1 // SPDX-License-Identifier: GPL-2.0+ 2 // 3 // drivers/dma/imx-sdma.c 4 // 5 // This file contains a driver for the Freescale Smart DMA engine 6 // 7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de> 8 // 9 // Based on code from Freescale: 10 // 11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved. 12 13 #include <linux/init.h> 14 #include <linux/iopoll.h> 15 #include <linux/module.h> 16 #include <linux/types.h> 17 #include <linux/bitops.h> 18 #include <linux/mm.h> 19 #include <linux/interrupt.h> 20 #include <linux/clk.h> 21 #include <linux/delay.h> 22 #include <linux/sched.h> 23 #include <linux/semaphore.h> 24 #include <linux/spinlock.h> 25 #include <linux/device.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/firmware.h> 28 #include <linux/slab.h> 29 #include <linux/platform_device.h> 30 #include <linux/dmaengine.h> 31 #include <linux/of.h> 32 #include <linux/of_address.h> 33 #include <linux/of_device.h> 34 #include <linux/of_dma.h> 35 #include <linux/workqueue.h> 36 37 #include <asm/irq.h> 38 #include <linux/platform_data/dma-imx-sdma.h> 39 #include <linux/platform_data/dma-imx.h> 40 #include <linux/regmap.h> 41 #include <linux/mfd/syscon.h> 42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h> 43 44 #include "dmaengine.h" 45 #include "virt-dma.h" 46 47 /* SDMA registers */ 48 #define SDMA_H_C0PTR 0x000 49 #define SDMA_H_INTR 0x004 50 #define SDMA_H_STATSTOP 0x008 51 #define SDMA_H_START 0x00c 52 #define SDMA_H_EVTOVR 0x010 53 #define SDMA_H_DSPOVR 0x014 54 #define SDMA_H_HOSTOVR 0x018 55 #define SDMA_H_EVTPEND 0x01c 56 #define SDMA_H_DSPENBL 0x020 57 #define SDMA_H_RESET 0x024 58 #define SDMA_H_EVTERR 0x028 59 #define SDMA_H_INTRMSK 0x02c 60 #define SDMA_H_PSW 0x030 61 #define SDMA_H_EVTERRDBG 0x034 62 #define SDMA_H_CONFIG 0x038 63 #define SDMA_ONCE_ENB 0x040 64 #define SDMA_ONCE_DATA 0x044 65 #define SDMA_ONCE_INSTR 0x048 66 #define SDMA_ONCE_STAT 0x04c 67 #define SDMA_ONCE_CMD 0x050 68 #define SDMA_EVT_MIRROR 0x054 69 #define SDMA_ILLINSTADDR 0x058 70 #define SDMA_CHN0ADDR 0x05c 71 #define SDMA_ONCE_RTB 0x060 72 #define SDMA_XTRIG_CONF1 0x070 73 #define SDMA_XTRIG_CONF2 0x074 74 #define SDMA_CHNENBL0_IMX35 0x200 75 #define SDMA_CHNENBL0_IMX31 0x080 76 #define SDMA_CHNPRI_0 0x100 77 78 /* 79 * Buffer descriptor status values. 80 */ 81 #define BD_DONE 0x01 82 #define BD_WRAP 0x02 83 #define BD_CONT 0x04 84 #define BD_INTR 0x08 85 #define BD_RROR 0x10 86 #define BD_LAST 0x20 87 #define BD_EXTD 0x80 88 89 /* 90 * Data Node descriptor status values. 91 */ 92 #define DND_END_OF_FRAME 0x80 93 #define DND_END_OF_XFER 0x40 94 #define DND_DONE 0x20 95 #define DND_UNUSED 0x01 96 97 /* 98 * IPCV2 descriptor status values. 99 */ 100 #define BD_IPCV2_END_OF_FRAME 0x40 101 102 #define IPCV2_MAX_NODES 50 103 /* 104 * Error bit set in the CCB status field by the SDMA, 105 * in setbd routine, in case of a transfer error 106 */ 107 #define DATA_ERROR 0x10000000 108 109 /* 110 * Buffer descriptor commands. 111 */ 112 #define C0_ADDR 0x01 113 #define C0_LOAD 0x02 114 #define C0_DUMP 0x03 115 #define C0_SETCTX 0x07 116 #define C0_GETCTX 0x03 117 #define C0_SETDM 0x01 118 #define C0_SETPM 0x04 119 #define C0_GETDM 0x02 120 #define C0_GETPM 0x08 121 /* 122 * Change endianness indicator in the BD command field 123 */ 124 #define CHANGE_ENDIANNESS 0x80 125 126 /* 127 * p_2_p watermark_level description 128 * Bits Name Description 129 * 0-7 Lower WML Lower watermark level 130 * 8 PS 1: Pad Swallowing 131 * 0: No Pad Swallowing 132 * 9 PA 1: Pad Adding 133 * 0: No Pad Adding 134 * 10 SPDIF If this bit is set both source 135 * and destination are on SPBA 136 * 11 Source Bit(SP) 1: Source on SPBA 137 * 0: Source on AIPS 138 * 12 Destination Bit(DP) 1: Destination on SPBA 139 * 0: Destination on AIPS 140 * 13-15 --------- MUST BE 0 141 * 16-23 Higher WML HWML 142 * 24-27 N Total number of samples after 143 * which Pad adding/Swallowing 144 * must be done. It must be odd. 145 * 28 Lower WML Event(LWE) SDMA events reg to check for 146 * LWML event mask 147 * 0: LWE in EVENTS register 148 * 1: LWE in EVENTS2 register 149 * 29 Higher WML Event(HWE) SDMA events reg to check for 150 * HWML event mask 151 * 0: HWE in EVENTS register 152 * 1: HWE in EVENTS2 register 153 * 30 --------- MUST BE 0 154 * 31 CONT 1: Amount of samples to be 155 * transferred is unknown and 156 * script will keep on 157 * transferring samples as long as 158 * both events are detected and 159 * script must be manually stopped 160 * by the application 161 * 0: The amount of samples to be 162 * transferred is equal to the 163 * count field of mode word 164 */ 165 #define SDMA_WATERMARK_LEVEL_LWML 0xFF 166 #define SDMA_WATERMARK_LEVEL_PS BIT(8) 167 #define SDMA_WATERMARK_LEVEL_PA BIT(9) 168 #define SDMA_WATERMARK_LEVEL_SPDIF BIT(10) 169 #define SDMA_WATERMARK_LEVEL_SP BIT(11) 170 #define SDMA_WATERMARK_LEVEL_DP BIT(12) 171 #define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16) 172 #define SDMA_WATERMARK_LEVEL_LWE BIT(28) 173 #define SDMA_WATERMARK_LEVEL_HWE BIT(29) 174 #define SDMA_WATERMARK_LEVEL_CONT BIT(31) 175 176 #define SDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 177 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 178 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 179 180 #define SDMA_DMA_DIRECTIONS (BIT(DMA_DEV_TO_MEM) | \ 181 BIT(DMA_MEM_TO_DEV) | \ 182 BIT(DMA_DEV_TO_DEV)) 183 184 /* 185 * Mode/Count of data node descriptors - IPCv2 186 */ 187 struct sdma_mode_count { 188 #define SDMA_BD_MAX_CNT 0xffff 189 u32 count : 16; /* size of the buffer pointed by this BD */ 190 u32 status : 8; /* E,R,I,C,W,D status bits stored here */ 191 u32 command : 8; /* command mostly used for channel 0 */ 192 }; 193 194 /* 195 * Buffer descriptor 196 */ 197 struct sdma_buffer_descriptor { 198 struct sdma_mode_count mode; 199 u32 buffer_addr; /* address of the buffer described */ 200 u32 ext_buffer_addr; /* extended buffer address */ 201 } __attribute__ ((packed)); 202 203 /** 204 * struct sdma_channel_control - Channel control Block 205 * 206 * @current_bd_ptr: current buffer descriptor processed 207 * @base_bd_ptr: first element of buffer descriptor array 208 * @unused: padding. The SDMA engine expects an array of 128 byte 209 * control blocks 210 */ 211 struct sdma_channel_control { 212 u32 current_bd_ptr; 213 u32 base_bd_ptr; 214 u32 unused[2]; 215 } __attribute__ ((packed)); 216 217 /** 218 * struct sdma_state_registers - SDMA context for a channel 219 * 220 * @pc: program counter 221 * @unused1: unused 222 * @t: test bit: status of arithmetic & test instruction 223 * @rpc: return program counter 224 * @unused0: unused 225 * @sf: source fault while loading data 226 * @spc: loop start program counter 227 * @unused2: unused 228 * @df: destination fault while storing data 229 * @epc: loop end program counter 230 * @lm: loop mode 231 */ 232 struct sdma_state_registers { 233 u32 pc :14; 234 u32 unused1: 1; 235 u32 t : 1; 236 u32 rpc :14; 237 u32 unused0: 1; 238 u32 sf : 1; 239 u32 spc :14; 240 u32 unused2: 1; 241 u32 df : 1; 242 u32 epc :14; 243 u32 lm : 2; 244 } __attribute__ ((packed)); 245 246 /** 247 * struct sdma_context_data - sdma context specific to a channel 248 * 249 * @channel_state: channel state bits 250 * @gReg: general registers 251 * @mda: burst dma destination address register 252 * @msa: burst dma source address register 253 * @ms: burst dma status register 254 * @md: burst dma data register 255 * @pda: peripheral dma destination address register 256 * @psa: peripheral dma source address register 257 * @ps: peripheral dma status register 258 * @pd: peripheral dma data register 259 * @ca: CRC polynomial register 260 * @cs: CRC accumulator register 261 * @dda: dedicated core destination address register 262 * @dsa: dedicated core source address register 263 * @ds: dedicated core status register 264 * @dd: dedicated core data register 265 * @scratch0: 1st word of dedicated ram for context switch 266 * @scratch1: 2nd word of dedicated ram for context switch 267 * @scratch2: 3rd word of dedicated ram for context switch 268 * @scratch3: 4th word of dedicated ram for context switch 269 * @scratch4: 5th word of dedicated ram for context switch 270 * @scratch5: 6th word of dedicated ram for context switch 271 * @scratch6: 7th word of dedicated ram for context switch 272 * @scratch7: 8th word of dedicated ram for context switch 273 */ 274 struct sdma_context_data { 275 struct sdma_state_registers channel_state; 276 u32 gReg[8]; 277 u32 mda; 278 u32 msa; 279 u32 ms; 280 u32 md; 281 u32 pda; 282 u32 psa; 283 u32 ps; 284 u32 pd; 285 u32 ca; 286 u32 cs; 287 u32 dda; 288 u32 dsa; 289 u32 ds; 290 u32 dd; 291 u32 scratch0; 292 u32 scratch1; 293 u32 scratch2; 294 u32 scratch3; 295 u32 scratch4; 296 u32 scratch5; 297 u32 scratch6; 298 u32 scratch7; 299 } __attribute__ ((packed)); 300 301 302 struct sdma_engine; 303 304 /** 305 * struct sdma_desc - descriptor structor for one transfer 306 * @vd: descriptor for virt dma 307 * @num_bd: number of descriptors currently handling 308 * @bd_phys: physical address of bd 309 * @buf_tail: ID of the buffer that was processed 310 * @buf_ptail: ID of the previous buffer that was processed 311 * @period_len: period length, used in cyclic. 312 * @chn_real_count: the real count updated from bd->mode.count 313 * @chn_count: the transfer count set 314 * @sdmac: sdma_channel pointer 315 * @bd: pointer of allocate bd 316 */ 317 struct sdma_desc { 318 struct virt_dma_desc vd; 319 unsigned int num_bd; 320 dma_addr_t bd_phys; 321 unsigned int buf_tail; 322 unsigned int buf_ptail; 323 unsigned int period_len; 324 unsigned int chn_real_count; 325 unsigned int chn_count; 326 struct sdma_channel *sdmac; 327 struct sdma_buffer_descriptor *bd; 328 }; 329 330 /** 331 * struct sdma_channel - housekeeping for a SDMA channel 332 * 333 * @vc: virt_dma base structure 334 * @desc: sdma description including vd and other special member 335 * @sdma: pointer to the SDMA engine for this channel 336 * @channel: the channel number, matches dmaengine chan_id + 1 337 * @direction: transfer type. Needed for setting SDMA script 338 * @slave_config Slave configuration 339 * @peripheral_type: Peripheral type. Needed for setting SDMA script 340 * @event_id0: aka dma request line 341 * @event_id1: for channels that use 2 events 342 * @word_size: peripheral access size 343 * @pc_from_device: script address for those device_2_memory 344 * @pc_to_device: script address for those memory_2_device 345 * @device_to_device: script address for those device_2_device 346 * @pc_to_pc: script address for those memory_2_memory 347 * @flags: loop mode or not 348 * @per_address: peripheral source or destination address in common case 349 * destination address in p_2_p case 350 * @per_address2: peripheral source address in p_2_p case 351 * @event_mask: event mask used in p_2_p script 352 * @watermark_level: value for gReg[7], some script will extend it from 353 * basic watermark such as p_2_p 354 * @shp_addr: value for gReg[6] 355 * @per_addr: value for gReg[2] 356 * @status: status of dma channel 357 * @data: specific sdma interface structure 358 * @bd_pool: dma_pool for bd 359 */ 360 struct sdma_channel { 361 struct virt_dma_chan vc; 362 struct sdma_desc *desc; 363 struct sdma_engine *sdma; 364 unsigned int channel; 365 enum dma_transfer_direction direction; 366 struct dma_slave_config slave_config; 367 enum sdma_peripheral_type peripheral_type; 368 unsigned int event_id0; 369 unsigned int event_id1; 370 enum dma_slave_buswidth word_size; 371 unsigned int pc_from_device, pc_to_device; 372 unsigned int device_to_device; 373 unsigned int pc_to_pc; 374 unsigned long flags; 375 dma_addr_t per_address, per_address2; 376 unsigned long event_mask[2]; 377 unsigned long watermark_level; 378 u32 shp_addr, per_addr; 379 enum dma_status status; 380 bool context_loaded; 381 struct imx_dma_data data; 382 struct work_struct terminate_worker; 383 }; 384 385 #define IMX_DMA_SG_LOOP BIT(0) 386 387 #define MAX_DMA_CHANNELS 32 388 #define MXC_SDMA_DEFAULT_PRIORITY 1 389 #define MXC_SDMA_MIN_PRIORITY 1 390 #define MXC_SDMA_MAX_PRIORITY 7 391 392 #define SDMA_FIRMWARE_MAGIC 0x414d4453 393 394 /** 395 * struct sdma_firmware_header - Layout of the firmware image 396 * 397 * @magic: "SDMA" 398 * @version_major: increased whenever layout of struct 399 * sdma_script_start_addrs changes. 400 * @version_minor: firmware minor version (for binary compatible changes) 401 * @script_addrs_start: offset of struct sdma_script_start_addrs in this image 402 * @num_script_addrs: Number of script addresses in this image 403 * @ram_code_start: offset of SDMA ram image in this firmware image 404 * @ram_code_size: size of SDMA ram image 405 * @script_addrs: Stores the start address of the SDMA scripts 406 * (in SDMA memory space) 407 */ 408 struct sdma_firmware_header { 409 u32 magic; 410 u32 version_major; 411 u32 version_minor; 412 u32 script_addrs_start; 413 u32 num_script_addrs; 414 u32 ram_code_start; 415 u32 ram_code_size; 416 }; 417 418 struct sdma_driver_data { 419 int chnenbl0; 420 int num_events; 421 struct sdma_script_start_addrs *script_addrs; 422 bool check_ratio; 423 }; 424 425 struct sdma_engine { 426 struct device *dev; 427 struct device_dma_parameters dma_parms; 428 struct sdma_channel channel[MAX_DMA_CHANNELS]; 429 struct sdma_channel_control *channel_control; 430 void __iomem *regs; 431 struct sdma_context_data *context; 432 dma_addr_t context_phys; 433 struct dma_device dma_device; 434 struct clk *clk_ipg; 435 struct clk *clk_ahb; 436 spinlock_t channel_0_lock; 437 u32 script_number; 438 struct sdma_script_start_addrs *script_addrs; 439 const struct sdma_driver_data *drvdata; 440 u32 spba_start_addr; 441 u32 spba_end_addr; 442 unsigned int irq; 443 dma_addr_t bd0_phys; 444 struct sdma_buffer_descriptor *bd0; 445 /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/ 446 bool clk_ratio; 447 }; 448 449 static int sdma_config_write(struct dma_chan *chan, 450 struct dma_slave_config *dmaengine_cfg, 451 enum dma_transfer_direction direction); 452 453 static struct sdma_driver_data sdma_imx31 = { 454 .chnenbl0 = SDMA_CHNENBL0_IMX31, 455 .num_events = 32, 456 }; 457 458 static struct sdma_script_start_addrs sdma_script_imx25 = { 459 .ap_2_ap_addr = 729, 460 .uart_2_mcu_addr = 904, 461 .per_2_app_addr = 1255, 462 .mcu_2_app_addr = 834, 463 .uartsh_2_mcu_addr = 1120, 464 .per_2_shp_addr = 1329, 465 .mcu_2_shp_addr = 1048, 466 .ata_2_mcu_addr = 1560, 467 .mcu_2_ata_addr = 1479, 468 .app_2_per_addr = 1189, 469 .app_2_mcu_addr = 770, 470 .shp_2_per_addr = 1407, 471 .shp_2_mcu_addr = 979, 472 }; 473 474 static struct sdma_driver_data sdma_imx25 = { 475 .chnenbl0 = SDMA_CHNENBL0_IMX35, 476 .num_events = 48, 477 .script_addrs = &sdma_script_imx25, 478 }; 479 480 static struct sdma_driver_data sdma_imx35 = { 481 .chnenbl0 = SDMA_CHNENBL0_IMX35, 482 .num_events = 48, 483 }; 484 485 static struct sdma_script_start_addrs sdma_script_imx51 = { 486 .ap_2_ap_addr = 642, 487 .uart_2_mcu_addr = 817, 488 .mcu_2_app_addr = 747, 489 .mcu_2_shp_addr = 961, 490 .ata_2_mcu_addr = 1473, 491 .mcu_2_ata_addr = 1392, 492 .app_2_per_addr = 1033, 493 .app_2_mcu_addr = 683, 494 .shp_2_per_addr = 1251, 495 .shp_2_mcu_addr = 892, 496 }; 497 498 static struct sdma_driver_data sdma_imx51 = { 499 .chnenbl0 = SDMA_CHNENBL0_IMX35, 500 .num_events = 48, 501 .script_addrs = &sdma_script_imx51, 502 }; 503 504 static struct sdma_script_start_addrs sdma_script_imx53 = { 505 .ap_2_ap_addr = 642, 506 .app_2_mcu_addr = 683, 507 .mcu_2_app_addr = 747, 508 .uart_2_mcu_addr = 817, 509 .shp_2_mcu_addr = 891, 510 .mcu_2_shp_addr = 960, 511 .uartsh_2_mcu_addr = 1032, 512 .spdif_2_mcu_addr = 1100, 513 .mcu_2_spdif_addr = 1134, 514 .firi_2_mcu_addr = 1193, 515 .mcu_2_firi_addr = 1290, 516 }; 517 518 static struct sdma_driver_data sdma_imx53 = { 519 .chnenbl0 = SDMA_CHNENBL0_IMX35, 520 .num_events = 48, 521 .script_addrs = &sdma_script_imx53, 522 }; 523 524 static struct sdma_script_start_addrs sdma_script_imx6q = { 525 .ap_2_ap_addr = 642, 526 .uart_2_mcu_addr = 817, 527 .mcu_2_app_addr = 747, 528 .per_2_per_addr = 6331, 529 .uartsh_2_mcu_addr = 1032, 530 .mcu_2_shp_addr = 960, 531 .app_2_mcu_addr = 683, 532 .shp_2_mcu_addr = 891, 533 .spdif_2_mcu_addr = 1100, 534 .mcu_2_spdif_addr = 1134, 535 }; 536 537 static struct sdma_driver_data sdma_imx6q = { 538 .chnenbl0 = SDMA_CHNENBL0_IMX35, 539 .num_events = 48, 540 .script_addrs = &sdma_script_imx6q, 541 }; 542 543 static struct sdma_script_start_addrs sdma_script_imx7d = { 544 .ap_2_ap_addr = 644, 545 .uart_2_mcu_addr = 819, 546 .mcu_2_app_addr = 749, 547 .uartsh_2_mcu_addr = 1034, 548 .mcu_2_shp_addr = 962, 549 .app_2_mcu_addr = 685, 550 .shp_2_mcu_addr = 893, 551 .spdif_2_mcu_addr = 1102, 552 .mcu_2_spdif_addr = 1136, 553 }; 554 555 static struct sdma_driver_data sdma_imx7d = { 556 .chnenbl0 = SDMA_CHNENBL0_IMX35, 557 .num_events = 48, 558 .script_addrs = &sdma_script_imx7d, 559 }; 560 561 static struct sdma_driver_data sdma_imx8mq = { 562 .chnenbl0 = SDMA_CHNENBL0_IMX35, 563 .num_events = 48, 564 .script_addrs = &sdma_script_imx7d, 565 .check_ratio = 1, 566 }; 567 568 static const struct platform_device_id sdma_devtypes[] = { 569 { 570 .name = "imx25-sdma", 571 .driver_data = (unsigned long)&sdma_imx25, 572 }, { 573 .name = "imx31-sdma", 574 .driver_data = (unsigned long)&sdma_imx31, 575 }, { 576 .name = "imx35-sdma", 577 .driver_data = (unsigned long)&sdma_imx35, 578 }, { 579 .name = "imx51-sdma", 580 .driver_data = (unsigned long)&sdma_imx51, 581 }, { 582 .name = "imx53-sdma", 583 .driver_data = (unsigned long)&sdma_imx53, 584 }, { 585 .name = "imx6q-sdma", 586 .driver_data = (unsigned long)&sdma_imx6q, 587 }, { 588 .name = "imx7d-sdma", 589 .driver_data = (unsigned long)&sdma_imx7d, 590 }, { 591 .name = "imx8mq-sdma", 592 .driver_data = (unsigned long)&sdma_imx8mq, 593 }, { 594 /* sentinel */ 595 } 596 }; 597 MODULE_DEVICE_TABLE(platform, sdma_devtypes); 598 599 static const struct of_device_id sdma_dt_ids[] = { 600 { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, }, 601 { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, }, 602 { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, }, 603 { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, }, 604 { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, }, 605 { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, }, 606 { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, }, 607 { .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, }, 608 { /* sentinel */ } 609 }; 610 MODULE_DEVICE_TABLE(of, sdma_dt_ids); 611 612 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */ 613 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */ 614 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */ 615 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/ 616 617 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event) 618 { 619 u32 chnenbl0 = sdma->drvdata->chnenbl0; 620 return chnenbl0 + event * 4; 621 } 622 623 static int sdma_config_ownership(struct sdma_channel *sdmac, 624 bool event_override, bool mcu_override, bool dsp_override) 625 { 626 struct sdma_engine *sdma = sdmac->sdma; 627 int channel = sdmac->channel; 628 unsigned long evt, mcu, dsp; 629 630 if (event_override && mcu_override && dsp_override) 631 return -EINVAL; 632 633 evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR); 634 mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR); 635 dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR); 636 637 if (dsp_override) 638 __clear_bit(channel, &dsp); 639 else 640 __set_bit(channel, &dsp); 641 642 if (event_override) 643 __clear_bit(channel, &evt); 644 else 645 __set_bit(channel, &evt); 646 647 if (mcu_override) 648 __clear_bit(channel, &mcu); 649 else 650 __set_bit(channel, &mcu); 651 652 writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR); 653 writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR); 654 writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR); 655 656 return 0; 657 } 658 659 static void sdma_enable_channel(struct sdma_engine *sdma, int channel) 660 { 661 writel(BIT(channel), sdma->regs + SDMA_H_START); 662 } 663 664 /* 665 * sdma_run_channel0 - run a channel and wait till it's done 666 */ 667 static int sdma_run_channel0(struct sdma_engine *sdma) 668 { 669 int ret; 670 u32 reg; 671 672 sdma_enable_channel(sdma, 0); 673 674 ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP, 675 reg, !(reg & 1), 1, 500); 676 if (ret) 677 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n"); 678 679 /* Set bits of CONFIG register with dynamic context switching */ 680 reg = readl(sdma->regs + SDMA_H_CONFIG); 681 if ((reg & SDMA_H_CONFIG_CSM) == 0) { 682 reg |= SDMA_H_CONFIG_CSM; 683 writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG); 684 } 685 686 return ret; 687 } 688 689 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size, 690 u32 address) 691 { 692 struct sdma_buffer_descriptor *bd0 = sdma->bd0; 693 void *buf_virt; 694 dma_addr_t buf_phys; 695 int ret; 696 unsigned long flags; 697 698 buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL); 699 if (!buf_virt) { 700 return -ENOMEM; 701 } 702 703 spin_lock_irqsave(&sdma->channel_0_lock, flags); 704 705 bd0->mode.command = C0_SETPM; 706 bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD; 707 bd0->mode.count = size / 2; 708 bd0->buffer_addr = buf_phys; 709 bd0->ext_buffer_addr = address; 710 711 memcpy(buf_virt, buf, size); 712 713 ret = sdma_run_channel0(sdma); 714 715 spin_unlock_irqrestore(&sdma->channel_0_lock, flags); 716 717 dma_free_coherent(sdma->dev, size, buf_virt, buf_phys); 718 719 return ret; 720 } 721 722 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event) 723 { 724 struct sdma_engine *sdma = sdmac->sdma; 725 int channel = sdmac->channel; 726 unsigned long val; 727 u32 chnenbl = chnenbl_ofs(sdma, event); 728 729 val = readl_relaxed(sdma->regs + chnenbl); 730 __set_bit(channel, &val); 731 writel_relaxed(val, sdma->regs + chnenbl); 732 } 733 734 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event) 735 { 736 struct sdma_engine *sdma = sdmac->sdma; 737 int channel = sdmac->channel; 738 u32 chnenbl = chnenbl_ofs(sdma, event); 739 unsigned long val; 740 741 val = readl_relaxed(sdma->regs + chnenbl); 742 __clear_bit(channel, &val); 743 writel_relaxed(val, sdma->regs + chnenbl); 744 } 745 746 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t) 747 { 748 return container_of(t, struct sdma_desc, vd.tx); 749 } 750 751 static void sdma_start_desc(struct sdma_channel *sdmac) 752 { 753 struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc); 754 struct sdma_desc *desc; 755 struct sdma_engine *sdma = sdmac->sdma; 756 int channel = sdmac->channel; 757 758 if (!vd) { 759 sdmac->desc = NULL; 760 return; 761 } 762 sdmac->desc = desc = to_sdma_desc(&vd->tx); 763 764 list_del(&vd->node); 765 766 sdma->channel_control[channel].base_bd_ptr = desc->bd_phys; 767 sdma->channel_control[channel].current_bd_ptr = desc->bd_phys; 768 sdma_enable_channel(sdma, sdmac->channel); 769 } 770 771 static void sdma_update_channel_loop(struct sdma_channel *sdmac) 772 { 773 struct sdma_buffer_descriptor *bd; 774 int error = 0; 775 enum dma_status old_status = sdmac->status; 776 777 /* 778 * loop mode. Iterate over descriptors, re-setup them and 779 * call callback function. 780 */ 781 while (sdmac->desc) { 782 struct sdma_desc *desc = sdmac->desc; 783 784 bd = &desc->bd[desc->buf_tail]; 785 786 if (bd->mode.status & BD_DONE) 787 break; 788 789 if (bd->mode.status & BD_RROR) { 790 bd->mode.status &= ~BD_RROR; 791 sdmac->status = DMA_ERROR; 792 error = -EIO; 793 } 794 795 /* 796 * We use bd->mode.count to calculate the residue, since contains 797 * the number of bytes present in the current buffer descriptor. 798 */ 799 800 desc->chn_real_count = bd->mode.count; 801 bd->mode.status |= BD_DONE; 802 bd->mode.count = desc->period_len; 803 desc->buf_ptail = desc->buf_tail; 804 desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd; 805 806 /* 807 * The callback is called from the interrupt context in order 808 * to reduce latency and to avoid the risk of altering the 809 * SDMA transaction status by the time the client tasklet is 810 * executed. 811 */ 812 spin_unlock(&sdmac->vc.lock); 813 dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL); 814 spin_lock(&sdmac->vc.lock); 815 816 if (error) 817 sdmac->status = old_status; 818 } 819 } 820 821 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data) 822 { 823 struct sdma_channel *sdmac = (struct sdma_channel *) data; 824 struct sdma_buffer_descriptor *bd; 825 int i, error = 0; 826 827 sdmac->desc->chn_real_count = 0; 828 /* 829 * non loop mode. Iterate over all descriptors, collect 830 * errors and call callback function 831 */ 832 for (i = 0; i < sdmac->desc->num_bd; i++) { 833 bd = &sdmac->desc->bd[i]; 834 835 if (bd->mode.status & (BD_DONE | BD_RROR)) 836 error = -EIO; 837 sdmac->desc->chn_real_count += bd->mode.count; 838 } 839 840 if (error) 841 sdmac->status = DMA_ERROR; 842 else 843 sdmac->status = DMA_COMPLETE; 844 } 845 846 static irqreturn_t sdma_int_handler(int irq, void *dev_id) 847 { 848 struct sdma_engine *sdma = dev_id; 849 unsigned long stat; 850 851 stat = readl_relaxed(sdma->regs + SDMA_H_INTR); 852 writel_relaxed(stat, sdma->regs + SDMA_H_INTR); 853 /* channel 0 is special and not handled here, see run_channel0() */ 854 stat &= ~1; 855 856 while (stat) { 857 int channel = fls(stat) - 1; 858 struct sdma_channel *sdmac = &sdma->channel[channel]; 859 struct sdma_desc *desc; 860 861 spin_lock(&sdmac->vc.lock); 862 desc = sdmac->desc; 863 if (desc) { 864 if (sdmac->flags & IMX_DMA_SG_LOOP) { 865 sdma_update_channel_loop(sdmac); 866 } else { 867 mxc_sdma_handle_channel_normal(sdmac); 868 vchan_cookie_complete(&desc->vd); 869 sdma_start_desc(sdmac); 870 } 871 } 872 873 spin_unlock(&sdmac->vc.lock); 874 __clear_bit(channel, &stat); 875 } 876 877 return IRQ_HANDLED; 878 } 879 880 /* 881 * sets the pc of SDMA script according to the peripheral type 882 */ 883 static void sdma_get_pc(struct sdma_channel *sdmac, 884 enum sdma_peripheral_type peripheral_type) 885 { 886 struct sdma_engine *sdma = sdmac->sdma; 887 int per_2_emi = 0, emi_2_per = 0; 888 /* 889 * These are needed once we start to support transfers between 890 * two peripherals or memory-to-memory transfers 891 */ 892 int per_2_per = 0, emi_2_emi = 0; 893 894 sdmac->pc_from_device = 0; 895 sdmac->pc_to_device = 0; 896 sdmac->device_to_device = 0; 897 sdmac->pc_to_pc = 0; 898 899 switch (peripheral_type) { 900 case IMX_DMATYPE_MEMORY: 901 emi_2_emi = sdma->script_addrs->ap_2_ap_addr; 902 break; 903 case IMX_DMATYPE_DSP: 904 emi_2_per = sdma->script_addrs->bp_2_ap_addr; 905 per_2_emi = sdma->script_addrs->ap_2_bp_addr; 906 break; 907 case IMX_DMATYPE_FIRI: 908 per_2_emi = sdma->script_addrs->firi_2_mcu_addr; 909 emi_2_per = sdma->script_addrs->mcu_2_firi_addr; 910 break; 911 case IMX_DMATYPE_UART: 912 per_2_emi = sdma->script_addrs->uart_2_mcu_addr; 913 emi_2_per = sdma->script_addrs->mcu_2_app_addr; 914 break; 915 case IMX_DMATYPE_UART_SP: 916 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr; 917 emi_2_per = sdma->script_addrs->mcu_2_shp_addr; 918 break; 919 case IMX_DMATYPE_ATA: 920 per_2_emi = sdma->script_addrs->ata_2_mcu_addr; 921 emi_2_per = sdma->script_addrs->mcu_2_ata_addr; 922 break; 923 case IMX_DMATYPE_CSPI: 924 case IMX_DMATYPE_EXT: 925 case IMX_DMATYPE_SSI: 926 case IMX_DMATYPE_SAI: 927 per_2_emi = sdma->script_addrs->app_2_mcu_addr; 928 emi_2_per = sdma->script_addrs->mcu_2_app_addr; 929 break; 930 case IMX_DMATYPE_SSI_DUAL: 931 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr; 932 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr; 933 break; 934 case IMX_DMATYPE_SSI_SP: 935 case IMX_DMATYPE_MMC: 936 case IMX_DMATYPE_SDHC: 937 case IMX_DMATYPE_CSPI_SP: 938 case IMX_DMATYPE_ESAI: 939 case IMX_DMATYPE_MSHC_SP: 940 per_2_emi = sdma->script_addrs->shp_2_mcu_addr; 941 emi_2_per = sdma->script_addrs->mcu_2_shp_addr; 942 break; 943 case IMX_DMATYPE_ASRC: 944 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr; 945 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr; 946 per_2_per = sdma->script_addrs->per_2_per_addr; 947 break; 948 case IMX_DMATYPE_ASRC_SP: 949 per_2_emi = sdma->script_addrs->shp_2_mcu_addr; 950 emi_2_per = sdma->script_addrs->mcu_2_shp_addr; 951 per_2_per = sdma->script_addrs->per_2_per_addr; 952 break; 953 case IMX_DMATYPE_MSHC: 954 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr; 955 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr; 956 break; 957 case IMX_DMATYPE_CCM: 958 per_2_emi = sdma->script_addrs->dptc_dvfs_addr; 959 break; 960 case IMX_DMATYPE_SPDIF: 961 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr; 962 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr; 963 break; 964 case IMX_DMATYPE_IPU_MEMORY: 965 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr; 966 break; 967 default: 968 break; 969 } 970 971 sdmac->pc_from_device = per_2_emi; 972 sdmac->pc_to_device = emi_2_per; 973 sdmac->device_to_device = per_2_per; 974 sdmac->pc_to_pc = emi_2_emi; 975 } 976 977 static int sdma_load_context(struct sdma_channel *sdmac) 978 { 979 struct sdma_engine *sdma = sdmac->sdma; 980 int channel = sdmac->channel; 981 int load_address; 982 struct sdma_context_data *context = sdma->context; 983 struct sdma_buffer_descriptor *bd0 = sdma->bd0; 984 int ret; 985 unsigned long flags; 986 987 if (sdmac->context_loaded) 988 return 0; 989 990 if (sdmac->direction == DMA_DEV_TO_MEM) 991 load_address = sdmac->pc_from_device; 992 else if (sdmac->direction == DMA_DEV_TO_DEV) 993 load_address = sdmac->device_to_device; 994 else if (sdmac->direction == DMA_MEM_TO_MEM) 995 load_address = sdmac->pc_to_pc; 996 else 997 load_address = sdmac->pc_to_device; 998 999 if (load_address < 0) 1000 return load_address; 1001 1002 dev_dbg(sdma->dev, "load_address = %d\n", load_address); 1003 dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level); 1004 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr); 1005 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr); 1006 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]); 1007 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]); 1008 1009 spin_lock_irqsave(&sdma->channel_0_lock, flags); 1010 1011 memset(context, 0, sizeof(*context)); 1012 context->channel_state.pc = load_address; 1013 1014 /* Send by context the event mask,base address for peripheral 1015 * and watermark level 1016 */ 1017 context->gReg[0] = sdmac->event_mask[1]; 1018 context->gReg[1] = sdmac->event_mask[0]; 1019 context->gReg[2] = sdmac->per_addr; 1020 context->gReg[6] = sdmac->shp_addr; 1021 context->gReg[7] = sdmac->watermark_level; 1022 1023 bd0->mode.command = C0_SETDM; 1024 bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD; 1025 bd0->mode.count = sizeof(*context) / 4; 1026 bd0->buffer_addr = sdma->context_phys; 1027 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel; 1028 ret = sdma_run_channel0(sdma); 1029 1030 spin_unlock_irqrestore(&sdma->channel_0_lock, flags); 1031 1032 sdmac->context_loaded = true; 1033 1034 return ret; 1035 } 1036 1037 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan) 1038 { 1039 return container_of(chan, struct sdma_channel, vc.chan); 1040 } 1041 1042 static int sdma_disable_channel(struct dma_chan *chan) 1043 { 1044 struct sdma_channel *sdmac = to_sdma_chan(chan); 1045 struct sdma_engine *sdma = sdmac->sdma; 1046 int channel = sdmac->channel; 1047 1048 writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP); 1049 sdmac->status = DMA_ERROR; 1050 1051 return 0; 1052 } 1053 static void sdma_channel_terminate_work(struct work_struct *work) 1054 { 1055 struct sdma_channel *sdmac = container_of(work, struct sdma_channel, 1056 terminate_worker); 1057 unsigned long flags; 1058 LIST_HEAD(head); 1059 1060 /* 1061 * According to NXP R&D team a delay of one BD SDMA cost time 1062 * (maximum is 1ms) should be added after disable of the channel 1063 * bit, to ensure SDMA core has really been stopped after SDMA 1064 * clients call .device_terminate_all. 1065 */ 1066 usleep_range(1000, 2000); 1067 1068 spin_lock_irqsave(&sdmac->vc.lock, flags); 1069 vchan_get_all_descriptors(&sdmac->vc, &head); 1070 spin_unlock_irqrestore(&sdmac->vc.lock, flags); 1071 vchan_dma_desc_free_list(&sdmac->vc, &head); 1072 sdmac->context_loaded = false; 1073 } 1074 1075 static int sdma_terminate_all(struct dma_chan *chan) 1076 { 1077 struct sdma_channel *sdmac = to_sdma_chan(chan); 1078 unsigned long flags; 1079 1080 spin_lock_irqsave(&sdmac->vc.lock, flags); 1081 1082 sdma_disable_channel(chan); 1083 1084 if (sdmac->desc) { 1085 vchan_terminate_vdesc(&sdmac->desc->vd); 1086 sdmac->desc = NULL; 1087 schedule_work(&sdmac->terminate_worker); 1088 } 1089 1090 spin_unlock_irqrestore(&sdmac->vc.lock, flags); 1091 1092 return 0; 1093 } 1094 1095 static void sdma_channel_synchronize(struct dma_chan *chan) 1096 { 1097 struct sdma_channel *sdmac = to_sdma_chan(chan); 1098 1099 vchan_synchronize(&sdmac->vc); 1100 1101 flush_work(&sdmac->terminate_worker); 1102 } 1103 1104 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac) 1105 { 1106 struct sdma_engine *sdma = sdmac->sdma; 1107 1108 int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML; 1109 int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16; 1110 1111 set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]); 1112 set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]); 1113 1114 if (sdmac->event_id0 > 31) 1115 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE; 1116 1117 if (sdmac->event_id1 > 31) 1118 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE; 1119 1120 /* 1121 * If LWML(src_maxburst) > HWML(dst_maxburst), we need 1122 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap 1123 * r0(event_mask[1]) and r1(event_mask[0]). 1124 */ 1125 if (lwml > hwml) { 1126 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML | 1127 SDMA_WATERMARK_LEVEL_HWML); 1128 sdmac->watermark_level |= hwml; 1129 sdmac->watermark_level |= lwml << 16; 1130 swap(sdmac->event_mask[0], sdmac->event_mask[1]); 1131 } 1132 1133 if (sdmac->per_address2 >= sdma->spba_start_addr && 1134 sdmac->per_address2 <= sdma->spba_end_addr) 1135 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP; 1136 1137 if (sdmac->per_address >= sdma->spba_start_addr && 1138 sdmac->per_address <= sdma->spba_end_addr) 1139 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP; 1140 1141 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT; 1142 } 1143 1144 static int sdma_config_channel(struct dma_chan *chan) 1145 { 1146 struct sdma_channel *sdmac = to_sdma_chan(chan); 1147 int ret; 1148 1149 sdma_disable_channel(chan); 1150 1151 sdmac->event_mask[0] = 0; 1152 sdmac->event_mask[1] = 0; 1153 sdmac->shp_addr = 0; 1154 sdmac->per_addr = 0; 1155 1156 switch (sdmac->peripheral_type) { 1157 case IMX_DMATYPE_DSP: 1158 sdma_config_ownership(sdmac, false, true, true); 1159 break; 1160 case IMX_DMATYPE_MEMORY: 1161 sdma_config_ownership(sdmac, false, true, false); 1162 break; 1163 default: 1164 sdma_config_ownership(sdmac, true, true, false); 1165 break; 1166 } 1167 1168 sdma_get_pc(sdmac, sdmac->peripheral_type); 1169 1170 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) && 1171 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) { 1172 /* Handle multiple event channels differently */ 1173 if (sdmac->event_id1) { 1174 if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP || 1175 sdmac->peripheral_type == IMX_DMATYPE_ASRC) 1176 sdma_set_watermarklevel_for_p2p(sdmac); 1177 } else 1178 __set_bit(sdmac->event_id0, sdmac->event_mask); 1179 1180 /* Address */ 1181 sdmac->shp_addr = sdmac->per_address; 1182 sdmac->per_addr = sdmac->per_address2; 1183 } else { 1184 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */ 1185 } 1186 1187 ret = sdma_load_context(sdmac); 1188 1189 return ret; 1190 } 1191 1192 static int sdma_set_channel_priority(struct sdma_channel *sdmac, 1193 unsigned int priority) 1194 { 1195 struct sdma_engine *sdma = sdmac->sdma; 1196 int channel = sdmac->channel; 1197 1198 if (priority < MXC_SDMA_MIN_PRIORITY 1199 || priority > MXC_SDMA_MAX_PRIORITY) { 1200 return -EINVAL; 1201 } 1202 1203 writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel); 1204 1205 return 0; 1206 } 1207 1208 static int sdma_request_channel0(struct sdma_engine *sdma) 1209 { 1210 int ret = -EBUSY; 1211 1212 sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys, 1213 GFP_NOWAIT); 1214 if (!sdma->bd0) { 1215 ret = -ENOMEM; 1216 goto out; 1217 } 1218 1219 sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys; 1220 sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys; 1221 1222 sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY); 1223 return 0; 1224 out: 1225 1226 return ret; 1227 } 1228 1229 1230 static int sdma_alloc_bd(struct sdma_desc *desc) 1231 { 1232 u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor); 1233 int ret = 0; 1234 1235 desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size, 1236 &desc->bd_phys, GFP_NOWAIT); 1237 if (!desc->bd) { 1238 ret = -ENOMEM; 1239 goto out; 1240 } 1241 out: 1242 return ret; 1243 } 1244 1245 static void sdma_free_bd(struct sdma_desc *desc) 1246 { 1247 u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor); 1248 1249 dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd, 1250 desc->bd_phys); 1251 } 1252 1253 static void sdma_desc_free(struct virt_dma_desc *vd) 1254 { 1255 struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd); 1256 1257 sdma_free_bd(desc); 1258 kfree(desc); 1259 } 1260 1261 static int sdma_alloc_chan_resources(struct dma_chan *chan) 1262 { 1263 struct sdma_channel *sdmac = to_sdma_chan(chan); 1264 struct imx_dma_data *data = chan->private; 1265 struct imx_dma_data mem_data; 1266 int prio, ret; 1267 1268 /* 1269 * MEMCPY may never setup chan->private by filter function such as 1270 * dmatest, thus create 'struct imx_dma_data mem_data' for this case. 1271 * Please note in any other slave case, you have to setup chan->private 1272 * with 'struct imx_dma_data' in your own filter function if you want to 1273 * request dma channel by dma_request_channel() rather than 1274 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear 1275 * to warn you to correct your filter function. 1276 */ 1277 if (!data) { 1278 dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n"); 1279 mem_data.priority = 2; 1280 mem_data.peripheral_type = IMX_DMATYPE_MEMORY; 1281 mem_data.dma_request = 0; 1282 mem_data.dma_request2 = 0; 1283 data = &mem_data; 1284 1285 sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY); 1286 } 1287 1288 switch (data->priority) { 1289 case DMA_PRIO_HIGH: 1290 prio = 3; 1291 break; 1292 case DMA_PRIO_MEDIUM: 1293 prio = 2; 1294 break; 1295 case DMA_PRIO_LOW: 1296 default: 1297 prio = 1; 1298 break; 1299 } 1300 1301 sdmac->peripheral_type = data->peripheral_type; 1302 sdmac->event_id0 = data->dma_request; 1303 sdmac->event_id1 = data->dma_request2; 1304 1305 ret = clk_enable(sdmac->sdma->clk_ipg); 1306 if (ret) 1307 return ret; 1308 ret = clk_enable(sdmac->sdma->clk_ahb); 1309 if (ret) 1310 goto disable_clk_ipg; 1311 1312 ret = sdma_set_channel_priority(sdmac, prio); 1313 if (ret) 1314 goto disable_clk_ahb; 1315 1316 return 0; 1317 1318 disable_clk_ahb: 1319 clk_disable(sdmac->sdma->clk_ahb); 1320 disable_clk_ipg: 1321 clk_disable(sdmac->sdma->clk_ipg); 1322 return ret; 1323 } 1324 1325 static void sdma_free_chan_resources(struct dma_chan *chan) 1326 { 1327 struct sdma_channel *sdmac = to_sdma_chan(chan); 1328 struct sdma_engine *sdma = sdmac->sdma; 1329 1330 sdma_terminate_all(chan); 1331 1332 sdma_channel_synchronize(chan); 1333 1334 if (sdmac->event_id0 >= 0) 1335 sdma_event_disable(sdmac, sdmac->event_id0); 1336 if (sdmac->event_id1) 1337 sdma_event_disable(sdmac, sdmac->event_id1); 1338 1339 sdmac->event_id0 = 0; 1340 sdmac->event_id1 = 0; 1341 sdmac->context_loaded = false; 1342 1343 sdma_set_channel_priority(sdmac, 0); 1344 1345 clk_disable(sdma->clk_ipg); 1346 clk_disable(sdma->clk_ahb); 1347 } 1348 1349 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac, 1350 enum dma_transfer_direction direction, u32 bds) 1351 { 1352 struct sdma_desc *desc; 1353 1354 desc = kzalloc((sizeof(*desc)), GFP_NOWAIT); 1355 if (!desc) 1356 goto err_out; 1357 1358 sdmac->status = DMA_IN_PROGRESS; 1359 sdmac->direction = direction; 1360 sdmac->flags = 0; 1361 1362 desc->chn_count = 0; 1363 desc->chn_real_count = 0; 1364 desc->buf_tail = 0; 1365 desc->buf_ptail = 0; 1366 desc->sdmac = sdmac; 1367 desc->num_bd = bds; 1368 1369 if (sdma_alloc_bd(desc)) 1370 goto err_desc_out; 1371 1372 /* No slave_config called in MEMCPY case, so do here */ 1373 if (direction == DMA_MEM_TO_MEM) 1374 sdma_config_ownership(sdmac, false, true, false); 1375 1376 if (sdma_load_context(sdmac)) 1377 goto err_desc_out; 1378 1379 return desc; 1380 1381 err_desc_out: 1382 kfree(desc); 1383 err_out: 1384 return NULL; 1385 } 1386 1387 static struct dma_async_tx_descriptor *sdma_prep_memcpy( 1388 struct dma_chan *chan, dma_addr_t dma_dst, 1389 dma_addr_t dma_src, size_t len, unsigned long flags) 1390 { 1391 struct sdma_channel *sdmac = to_sdma_chan(chan); 1392 struct sdma_engine *sdma = sdmac->sdma; 1393 int channel = sdmac->channel; 1394 size_t count; 1395 int i = 0, param; 1396 struct sdma_buffer_descriptor *bd; 1397 struct sdma_desc *desc; 1398 1399 if (!chan || !len) 1400 return NULL; 1401 1402 dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n", 1403 &dma_src, &dma_dst, len, channel); 1404 1405 desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM, 1406 len / SDMA_BD_MAX_CNT + 1); 1407 if (!desc) 1408 return NULL; 1409 1410 do { 1411 count = min_t(size_t, len, SDMA_BD_MAX_CNT); 1412 bd = &desc->bd[i]; 1413 bd->buffer_addr = dma_src; 1414 bd->ext_buffer_addr = dma_dst; 1415 bd->mode.count = count; 1416 desc->chn_count += count; 1417 bd->mode.command = 0; 1418 1419 dma_src += count; 1420 dma_dst += count; 1421 len -= count; 1422 i++; 1423 1424 param = BD_DONE | BD_EXTD | BD_CONT; 1425 /* last bd */ 1426 if (!len) { 1427 param |= BD_INTR; 1428 param |= BD_LAST; 1429 param &= ~BD_CONT; 1430 } 1431 1432 dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n", 1433 i, count, bd->buffer_addr, 1434 param & BD_WRAP ? "wrap" : "", 1435 param & BD_INTR ? " intr" : ""); 1436 1437 bd->mode.status = param; 1438 } while (len); 1439 1440 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags); 1441 } 1442 1443 static struct dma_async_tx_descriptor *sdma_prep_slave_sg( 1444 struct dma_chan *chan, struct scatterlist *sgl, 1445 unsigned int sg_len, enum dma_transfer_direction direction, 1446 unsigned long flags, void *context) 1447 { 1448 struct sdma_channel *sdmac = to_sdma_chan(chan); 1449 struct sdma_engine *sdma = sdmac->sdma; 1450 int i, count; 1451 int channel = sdmac->channel; 1452 struct scatterlist *sg; 1453 struct sdma_desc *desc; 1454 1455 sdma_config_write(chan, &sdmac->slave_config, direction); 1456 1457 desc = sdma_transfer_init(sdmac, direction, sg_len); 1458 if (!desc) 1459 goto err_out; 1460 1461 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n", 1462 sg_len, channel); 1463 1464 for_each_sg(sgl, sg, sg_len, i) { 1465 struct sdma_buffer_descriptor *bd = &desc->bd[i]; 1466 int param; 1467 1468 bd->buffer_addr = sg->dma_address; 1469 1470 count = sg_dma_len(sg); 1471 1472 if (count > SDMA_BD_MAX_CNT) { 1473 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n", 1474 channel, count, SDMA_BD_MAX_CNT); 1475 goto err_bd_out; 1476 } 1477 1478 bd->mode.count = count; 1479 desc->chn_count += count; 1480 1481 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) 1482 goto err_bd_out; 1483 1484 switch (sdmac->word_size) { 1485 case DMA_SLAVE_BUSWIDTH_4_BYTES: 1486 bd->mode.command = 0; 1487 if (count & 3 || sg->dma_address & 3) 1488 goto err_bd_out; 1489 break; 1490 case DMA_SLAVE_BUSWIDTH_2_BYTES: 1491 bd->mode.command = 2; 1492 if (count & 1 || sg->dma_address & 1) 1493 goto err_bd_out; 1494 break; 1495 case DMA_SLAVE_BUSWIDTH_1_BYTE: 1496 bd->mode.command = 1; 1497 break; 1498 default: 1499 goto err_bd_out; 1500 } 1501 1502 param = BD_DONE | BD_EXTD | BD_CONT; 1503 1504 if (i + 1 == sg_len) { 1505 param |= BD_INTR; 1506 param |= BD_LAST; 1507 param &= ~BD_CONT; 1508 } 1509 1510 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n", 1511 i, count, (u64)sg->dma_address, 1512 param & BD_WRAP ? "wrap" : "", 1513 param & BD_INTR ? " intr" : ""); 1514 1515 bd->mode.status = param; 1516 } 1517 1518 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags); 1519 err_bd_out: 1520 sdma_free_bd(desc); 1521 kfree(desc); 1522 err_out: 1523 sdmac->status = DMA_ERROR; 1524 return NULL; 1525 } 1526 1527 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic( 1528 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len, 1529 size_t period_len, enum dma_transfer_direction direction, 1530 unsigned long flags) 1531 { 1532 struct sdma_channel *sdmac = to_sdma_chan(chan); 1533 struct sdma_engine *sdma = sdmac->sdma; 1534 int num_periods = buf_len / period_len; 1535 int channel = sdmac->channel; 1536 int i = 0, buf = 0; 1537 struct sdma_desc *desc; 1538 1539 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel); 1540 1541 sdma_config_write(chan, &sdmac->slave_config, direction); 1542 1543 desc = sdma_transfer_init(sdmac, direction, num_periods); 1544 if (!desc) 1545 goto err_out; 1546 1547 desc->period_len = period_len; 1548 1549 sdmac->flags |= IMX_DMA_SG_LOOP; 1550 1551 if (period_len > SDMA_BD_MAX_CNT) { 1552 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n", 1553 channel, period_len, SDMA_BD_MAX_CNT); 1554 goto err_bd_out; 1555 } 1556 1557 while (buf < buf_len) { 1558 struct sdma_buffer_descriptor *bd = &desc->bd[i]; 1559 int param; 1560 1561 bd->buffer_addr = dma_addr; 1562 1563 bd->mode.count = period_len; 1564 1565 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) 1566 goto err_bd_out; 1567 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES) 1568 bd->mode.command = 0; 1569 else 1570 bd->mode.command = sdmac->word_size; 1571 1572 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR; 1573 if (i + 1 == num_periods) 1574 param |= BD_WRAP; 1575 1576 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n", 1577 i, period_len, (u64)dma_addr, 1578 param & BD_WRAP ? "wrap" : "", 1579 param & BD_INTR ? " intr" : ""); 1580 1581 bd->mode.status = param; 1582 1583 dma_addr += period_len; 1584 buf += period_len; 1585 1586 i++; 1587 } 1588 1589 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags); 1590 err_bd_out: 1591 sdma_free_bd(desc); 1592 kfree(desc); 1593 err_out: 1594 sdmac->status = DMA_ERROR; 1595 return NULL; 1596 } 1597 1598 static int sdma_config_write(struct dma_chan *chan, 1599 struct dma_slave_config *dmaengine_cfg, 1600 enum dma_transfer_direction direction) 1601 { 1602 struct sdma_channel *sdmac = to_sdma_chan(chan); 1603 1604 if (direction == DMA_DEV_TO_MEM) { 1605 sdmac->per_address = dmaengine_cfg->src_addr; 1606 sdmac->watermark_level = dmaengine_cfg->src_maxburst * 1607 dmaengine_cfg->src_addr_width; 1608 sdmac->word_size = dmaengine_cfg->src_addr_width; 1609 } else if (direction == DMA_DEV_TO_DEV) { 1610 sdmac->per_address2 = dmaengine_cfg->src_addr; 1611 sdmac->per_address = dmaengine_cfg->dst_addr; 1612 sdmac->watermark_level = dmaengine_cfg->src_maxburst & 1613 SDMA_WATERMARK_LEVEL_LWML; 1614 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) & 1615 SDMA_WATERMARK_LEVEL_HWML; 1616 sdmac->word_size = dmaengine_cfg->dst_addr_width; 1617 } else { 1618 sdmac->per_address = dmaengine_cfg->dst_addr; 1619 sdmac->watermark_level = dmaengine_cfg->dst_maxburst * 1620 dmaengine_cfg->dst_addr_width; 1621 sdmac->word_size = dmaengine_cfg->dst_addr_width; 1622 } 1623 sdmac->direction = direction; 1624 return sdma_config_channel(chan); 1625 } 1626 1627 static int sdma_config(struct dma_chan *chan, 1628 struct dma_slave_config *dmaengine_cfg) 1629 { 1630 struct sdma_channel *sdmac = to_sdma_chan(chan); 1631 1632 memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg)); 1633 1634 /* Set ENBLn earlier to make sure dma request triggered after that */ 1635 if (sdmac->event_id0 >= 0) { 1636 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events) 1637 return -EINVAL; 1638 sdma_event_enable(sdmac, sdmac->event_id0); 1639 } 1640 1641 if (sdmac->event_id1) { 1642 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events) 1643 return -EINVAL; 1644 sdma_event_enable(sdmac, sdmac->event_id1); 1645 } 1646 1647 return 0; 1648 } 1649 1650 static enum dma_status sdma_tx_status(struct dma_chan *chan, 1651 dma_cookie_t cookie, 1652 struct dma_tx_state *txstate) 1653 { 1654 struct sdma_channel *sdmac = to_sdma_chan(chan); 1655 struct sdma_desc *desc = NULL; 1656 u32 residue; 1657 struct virt_dma_desc *vd; 1658 enum dma_status ret; 1659 unsigned long flags; 1660 1661 ret = dma_cookie_status(chan, cookie, txstate); 1662 if (ret == DMA_COMPLETE || !txstate) 1663 return ret; 1664 1665 spin_lock_irqsave(&sdmac->vc.lock, flags); 1666 1667 vd = vchan_find_desc(&sdmac->vc, cookie); 1668 if (vd) 1669 desc = to_sdma_desc(&vd->tx); 1670 else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie) 1671 desc = sdmac->desc; 1672 1673 if (desc) { 1674 if (sdmac->flags & IMX_DMA_SG_LOOP) 1675 residue = (desc->num_bd - desc->buf_ptail) * 1676 desc->period_len - desc->chn_real_count; 1677 else 1678 residue = desc->chn_count - desc->chn_real_count; 1679 } else { 1680 residue = 0; 1681 } 1682 1683 spin_unlock_irqrestore(&sdmac->vc.lock, flags); 1684 1685 dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie, 1686 residue); 1687 1688 return sdmac->status; 1689 } 1690 1691 static void sdma_issue_pending(struct dma_chan *chan) 1692 { 1693 struct sdma_channel *sdmac = to_sdma_chan(chan); 1694 unsigned long flags; 1695 1696 spin_lock_irqsave(&sdmac->vc.lock, flags); 1697 if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc) 1698 sdma_start_desc(sdmac); 1699 spin_unlock_irqrestore(&sdmac->vc.lock, flags); 1700 } 1701 1702 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34 1703 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38 1704 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41 1705 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42 1706 1707 static void sdma_add_scripts(struct sdma_engine *sdma, 1708 const struct sdma_script_start_addrs *addr) 1709 { 1710 s32 *addr_arr = (u32 *)addr; 1711 s32 *saddr_arr = (u32 *)sdma->script_addrs; 1712 int i; 1713 1714 /* use the default firmware in ROM if missing external firmware */ 1715 if (!sdma->script_number) 1716 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; 1717 1718 if (sdma->script_number > sizeof(struct sdma_script_start_addrs) 1719 / sizeof(s32)) { 1720 dev_err(sdma->dev, 1721 "SDMA script number %d not match with firmware.\n", 1722 sdma->script_number); 1723 return; 1724 } 1725 1726 for (i = 0; i < sdma->script_number; i++) 1727 if (addr_arr[i] > 0) 1728 saddr_arr[i] = addr_arr[i]; 1729 } 1730 1731 static void sdma_load_firmware(const struct firmware *fw, void *context) 1732 { 1733 struct sdma_engine *sdma = context; 1734 const struct sdma_firmware_header *header; 1735 const struct sdma_script_start_addrs *addr; 1736 unsigned short *ram_code; 1737 1738 if (!fw) { 1739 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n"); 1740 /* In this case we just use the ROM firmware. */ 1741 return; 1742 } 1743 1744 if (fw->size < sizeof(*header)) 1745 goto err_firmware; 1746 1747 header = (struct sdma_firmware_header *)fw->data; 1748 1749 if (header->magic != SDMA_FIRMWARE_MAGIC) 1750 goto err_firmware; 1751 if (header->ram_code_start + header->ram_code_size > fw->size) 1752 goto err_firmware; 1753 switch (header->version_major) { 1754 case 1: 1755 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; 1756 break; 1757 case 2: 1758 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2; 1759 break; 1760 case 3: 1761 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3; 1762 break; 1763 case 4: 1764 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4; 1765 break; 1766 default: 1767 dev_err(sdma->dev, "unknown firmware version\n"); 1768 goto err_firmware; 1769 } 1770 1771 addr = (void *)header + header->script_addrs_start; 1772 ram_code = (void *)header + header->ram_code_start; 1773 1774 clk_enable(sdma->clk_ipg); 1775 clk_enable(sdma->clk_ahb); 1776 /* download the RAM image for SDMA */ 1777 sdma_load_script(sdma, ram_code, 1778 header->ram_code_size, 1779 addr->ram_code_start_addr); 1780 clk_disable(sdma->clk_ipg); 1781 clk_disable(sdma->clk_ahb); 1782 1783 sdma_add_scripts(sdma, addr); 1784 1785 dev_info(sdma->dev, "loaded firmware %d.%d\n", 1786 header->version_major, 1787 header->version_minor); 1788 1789 err_firmware: 1790 release_firmware(fw); 1791 } 1792 1793 #define EVENT_REMAP_CELLS 3 1794 1795 static int sdma_event_remap(struct sdma_engine *sdma) 1796 { 1797 struct device_node *np = sdma->dev->of_node; 1798 struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0); 1799 struct property *event_remap; 1800 struct regmap *gpr; 1801 char propname[] = "fsl,sdma-event-remap"; 1802 u32 reg, val, shift, num_map, i; 1803 int ret = 0; 1804 1805 if (IS_ERR(np) || IS_ERR(gpr_np)) 1806 goto out; 1807 1808 event_remap = of_find_property(np, propname, NULL); 1809 num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0; 1810 if (!num_map) { 1811 dev_dbg(sdma->dev, "no event needs to be remapped\n"); 1812 goto out; 1813 } else if (num_map % EVENT_REMAP_CELLS) { 1814 dev_err(sdma->dev, "the property %s must modulo %d\n", 1815 propname, EVENT_REMAP_CELLS); 1816 ret = -EINVAL; 1817 goto out; 1818 } 1819 1820 gpr = syscon_node_to_regmap(gpr_np); 1821 if (IS_ERR(gpr)) { 1822 dev_err(sdma->dev, "failed to get gpr regmap\n"); 1823 ret = PTR_ERR(gpr); 1824 goto out; 1825 } 1826 1827 for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) { 1828 ret = of_property_read_u32_index(np, propname, i, ®); 1829 if (ret) { 1830 dev_err(sdma->dev, "failed to read property %s index %d\n", 1831 propname, i); 1832 goto out; 1833 } 1834 1835 ret = of_property_read_u32_index(np, propname, i + 1, &shift); 1836 if (ret) { 1837 dev_err(sdma->dev, "failed to read property %s index %d\n", 1838 propname, i + 1); 1839 goto out; 1840 } 1841 1842 ret = of_property_read_u32_index(np, propname, i + 2, &val); 1843 if (ret) { 1844 dev_err(sdma->dev, "failed to read property %s index %d\n", 1845 propname, i + 2); 1846 goto out; 1847 } 1848 1849 regmap_update_bits(gpr, reg, BIT(shift), val << shift); 1850 } 1851 1852 out: 1853 if (!IS_ERR(gpr_np)) 1854 of_node_put(gpr_np); 1855 1856 return ret; 1857 } 1858 1859 static int sdma_get_firmware(struct sdma_engine *sdma, 1860 const char *fw_name) 1861 { 1862 int ret; 1863 1864 ret = request_firmware_nowait(THIS_MODULE, 1865 FW_ACTION_HOTPLUG, fw_name, sdma->dev, 1866 GFP_KERNEL, sdma, sdma_load_firmware); 1867 1868 return ret; 1869 } 1870 1871 static int sdma_init(struct sdma_engine *sdma) 1872 { 1873 int i, ret; 1874 dma_addr_t ccb_phys; 1875 1876 ret = clk_enable(sdma->clk_ipg); 1877 if (ret) 1878 return ret; 1879 ret = clk_enable(sdma->clk_ahb); 1880 if (ret) 1881 goto disable_clk_ipg; 1882 1883 if (sdma->drvdata->check_ratio && 1884 (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg))) 1885 sdma->clk_ratio = 1; 1886 1887 /* Be sure SDMA has not started yet */ 1888 writel_relaxed(0, sdma->regs + SDMA_H_C0PTR); 1889 1890 sdma->channel_control = dma_alloc_coherent(sdma->dev, 1891 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) + 1892 sizeof(struct sdma_context_data), 1893 &ccb_phys, GFP_KERNEL); 1894 1895 if (!sdma->channel_control) { 1896 ret = -ENOMEM; 1897 goto err_dma_alloc; 1898 } 1899 1900 sdma->context = (void *)sdma->channel_control + 1901 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control); 1902 sdma->context_phys = ccb_phys + 1903 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control); 1904 1905 /* disable all channels */ 1906 for (i = 0; i < sdma->drvdata->num_events; i++) 1907 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i)); 1908 1909 /* All channels have priority 0 */ 1910 for (i = 0; i < MAX_DMA_CHANNELS; i++) 1911 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4); 1912 1913 ret = sdma_request_channel0(sdma); 1914 if (ret) 1915 goto err_dma_alloc; 1916 1917 sdma_config_ownership(&sdma->channel[0], false, true, false); 1918 1919 /* Set Command Channel (Channel Zero) */ 1920 writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR); 1921 1922 /* Set bits of CONFIG register but with static context switching */ 1923 if (sdma->clk_ratio) 1924 writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG); 1925 else 1926 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG); 1927 1928 writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR); 1929 1930 /* Initializes channel's priorities */ 1931 sdma_set_channel_priority(&sdma->channel[0], 7); 1932 1933 clk_disable(sdma->clk_ipg); 1934 clk_disable(sdma->clk_ahb); 1935 1936 return 0; 1937 1938 err_dma_alloc: 1939 clk_disable(sdma->clk_ahb); 1940 disable_clk_ipg: 1941 clk_disable(sdma->clk_ipg); 1942 dev_err(sdma->dev, "initialisation failed with %d\n", ret); 1943 return ret; 1944 } 1945 1946 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param) 1947 { 1948 struct sdma_channel *sdmac = to_sdma_chan(chan); 1949 struct imx_dma_data *data = fn_param; 1950 1951 if (!imx_dma_is_general_purpose(chan)) 1952 return false; 1953 1954 sdmac->data = *data; 1955 chan->private = &sdmac->data; 1956 1957 return true; 1958 } 1959 1960 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec, 1961 struct of_dma *ofdma) 1962 { 1963 struct sdma_engine *sdma = ofdma->of_dma_data; 1964 dma_cap_mask_t mask = sdma->dma_device.cap_mask; 1965 struct imx_dma_data data; 1966 1967 if (dma_spec->args_count != 3) 1968 return NULL; 1969 1970 data.dma_request = dma_spec->args[0]; 1971 data.peripheral_type = dma_spec->args[1]; 1972 data.priority = dma_spec->args[2]; 1973 /* 1974 * init dma_request2 to zero, which is not used by the dts. 1975 * For P2P, dma_request2 is init from dma_request_channel(), 1976 * chan->private will point to the imx_dma_data, and in 1977 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will 1978 * be set to sdmac->event_id1. 1979 */ 1980 data.dma_request2 = 0; 1981 1982 return __dma_request_channel(&mask, sdma_filter_fn, &data, 1983 ofdma->of_node); 1984 } 1985 1986 static int sdma_probe(struct platform_device *pdev) 1987 { 1988 const struct of_device_id *of_id = 1989 of_match_device(sdma_dt_ids, &pdev->dev); 1990 struct device_node *np = pdev->dev.of_node; 1991 struct device_node *spba_bus; 1992 const char *fw_name; 1993 int ret; 1994 int irq; 1995 struct resource *iores; 1996 struct resource spba_res; 1997 struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev); 1998 int i; 1999 struct sdma_engine *sdma; 2000 s32 *saddr_arr; 2001 const struct sdma_driver_data *drvdata = NULL; 2002 2003 if (of_id) 2004 drvdata = of_id->data; 2005 else if (pdev->id_entry) 2006 drvdata = (void *)pdev->id_entry->driver_data; 2007 2008 if (!drvdata) { 2009 dev_err(&pdev->dev, "unable to find driver data\n"); 2010 return -EINVAL; 2011 } 2012 2013 ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 2014 if (ret) 2015 return ret; 2016 2017 sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL); 2018 if (!sdma) 2019 return -ENOMEM; 2020 2021 spin_lock_init(&sdma->channel_0_lock); 2022 2023 sdma->dev = &pdev->dev; 2024 sdma->drvdata = drvdata; 2025 2026 irq = platform_get_irq(pdev, 0); 2027 if (irq < 0) 2028 return irq; 2029 2030 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2031 sdma->regs = devm_ioremap_resource(&pdev->dev, iores); 2032 if (IS_ERR(sdma->regs)) 2033 return PTR_ERR(sdma->regs); 2034 2035 sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2036 if (IS_ERR(sdma->clk_ipg)) 2037 return PTR_ERR(sdma->clk_ipg); 2038 2039 sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 2040 if (IS_ERR(sdma->clk_ahb)) 2041 return PTR_ERR(sdma->clk_ahb); 2042 2043 ret = clk_prepare(sdma->clk_ipg); 2044 if (ret) 2045 return ret; 2046 2047 ret = clk_prepare(sdma->clk_ahb); 2048 if (ret) 2049 goto err_clk; 2050 2051 ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma", 2052 sdma); 2053 if (ret) 2054 goto err_irq; 2055 2056 sdma->irq = irq; 2057 2058 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL); 2059 if (!sdma->script_addrs) { 2060 ret = -ENOMEM; 2061 goto err_irq; 2062 } 2063 2064 /* initially no scripts available */ 2065 saddr_arr = (s32 *)sdma->script_addrs; 2066 for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++) 2067 saddr_arr[i] = -EINVAL; 2068 2069 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask); 2070 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask); 2071 dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask); 2072 2073 INIT_LIST_HEAD(&sdma->dma_device.channels); 2074 /* Initialize channel parameters */ 2075 for (i = 0; i < MAX_DMA_CHANNELS; i++) { 2076 struct sdma_channel *sdmac = &sdma->channel[i]; 2077 2078 sdmac->sdma = sdma; 2079 2080 sdmac->channel = i; 2081 sdmac->vc.desc_free = sdma_desc_free; 2082 INIT_WORK(&sdmac->terminate_worker, 2083 sdma_channel_terminate_work); 2084 /* 2085 * Add the channel to the DMAC list. Do not add channel 0 though 2086 * because we need it internally in the SDMA driver. This also means 2087 * that channel 0 in dmaengine counting matches sdma channel 1. 2088 */ 2089 if (i) 2090 vchan_init(&sdmac->vc, &sdma->dma_device); 2091 } 2092 2093 ret = sdma_init(sdma); 2094 if (ret) 2095 goto err_init; 2096 2097 ret = sdma_event_remap(sdma); 2098 if (ret) 2099 goto err_init; 2100 2101 if (sdma->drvdata->script_addrs) 2102 sdma_add_scripts(sdma, sdma->drvdata->script_addrs); 2103 if (pdata && pdata->script_addrs) 2104 sdma_add_scripts(sdma, pdata->script_addrs); 2105 2106 sdma->dma_device.dev = &pdev->dev; 2107 2108 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources; 2109 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources; 2110 sdma->dma_device.device_tx_status = sdma_tx_status; 2111 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg; 2112 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic; 2113 sdma->dma_device.device_config = sdma_config; 2114 sdma->dma_device.device_terminate_all = sdma_terminate_all; 2115 sdma->dma_device.device_synchronize = sdma_channel_synchronize; 2116 sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS; 2117 sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS; 2118 sdma->dma_device.directions = SDMA_DMA_DIRECTIONS; 2119 sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; 2120 sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy; 2121 sdma->dma_device.device_issue_pending = sdma_issue_pending; 2122 sdma->dma_device.dev->dma_parms = &sdma->dma_parms; 2123 sdma->dma_device.copy_align = 2; 2124 dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT); 2125 2126 platform_set_drvdata(pdev, sdma); 2127 2128 ret = dma_async_device_register(&sdma->dma_device); 2129 if (ret) { 2130 dev_err(&pdev->dev, "unable to register\n"); 2131 goto err_init; 2132 } 2133 2134 if (np) { 2135 ret = of_dma_controller_register(np, sdma_xlate, sdma); 2136 if (ret) { 2137 dev_err(&pdev->dev, "failed to register controller\n"); 2138 goto err_register; 2139 } 2140 2141 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus"); 2142 ret = of_address_to_resource(spba_bus, 0, &spba_res); 2143 if (!ret) { 2144 sdma->spba_start_addr = spba_res.start; 2145 sdma->spba_end_addr = spba_res.end; 2146 } 2147 of_node_put(spba_bus); 2148 } 2149 2150 /* 2151 * Kick off firmware loading as the very last step: 2152 * attempt to load firmware only if we're not on the error path, because 2153 * the firmware callback requires a fully functional and allocated sdma 2154 * instance. 2155 */ 2156 if (pdata) { 2157 ret = sdma_get_firmware(sdma, pdata->fw_name); 2158 if (ret) 2159 dev_warn(&pdev->dev, "failed to get firmware from platform data\n"); 2160 } else { 2161 /* 2162 * Because that device tree does not encode ROM script address, 2163 * the RAM script in firmware is mandatory for device tree 2164 * probe, otherwise it fails. 2165 */ 2166 ret = of_property_read_string(np, "fsl,sdma-ram-script-name", 2167 &fw_name); 2168 if (ret) { 2169 dev_warn(&pdev->dev, "failed to get firmware name\n"); 2170 } else { 2171 ret = sdma_get_firmware(sdma, fw_name); 2172 if (ret) 2173 dev_warn(&pdev->dev, "failed to get firmware from device tree\n"); 2174 } 2175 } 2176 2177 return 0; 2178 2179 err_register: 2180 dma_async_device_unregister(&sdma->dma_device); 2181 err_init: 2182 kfree(sdma->script_addrs); 2183 err_irq: 2184 clk_unprepare(sdma->clk_ahb); 2185 err_clk: 2186 clk_unprepare(sdma->clk_ipg); 2187 return ret; 2188 } 2189 2190 static int sdma_remove(struct platform_device *pdev) 2191 { 2192 struct sdma_engine *sdma = platform_get_drvdata(pdev); 2193 int i; 2194 2195 devm_free_irq(&pdev->dev, sdma->irq, sdma); 2196 dma_async_device_unregister(&sdma->dma_device); 2197 kfree(sdma->script_addrs); 2198 clk_unprepare(sdma->clk_ahb); 2199 clk_unprepare(sdma->clk_ipg); 2200 /* Kill the tasklet */ 2201 for (i = 0; i < MAX_DMA_CHANNELS; i++) { 2202 struct sdma_channel *sdmac = &sdma->channel[i]; 2203 2204 tasklet_kill(&sdmac->vc.task); 2205 sdma_free_chan_resources(&sdmac->vc.chan); 2206 } 2207 2208 platform_set_drvdata(pdev, NULL); 2209 return 0; 2210 } 2211 2212 static struct platform_driver sdma_driver = { 2213 .driver = { 2214 .name = "imx-sdma", 2215 .of_match_table = sdma_dt_ids, 2216 }, 2217 .id_table = sdma_devtypes, 2218 .remove = sdma_remove, 2219 .probe = sdma_probe, 2220 }; 2221 2222 module_platform_driver(sdma_driver); 2223 2224 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>"); 2225 MODULE_DESCRIPTION("i.MX SDMA driver"); 2226 #if IS_ENABLED(CONFIG_SOC_IMX6Q) 2227 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin"); 2228 #endif 2229 #if IS_ENABLED(CONFIG_SOC_IMX7D) 2230 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin"); 2231 #endif 2232 MODULE_LICENSE("GPL"); 2233