flags)
1531 {
1532 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1533 	struct sdma_engine *sdma = sdmac->sdma;
1534 	int num_periods = buf_len / period_len;
1535 	int channel = sdmac->channel;
1536 	int i = 0, buf = 0;
1537 	struct sdma_desc *desc;
1538 
1539 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1540 
1541 	sdma_config_write(chan, &sdmac->slave_config, direction);
1542 
1543 	desc = sdma_transfer_init(sdmac, direction, num_periods);
1544 	if (!desc)
1545 		goto err_out;
1546 
1547 	desc->period_len = period_len;
1548 
1549 	sdmac->flags |= IMX_DMA_SG_LOOP;
1550 
1551 	if (period_len > SDMA_BD_MAX_CNT) {
1552 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1553 				channel, period_len, SDMA_BD_MAX_CNT);
1554 		goto err_bd_out;
1555 	}
1556 
1557 	while (buf < buf_len) {
1558 		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1559 		int param;
1560 
1561 		bd->buffer_addr = dma_addr;
1562 
1563 		bd->mode.count = period_len;
1564 
1565 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1566 			goto err_bd_out;
1567 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1568 			bd->mode.command = 0;
1569 		else
1570 			bd->mode.command = sdmac->word_size;
1571 
1572 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1573 		if (i + 1 == num_periods)
1574 			param |= BD_WRAP;
1575 
1576 		dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1577 				i, period_len, (u64)dma_addr,
1578 				param & BD_WRAP ? "wrap" : "",
1579 				param & BD_INTR ? " intr" : "");
1580 
1581 		bd->mode.status = param;
1582 
1583 		dma_addr += period_len;
1584 		buf += period_len;
1585 
1586 		i++;
1587 	}
1588 
1589 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1590 err_bd_out:
1591 	sdma_free_bd(desc);
1592 	kfree(desc);
1593 err_out:
1594 	sdmac->status = DMA_ERROR;
1595 	return NULL;
1596 }
1597 
1598 static int sdma_config_write(struct dma_chan *chan,
1599 		       struct dma_slave_config *dmaengine_cfg,
1600 		       enum dma_transfer_direction direction)
1601 {
1602 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1603 
1604 	if (direction == DMA_DEV_TO_MEM) {
1605 		sdmac->per_address = dmaengine_cfg->src_addr;
1606 		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1607 			dmaengine_cfg->src_addr_width;
1608 		sdmac->word_size = dmaengine_cfg->src_addr_width;
1609 	} else if (direction == DMA_DEV_TO_DEV) {
1610 		sdmac->per_address2 = dmaengine_cfg->src_addr;
1611 		sdmac->per_address = dmaengine_cfg->dst_addr;
1612 		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1613 			SDMA_WATERMARK_LEVEL_LWML;
1614 		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1615 			SDMA_WATERMARK_LEVEL_HWML;
1616 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1617 	} else {
1618 		sdmac->per_address = dmaengine_cfg->dst_addr;
1619 		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1620 			dmaengine_cfg->dst_addr_width;
1621 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1622 	}
1623 	sdmac->direction = direction;
1624 	return sdma_config_channel(chan);
1625 }
1626 
1627 static int sdma_config(struct dma_chan *chan,
1628 		       struct dma_slave_config *dmaengine_cfg)
1629 {
1630 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1631 
1632 	memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1633 
1634 	/* Set ENBLn earlier to make sure dma request triggered after that */
1635 	if (sdmac->event_id0 >= 0) {
1636 		if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1637 			return -EINVAL;
1638 		sdma_event_enable(sdmac, sdmac->event_id0);
1639 	}
1640 
1641 	if (sdmac->event_id1) {
1642 		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1643 			return -EINVAL;
1644 		sdma_event_enable(sdmac, sdmac->event_id1);
1645 	}
1646 
1647 	return 0;
1648 }
1649 
1650 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1651 				      dma_cookie_t cookie,
1652 				      struct dma_tx_state *txstate)
1653 {
1654 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1655 	struct sdma_desc *desc = NULL;
1656 	u32 residue;
1657 	struct virt_dma_desc *vd;
1658 	enum dma_status ret;
1659 	unsigned long flags;
1660 
1661 	ret = dma_cookie_status(chan, cookie, txstate);
1662 	if (ret == DMA_COMPLETE || !txstate)
1663 		return ret;
1664 
1665 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1666 
1667 	vd = vchan_find_desc(&sdmac->vc, cookie);
1668 	if (vd)
1669 		desc = to_sdma_desc(&vd->tx);
1670 	else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1671 		desc = sdmac->desc;
1672 
1673 	if (desc) {
1674 		if (sdmac->flags & IMX_DMA_SG_LOOP)
1675 			residue = (desc->num_bd - desc->buf_ptail) *
1676 				desc->period_len - desc->chn_real_count;
1677 		else
1678 			residue = desc->chn_count - desc->chn_real_count;
1679 	} else {
1680 		residue = 0;
1681 	}
1682 
1683 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1684 
1685 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1686 			 residue);
1687 
1688 	return sdmac->status;
1689 }
1690 
1691 static void sdma_issue_pending(struct dma_chan *chan)
1692 {
1693 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1694 	unsigned long flags;
1695 
1696 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1697 	if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1698 		sdma_start_desc(sdmac);
1699 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1700 }
1701 
1702 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1703 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1704 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	41
1705 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4	42
1706 
1707 static void sdma_add_scripts(struct sdma_engine *sdma,
1708 		const struct sdma_script_start_addrs *addr)
1709 {
1710 	s32 *addr_arr = (u32 *)addr;
1711 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1712 	int i;
1713 
1714 	/* use the default firmware in ROM if missing external firmware */
1715 	if (!sdma->script_number)
1716 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1717 
1718 	if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1719 				  / sizeof(s32)) {
1720 		dev_err(sdma->dev,
1721 			"SDMA script number %d not match with firmware.\n",
1722 			sdma->script_number);
1723 		return;
1724 	}
1725 
1726 	for (i = 0; i < sdma->script_number; i++)
1727 		if (addr_arr[i] > 0)
1728 			saddr_arr[i] = addr_arr[i];
1729 }
1730 
1731 static void sdma_load_firmware(const struct firmware *fw, void *context)
1732 {
1733 	struct sdma_engine *sdma = context;
1734 	const struct sdma_firmware_header *header;
1735 	const struct sdma_script_start_addrs *addr;
1736 	unsigned short *ram_code;
1737 
1738 	if (!fw) {
1739 		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1740 		/* In this case we just use the ROM firmware. */
1741 		return;
1742 	}
1743 
1744 	if (fw->size < sizeof(*header))
1745 		goto err_firmware;
1746 
1747 	header = (struct sdma_firmware_header *)fw->data;
1748 
1749 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1750 		goto err_firmware;
1751 	if (header->ram_code_start + header->ram_code_size > fw->size)
1752 		goto err_firmware;
1753 	switch (header->version_major) {
1754 	case 1:
1755 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1756 		break;
1757 	case 2:
1758 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1759 		break;
1760 	case 3:
1761 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1762 		break;
1763 	case 4:
1764 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1765 		break;
1766 	default:
1767 		dev_err(sdma->dev, "unknown firmware version\n");
1768 		goto err_firmware;
1769 	}
1770 
1771 	addr = (void *)header + header->script_addrs_start;
1772 	ram_code = (void *)header + header->ram_code_start;
1773 
1774 	clk_enable(sdma->clk_ipg);
1775 	clk_enable(sdma->clk_ahb);
1776 	/* download the RAM image for SDMA */
1777 	sdma_load_script(sdma, ram_code,
1778 			header->ram_code_size,
1779 			addr->ram_code_start_addr);
1780 	clk_disable(sdma->clk_ipg);
1781 	clk_disable(sdma->clk_ahb);
1782 
1783 	sdma_add_scripts(sdma, addr);
1784 
1785 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1786 			header->version_major,
1787 			header->version_minor);
1788 
1789 err_firmware:
1790 	release_firmware(fw);
1791 }
1792 
1793 #define EVENT_REMAP_CELLS 3
1794 
1795 static int sdma_event_remap(struct sdma_engine *sdma)
1796 {
1797 	struct device_node *np = sdma->dev->of_node;
1798 	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1799 	struct property *event_remap;
1800 	struct regmap *gpr;
1801 	char propname[] = "fsl,sdma-event-remap";
1802 	u32 reg, val, shift, num_map, i;
1803 	int ret = 0;
1804 
1805 	if (IS_ERR(np) || IS_ERR(gpr_np))
1806 		goto out;
1807 
1808 	event_remap = of_find_property(np, propname, NULL);
1809 	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1810 	if (!num_map) {
1811 		dev_dbg(sdma->dev, "no event needs to be remapped\n");
1812 		goto out;
1813 	} else if (num_map % EVENT_REMAP_CELLS) {
1814 		dev_err(sdma->dev, "the property %s must modulo %d\n",
1815 				propname, EVENT_REMAP_CELLS);
1816 		ret = -EINVAL;
1817 		goto out;
1818 	}
1819 
1820 	gpr = syscon_node_to_regmap(gpr_np);
1821 	if (IS_ERR(gpr)) {
1822 		dev_err(sdma->dev, "failed to get gpr regmap\n");
1823 		ret = PTR_ERR(gpr);
1824 		goto out;
1825 	}
1826 
1827 	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1828 		ret = of_property_read_u32_index(np, propname, i, &reg);
1829 		if (ret) {
1830 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1831 					propname, i);
1832 			goto out;
1833 		}
1834 
1835 		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1836 		if (ret) {
1837 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1838 					propname, i + 1);
1839 			goto out;
1840 		}
1841 
1842 		ret = of_property_read_u32_index(np, propname, i + 2, &val);
1843 		if (ret) {
1844 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1845 					propname, i + 2);
1846 			goto out;
1847 		}
1848 
1849 		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1850 	}
1851 
1852 out:
1853 	if (!IS_ERR(gpr_np))
1854 		of_node_put(gpr_np);
1855 
1856 	return ret;
1857 }
1858 
1859 static int sdma_get_firmware(struct sdma_engine *sdma,
1860 		const char *fw_name)
1861 {
1862 	int ret;
1863 
1864 	ret = request_firmware_nowait(THIS_MODULE,
1865 			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1866 			GFP_KERNEL, sdma, sdma_load_firmware);
1867 
1868 	return ret;
1869 }
1870 
1871 static int sdma_init(struct sdma_engine *sdma)
1872 {
1873 	int i, ret;
1874 	dma_addr_t ccb_phys;
1875 
1876 	ret = clk_enable(sdma->clk_ipg);
1877 	if (ret)
1878 		return ret;
1879 	ret = clk_enable(sdma->clk_ahb);
1880 	if (ret)
1881 		goto disable_clk_ipg;
1882 
1883 	if (sdma->drvdata->check_ratio &&
1884 	    (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
1885 		sdma->clk_ratio = 1;
1886 
1887 	/* Be sure SDMA has not started yet */
1888 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1889 
1890 	sdma->channel_control = dma_alloc_coherent(sdma->dev,
1891 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1892 			sizeof(struct sdma_context_data),
1893 			&ccb_phys, GFP_KERNEL);
1894 
1895 	if (!sdma->channel_control) {
1896 		ret = -ENOMEM;
1897 		goto err_dma_alloc;
1898 	}
1899 
1900 	sdma->context = (void *)sdma->channel_control +
1901 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1902 	sdma->context_phys = ccb_phys +
1903 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1904 
1905 	/* disable all channels */
1906 	for (i = 0; i < sdma->drvdata->num_events; i++)
1907 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1908 
1909 	/* All channels have priority 0 */
1910 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1911 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1912 
1913 	ret = sdma_request_channel0(sdma);
1914 	if (ret)
1915 		goto err_dma_alloc;
1916 
1917 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1918 
1919 	/* Set Command Channel (Channel Zero) */
1920 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1921 
1922 	/* Set bits of CONFIG register but with static context switching */
1923 	if (sdma->clk_ratio)
1924 		writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
1925 	else
1926 		writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1927 
1928 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1929 
1930 	/* Initializes channel's priorities */
1931 	sdma_set_channel_priority(&sdma->channel[0], 7);
1932 
1933 	clk_disable(sdma->clk_ipg);
1934 	clk_disable(sdma->clk_ahb);
1935 
1936 	return 0;
1937 
1938 err_dma_alloc:
1939 	clk_disable(sdma->clk_ahb);
1940 disable_clk_ipg:
1941 	clk_disable(sdma->clk_ipg);
1942 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1943 	return ret;
1944 }
1945 
1946 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1947 {
1948 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1949 	struct imx_dma_data *data = fn_param;
1950 
1951 	if (!imx_dma_is_general_purpose(chan))
1952 		return false;
1953 
1954 	sdmac->data = *data;
1955 	chan->private = &sdmac->data;
1956 
1957 	return true;
1958 }
1959 
1960 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1961 				   struct of_dma *ofdma)
1962 {
1963 	struct sdma_engine *sdma = ofdma->of_dma_data;
1964 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1965 	struct imx_dma_data data;
1966 
1967 	if (dma_spec->args_count != 3)
1968 		return NULL;
1969 
1970 	data.dma_request = dma_spec->args[0];
1971 	data.peripheral_type = dma_spec->args[1];
1972 	data.priority = dma_spec->args[2];
1973 	/*
1974 	 * init dma_request2 to zero, which is not used by the dts.
1975 	 * For P2P, dma_request2 is init from dma_request_channel(),
1976 	 * chan->private will point to the imx_dma_data, and in
1977 	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1978 	 * be set to sdmac->event_id1.
1979 	 */
1980 	data.dma_request2 = 0;
1981 
1982 	return __dma_request_channel(&mask, sdma_filter_fn, &data,
1983 				     ofdma->of_node);
1984 }
1985 
1986 static int sdma_probe(struct platform_device *pdev)
1987 {
1988 	const struct of_device_id *of_id =
1989 			of_match_device(sdma_dt_ids, &pdev->dev);
1990 	struct device_node *np = pdev->dev.of_node;
1991 	struct device_node *spba_bus;
1992 	const char *fw_name;
1993 	int ret;
1994 	int irq;
1995 	struct resource *iores;
1996 	struct resource spba_res;
1997 	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1998 	int i;
1999 	struct sdma_engine *sdma;
2000 	s32 *saddr_arr;
2001 	const struct sdma_driver_data *drvdata = NULL;
2002 
2003 	if (of_id)
2004 		drvdata = of_id->data;
2005 	else if (pdev->id_entry)
2006 		drvdata = (void *)pdev->id_entry->driver_data;
2007 
2008 	if (!drvdata) {
2009 		dev_err(&pdev->dev, "unable to find driver data\n");
2010 		return -EINVAL;
2011 	}
2012 
2013 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2014 	if (ret)
2015 		return ret;
2016 
2017 	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2018 	if (!sdma)
2019 		return -ENOMEM;
2020 
2021 	spin_lock_init(&sdma->channel_0_lock);
2022 
2023 	sdma->dev = &pdev->dev;
2024 	sdma->drvdata = drvdata;
2025 
2026 	irq = platform_get_irq(pdev, 0);
2027 	if (irq < 0)
2028 		return irq;
2029 
2030 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2031 	sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
2032 	if (IS_ERR(sdma->regs))
2033 		return PTR_ERR(sdma->regs);
2034 
2035 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2036 	if (IS_ERR(sdma->clk_ipg))
2037 		return PTR_ERR(sdma->clk_ipg);
2038 
2039 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2040 	if (IS_ERR(sdma->clk_ahb))
2041 		return PTR_ERR(sdma->clk_ahb);
2042 
2043 	ret = clk_prepare(sdma->clk_ipg);
2044 	if (ret)
2045 		return ret;
2046 
2047 	ret = clk_prepare(sdma->clk_ahb);
2048 	if (ret)
2049 		goto err_clk;
2050 
2051 	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
2052 			       sdma);
2053 	if (ret)
2054 		goto err_irq;
2055 
2056 	sdma->irq = irq;
2057 
2058 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2059 	if (!sdma->script_addrs) {
2060 		ret = -ENOMEM;
2061 		goto err_irq;
2062 	}
2063 
2064 	/* initially no scripts available */
2065 	saddr_arr = (s32 *)sdma->script_addrs;
2066 	for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2067 		saddr_arr[i] = -EINVAL;
2068 
2069 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2070 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2071 	dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2072 
2073 	INIT_LIST_HEAD(&sdma->dma_device.channels);
2074 	/* Initialize channel parameters */
2075 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2076 		struct sdma_channel *sdmac = &sdma->channel[i];
2077 
2078 		sdmac->sdma = sdma;
2079 
2080 		sdmac->channel = i;
2081 		sdmac->vc.desc_free = sdma_desc_free;
2082 		INIT_WORK(&sdmac->terminate_worker,
2083 				sdma_channel_terminate_work);
2084 		/*
2085 		 * Add the channel to the DMAC list. Do not add channel 0 though
2086 		 * because we need it internally in the SDMA driver. This also means
2087 		 * that channel 0 in dmaengine counting matches sdma channel 1.
2088 		 */
2089 		if (i)
2090 			vchan_init(&sdmac->vc, &sdma->dma_device);
2091 	}
2092 
2093 	ret = sdma_init(sdma);
2094 	if (ret)
2095 		goto err_init;
2096 
2097 	ret = sdma_event_remap(sdma);
2098 	if (ret)
2099 		goto err_init;
2100 
2101 	if (sdma->drvdata->script_addrs)
2102 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2103 	if (pdata && pdata->script_addrs)
2104 		sdma_add_scripts(sdma, pdata->script_addrs);
2105 
2106 	sdma->dma_device.dev = &pdev->dev;
2107 
2108 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2109 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2110 	sdma->dma_device.device_tx_status = sdma_tx_status;
2111 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2112 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2113 	sdma->dma_device.device_config = sdma_config;
2114 	sdma->dma_device.device_terminate_all = sdma_terminate_all;
2115 	sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2116 	sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2117 	sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2118 	sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2119 	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2120 	sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2121 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
2122 	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
2123 	sdma->dma_device.copy_align = 2;
2124 	dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2125 
2126 	platform_set_drvdata(pdev, sdma);
2127 
2128 	ret = dma_async_device_register(&sdma->dma_device);
2129 	if (ret) {
2130 		dev_err(&pdev->dev, "unable to register\n");
2131 		goto err_init;
2132 	}
2133 
2134 	if (np) {
2135 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
2136 		if (ret) {
2137 			dev_err(&pdev->dev, "failed to register controller\n");
2138 			goto err_register;
2139 		}
2140 
2141 		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2142 		ret = of_address_to_resource(spba_bus, 0, &spba_res);
2143 		if (!ret) {
2144 			sdma->spba_start_addr = spba_res.start;
2145 			sdma->spba_end_addr = spba_res.end;
2146 		}
2147 		of_node_put(spba_bus);
2148 	}
2149 
2150 	/*
2151 	 * Kick off firmware loading as the very last step:
2152 	 * attempt to load firmware only if we're not on the error path, because
2153 	 * the firmware callback requires a fully functional and allocated sdma
2154 	 * instance.
2155 	 */
2156 	if (pdata) {
2157 		ret = sdma_get_firmware(sdma, pdata->fw_name);
2158 		if (ret)
2159 			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
2160 	} else {
2161 		/*
2162 		 * Because that device tree does not encode ROM script address,
2163 		 * the RAM script in firmware is mandatory for device tree
2164 		 * probe, otherwise it fails.
2165 		 */
2166 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2167 					      &fw_name);
2168 		if (ret) {
2169 			dev_warn(&pdev->dev, "failed to get firmware name\n");
2170 		} else {
2171 			ret = sdma_get_firmware(sdma, fw_name);
2172 			if (ret)
2173 				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2174 		}
2175 	}
2176 
2177 	return 0;
2178 
2179 err_register:
2180 	dma_async_device_unregister(&sdma->dma_device);
2181 err_init:
2182 	kfree(sdma->script_addrs);
2183 err_irq:
2184 	clk_unprepare(sdma->clk_ahb);
2185 err_clk:
2186 	clk_unprepare(sdma->clk_ipg);
2187 	return ret;
2188 }
2189 
2190 static int sdma_remove(struct platform_device *pdev)
2191 {
2192 	struct sdma_engine *sdma = platform_get_drvdata(pdev);
2193 	int i;
2194 
2195 	devm_free_irq(&pdev->dev, sdma->irq, sdma);
2196 	dma_async_device_unregister(&sdma->dma_device);
2197 	kfree(sdma->script_addrs);
2198 	clk_unprepare(sdma->clk_ahb);
2199 	clk_unprepare(sdma->clk_ipg);
2200 	/* Kill the tasklet */
2201 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2202 		struct sdma_channel *sdmac = &sdma->channel[i];
2203 
2204 		tasklet_kill(&sdmac->vc.task);
2205 		sdma_free_chan_resources(&sdmac->vc.chan);
2206 	}
2207 
2208 	platform_set_drvdata(pdev, NULL);
2209 	return 0;
2210 }
2211 
2212 static struct platform_driver sdma_driver = {
2213 	.driver		= {
2214 		.name	= "imx-sdma",
2215 		.of_match_table = sdma_dt_ids,
2216 	},
2217 	.id_table	= sdma_devtypes,
2218 	.remove		= sdma_remove,
2219 	.probe		= sdma_probe,
2220 };
2221 
2222 module_platform_driver(sdma_driver);
2223 
2224 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2225 MODULE_DESCRIPTION("i.MX SDMA driver");
2226 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2227 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2228 #endif
2229 #if IS_ENABLED(CONFIG_SOC_IMX7D)
2230 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2231 #endif
2232 MODULE_LICENSE("GPL");
2233