1 /* 2 * drivers/dma/imx-sdma.c 3 * 4 * This file contains a driver for the Freescale Smart DMA engine 5 * 6 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de> 7 * 8 * Based on code from Freescale: 9 * 10 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved. 11 * 12 * The code contained herein is licensed under the GNU General Public 13 * License. You may obtain a copy of the GNU General Public License 14 * Version 2 or later at the following locations: 15 * 16 * http://www.opensource.org/licenses/gpl-license.html 17 * http://www.gnu.org/copyleft/gpl.html 18 */ 19 20 #include <linux/init.h> 21 #include <linux/iopoll.h> 22 #include <linux/module.h> 23 #include <linux/types.h> 24 #include <linux/bitops.h> 25 #include <linux/mm.h> 26 #include <linux/interrupt.h> 27 #include <linux/clk.h> 28 #include <linux/delay.h> 29 #include <linux/sched.h> 30 #include <linux/semaphore.h> 31 #include <linux/spinlock.h> 32 #include <linux/device.h> 33 #include <linux/dma-mapping.h> 34 #include <linux/firmware.h> 35 #include <linux/slab.h> 36 #include <linux/platform_device.h> 37 #include <linux/dmaengine.h> 38 #include <linux/of.h> 39 #include <linux/of_address.h> 40 #include <linux/of_device.h> 41 #include <linux/of_dma.h> 42 43 #include <asm/irq.h> 44 #include <linux/platform_data/dma-imx-sdma.h> 45 #include <linux/platform_data/dma-imx.h> 46 #include <linux/regmap.h> 47 #include <linux/mfd/syscon.h> 48 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h> 49 50 #include "dmaengine.h" 51 52 /* SDMA registers */ 53 #define SDMA_H_C0PTR 0x000 54 #define SDMA_H_INTR 0x004 55 #define SDMA_H_STATSTOP 0x008 56 #define SDMA_H_START 0x00c 57 #define SDMA_H_EVTOVR 0x010 58 #define SDMA_H_DSPOVR 0x014 59 #define SDMA_H_HOSTOVR 0x018 60 #define SDMA_H_EVTPEND 0x01c 61 #define SDMA_H_DSPENBL 0x020 62 #define SDMA_H_RESET 0x024 63 #define SDMA_H_EVTERR 0x028 64 #define SDMA_H_INTRMSK 0x02c 65 #define SDMA_H_PSW 0x030 66 #define SDMA_H_EVTERRDBG 0x034 67 #define SDMA_H_CONFIG 0x038 68 #define SDMA_ONCE_ENB 0x040 69 #define SDMA_ONCE_DATA 0x044 70 #define SDMA_ONCE_INSTR 0x048 71 #define SDMA_ONCE_STAT 0x04c 72 #define SDMA_ONCE_CMD 0x050 73 #define SDMA_EVT_MIRROR 0x054 74 #define SDMA_ILLINSTADDR 0x058 75 #define SDMA_CHN0ADDR 0x05c 76 #define SDMA_ONCE_RTB 0x060 77 #define SDMA_XTRIG_CONF1 0x070 78 #define SDMA_XTRIG_CONF2 0x074 79 #define SDMA_CHNENBL0_IMX35 0x200 80 #define SDMA_CHNENBL0_IMX31 0x080 81 #define SDMA_CHNPRI_0 0x100 82 83 /* 84 * Buffer descriptor status values. 85 */ 86 #define BD_DONE 0x01 87 #define BD_WRAP 0x02 88 #define BD_CONT 0x04 89 #define BD_INTR 0x08 90 #define BD_RROR 0x10 91 #define BD_LAST 0x20 92 #define BD_EXTD 0x80 93 94 /* 95 * Data Node descriptor status values. 96 */ 97 #define DND_END_OF_FRAME 0x80 98 #define DND_END_OF_XFER 0x40 99 #define DND_DONE 0x20 100 #define DND_UNUSED 0x01 101 102 /* 103 * IPCV2 descriptor status values. 104 */ 105 #define BD_IPCV2_END_OF_FRAME 0x40 106 107 #define IPCV2_MAX_NODES 50 108 /* 109 * Error bit set in the CCB status field by the SDMA, 110 * in setbd routine, in case of a transfer error 111 */ 112 #define DATA_ERROR 0x10000000 113 114 /* 115 * Buffer descriptor commands. 116 */ 117 #define C0_ADDR 0x01 118 #define C0_LOAD 0x02 119 #define C0_DUMP 0x03 120 #define C0_SETCTX 0x07 121 #define C0_GETCTX 0x03 122 #define C0_SETDM 0x01 123 #define C0_SETPM 0x04 124 #define C0_GETDM 0x02 125 #define C0_GETPM 0x08 126 /* 127 * Change endianness indicator in the BD command field 128 */ 129 #define CHANGE_ENDIANNESS 0x80 130 131 /* 132 * p_2_p watermark_level description 133 * Bits Name Description 134 * 0-7 Lower WML Lower watermark level 135 * 8 PS 1: Pad Swallowing 136 * 0: No Pad Swallowing 137 * 9 PA 1: Pad Adding 138 * 0: No Pad Adding 139 * 10 SPDIF If this bit is set both source 140 * and destination are on SPBA 141 * 11 Source Bit(SP) 1: Source on SPBA 142 * 0: Source on AIPS 143 * 12 Destination Bit(DP) 1: Destination on SPBA 144 * 0: Destination on AIPS 145 * 13-15 --------- MUST BE 0 146 * 16-23 Higher WML HWML 147 * 24-27 N Total number of samples after 148 * which Pad adding/Swallowing 149 * must be done. It must be odd. 150 * 28 Lower WML Event(LWE) SDMA events reg to check for 151 * LWML event mask 152 * 0: LWE in EVENTS register 153 * 1: LWE in EVENTS2 register 154 * 29 Higher WML Event(HWE) SDMA events reg to check for 155 * HWML event mask 156 * 0: HWE in EVENTS register 157 * 1: HWE in EVENTS2 register 158 * 30 --------- MUST BE 0 159 * 31 CONT 1: Amount of samples to be 160 * transferred is unknown and 161 * script will keep on 162 * transferring samples as long as 163 * both events are detected and 164 * script must be manually stopped 165 * by the application 166 * 0: The amount of samples to be 167 * transferred is equal to the 168 * count field of mode word 169 */ 170 #define SDMA_WATERMARK_LEVEL_LWML 0xFF 171 #define SDMA_WATERMARK_LEVEL_PS BIT(8) 172 #define SDMA_WATERMARK_LEVEL_PA BIT(9) 173 #define SDMA_WATERMARK_LEVEL_SPDIF BIT(10) 174 #define SDMA_WATERMARK_LEVEL_SP BIT(11) 175 #define SDMA_WATERMARK_LEVEL_DP BIT(12) 176 #define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16) 177 #define SDMA_WATERMARK_LEVEL_LWE BIT(28) 178 #define SDMA_WATERMARK_LEVEL_HWE BIT(29) 179 #define SDMA_WATERMARK_LEVEL_CONT BIT(31) 180 181 #define SDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 182 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 183 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 184 185 #define SDMA_DMA_DIRECTIONS (BIT(DMA_DEV_TO_MEM) | \ 186 BIT(DMA_MEM_TO_DEV) | \ 187 BIT(DMA_DEV_TO_DEV)) 188 189 /* 190 * Mode/Count of data node descriptors - IPCv2 191 */ 192 struct sdma_mode_count { 193 u32 count : 16; /* size of the buffer pointed by this BD */ 194 u32 status : 8; /* E,R,I,C,W,D status bits stored here */ 195 u32 command : 8; /* command mostly used for channel 0 */ 196 }; 197 198 /* 199 * Buffer descriptor 200 */ 201 struct sdma_buffer_descriptor { 202 struct sdma_mode_count mode; 203 u32 buffer_addr; /* address of the buffer described */ 204 u32 ext_buffer_addr; /* extended buffer address */ 205 } __attribute__ ((packed)); 206 207 /** 208 * struct sdma_channel_control - Channel control Block 209 * 210 * @current_bd_ptr current buffer descriptor processed 211 * @base_bd_ptr first element of buffer descriptor array 212 * @unused padding. The SDMA engine expects an array of 128 byte 213 * control blocks 214 */ 215 struct sdma_channel_control { 216 u32 current_bd_ptr; 217 u32 base_bd_ptr; 218 u32 unused[2]; 219 } __attribute__ ((packed)); 220 221 /** 222 * struct sdma_state_registers - SDMA context for a channel 223 * 224 * @pc: program counter 225 * @t: test bit: status of arithmetic & test instruction 226 * @rpc: return program counter 227 * @sf: source fault while loading data 228 * @spc: loop start program counter 229 * @df: destination fault while storing data 230 * @epc: loop end program counter 231 * @lm: loop mode 232 */ 233 struct sdma_state_registers { 234 u32 pc :14; 235 u32 unused1: 1; 236 u32 t : 1; 237 u32 rpc :14; 238 u32 unused0: 1; 239 u32 sf : 1; 240 u32 spc :14; 241 u32 unused2: 1; 242 u32 df : 1; 243 u32 epc :14; 244 u32 lm : 2; 245 } __attribute__ ((packed)); 246 247 /** 248 * struct sdma_context_data - sdma context specific to a channel 249 * 250 * @channel_state: channel state bits 251 * @gReg: general registers 252 * @mda: burst dma destination address register 253 * @msa: burst dma source address register 254 * @ms: burst dma status register 255 * @md: burst dma data register 256 * @pda: peripheral dma destination address register 257 * @psa: peripheral dma source address register 258 * @ps: peripheral dma status register 259 * @pd: peripheral dma data register 260 * @ca: CRC polynomial register 261 * @cs: CRC accumulator register 262 * @dda: dedicated core destination address register 263 * @dsa: dedicated core source address register 264 * @ds: dedicated core status register 265 * @dd: dedicated core data register 266 */ 267 struct sdma_context_data { 268 struct sdma_state_registers channel_state; 269 u32 gReg[8]; 270 u32 mda; 271 u32 msa; 272 u32 ms; 273 u32 md; 274 u32 pda; 275 u32 psa; 276 u32 ps; 277 u32 pd; 278 u32 ca; 279 u32 cs; 280 u32 dda; 281 u32 dsa; 282 u32 ds; 283 u32 dd; 284 u32 scratch0; 285 u32 scratch1; 286 u32 scratch2; 287 u32 scratch3; 288 u32 scratch4; 289 u32 scratch5; 290 u32 scratch6; 291 u32 scratch7; 292 } __attribute__ ((packed)); 293 294 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor)) 295 296 struct sdma_engine; 297 298 /** 299 * struct sdma_channel - housekeeping for a SDMA channel 300 * 301 * @sdma pointer to the SDMA engine for this channel 302 * @channel the channel number, matches dmaengine chan_id + 1 303 * @direction transfer type. Needed for setting SDMA script 304 * @peripheral_type Peripheral type. Needed for setting SDMA script 305 * @event_id0 aka dma request line 306 * @event_id1 for channels that use 2 events 307 * @word_size peripheral access size 308 * @buf_tail ID of the buffer that was processed 309 * @buf_ptail ID of the previous buffer that was processed 310 * @num_bd max NUM_BD. number of descriptors currently handling 311 */ 312 struct sdma_channel { 313 struct sdma_engine *sdma; 314 unsigned int channel; 315 enum dma_transfer_direction direction; 316 enum sdma_peripheral_type peripheral_type; 317 unsigned int event_id0; 318 unsigned int event_id1; 319 enum dma_slave_buswidth word_size; 320 unsigned int buf_tail; 321 unsigned int buf_ptail; 322 unsigned int num_bd; 323 unsigned int period_len; 324 struct sdma_buffer_descriptor *bd; 325 dma_addr_t bd_phys; 326 unsigned int pc_from_device, pc_to_device; 327 unsigned int device_to_device; 328 unsigned long flags; 329 dma_addr_t per_address, per_address2; 330 unsigned long event_mask[2]; 331 unsigned long watermark_level; 332 u32 shp_addr, per_addr; 333 struct dma_chan chan; 334 spinlock_t lock; 335 struct dma_async_tx_descriptor desc; 336 enum dma_status status; 337 unsigned int chn_count; 338 unsigned int chn_real_count; 339 struct tasklet_struct tasklet; 340 struct imx_dma_data data; 341 }; 342 343 #define IMX_DMA_SG_LOOP BIT(0) 344 345 #define MAX_DMA_CHANNELS 32 346 #define MXC_SDMA_DEFAULT_PRIORITY 1 347 #define MXC_SDMA_MIN_PRIORITY 1 348 #define MXC_SDMA_MAX_PRIORITY 7 349 350 #define SDMA_FIRMWARE_MAGIC 0x414d4453 351 352 /** 353 * struct sdma_firmware_header - Layout of the firmware image 354 * 355 * @magic "SDMA" 356 * @version_major increased whenever layout of struct sdma_script_start_addrs 357 * changes. 358 * @version_minor firmware minor version (for binary compatible changes) 359 * @script_addrs_start offset of struct sdma_script_start_addrs in this image 360 * @num_script_addrs Number of script addresses in this image 361 * @ram_code_start offset of SDMA ram image in this firmware image 362 * @ram_code_size size of SDMA ram image 363 * @script_addrs Stores the start address of the SDMA scripts 364 * (in SDMA memory space) 365 */ 366 struct sdma_firmware_header { 367 u32 magic; 368 u32 version_major; 369 u32 version_minor; 370 u32 script_addrs_start; 371 u32 num_script_addrs; 372 u32 ram_code_start; 373 u32 ram_code_size; 374 }; 375 376 struct sdma_driver_data { 377 int chnenbl0; 378 int num_events; 379 struct sdma_script_start_addrs *script_addrs; 380 }; 381 382 struct sdma_engine { 383 struct device *dev; 384 struct device_dma_parameters dma_parms; 385 struct sdma_channel channel[MAX_DMA_CHANNELS]; 386 struct sdma_channel_control *channel_control; 387 void __iomem *regs; 388 struct sdma_context_data *context; 389 dma_addr_t context_phys; 390 struct dma_device dma_device; 391 struct clk *clk_ipg; 392 struct clk *clk_ahb; 393 spinlock_t channel_0_lock; 394 u32 script_number; 395 struct sdma_script_start_addrs *script_addrs; 396 const struct sdma_driver_data *drvdata; 397 u32 spba_start_addr; 398 u32 spba_end_addr; 399 unsigned int irq; 400 }; 401 402 static struct sdma_driver_data sdma_imx31 = { 403 .chnenbl0 = SDMA_CHNENBL0_IMX31, 404 .num_events = 32, 405 }; 406 407 static struct sdma_script_start_addrs sdma_script_imx25 = { 408 .ap_2_ap_addr = 729, 409 .uart_2_mcu_addr = 904, 410 .per_2_app_addr = 1255, 411 .mcu_2_app_addr = 834, 412 .uartsh_2_mcu_addr = 1120, 413 .per_2_shp_addr = 1329, 414 .mcu_2_shp_addr = 1048, 415 .ata_2_mcu_addr = 1560, 416 .mcu_2_ata_addr = 1479, 417 .app_2_per_addr = 1189, 418 .app_2_mcu_addr = 770, 419 .shp_2_per_addr = 1407, 420 .shp_2_mcu_addr = 979, 421 }; 422 423 static struct sdma_driver_data sdma_imx25 = { 424 .chnenbl0 = SDMA_CHNENBL0_IMX35, 425 .num_events = 48, 426 .script_addrs = &sdma_script_imx25, 427 }; 428 429 static struct sdma_driver_data sdma_imx35 = { 430 .chnenbl0 = SDMA_CHNENBL0_IMX35, 431 .num_events = 48, 432 }; 433 434 static struct sdma_script_start_addrs sdma_script_imx51 = { 435 .ap_2_ap_addr = 642, 436 .uart_2_mcu_addr = 817, 437 .mcu_2_app_addr = 747, 438 .mcu_2_shp_addr = 961, 439 .ata_2_mcu_addr = 1473, 440 .mcu_2_ata_addr = 1392, 441 .app_2_per_addr = 1033, 442 .app_2_mcu_addr = 683, 443 .shp_2_per_addr = 1251, 444 .shp_2_mcu_addr = 892, 445 }; 446 447 static struct sdma_driver_data sdma_imx51 = { 448 .chnenbl0 = SDMA_CHNENBL0_IMX35, 449 .num_events = 48, 450 .script_addrs = &sdma_script_imx51, 451 }; 452 453 static struct sdma_script_start_addrs sdma_script_imx53 = { 454 .ap_2_ap_addr = 642, 455 .app_2_mcu_addr = 683, 456 .mcu_2_app_addr = 747, 457 .uart_2_mcu_addr = 817, 458 .shp_2_mcu_addr = 891, 459 .mcu_2_shp_addr = 960, 460 .uartsh_2_mcu_addr = 1032, 461 .spdif_2_mcu_addr = 1100, 462 .mcu_2_spdif_addr = 1134, 463 .firi_2_mcu_addr = 1193, 464 .mcu_2_firi_addr = 1290, 465 }; 466 467 static struct sdma_driver_data sdma_imx53 = { 468 .chnenbl0 = SDMA_CHNENBL0_IMX35, 469 .num_events = 48, 470 .script_addrs = &sdma_script_imx53, 471 }; 472 473 static struct sdma_script_start_addrs sdma_script_imx6q = { 474 .ap_2_ap_addr = 642, 475 .uart_2_mcu_addr = 817, 476 .mcu_2_app_addr = 747, 477 .per_2_per_addr = 6331, 478 .uartsh_2_mcu_addr = 1032, 479 .mcu_2_shp_addr = 960, 480 .app_2_mcu_addr = 683, 481 .shp_2_mcu_addr = 891, 482 .spdif_2_mcu_addr = 1100, 483 .mcu_2_spdif_addr = 1134, 484 }; 485 486 static struct sdma_driver_data sdma_imx6q = { 487 .chnenbl0 = SDMA_CHNENBL0_IMX35, 488 .num_events = 48, 489 .script_addrs = &sdma_script_imx6q, 490 }; 491 492 static struct sdma_script_start_addrs sdma_script_imx7d = { 493 .ap_2_ap_addr = 644, 494 .uart_2_mcu_addr = 819, 495 .mcu_2_app_addr = 749, 496 .uartsh_2_mcu_addr = 1034, 497 .mcu_2_shp_addr = 962, 498 .app_2_mcu_addr = 685, 499 .shp_2_mcu_addr = 893, 500 .spdif_2_mcu_addr = 1102, 501 .mcu_2_spdif_addr = 1136, 502 }; 503 504 static struct sdma_driver_data sdma_imx7d = { 505 .chnenbl0 = SDMA_CHNENBL0_IMX35, 506 .num_events = 48, 507 .script_addrs = &sdma_script_imx7d, 508 }; 509 510 static const struct platform_device_id sdma_devtypes[] = { 511 { 512 .name = "imx25-sdma", 513 .driver_data = (unsigned long)&sdma_imx25, 514 }, { 515 .name = "imx31-sdma", 516 .driver_data = (unsigned long)&sdma_imx31, 517 }, { 518 .name = "imx35-sdma", 519 .driver_data = (unsigned long)&sdma_imx35, 520 }, { 521 .name = "imx51-sdma", 522 .driver_data = (unsigned long)&sdma_imx51, 523 }, { 524 .name = "imx53-sdma", 525 .driver_data = (unsigned long)&sdma_imx53, 526 }, { 527 .name = "imx6q-sdma", 528 .driver_data = (unsigned long)&sdma_imx6q, 529 }, { 530 .name = "imx7d-sdma", 531 .driver_data = (unsigned long)&sdma_imx7d, 532 }, { 533 /* sentinel */ 534 } 535 }; 536 MODULE_DEVICE_TABLE(platform, sdma_devtypes); 537 538 static const struct of_device_id sdma_dt_ids[] = { 539 { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, }, 540 { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, }, 541 { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, }, 542 { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, }, 543 { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, }, 544 { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, }, 545 { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, }, 546 { /* sentinel */ } 547 }; 548 MODULE_DEVICE_TABLE(of, sdma_dt_ids); 549 550 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */ 551 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */ 552 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */ 553 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/ 554 555 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event) 556 { 557 u32 chnenbl0 = sdma->drvdata->chnenbl0; 558 return chnenbl0 + event * 4; 559 } 560 561 static int sdma_config_ownership(struct sdma_channel *sdmac, 562 bool event_override, bool mcu_override, bool dsp_override) 563 { 564 struct sdma_engine *sdma = sdmac->sdma; 565 int channel = sdmac->channel; 566 unsigned long evt, mcu, dsp; 567 568 if (event_override && mcu_override && dsp_override) 569 return -EINVAL; 570 571 evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR); 572 mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR); 573 dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR); 574 575 if (dsp_override) 576 __clear_bit(channel, &dsp); 577 else 578 __set_bit(channel, &dsp); 579 580 if (event_override) 581 __clear_bit(channel, &evt); 582 else 583 __set_bit(channel, &evt); 584 585 if (mcu_override) 586 __clear_bit(channel, &mcu); 587 else 588 __set_bit(channel, &mcu); 589 590 writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR); 591 writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR); 592 writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR); 593 594 return 0; 595 } 596 597 static void sdma_enable_channel(struct sdma_engine *sdma, int channel) 598 { 599 writel(BIT(channel), sdma->regs + SDMA_H_START); 600 } 601 602 /* 603 * sdma_run_channel0 - run a channel and wait till it's done 604 */ 605 static int sdma_run_channel0(struct sdma_engine *sdma) 606 { 607 int ret; 608 u32 reg; 609 610 sdma_enable_channel(sdma, 0); 611 612 ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP, 613 reg, !(reg & 1), 1, 500); 614 if (ret) 615 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n"); 616 617 /* Set bits of CONFIG register with dynamic context switching */ 618 if (readl(sdma->regs + SDMA_H_CONFIG) == 0) 619 writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG); 620 621 return ret; 622 } 623 624 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size, 625 u32 address) 626 { 627 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd; 628 void *buf_virt; 629 dma_addr_t buf_phys; 630 int ret; 631 unsigned long flags; 632 633 buf_virt = dma_alloc_coherent(NULL, 634 size, 635 &buf_phys, GFP_KERNEL); 636 if (!buf_virt) { 637 return -ENOMEM; 638 } 639 640 spin_lock_irqsave(&sdma->channel_0_lock, flags); 641 642 bd0->mode.command = C0_SETPM; 643 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD; 644 bd0->mode.count = size / 2; 645 bd0->buffer_addr = buf_phys; 646 bd0->ext_buffer_addr = address; 647 648 memcpy(buf_virt, buf, size); 649 650 ret = sdma_run_channel0(sdma); 651 652 spin_unlock_irqrestore(&sdma->channel_0_lock, flags); 653 654 dma_free_coherent(NULL, size, buf_virt, buf_phys); 655 656 return ret; 657 } 658 659 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event) 660 { 661 struct sdma_engine *sdma = sdmac->sdma; 662 int channel = sdmac->channel; 663 unsigned long val; 664 u32 chnenbl = chnenbl_ofs(sdma, event); 665 666 val = readl_relaxed(sdma->regs + chnenbl); 667 __set_bit(channel, &val); 668 writel_relaxed(val, sdma->regs + chnenbl); 669 } 670 671 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event) 672 { 673 struct sdma_engine *sdma = sdmac->sdma; 674 int channel = sdmac->channel; 675 u32 chnenbl = chnenbl_ofs(sdma, event); 676 unsigned long val; 677 678 val = readl_relaxed(sdma->regs + chnenbl); 679 __clear_bit(channel, &val); 680 writel_relaxed(val, sdma->regs + chnenbl); 681 } 682 683 static void sdma_update_channel_loop(struct sdma_channel *sdmac) 684 { 685 struct sdma_buffer_descriptor *bd; 686 int error = 0; 687 enum dma_status old_status = sdmac->status; 688 689 /* 690 * loop mode. Iterate over descriptors, re-setup them and 691 * call callback function. 692 */ 693 while (1) { 694 bd = &sdmac->bd[sdmac->buf_tail]; 695 696 if (bd->mode.status & BD_DONE) 697 break; 698 699 if (bd->mode.status & BD_RROR) { 700 bd->mode.status &= ~BD_RROR; 701 sdmac->status = DMA_ERROR; 702 error = -EIO; 703 } 704 705 /* 706 * We use bd->mode.count to calculate the residue, since contains 707 * the number of bytes present in the current buffer descriptor. 708 */ 709 710 sdmac->chn_real_count = bd->mode.count; 711 bd->mode.status |= BD_DONE; 712 bd->mode.count = sdmac->period_len; 713 sdmac->buf_ptail = sdmac->buf_tail; 714 sdmac->buf_tail = (sdmac->buf_tail + 1) % sdmac->num_bd; 715 716 /* 717 * The callback is called from the interrupt context in order 718 * to reduce latency and to avoid the risk of altering the 719 * SDMA transaction status by the time the client tasklet is 720 * executed. 721 */ 722 723 dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL); 724 725 if (error) 726 sdmac->status = old_status; 727 } 728 } 729 730 static void mxc_sdma_handle_channel_normal(unsigned long data) 731 { 732 struct sdma_channel *sdmac = (struct sdma_channel *) data; 733 struct sdma_buffer_descriptor *bd; 734 int i, error = 0; 735 736 sdmac->chn_real_count = 0; 737 /* 738 * non loop mode. Iterate over all descriptors, collect 739 * errors and call callback function 740 */ 741 for (i = 0; i < sdmac->num_bd; i++) { 742 bd = &sdmac->bd[i]; 743 744 if (bd->mode.status & (BD_DONE | BD_RROR)) 745 error = -EIO; 746 sdmac->chn_real_count += bd->mode.count; 747 } 748 749 if (error) 750 sdmac->status = DMA_ERROR; 751 else 752 sdmac->status = DMA_COMPLETE; 753 754 dma_cookie_complete(&sdmac->desc); 755 756 dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL); 757 } 758 759 static irqreturn_t sdma_int_handler(int irq, void *dev_id) 760 { 761 struct sdma_engine *sdma = dev_id; 762 unsigned long stat; 763 764 stat = readl_relaxed(sdma->regs + SDMA_H_INTR); 765 writel_relaxed(stat, sdma->regs + SDMA_H_INTR); 766 /* channel 0 is special and not handled here, see run_channel0() */ 767 stat &= ~1; 768 769 while (stat) { 770 int channel = fls(stat) - 1; 771 struct sdma_channel *sdmac = &sdma->channel[channel]; 772 773 if (sdmac->flags & IMX_DMA_SG_LOOP) 774 sdma_update_channel_loop(sdmac); 775 else 776 tasklet_schedule(&sdmac->tasklet); 777 778 __clear_bit(channel, &stat); 779 } 780 781 return IRQ_HANDLED; 782 } 783 784 /* 785 * sets the pc of SDMA script according to the peripheral type 786 */ 787 static void sdma_get_pc(struct sdma_channel *sdmac, 788 enum sdma_peripheral_type peripheral_type) 789 { 790 struct sdma_engine *sdma = sdmac->sdma; 791 int per_2_emi = 0, emi_2_per = 0; 792 /* 793 * These are needed once we start to support transfers between 794 * two peripherals or memory-to-memory transfers 795 */ 796 int per_2_per = 0; 797 798 sdmac->pc_from_device = 0; 799 sdmac->pc_to_device = 0; 800 sdmac->device_to_device = 0; 801 802 switch (peripheral_type) { 803 case IMX_DMATYPE_MEMORY: 804 break; 805 case IMX_DMATYPE_DSP: 806 emi_2_per = sdma->script_addrs->bp_2_ap_addr; 807 per_2_emi = sdma->script_addrs->ap_2_bp_addr; 808 break; 809 case IMX_DMATYPE_FIRI: 810 per_2_emi = sdma->script_addrs->firi_2_mcu_addr; 811 emi_2_per = sdma->script_addrs->mcu_2_firi_addr; 812 break; 813 case IMX_DMATYPE_UART: 814 per_2_emi = sdma->script_addrs->uart_2_mcu_addr; 815 emi_2_per = sdma->script_addrs->mcu_2_app_addr; 816 break; 817 case IMX_DMATYPE_UART_SP: 818 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr; 819 emi_2_per = sdma->script_addrs->mcu_2_shp_addr; 820 break; 821 case IMX_DMATYPE_ATA: 822 per_2_emi = sdma->script_addrs->ata_2_mcu_addr; 823 emi_2_per = sdma->script_addrs->mcu_2_ata_addr; 824 break; 825 case IMX_DMATYPE_CSPI: 826 case IMX_DMATYPE_EXT: 827 case IMX_DMATYPE_SSI: 828 case IMX_DMATYPE_SAI: 829 per_2_emi = sdma->script_addrs->app_2_mcu_addr; 830 emi_2_per = sdma->script_addrs->mcu_2_app_addr; 831 break; 832 case IMX_DMATYPE_SSI_DUAL: 833 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr; 834 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr; 835 break; 836 case IMX_DMATYPE_SSI_SP: 837 case IMX_DMATYPE_MMC: 838 case IMX_DMATYPE_SDHC: 839 case IMX_DMATYPE_CSPI_SP: 840 case IMX_DMATYPE_ESAI: 841 case IMX_DMATYPE_MSHC_SP: 842 per_2_emi = sdma->script_addrs->shp_2_mcu_addr; 843 emi_2_per = sdma->script_addrs->mcu_2_shp_addr; 844 break; 845 case IMX_DMATYPE_ASRC: 846 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr; 847 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr; 848 per_2_per = sdma->script_addrs->per_2_per_addr; 849 break; 850 case IMX_DMATYPE_ASRC_SP: 851 per_2_emi = sdma->script_addrs->shp_2_mcu_addr; 852 emi_2_per = sdma->script_addrs->mcu_2_shp_addr; 853 per_2_per = sdma->script_addrs->per_2_per_addr; 854 break; 855 case IMX_DMATYPE_MSHC: 856 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr; 857 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr; 858 break; 859 case IMX_DMATYPE_CCM: 860 per_2_emi = sdma->script_addrs->dptc_dvfs_addr; 861 break; 862 case IMX_DMATYPE_SPDIF: 863 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr; 864 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr; 865 break; 866 case IMX_DMATYPE_IPU_MEMORY: 867 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr; 868 break; 869 default: 870 break; 871 } 872 873 sdmac->pc_from_device = per_2_emi; 874 sdmac->pc_to_device = emi_2_per; 875 sdmac->device_to_device = per_2_per; 876 } 877 878 static int sdma_load_context(struct sdma_channel *sdmac) 879 { 880 struct sdma_engine *sdma = sdmac->sdma; 881 int channel = sdmac->channel; 882 int load_address; 883 struct sdma_context_data *context = sdma->context; 884 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd; 885 int ret; 886 unsigned long flags; 887 888 if (sdmac->direction == DMA_DEV_TO_MEM) 889 load_address = sdmac->pc_from_device; 890 else if (sdmac->direction == DMA_DEV_TO_DEV) 891 load_address = sdmac->device_to_device; 892 else 893 load_address = sdmac->pc_to_device; 894 895 if (load_address < 0) 896 return load_address; 897 898 dev_dbg(sdma->dev, "load_address = %d\n", load_address); 899 dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level); 900 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr); 901 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr); 902 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]); 903 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]); 904 905 spin_lock_irqsave(&sdma->channel_0_lock, flags); 906 907 memset(context, 0, sizeof(*context)); 908 context->channel_state.pc = load_address; 909 910 /* Send by context the event mask,base address for peripheral 911 * and watermark level 912 */ 913 context->gReg[0] = sdmac->event_mask[1]; 914 context->gReg[1] = sdmac->event_mask[0]; 915 context->gReg[2] = sdmac->per_addr; 916 context->gReg[6] = sdmac->shp_addr; 917 context->gReg[7] = sdmac->watermark_level; 918 919 bd0->mode.command = C0_SETDM; 920 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD; 921 bd0->mode.count = sizeof(*context) / 4; 922 bd0->buffer_addr = sdma->context_phys; 923 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel; 924 ret = sdma_run_channel0(sdma); 925 926 spin_unlock_irqrestore(&sdma->channel_0_lock, flags); 927 928 return ret; 929 } 930 931 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan) 932 { 933 return container_of(chan, struct sdma_channel, chan); 934 } 935 936 static int sdma_disable_channel(struct dma_chan *chan) 937 { 938 struct sdma_channel *sdmac = to_sdma_chan(chan); 939 struct sdma_engine *sdma = sdmac->sdma; 940 int channel = sdmac->channel; 941 942 writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP); 943 sdmac->status = DMA_ERROR; 944 945 return 0; 946 } 947 948 static int sdma_disable_channel_with_delay(struct dma_chan *chan) 949 { 950 sdma_disable_channel(chan); 951 952 /* 953 * According to NXP R&D team a delay of one BD SDMA cost time 954 * (maximum is 1ms) should be added after disable of the channel 955 * bit, to ensure SDMA core has really been stopped after SDMA 956 * clients call .device_terminate_all. 957 */ 958 mdelay(1); 959 960 return 0; 961 } 962 963 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac) 964 { 965 struct sdma_engine *sdma = sdmac->sdma; 966 967 int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML; 968 int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16; 969 970 set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]); 971 set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]); 972 973 if (sdmac->event_id0 > 31) 974 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE; 975 976 if (sdmac->event_id1 > 31) 977 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE; 978 979 /* 980 * If LWML(src_maxburst) > HWML(dst_maxburst), we need 981 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap 982 * r0(event_mask[1]) and r1(event_mask[0]). 983 */ 984 if (lwml > hwml) { 985 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML | 986 SDMA_WATERMARK_LEVEL_HWML); 987 sdmac->watermark_level |= hwml; 988 sdmac->watermark_level |= lwml << 16; 989 swap(sdmac->event_mask[0], sdmac->event_mask[1]); 990 } 991 992 if (sdmac->per_address2 >= sdma->spba_start_addr && 993 sdmac->per_address2 <= sdma->spba_end_addr) 994 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP; 995 996 if (sdmac->per_address >= sdma->spba_start_addr && 997 sdmac->per_address <= sdma->spba_end_addr) 998 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP; 999 1000 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT; 1001 } 1002 1003 static int sdma_config_channel(struct dma_chan *chan) 1004 { 1005 struct sdma_channel *sdmac = to_sdma_chan(chan); 1006 int ret; 1007 1008 sdma_disable_channel(chan); 1009 1010 sdmac->event_mask[0] = 0; 1011 sdmac->event_mask[1] = 0; 1012 sdmac->shp_addr = 0; 1013 sdmac->per_addr = 0; 1014 1015 if (sdmac->event_id0) { 1016 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events) 1017 return -EINVAL; 1018 sdma_event_enable(sdmac, sdmac->event_id0); 1019 } 1020 1021 if (sdmac->event_id1) { 1022 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events) 1023 return -EINVAL; 1024 sdma_event_enable(sdmac, sdmac->event_id1); 1025 } 1026 1027 switch (sdmac->peripheral_type) { 1028 case IMX_DMATYPE_DSP: 1029 sdma_config_ownership(sdmac, false, true, true); 1030 break; 1031 case IMX_DMATYPE_MEMORY: 1032 sdma_config_ownership(sdmac, false, true, false); 1033 break; 1034 default: 1035 sdma_config_ownership(sdmac, true, true, false); 1036 break; 1037 } 1038 1039 sdma_get_pc(sdmac, sdmac->peripheral_type); 1040 1041 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) && 1042 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) { 1043 /* Handle multiple event channels differently */ 1044 if (sdmac->event_id1) { 1045 if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP || 1046 sdmac->peripheral_type == IMX_DMATYPE_ASRC) 1047 sdma_set_watermarklevel_for_p2p(sdmac); 1048 } else 1049 __set_bit(sdmac->event_id0, sdmac->event_mask); 1050 1051 /* Address */ 1052 sdmac->shp_addr = sdmac->per_address; 1053 sdmac->per_addr = sdmac->per_address2; 1054 } else { 1055 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */ 1056 } 1057 1058 ret = sdma_load_context(sdmac); 1059 1060 return ret; 1061 } 1062 1063 static int sdma_set_channel_priority(struct sdma_channel *sdmac, 1064 unsigned int priority) 1065 { 1066 struct sdma_engine *sdma = sdmac->sdma; 1067 int channel = sdmac->channel; 1068 1069 if (priority < MXC_SDMA_MIN_PRIORITY 1070 || priority > MXC_SDMA_MAX_PRIORITY) { 1071 return -EINVAL; 1072 } 1073 1074 writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel); 1075 1076 return 0; 1077 } 1078 1079 static int sdma_request_channel(struct sdma_channel *sdmac) 1080 { 1081 struct sdma_engine *sdma = sdmac->sdma; 1082 int channel = sdmac->channel; 1083 int ret = -EBUSY; 1084 1085 sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, 1086 GFP_KERNEL); 1087 if (!sdmac->bd) { 1088 ret = -ENOMEM; 1089 goto out; 1090 } 1091 1092 sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys; 1093 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys; 1094 1095 sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY); 1096 return 0; 1097 out: 1098 1099 return ret; 1100 } 1101 1102 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx) 1103 { 1104 unsigned long flags; 1105 struct sdma_channel *sdmac = to_sdma_chan(tx->chan); 1106 dma_cookie_t cookie; 1107 1108 spin_lock_irqsave(&sdmac->lock, flags); 1109 1110 cookie = dma_cookie_assign(tx); 1111 1112 spin_unlock_irqrestore(&sdmac->lock, flags); 1113 1114 return cookie; 1115 } 1116 1117 static int sdma_alloc_chan_resources(struct dma_chan *chan) 1118 { 1119 struct sdma_channel *sdmac = to_sdma_chan(chan); 1120 struct imx_dma_data *data = chan->private; 1121 int prio, ret; 1122 1123 if (!data) 1124 return -EINVAL; 1125 1126 switch (data->priority) { 1127 case DMA_PRIO_HIGH: 1128 prio = 3; 1129 break; 1130 case DMA_PRIO_MEDIUM: 1131 prio = 2; 1132 break; 1133 case DMA_PRIO_LOW: 1134 default: 1135 prio = 1; 1136 break; 1137 } 1138 1139 sdmac->peripheral_type = data->peripheral_type; 1140 sdmac->event_id0 = data->dma_request; 1141 sdmac->event_id1 = data->dma_request2; 1142 1143 ret = clk_enable(sdmac->sdma->clk_ipg); 1144 if (ret) 1145 return ret; 1146 ret = clk_enable(sdmac->sdma->clk_ahb); 1147 if (ret) 1148 goto disable_clk_ipg; 1149 1150 ret = sdma_request_channel(sdmac); 1151 if (ret) 1152 goto disable_clk_ahb; 1153 1154 ret = sdma_set_channel_priority(sdmac, prio); 1155 if (ret) 1156 goto disable_clk_ahb; 1157 1158 dma_async_tx_descriptor_init(&sdmac->desc, chan); 1159 sdmac->desc.tx_submit = sdma_tx_submit; 1160 /* txd.flags will be overwritten in prep funcs */ 1161 sdmac->desc.flags = DMA_CTRL_ACK; 1162 1163 return 0; 1164 1165 disable_clk_ahb: 1166 clk_disable(sdmac->sdma->clk_ahb); 1167 disable_clk_ipg: 1168 clk_disable(sdmac->sdma->clk_ipg); 1169 return ret; 1170 } 1171 1172 static void sdma_free_chan_resources(struct dma_chan *chan) 1173 { 1174 struct sdma_channel *sdmac = to_sdma_chan(chan); 1175 struct sdma_engine *sdma = sdmac->sdma; 1176 1177 sdma_disable_channel(chan); 1178 1179 if (sdmac->event_id0) 1180 sdma_event_disable(sdmac, sdmac->event_id0); 1181 if (sdmac->event_id1) 1182 sdma_event_disable(sdmac, sdmac->event_id1); 1183 1184 sdmac->event_id0 = 0; 1185 sdmac->event_id1 = 0; 1186 1187 sdma_set_channel_priority(sdmac, 0); 1188 1189 dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys); 1190 1191 clk_disable(sdma->clk_ipg); 1192 clk_disable(sdma->clk_ahb); 1193 } 1194 1195 static struct dma_async_tx_descriptor *sdma_prep_slave_sg( 1196 struct dma_chan *chan, struct scatterlist *sgl, 1197 unsigned int sg_len, enum dma_transfer_direction direction, 1198 unsigned long flags, void *context) 1199 { 1200 struct sdma_channel *sdmac = to_sdma_chan(chan); 1201 struct sdma_engine *sdma = sdmac->sdma; 1202 int ret, i, count; 1203 int channel = sdmac->channel; 1204 struct scatterlist *sg; 1205 1206 if (sdmac->status == DMA_IN_PROGRESS) 1207 return NULL; 1208 sdmac->status = DMA_IN_PROGRESS; 1209 1210 sdmac->flags = 0; 1211 1212 sdmac->buf_tail = 0; 1213 sdmac->buf_ptail = 0; 1214 sdmac->chn_real_count = 0; 1215 1216 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n", 1217 sg_len, channel); 1218 1219 sdmac->direction = direction; 1220 ret = sdma_load_context(sdmac); 1221 if (ret) 1222 goto err_out; 1223 1224 if (sg_len > NUM_BD) { 1225 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n", 1226 channel, sg_len, NUM_BD); 1227 ret = -EINVAL; 1228 goto err_out; 1229 } 1230 1231 sdmac->chn_count = 0; 1232 for_each_sg(sgl, sg, sg_len, i) { 1233 struct sdma_buffer_descriptor *bd = &sdmac->bd[i]; 1234 int param; 1235 1236 bd->buffer_addr = sg->dma_address; 1237 1238 count = sg_dma_len(sg); 1239 1240 if (count > 0xffff) { 1241 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n", 1242 channel, count, 0xffff); 1243 ret = -EINVAL; 1244 goto err_out; 1245 } 1246 1247 bd->mode.count = count; 1248 sdmac->chn_count += count; 1249 1250 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) { 1251 ret = -EINVAL; 1252 goto err_out; 1253 } 1254 1255 switch (sdmac->word_size) { 1256 case DMA_SLAVE_BUSWIDTH_4_BYTES: 1257 bd->mode.command = 0; 1258 if (count & 3 || sg->dma_address & 3) 1259 return NULL; 1260 break; 1261 case DMA_SLAVE_BUSWIDTH_2_BYTES: 1262 bd->mode.command = 2; 1263 if (count & 1 || sg->dma_address & 1) 1264 return NULL; 1265 break; 1266 case DMA_SLAVE_BUSWIDTH_1_BYTE: 1267 bd->mode.command = 1; 1268 break; 1269 default: 1270 return NULL; 1271 } 1272 1273 param = BD_DONE | BD_EXTD | BD_CONT; 1274 1275 if (i + 1 == sg_len) { 1276 param |= BD_INTR; 1277 param |= BD_LAST; 1278 param &= ~BD_CONT; 1279 } 1280 1281 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n", 1282 i, count, (u64)sg->dma_address, 1283 param & BD_WRAP ? "wrap" : "", 1284 param & BD_INTR ? " intr" : ""); 1285 1286 bd->mode.status = param; 1287 } 1288 1289 sdmac->num_bd = sg_len; 1290 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys; 1291 1292 return &sdmac->desc; 1293 err_out: 1294 sdmac->status = DMA_ERROR; 1295 return NULL; 1296 } 1297 1298 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic( 1299 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len, 1300 size_t period_len, enum dma_transfer_direction direction, 1301 unsigned long flags) 1302 { 1303 struct sdma_channel *sdmac = to_sdma_chan(chan); 1304 struct sdma_engine *sdma = sdmac->sdma; 1305 int num_periods = buf_len / period_len; 1306 int channel = sdmac->channel; 1307 int ret, i = 0, buf = 0; 1308 1309 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel); 1310 1311 if (sdmac->status == DMA_IN_PROGRESS) 1312 return NULL; 1313 1314 sdmac->status = DMA_IN_PROGRESS; 1315 1316 sdmac->buf_tail = 0; 1317 sdmac->buf_ptail = 0; 1318 sdmac->chn_real_count = 0; 1319 sdmac->period_len = period_len; 1320 1321 sdmac->flags |= IMX_DMA_SG_LOOP; 1322 sdmac->direction = direction; 1323 ret = sdma_load_context(sdmac); 1324 if (ret) 1325 goto err_out; 1326 1327 if (num_periods > NUM_BD) { 1328 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n", 1329 channel, num_periods, NUM_BD); 1330 goto err_out; 1331 } 1332 1333 if (period_len > 0xffff) { 1334 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n", 1335 channel, period_len, 0xffff); 1336 goto err_out; 1337 } 1338 1339 while (buf < buf_len) { 1340 struct sdma_buffer_descriptor *bd = &sdmac->bd[i]; 1341 int param; 1342 1343 bd->buffer_addr = dma_addr; 1344 1345 bd->mode.count = period_len; 1346 1347 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) 1348 goto err_out; 1349 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES) 1350 bd->mode.command = 0; 1351 else 1352 bd->mode.command = sdmac->word_size; 1353 1354 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR; 1355 if (i + 1 == num_periods) 1356 param |= BD_WRAP; 1357 1358 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n", 1359 i, period_len, (u64)dma_addr, 1360 param & BD_WRAP ? "wrap" : "", 1361 param & BD_INTR ? " intr" : ""); 1362 1363 bd->mode.status = param; 1364 1365 dma_addr += period_len; 1366 buf += period_len; 1367 1368 i++; 1369 } 1370 1371 sdmac->num_bd = num_periods; 1372 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys; 1373 1374 return &sdmac->desc; 1375 err_out: 1376 sdmac->status = DMA_ERROR; 1377 return NULL; 1378 } 1379 1380 static int sdma_config(struct dma_chan *chan, 1381 struct dma_slave_config *dmaengine_cfg) 1382 { 1383 struct sdma_channel *sdmac = to_sdma_chan(chan); 1384 1385 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) { 1386 sdmac->per_address = dmaengine_cfg->src_addr; 1387 sdmac->watermark_level = dmaengine_cfg->src_maxburst * 1388 dmaengine_cfg->src_addr_width; 1389 sdmac->word_size = dmaengine_cfg->src_addr_width; 1390 } else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) { 1391 sdmac->per_address2 = dmaengine_cfg->src_addr; 1392 sdmac->per_address = dmaengine_cfg->dst_addr; 1393 sdmac->watermark_level = dmaengine_cfg->src_maxburst & 1394 SDMA_WATERMARK_LEVEL_LWML; 1395 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) & 1396 SDMA_WATERMARK_LEVEL_HWML; 1397 sdmac->word_size = dmaengine_cfg->dst_addr_width; 1398 } else { 1399 sdmac->per_address = dmaengine_cfg->dst_addr; 1400 sdmac->watermark_level = dmaengine_cfg->dst_maxburst * 1401 dmaengine_cfg->dst_addr_width; 1402 sdmac->word_size = dmaengine_cfg->dst_addr_width; 1403 } 1404 sdmac->direction = dmaengine_cfg->direction; 1405 return sdma_config_channel(chan); 1406 } 1407 1408 static enum dma_status sdma_tx_status(struct dma_chan *chan, 1409 dma_cookie_t cookie, 1410 struct dma_tx_state *txstate) 1411 { 1412 struct sdma_channel *sdmac = to_sdma_chan(chan); 1413 u32 residue; 1414 1415 if (sdmac->flags & IMX_DMA_SG_LOOP) 1416 residue = (sdmac->num_bd - sdmac->buf_ptail) * 1417 sdmac->period_len - sdmac->chn_real_count; 1418 else 1419 residue = sdmac->chn_count - sdmac->chn_real_count; 1420 1421 dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie, 1422 residue); 1423 1424 return sdmac->status; 1425 } 1426 1427 static void sdma_issue_pending(struct dma_chan *chan) 1428 { 1429 struct sdma_channel *sdmac = to_sdma_chan(chan); 1430 struct sdma_engine *sdma = sdmac->sdma; 1431 1432 if (sdmac->status == DMA_IN_PROGRESS) 1433 sdma_enable_channel(sdma, sdmac->channel); 1434 } 1435 1436 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34 1437 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38 1438 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41 1439 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42 1440 1441 static void sdma_add_scripts(struct sdma_engine *sdma, 1442 const struct sdma_script_start_addrs *addr) 1443 { 1444 s32 *addr_arr = (u32 *)addr; 1445 s32 *saddr_arr = (u32 *)sdma->script_addrs; 1446 int i; 1447 1448 /* use the default firmware in ROM if missing external firmware */ 1449 if (!sdma->script_number) 1450 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; 1451 1452 for (i = 0; i < sdma->script_number; i++) 1453 if (addr_arr[i] > 0) 1454 saddr_arr[i] = addr_arr[i]; 1455 } 1456 1457 static void sdma_load_firmware(const struct firmware *fw, void *context) 1458 { 1459 struct sdma_engine *sdma = context; 1460 const struct sdma_firmware_header *header; 1461 const struct sdma_script_start_addrs *addr; 1462 unsigned short *ram_code; 1463 1464 if (!fw) { 1465 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n"); 1466 /* In this case we just use the ROM firmware. */ 1467 return; 1468 } 1469 1470 if (fw->size < sizeof(*header)) 1471 goto err_firmware; 1472 1473 header = (struct sdma_firmware_header *)fw->data; 1474 1475 if (header->magic != SDMA_FIRMWARE_MAGIC) 1476 goto err_firmware; 1477 if (header->ram_code_start + header->ram_code_size > fw->size) 1478 goto err_firmware; 1479 switch (header->version_major) { 1480 case 1: 1481 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; 1482 break; 1483 case 2: 1484 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2; 1485 break; 1486 case 3: 1487 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3; 1488 break; 1489 case 4: 1490 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4; 1491 break; 1492 default: 1493 dev_err(sdma->dev, "unknown firmware version\n"); 1494 goto err_firmware; 1495 } 1496 1497 addr = (void *)header + header->script_addrs_start; 1498 ram_code = (void *)header + header->ram_code_start; 1499 1500 clk_enable(sdma->clk_ipg); 1501 clk_enable(sdma->clk_ahb); 1502 /* download the RAM image for SDMA */ 1503 sdma_load_script(sdma, ram_code, 1504 header->ram_code_size, 1505 addr->ram_code_start_addr); 1506 clk_disable(sdma->clk_ipg); 1507 clk_disable(sdma->clk_ahb); 1508 1509 sdma_add_scripts(sdma, addr); 1510 1511 dev_info(sdma->dev, "loaded firmware %d.%d\n", 1512 header->version_major, 1513 header->version_minor); 1514 1515 err_firmware: 1516 release_firmware(fw); 1517 } 1518 1519 #define EVENT_REMAP_CELLS 3 1520 1521 static int sdma_event_remap(struct sdma_engine *sdma) 1522 { 1523 struct device_node *np = sdma->dev->of_node; 1524 struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0); 1525 struct property *event_remap; 1526 struct regmap *gpr; 1527 char propname[] = "fsl,sdma-event-remap"; 1528 u32 reg, val, shift, num_map, i; 1529 int ret = 0; 1530 1531 if (IS_ERR(np) || IS_ERR(gpr_np)) 1532 goto out; 1533 1534 event_remap = of_find_property(np, propname, NULL); 1535 num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0; 1536 if (!num_map) { 1537 dev_dbg(sdma->dev, "no event needs to be remapped\n"); 1538 goto out; 1539 } else if (num_map % EVENT_REMAP_CELLS) { 1540 dev_err(sdma->dev, "the property %s must modulo %d\n", 1541 propname, EVENT_REMAP_CELLS); 1542 ret = -EINVAL; 1543 goto out; 1544 } 1545 1546 gpr = syscon_node_to_regmap(gpr_np); 1547 if (IS_ERR(gpr)) { 1548 dev_err(sdma->dev, "failed to get gpr regmap\n"); 1549 ret = PTR_ERR(gpr); 1550 goto out; 1551 } 1552 1553 for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) { 1554 ret = of_property_read_u32_index(np, propname, i, ®); 1555 if (ret) { 1556 dev_err(sdma->dev, "failed to read property %s index %d\n", 1557 propname, i); 1558 goto out; 1559 } 1560 1561 ret = of_property_read_u32_index(np, propname, i + 1, &shift); 1562 if (ret) { 1563 dev_err(sdma->dev, "failed to read property %s index %d\n", 1564 propname, i + 1); 1565 goto out; 1566 } 1567 1568 ret = of_property_read_u32_index(np, propname, i + 2, &val); 1569 if (ret) { 1570 dev_err(sdma->dev, "failed to read property %s index %d\n", 1571 propname, i + 2); 1572 goto out; 1573 } 1574 1575 regmap_update_bits(gpr, reg, BIT(shift), val << shift); 1576 } 1577 1578 out: 1579 if (!IS_ERR(gpr_np)) 1580 of_node_put(gpr_np); 1581 1582 return ret; 1583 } 1584 1585 static int sdma_get_firmware(struct sdma_engine *sdma, 1586 const char *fw_name) 1587 { 1588 int ret; 1589 1590 ret = request_firmware_nowait(THIS_MODULE, 1591 FW_ACTION_HOTPLUG, fw_name, sdma->dev, 1592 GFP_KERNEL, sdma, sdma_load_firmware); 1593 1594 return ret; 1595 } 1596 1597 static int sdma_init(struct sdma_engine *sdma) 1598 { 1599 int i, ret; 1600 dma_addr_t ccb_phys; 1601 1602 ret = clk_enable(sdma->clk_ipg); 1603 if (ret) 1604 return ret; 1605 ret = clk_enable(sdma->clk_ahb); 1606 if (ret) 1607 goto disable_clk_ipg; 1608 1609 /* Be sure SDMA has not started yet */ 1610 writel_relaxed(0, sdma->regs + SDMA_H_C0PTR); 1611 1612 sdma->channel_control = dma_alloc_coherent(NULL, 1613 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) + 1614 sizeof(struct sdma_context_data), 1615 &ccb_phys, GFP_KERNEL); 1616 1617 if (!sdma->channel_control) { 1618 ret = -ENOMEM; 1619 goto err_dma_alloc; 1620 } 1621 1622 sdma->context = (void *)sdma->channel_control + 1623 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control); 1624 sdma->context_phys = ccb_phys + 1625 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control); 1626 1627 /* Zero-out the CCB structures array just allocated */ 1628 memset(sdma->channel_control, 0, 1629 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control)); 1630 1631 /* disable all channels */ 1632 for (i = 0; i < sdma->drvdata->num_events; i++) 1633 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i)); 1634 1635 /* All channels have priority 0 */ 1636 for (i = 0; i < MAX_DMA_CHANNELS; i++) 1637 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4); 1638 1639 ret = sdma_request_channel(&sdma->channel[0]); 1640 if (ret) 1641 goto err_dma_alloc; 1642 1643 sdma_config_ownership(&sdma->channel[0], false, true, false); 1644 1645 /* Set Command Channel (Channel Zero) */ 1646 writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR); 1647 1648 /* Set bits of CONFIG register but with static context switching */ 1649 /* FIXME: Check whether to set ACR bit depending on clock ratios */ 1650 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG); 1651 1652 writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR); 1653 1654 /* Initializes channel's priorities */ 1655 sdma_set_channel_priority(&sdma->channel[0], 7); 1656 1657 clk_disable(sdma->clk_ipg); 1658 clk_disable(sdma->clk_ahb); 1659 1660 return 0; 1661 1662 err_dma_alloc: 1663 clk_disable(sdma->clk_ahb); 1664 disable_clk_ipg: 1665 clk_disable(sdma->clk_ipg); 1666 dev_err(sdma->dev, "initialisation failed with %d\n", ret); 1667 return ret; 1668 } 1669 1670 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param) 1671 { 1672 struct sdma_channel *sdmac = to_sdma_chan(chan); 1673 struct imx_dma_data *data = fn_param; 1674 1675 if (!imx_dma_is_general_purpose(chan)) 1676 return false; 1677 1678 sdmac->data = *data; 1679 chan->private = &sdmac->data; 1680 1681 return true; 1682 } 1683 1684 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec, 1685 struct of_dma *ofdma) 1686 { 1687 struct sdma_engine *sdma = ofdma->of_dma_data; 1688 dma_cap_mask_t mask = sdma->dma_device.cap_mask; 1689 struct imx_dma_data data; 1690 1691 if (dma_spec->args_count != 3) 1692 return NULL; 1693 1694 data.dma_request = dma_spec->args[0]; 1695 data.peripheral_type = dma_spec->args[1]; 1696 data.priority = dma_spec->args[2]; 1697 /* 1698 * init dma_request2 to zero, which is not used by the dts. 1699 * For P2P, dma_request2 is init from dma_request_channel(), 1700 * chan->private will point to the imx_dma_data, and in 1701 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will 1702 * be set to sdmac->event_id1. 1703 */ 1704 data.dma_request2 = 0; 1705 1706 return dma_request_channel(mask, sdma_filter_fn, &data); 1707 } 1708 1709 static int sdma_probe(struct platform_device *pdev) 1710 { 1711 const struct of_device_id *of_id = 1712 of_match_device(sdma_dt_ids, &pdev->dev); 1713 struct device_node *np = pdev->dev.of_node; 1714 struct device_node *spba_bus; 1715 const char *fw_name; 1716 int ret; 1717 int irq; 1718 struct resource *iores; 1719 struct resource spba_res; 1720 struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev); 1721 int i; 1722 struct sdma_engine *sdma; 1723 s32 *saddr_arr; 1724 const struct sdma_driver_data *drvdata = NULL; 1725 1726 if (of_id) 1727 drvdata = of_id->data; 1728 else if (pdev->id_entry) 1729 drvdata = (void *)pdev->id_entry->driver_data; 1730 1731 if (!drvdata) { 1732 dev_err(&pdev->dev, "unable to find driver data\n"); 1733 return -EINVAL; 1734 } 1735 1736 ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1737 if (ret) 1738 return ret; 1739 1740 sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL); 1741 if (!sdma) 1742 return -ENOMEM; 1743 1744 spin_lock_init(&sdma->channel_0_lock); 1745 1746 sdma->dev = &pdev->dev; 1747 sdma->drvdata = drvdata; 1748 1749 irq = platform_get_irq(pdev, 0); 1750 if (irq < 0) 1751 return irq; 1752 1753 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1754 sdma->regs = devm_ioremap_resource(&pdev->dev, iores); 1755 if (IS_ERR(sdma->regs)) 1756 return PTR_ERR(sdma->regs); 1757 1758 sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 1759 if (IS_ERR(sdma->clk_ipg)) 1760 return PTR_ERR(sdma->clk_ipg); 1761 1762 sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 1763 if (IS_ERR(sdma->clk_ahb)) 1764 return PTR_ERR(sdma->clk_ahb); 1765 1766 ret = clk_prepare(sdma->clk_ipg); 1767 if (ret) 1768 return ret; 1769 1770 ret = clk_prepare(sdma->clk_ahb); 1771 if (ret) 1772 goto err_clk; 1773 1774 ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma", 1775 sdma); 1776 if (ret) 1777 goto err_irq; 1778 1779 sdma->irq = irq; 1780 1781 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL); 1782 if (!sdma->script_addrs) { 1783 ret = -ENOMEM; 1784 goto err_irq; 1785 } 1786 1787 /* initially no scripts available */ 1788 saddr_arr = (s32 *)sdma->script_addrs; 1789 for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++) 1790 saddr_arr[i] = -EINVAL; 1791 1792 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask); 1793 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask); 1794 1795 INIT_LIST_HEAD(&sdma->dma_device.channels); 1796 /* Initialize channel parameters */ 1797 for (i = 0; i < MAX_DMA_CHANNELS; i++) { 1798 struct sdma_channel *sdmac = &sdma->channel[i]; 1799 1800 sdmac->sdma = sdma; 1801 spin_lock_init(&sdmac->lock); 1802 1803 sdmac->chan.device = &sdma->dma_device; 1804 dma_cookie_init(&sdmac->chan); 1805 sdmac->channel = i; 1806 1807 tasklet_init(&sdmac->tasklet, mxc_sdma_handle_channel_normal, 1808 (unsigned long) sdmac); 1809 /* 1810 * Add the channel to the DMAC list. Do not add channel 0 though 1811 * because we need it internally in the SDMA driver. This also means 1812 * that channel 0 in dmaengine counting matches sdma channel 1. 1813 */ 1814 if (i) 1815 list_add_tail(&sdmac->chan.device_node, 1816 &sdma->dma_device.channels); 1817 } 1818 1819 ret = sdma_init(sdma); 1820 if (ret) 1821 goto err_init; 1822 1823 ret = sdma_event_remap(sdma); 1824 if (ret) 1825 goto err_init; 1826 1827 if (sdma->drvdata->script_addrs) 1828 sdma_add_scripts(sdma, sdma->drvdata->script_addrs); 1829 if (pdata && pdata->script_addrs) 1830 sdma_add_scripts(sdma, pdata->script_addrs); 1831 1832 if (pdata) { 1833 ret = sdma_get_firmware(sdma, pdata->fw_name); 1834 if (ret) 1835 dev_warn(&pdev->dev, "failed to get firmware from platform data\n"); 1836 } else { 1837 /* 1838 * Because that device tree does not encode ROM script address, 1839 * the RAM script in firmware is mandatory for device tree 1840 * probe, otherwise it fails. 1841 */ 1842 ret = of_property_read_string(np, "fsl,sdma-ram-script-name", 1843 &fw_name); 1844 if (ret) 1845 dev_warn(&pdev->dev, "failed to get firmware name\n"); 1846 else { 1847 ret = sdma_get_firmware(sdma, fw_name); 1848 if (ret) 1849 dev_warn(&pdev->dev, "failed to get firmware from device tree\n"); 1850 } 1851 } 1852 1853 sdma->dma_device.dev = &pdev->dev; 1854 1855 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources; 1856 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources; 1857 sdma->dma_device.device_tx_status = sdma_tx_status; 1858 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg; 1859 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic; 1860 sdma->dma_device.device_config = sdma_config; 1861 sdma->dma_device.device_terminate_all = sdma_disable_channel_with_delay; 1862 sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS; 1863 sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS; 1864 sdma->dma_device.directions = SDMA_DMA_DIRECTIONS; 1865 sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; 1866 sdma->dma_device.device_issue_pending = sdma_issue_pending; 1867 sdma->dma_device.dev->dma_parms = &sdma->dma_parms; 1868 dma_set_max_seg_size(sdma->dma_device.dev, 65535); 1869 1870 platform_set_drvdata(pdev, sdma); 1871 1872 ret = dma_async_device_register(&sdma->dma_device); 1873 if (ret) { 1874 dev_err(&pdev->dev, "unable to register\n"); 1875 goto err_init; 1876 } 1877 1878 if (np) { 1879 ret = of_dma_controller_register(np, sdma_xlate, sdma); 1880 if (ret) { 1881 dev_err(&pdev->dev, "failed to register controller\n"); 1882 goto err_register; 1883 } 1884 1885 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus"); 1886 ret = of_address_to_resource(spba_bus, 0, &spba_res); 1887 if (!ret) { 1888 sdma->spba_start_addr = spba_res.start; 1889 sdma->spba_end_addr = spba_res.end; 1890 } 1891 of_node_put(spba_bus); 1892 } 1893 1894 return 0; 1895 1896 err_register: 1897 dma_async_device_unregister(&sdma->dma_device); 1898 err_init: 1899 kfree(sdma->script_addrs); 1900 err_irq: 1901 clk_unprepare(sdma->clk_ahb); 1902 err_clk: 1903 clk_unprepare(sdma->clk_ipg); 1904 return ret; 1905 } 1906 1907 static int sdma_remove(struct platform_device *pdev) 1908 { 1909 struct sdma_engine *sdma = platform_get_drvdata(pdev); 1910 int i; 1911 1912 devm_free_irq(&pdev->dev, sdma->irq, sdma); 1913 dma_async_device_unregister(&sdma->dma_device); 1914 kfree(sdma->script_addrs); 1915 clk_unprepare(sdma->clk_ahb); 1916 clk_unprepare(sdma->clk_ipg); 1917 /* Kill the tasklet */ 1918 for (i = 0; i < MAX_DMA_CHANNELS; i++) { 1919 struct sdma_channel *sdmac = &sdma->channel[i]; 1920 1921 tasklet_kill(&sdmac->tasklet); 1922 } 1923 1924 platform_set_drvdata(pdev, NULL); 1925 return 0; 1926 } 1927 1928 static struct platform_driver sdma_driver = { 1929 .driver = { 1930 .name = "imx-sdma", 1931 .of_match_table = sdma_dt_ids, 1932 }, 1933 .id_table = sdma_devtypes, 1934 .remove = sdma_remove, 1935 .probe = sdma_probe, 1936 }; 1937 1938 module_platform_driver(sdma_driver); 1939 1940 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>"); 1941 MODULE_DESCRIPTION("i.MX SDMA driver"); 1942 MODULE_LICENSE("GPL"); 1943