1 // SPDX-License-Identifier: GPL-2.0+ 2 // 3 // drivers/dma/imx-sdma.c 4 // 5 // This file contains a driver for the Freescale Smart DMA engine 6 // 7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de> 8 // 9 // Based on code from Freescale: 10 // 11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved. 12 13 #include <linux/init.h> 14 #include <linux/iopoll.h> 15 #include <linux/module.h> 16 #include <linux/types.h> 17 #include <linux/bitops.h> 18 #include <linux/mm.h> 19 #include <linux/interrupt.h> 20 #include <linux/clk.h> 21 #include <linux/delay.h> 22 #include <linux/sched.h> 23 #include <linux/semaphore.h> 24 #include <linux/spinlock.h> 25 #include <linux/device.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/firmware.h> 28 #include <linux/slab.h> 29 #include <linux/platform_device.h> 30 #include <linux/dmaengine.h> 31 #include <linux/of.h> 32 #include <linux/of_address.h> 33 #include <linux/of_device.h> 34 #include <linux/of_dma.h> 35 #include <linux/workqueue.h> 36 37 #include <asm/irq.h> 38 #include <linux/platform_data/dma-imx.h> 39 #include <linux/regmap.h> 40 #include <linux/mfd/syscon.h> 41 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h> 42 43 #include "dmaengine.h" 44 #include "virt-dma.h" 45 46 /* SDMA registers */ 47 #define SDMA_H_C0PTR 0x000 48 #define SDMA_H_INTR 0x004 49 #define SDMA_H_STATSTOP 0x008 50 #define SDMA_H_START 0x00c 51 #define SDMA_H_EVTOVR 0x010 52 #define SDMA_H_DSPOVR 0x014 53 #define SDMA_H_HOSTOVR 0x018 54 #define SDMA_H_EVTPEND 0x01c 55 #define SDMA_H_DSPENBL 0x020 56 #define SDMA_H_RESET 0x024 57 #define SDMA_H_EVTERR 0x028 58 #define SDMA_H_INTRMSK 0x02c 59 #define SDMA_H_PSW 0x030 60 #define SDMA_H_EVTERRDBG 0x034 61 #define SDMA_H_CONFIG 0x038 62 #define SDMA_ONCE_ENB 0x040 63 #define SDMA_ONCE_DATA 0x044 64 #define SDMA_ONCE_INSTR 0x048 65 #define SDMA_ONCE_STAT 0x04c 66 #define SDMA_ONCE_CMD 0x050 67 #define SDMA_EVT_MIRROR 0x054 68 #define SDMA_ILLINSTADDR 0x058 69 #define SDMA_CHN0ADDR 0x05c 70 #define SDMA_ONCE_RTB 0x060 71 #define SDMA_XTRIG_CONF1 0x070 72 #define SDMA_XTRIG_CONF2 0x074 73 #define SDMA_CHNENBL0_IMX35 0x200 74 #define SDMA_CHNENBL0_IMX31 0x080 75 #define SDMA_CHNPRI_0 0x100 76 77 /* 78 * Buffer descriptor status values. 79 */ 80 #define BD_DONE 0x01 81 #define BD_WRAP 0x02 82 #define BD_CONT 0x04 83 #define BD_INTR 0x08 84 #define BD_RROR 0x10 85 #define BD_LAST 0x20 86 #define BD_EXTD 0x80 87 88 /* 89 * Data Node descriptor status values. 90 */ 91 #define DND_END_OF_FRAME 0x80 92 #define DND_END_OF_XFER 0x40 93 #define DND_DONE 0x20 94 #define DND_UNUSED 0x01 95 96 /* 97 * IPCV2 descriptor status values. 98 */ 99 #define BD_IPCV2_END_OF_FRAME 0x40 100 101 #define IPCV2_MAX_NODES 50 102 /* 103 * Error bit set in the CCB status field by the SDMA, 104 * in setbd routine, in case of a transfer error 105 */ 106 #define DATA_ERROR 0x10000000 107 108 /* 109 * Buffer descriptor commands. 110 */ 111 #define C0_ADDR 0x01 112 #define C0_LOAD 0x02 113 #define C0_DUMP 0x03 114 #define C0_SETCTX 0x07 115 #define C0_GETCTX 0x03 116 #define C0_SETDM 0x01 117 #define C0_SETPM 0x04 118 #define C0_GETDM 0x02 119 #define C0_GETPM 0x08 120 /* 121 * Change endianness indicator in the BD command field 122 */ 123 #define CHANGE_ENDIANNESS 0x80 124 125 /* 126 * p_2_p watermark_level description 127 * Bits Name Description 128 * 0-7 Lower WML Lower watermark level 129 * 8 PS 1: Pad Swallowing 130 * 0: No Pad Swallowing 131 * 9 PA 1: Pad Adding 132 * 0: No Pad Adding 133 * 10 SPDIF If this bit is set both source 134 * and destination are on SPBA 135 * 11 Source Bit(SP) 1: Source on SPBA 136 * 0: Source on AIPS 137 * 12 Destination Bit(DP) 1: Destination on SPBA 138 * 0: Destination on AIPS 139 * 13-15 --------- MUST BE 0 140 * 16-23 Higher WML HWML 141 * 24-27 N Total number of samples after 142 * which Pad adding/Swallowing 143 * must be done. It must be odd. 144 * 28 Lower WML Event(LWE) SDMA events reg to check for 145 * LWML event mask 146 * 0: LWE in EVENTS register 147 * 1: LWE in EVENTS2 register 148 * 29 Higher WML Event(HWE) SDMA events reg to check for 149 * HWML event mask 150 * 0: HWE in EVENTS register 151 * 1: HWE in EVENTS2 register 152 * 30 --------- MUST BE 0 153 * 31 CONT 1: Amount of samples to be 154 * transferred is unknown and 155 * script will keep on 156 * transferring samples as long as 157 * both events are detected and 158 * script must be manually stopped 159 * by the application 160 * 0: The amount of samples to be 161 * transferred is equal to the 162 * count field of mode word 163 */ 164 #define SDMA_WATERMARK_LEVEL_LWML 0xFF 165 #define SDMA_WATERMARK_LEVEL_PS BIT(8) 166 #define SDMA_WATERMARK_LEVEL_PA BIT(9) 167 #define SDMA_WATERMARK_LEVEL_SPDIF BIT(10) 168 #define SDMA_WATERMARK_LEVEL_SP BIT(11) 169 #define SDMA_WATERMARK_LEVEL_DP BIT(12) 170 #define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16) 171 #define SDMA_WATERMARK_LEVEL_LWE BIT(28) 172 #define SDMA_WATERMARK_LEVEL_HWE BIT(29) 173 #define SDMA_WATERMARK_LEVEL_CONT BIT(31) 174 175 #define SDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 176 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 177 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 178 179 #define SDMA_DMA_DIRECTIONS (BIT(DMA_DEV_TO_MEM) | \ 180 BIT(DMA_MEM_TO_DEV) | \ 181 BIT(DMA_DEV_TO_DEV)) 182 183 /** 184 * struct sdma_script_start_addrs - SDMA script start pointers 185 * 186 * start addresses of the different functions in the physical 187 * address space of the SDMA engine. 188 */ 189 struct sdma_script_start_addrs { 190 s32 ap_2_ap_addr; 191 s32 ap_2_bp_addr; 192 s32 ap_2_ap_fixed_addr; 193 s32 bp_2_ap_addr; 194 s32 loopback_on_dsp_side_addr; 195 s32 mcu_interrupt_only_addr; 196 s32 firi_2_per_addr; 197 s32 firi_2_mcu_addr; 198 s32 per_2_firi_addr; 199 s32 mcu_2_firi_addr; 200 s32 uart_2_per_addr; 201 s32 uart_2_mcu_ram_addr; 202 s32 per_2_app_addr; 203 s32 mcu_2_app_addr; 204 s32 per_2_per_addr; 205 s32 uartsh_2_per_addr; 206 s32 uartsh_2_mcu_ram_addr; 207 s32 per_2_shp_addr; 208 s32 mcu_2_shp_addr; 209 s32 ata_2_mcu_addr; 210 s32 mcu_2_ata_addr; 211 s32 app_2_per_addr; 212 s32 app_2_mcu_addr; 213 s32 shp_2_per_addr; 214 s32 shp_2_mcu_addr; 215 s32 mshc_2_mcu_addr; 216 s32 mcu_2_mshc_addr; 217 s32 spdif_2_mcu_addr; 218 s32 mcu_2_spdif_addr; 219 s32 asrc_2_mcu_addr; 220 s32 ext_mem_2_ipu_addr; 221 s32 descrambler_addr; 222 s32 dptc_dvfs_addr; 223 s32 utra_addr; 224 s32 ram_code_start_addr; 225 /* End of v1 array */ 226 s32 mcu_2_ssish_addr; 227 s32 ssish_2_mcu_addr; 228 s32 hdmi_dma_addr; 229 /* End of v2 array */ 230 s32 zcanfd_2_mcu_addr; 231 s32 zqspi_2_mcu_addr; 232 s32 mcu_2_ecspi_addr; 233 s32 mcu_2_sai_addr; 234 s32 sai_2_mcu_addr; 235 s32 uart_2_mcu_addr; 236 s32 uartsh_2_mcu_addr; 237 /* End of v3 array */ 238 s32 mcu_2_zqspi_addr; 239 /* End of v4 array */ 240 }; 241 242 /* 243 * Mode/Count of data node descriptors - IPCv2 244 */ 245 struct sdma_mode_count { 246 #define SDMA_BD_MAX_CNT 0xffff 247 u32 count : 16; /* size of the buffer pointed by this BD */ 248 u32 status : 8; /* E,R,I,C,W,D status bits stored here */ 249 u32 command : 8; /* command mostly used for channel 0 */ 250 }; 251 252 /* 253 * Buffer descriptor 254 */ 255 struct sdma_buffer_descriptor { 256 struct sdma_mode_count mode; 257 u32 buffer_addr; /* address of the buffer described */ 258 u32 ext_buffer_addr; /* extended buffer address */ 259 } __attribute__ ((packed)); 260 261 /** 262 * struct sdma_channel_control - Channel control Block 263 * 264 * @current_bd_ptr: current buffer descriptor processed 265 * @base_bd_ptr: first element of buffer descriptor array 266 * @unused: padding. The SDMA engine expects an array of 128 byte 267 * control blocks 268 */ 269 struct sdma_channel_control { 270 u32 current_bd_ptr; 271 u32 base_bd_ptr; 272 u32 unused[2]; 273 } __attribute__ ((packed)); 274 275 /** 276 * struct sdma_state_registers - SDMA context for a channel 277 * 278 * @pc: program counter 279 * @unused1: unused 280 * @t: test bit: status of arithmetic & test instruction 281 * @rpc: return program counter 282 * @unused0: unused 283 * @sf: source fault while loading data 284 * @spc: loop start program counter 285 * @unused2: unused 286 * @df: destination fault while storing data 287 * @epc: loop end program counter 288 * @lm: loop mode 289 */ 290 struct sdma_state_registers { 291 u32 pc :14; 292 u32 unused1: 1; 293 u32 t : 1; 294 u32 rpc :14; 295 u32 unused0: 1; 296 u32 sf : 1; 297 u32 spc :14; 298 u32 unused2: 1; 299 u32 df : 1; 300 u32 epc :14; 301 u32 lm : 2; 302 } __attribute__ ((packed)); 303 304 /** 305 * struct sdma_context_data - sdma context specific to a channel 306 * 307 * @channel_state: channel state bits 308 * @gReg: general registers 309 * @mda: burst dma destination address register 310 * @msa: burst dma source address register 311 * @ms: burst dma status register 312 * @md: burst dma data register 313 * @pda: peripheral dma destination address register 314 * @psa: peripheral dma source address register 315 * @ps: peripheral dma status register 316 * @pd: peripheral dma data register 317 * @ca: CRC polynomial register 318 * @cs: CRC accumulator register 319 * @dda: dedicated core destination address register 320 * @dsa: dedicated core source address register 321 * @ds: dedicated core status register 322 * @dd: dedicated core data register 323 * @scratch0: 1st word of dedicated ram for context switch 324 * @scratch1: 2nd word of dedicated ram for context switch 325 * @scratch2: 3rd word of dedicated ram for context switch 326 * @scratch3: 4th word of dedicated ram for context switch 327 * @scratch4: 5th word of dedicated ram for context switch 328 * @scratch5: 6th word of dedicated ram for context switch 329 * @scratch6: 7th word of dedicated ram for context switch 330 * @scratch7: 8th word of dedicated ram for context switch 331 */ 332 struct sdma_context_data { 333 struct sdma_state_registers channel_state; 334 u32 gReg[8]; 335 u32 mda; 336 u32 msa; 337 u32 ms; 338 u32 md; 339 u32 pda; 340 u32 psa; 341 u32 ps; 342 u32 pd; 343 u32 ca; 344 u32 cs; 345 u32 dda; 346 u32 dsa; 347 u32 ds; 348 u32 dd; 349 u32 scratch0; 350 u32 scratch1; 351 u32 scratch2; 352 u32 scratch3; 353 u32 scratch4; 354 u32 scratch5; 355 u32 scratch6; 356 u32 scratch7; 357 } __attribute__ ((packed)); 358 359 360 struct sdma_engine; 361 362 /** 363 * struct sdma_desc - descriptor structor for one transfer 364 * @vd: descriptor for virt dma 365 * @num_bd: number of descriptors currently handling 366 * @bd_phys: physical address of bd 367 * @buf_tail: ID of the buffer that was processed 368 * @buf_ptail: ID of the previous buffer that was processed 369 * @period_len: period length, used in cyclic. 370 * @chn_real_count: the real count updated from bd->mode.count 371 * @chn_count: the transfer count set 372 * @sdmac: sdma_channel pointer 373 * @bd: pointer of allocate bd 374 */ 375 struct sdma_desc { 376 struct virt_dma_desc vd; 377 unsigned int num_bd; 378 dma_addr_t bd_phys; 379 unsigned int buf_tail; 380 unsigned int buf_ptail; 381 unsigned int period_len; 382 unsigned int chn_real_count; 383 unsigned int chn_count; 384 struct sdma_channel *sdmac; 385 struct sdma_buffer_descriptor *bd; 386 }; 387 388 /** 389 * struct sdma_channel - housekeeping for a SDMA channel 390 * 391 * @vc: virt_dma base structure 392 * @desc: sdma description including vd and other special member 393 * @sdma: pointer to the SDMA engine for this channel 394 * @channel: the channel number, matches dmaengine chan_id + 1 395 * @direction: transfer type. Needed for setting SDMA script 396 * @slave_config: Slave configuration 397 * @peripheral_type: Peripheral type. Needed for setting SDMA script 398 * @event_id0: aka dma request line 399 * @event_id1: for channels that use 2 events 400 * @word_size: peripheral access size 401 * @pc_from_device: script address for those device_2_memory 402 * @pc_to_device: script address for those memory_2_device 403 * @device_to_device: script address for those device_2_device 404 * @pc_to_pc: script address for those memory_2_memory 405 * @flags: loop mode or not 406 * @per_address: peripheral source or destination address in common case 407 * destination address in p_2_p case 408 * @per_address2: peripheral source address in p_2_p case 409 * @event_mask: event mask used in p_2_p script 410 * @watermark_level: value for gReg[7], some script will extend it from 411 * basic watermark such as p_2_p 412 * @shp_addr: value for gReg[6] 413 * @per_addr: value for gReg[2] 414 * @status: status of dma channel 415 * @context_loaded: ensure context is only loaded once 416 * @data: specific sdma interface structure 417 * @bd_pool: dma_pool for bd 418 * @terminate_worker: used to call back into terminate work function 419 */ 420 struct sdma_channel { 421 struct virt_dma_chan vc; 422 struct sdma_desc *desc; 423 struct sdma_engine *sdma; 424 unsigned int channel; 425 enum dma_transfer_direction direction; 426 struct dma_slave_config slave_config; 427 enum sdma_peripheral_type peripheral_type; 428 unsigned int event_id0; 429 unsigned int event_id1; 430 enum dma_slave_buswidth word_size; 431 unsigned int pc_from_device, pc_to_device; 432 unsigned int device_to_device; 433 unsigned int pc_to_pc; 434 unsigned long flags; 435 dma_addr_t per_address, per_address2; 436 unsigned long event_mask[2]; 437 unsigned long watermark_level; 438 u32 shp_addr, per_addr; 439 enum dma_status status; 440 struct imx_dma_data data; 441 struct work_struct terminate_worker; 442 struct list_head terminated; 443 bool is_ram_script; 444 }; 445 446 #define IMX_DMA_SG_LOOP BIT(0) 447 448 #define MAX_DMA_CHANNELS 32 449 #define MXC_SDMA_DEFAULT_PRIORITY 1 450 #define MXC_SDMA_MIN_PRIORITY 1 451 #define MXC_SDMA_MAX_PRIORITY 7 452 453 #define SDMA_FIRMWARE_MAGIC 0x414d4453 454 455 /** 456 * struct sdma_firmware_header - Layout of the firmware image 457 * 458 * @magic: "SDMA" 459 * @version_major: increased whenever layout of struct 460 * sdma_script_start_addrs changes. 461 * @version_minor: firmware minor version (for binary compatible changes) 462 * @script_addrs_start: offset of struct sdma_script_start_addrs in this image 463 * @num_script_addrs: Number of script addresses in this image 464 * @ram_code_start: offset of SDMA ram image in this firmware image 465 * @ram_code_size: size of SDMA ram image 466 * @script_addrs: Stores the start address of the SDMA scripts 467 * (in SDMA memory space) 468 */ 469 struct sdma_firmware_header { 470 u32 magic; 471 u32 version_major; 472 u32 version_minor; 473 u32 script_addrs_start; 474 u32 num_script_addrs; 475 u32 ram_code_start; 476 u32 ram_code_size; 477 }; 478 479 struct sdma_driver_data { 480 int chnenbl0; 481 int num_events; 482 struct sdma_script_start_addrs *script_addrs; 483 bool check_ratio; 484 /* 485 * ecspi ERR009165 fixed should be done in sdma script 486 * and it has been fixed in soc from i.mx6ul. 487 * please get more information from the below link: 488 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf 489 */ 490 bool ecspi_fixed; 491 }; 492 493 struct sdma_engine { 494 struct device *dev; 495 struct sdma_channel channel[MAX_DMA_CHANNELS]; 496 struct sdma_channel_control *channel_control; 497 void __iomem *regs; 498 struct sdma_context_data *context; 499 dma_addr_t context_phys; 500 struct dma_device dma_device; 501 struct clk *clk_ipg; 502 struct clk *clk_ahb; 503 spinlock_t channel_0_lock; 504 u32 script_number; 505 struct sdma_script_start_addrs *script_addrs; 506 const struct sdma_driver_data *drvdata; 507 u32 spba_start_addr; 508 u32 spba_end_addr; 509 unsigned int irq; 510 dma_addr_t bd0_phys; 511 struct sdma_buffer_descriptor *bd0; 512 /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/ 513 bool clk_ratio; 514 bool fw_loaded; 515 }; 516 517 static int sdma_config_write(struct dma_chan *chan, 518 struct dma_slave_config *dmaengine_cfg, 519 enum dma_transfer_direction direction); 520 521 static struct sdma_driver_data sdma_imx31 = { 522 .chnenbl0 = SDMA_CHNENBL0_IMX31, 523 .num_events = 32, 524 }; 525 526 static struct sdma_script_start_addrs sdma_script_imx25 = { 527 .ap_2_ap_addr = 729, 528 .uart_2_mcu_addr = 904, 529 .per_2_app_addr = 1255, 530 .mcu_2_app_addr = 834, 531 .uartsh_2_mcu_addr = 1120, 532 .per_2_shp_addr = 1329, 533 .mcu_2_shp_addr = 1048, 534 .ata_2_mcu_addr = 1560, 535 .mcu_2_ata_addr = 1479, 536 .app_2_per_addr = 1189, 537 .app_2_mcu_addr = 770, 538 .shp_2_per_addr = 1407, 539 .shp_2_mcu_addr = 979, 540 }; 541 542 static struct sdma_driver_data sdma_imx25 = { 543 .chnenbl0 = SDMA_CHNENBL0_IMX35, 544 .num_events = 48, 545 .script_addrs = &sdma_script_imx25, 546 }; 547 548 static struct sdma_driver_data sdma_imx35 = { 549 .chnenbl0 = SDMA_CHNENBL0_IMX35, 550 .num_events = 48, 551 }; 552 553 static struct sdma_script_start_addrs sdma_script_imx51 = { 554 .ap_2_ap_addr = 642, 555 .uart_2_mcu_addr = 817, 556 .mcu_2_app_addr = 747, 557 .mcu_2_shp_addr = 961, 558 .ata_2_mcu_addr = 1473, 559 .mcu_2_ata_addr = 1392, 560 .app_2_per_addr = 1033, 561 .app_2_mcu_addr = 683, 562 .shp_2_per_addr = 1251, 563 .shp_2_mcu_addr = 892, 564 }; 565 566 static struct sdma_driver_data sdma_imx51 = { 567 .chnenbl0 = SDMA_CHNENBL0_IMX35, 568 .num_events = 48, 569 .script_addrs = &sdma_script_imx51, 570 }; 571 572 static struct sdma_script_start_addrs sdma_script_imx53 = { 573 .ap_2_ap_addr = 642, 574 .app_2_mcu_addr = 683, 575 .mcu_2_app_addr = 747, 576 .uart_2_mcu_addr = 817, 577 .shp_2_mcu_addr = 891, 578 .mcu_2_shp_addr = 960, 579 .uartsh_2_mcu_addr = 1032, 580 .spdif_2_mcu_addr = 1100, 581 .mcu_2_spdif_addr = 1134, 582 .firi_2_mcu_addr = 1193, 583 .mcu_2_firi_addr = 1290, 584 }; 585 586 static struct sdma_driver_data sdma_imx53 = { 587 .chnenbl0 = SDMA_CHNENBL0_IMX35, 588 .num_events = 48, 589 .script_addrs = &sdma_script_imx53, 590 }; 591 592 static struct sdma_script_start_addrs sdma_script_imx6q = { 593 .ap_2_ap_addr = 642, 594 .uart_2_mcu_addr = 817, 595 .mcu_2_app_addr = 747, 596 .per_2_per_addr = 6331, 597 .uartsh_2_mcu_addr = 1032, 598 .mcu_2_shp_addr = 960, 599 .app_2_mcu_addr = 683, 600 .shp_2_mcu_addr = 891, 601 .spdif_2_mcu_addr = 1100, 602 .mcu_2_spdif_addr = 1134, 603 }; 604 605 static struct sdma_driver_data sdma_imx6q = { 606 .chnenbl0 = SDMA_CHNENBL0_IMX35, 607 .num_events = 48, 608 .script_addrs = &sdma_script_imx6q, 609 }; 610 611 static struct sdma_driver_data sdma_imx6ul = { 612 .chnenbl0 = SDMA_CHNENBL0_IMX35, 613 .num_events = 48, 614 .script_addrs = &sdma_script_imx6q, 615 .ecspi_fixed = true, 616 }; 617 618 static struct sdma_script_start_addrs sdma_script_imx7d = { 619 .ap_2_ap_addr = 644, 620 .uart_2_mcu_addr = 819, 621 .mcu_2_app_addr = 749, 622 .uartsh_2_mcu_addr = 1034, 623 .mcu_2_shp_addr = 962, 624 .app_2_mcu_addr = 685, 625 .shp_2_mcu_addr = 893, 626 .spdif_2_mcu_addr = 1102, 627 .mcu_2_spdif_addr = 1136, 628 }; 629 630 static struct sdma_driver_data sdma_imx7d = { 631 .chnenbl0 = SDMA_CHNENBL0_IMX35, 632 .num_events = 48, 633 .script_addrs = &sdma_script_imx7d, 634 }; 635 636 static struct sdma_driver_data sdma_imx8mq = { 637 .chnenbl0 = SDMA_CHNENBL0_IMX35, 638 .num_events = 48, 639 .script_addrs = &sdma_script_imx7d, 640 .check_ratio = 1, 641 }; 642 643 static const struct of_device_id sdma_dt_ids[] = { 644 { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, }, 645 { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, }, 646 { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, }, 647 { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, }, 648 { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, }, 649 { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, }, 650 { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, }, 651 { .compatible = "fsl,imx6ul-sdma", .data = &sdma_imx6ul, }, 652 { .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, }, 653 { /* sentinel */ } 654 }; 655 MODULE_DEVICE_TABLE(of, sdma_dt_ids); 656 657 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */ 658 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */ 659 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */ 660 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/ 661 662 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event) 663 { 664 u32 chnenbl0 = sdma->drvdata->chnenbl0; 665 return chnenbl0 + event * 4; 666 } 667 668 static int sdma_config_ownership(struct sdma_channel *sdmac, 669 bool event_override, bool mcu_override, bool dsp_override) 670 { 671 struct sdma_engine *sdma = sdmac->sdma; 672 int channel = sdmac->channel; 673 unsigned long evt, mcu, dsp; 674 675 if (event_override && mcu_override && dsp_override) 676 return -EINVAL; 677 678 evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR); 679 mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR); 680 dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR); 681 682 if (dsp_override) 683 __clear_bit(channel, &dsp); 684 else 685 __set_bit(channel, &dsp); 686 687 if (event_override) 688 __clear_bit(channel, &evt); 689 else 690 __set_bit(channel, &evt); 691 692 if (mcu_override) 693 __clear_bit(channel, &mcu); 694 else 695 __set_bit(channel, &mcu); 696 697 writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR); 698 writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR); 699 writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR); 700 701 return 0; 702 } 703 704 static void sdma_enable_channel(struct sdma_engine *sdma, int channel) 705 { 706 writel(BIT(channel), sdma->regs + SDMA_H_START); 707 } 708 709 /* 710 * sdma_run_channel0 - run a channel and wait till it's done 711 */ 712 static int sdma_run_channel0(struct sdma_engine *sdma) 713 { 714 int ret; 715 u32 reg; 716 717 sdma_enable_channel(sdma, 0); 718 719 ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP, 720 reg, !(reg & 1), 1, 500); 721 if (ret) 722 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n"); 723 724 /* Set bits of CONFIG register with dynamic context switching */ 725 reg = readl(sdma->regs + SDMA_H_CONFIG); 726 if ((reg & SDMA_H_CONFIG_CSM) == 0) { 727 reg |= SDMA_H_CONFIG_CSM; 728 writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG); 729 } 730 731 return ret; 732 } 733 734 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size, 735 u32 address) 736 { 737 struct sdma_buffer_descriptor *bd0 = sdma->bd0; 738 void *buf_virt; 739 dma_addr_t buf_phys; 740 int ret; 741 unsigned long flags; 742 743 buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL); 744 if (!buf_virt) 745 return -ENOMEM; 746 747 spin_lock_irqsave(&sdma->channel_0_lock, flags); 748 749 bd0->mode.command = C0_SETPM; 750 bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD; 751 bd0->mode.count = size / 2; 752 bd0->buffer_addr = buf_phys; 753 bd0->ext_buffer_addr = address; 754 755 memcpy(buf_virt, buf, size); 756 757 ret = sdma_run_channel0(sdma); 758 759 spin_unlock_irqrestore(&sdma->channel_0_lock, flags); 760 761 dma_free_coherent(sdma->dev, size, buf_virt, buf_phys); 762 763 return ret; 764 } 765 766 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event) 767 { 768 struct sdma_engine *sdma = sdmac->sdma; 769 int channel = sdmac->channel; 770 unsigned long val; 771 u32 chnenbl = chnenbl_ofs(sdma, event); 772 773 val = readl_relaxed(sdma->regs + chnenbl); 774 __set_bit(channel, &val); 775 writel_relaxed(val, sdma->regs + chnenbl); 776 } 777 778 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event) 779 { 780 struct sdma_engine *sdma = sdmac->sdma; 781 int channel = sdmac->channel; 782 u32 chnenbl = chnenbl_ofs(sdma, event); 783 unsigned long val; 784 785 val = readl_relaxed(sdma->regs + chnenbl); 786 __clear_bit(channel, &val); 787 writel_relaxed(val, sdma->regs + chnenbl); 788 } 789 790 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t) 791 { 792 return container_of(t, struct sdma_desc, vd.tx); 793 } 794 795 static void sdma_start_desc(struct sdma_channel *sdmac) 796 { 797 struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc); 798 struct sdma_desc *desc; 799 struct sdma_engine *sdma = sdmac->sdma; 800 int channel = sdmac->channel; 801 802 if (!vd) { 803 sdmac->desc = NULL; 804 return; 805 } 806 sdmac->desc = desc = to_sdma_desc(&vd->tx); 807 808 list_del(&vd->node); 809 810 sdma->channel_control[channel].base_bd_ptr = desc->bd_phys; 811 sdma->channel_control[channel].current_bd_ptr = desc->bd_phys; 812 sdma_enable_channel(sdma, sdmac->channel); 813 } 814 815 static void sdma_update_channel_loop(struct sdma_channel *sdmac) 816 { 817 struct sdma_buffer_descriptor *bd; 818 int error = 0; 819 enum dma_status old_status = sdmac->status; 820 821 /* 822 * loop mode. Iterate over descriptors, re-setup them and 823 * call callback function. 824 */ 825 while (sdmac->desc) { 826 struct sdma_desc *desc = sdmac->desc; 827 828 bd = &desc->bd[desc->buf_tail]; 829 830 if (bd->mode.status & BD_DONE) 831 break; 832 833 if (bd->mode.status & BD_RROR) { 834 bd->mode.status &= ~BD_RROR; 835 sdmac->status = DMA_ERROR; 836 error = -EIO; 837 } 838 839 /* 840 * We use bd->mode.count to calculate the residue, since contains 841 * the number of bytes present in the current buffer descriptor. 842 */ 843 844 desc->chn_real_count = bd->mode.count; 845 bd->mode.status |= BD_DONE; 846 bd->mode.count = desc->period_len; 847 desc->buf_ptail = desc->buf_tail; 848 desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd; 849 850 /* 851 * The callback is called from the interrupt context in order 852 * to reduce latency and to avoid the risk of altering the 853 * SDMA transaction status by the time the client tasklet is 854 * executed. 855 */ 856 spin_unlock(&sdmac->vc.lock); 857 dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL); 858 spin_lock(&sdmac->vc.lock); 859 860 if (error) 861 sdmac->status = old_status; 862 } 863 } 864 865 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data) 866 { 867 struct sdma_channel *sdmac = (struct sdma_channel *) data; 868 struct sdma_buffer_descriptor *bd; 869 int i, error = 0; 870 871 sdmac->desc->chn_real_count = 0; 872 /* 873 * non loop mode. Iterate over all descriptors, collect 874 * errors and call callback function 875 */ 876 for (i = 0; i < sdmac->desc->num_bd; i++) { 877 bd = &sdmac->desc->bd[i]; 878 879 if (bd->mode.status & (BD_DONE | BD_RROR)) 880 error = -EIO; 881 sdmac->desc->chn_real_count += bd->mode.count; 882 } 883 884 if (error) 885 sdmac->status = DMA_ERROR; 886 else 887 sdmac->status = DMA_COMPLETE; 888 } 889 890 static irqreturn_t sdma_int_handler(int irq, void *dev_id) 891 { 892 struct sdma_engine *sdma = dev_id; 893 unsigned long stat; 894 895 stat = readl_relaxed(sdma->regs + SDMA_H_INTR); 896 writel_relaxed(stat, sdma->regs + SDMA_H_INTR); 897 /* channel 0 is special and not handled here, see run_channel0() */ 898 stat &= ~1; 899 900 while (stat) { 901 int channel = fls(stat) - 1; 902 struct sdma_channel *sdmac = &sdma->channel[channel]; 903 struct sdma_desc *desc; 904 905 spin_lock(&sdmac->vc.lock); 906 desc = sdmac->desc; 907 if (desc) { 908 if (sdmac->flags & IMX_DMA_SG_LOOP) { 909 sdma_update_channel_loop(sdmac); 910 } else { 911 mxc_sdma_handle_channel_normal(sdmac); 912 vchan_cookie_complete(&desc->vd); 913 sdma_start_desc(sdmac); 914 } 915 } 916 917 spin_unlock(&sdmac->vc.lock); 918 __clear_bit(channel, &stat); 919 } 920 921 return IRQ_HANDLED; 922 } 923 924 /* 925 * sets the pc of SDMA script according to the peripheral type 926 */ 927 static void sdma_get_pc(struct sdma_channel *sdmac, 928 enum sdma_peripheral_type peripheral_type) 929 { 930 struct sdma_engine *sdma = sdmac->sdma; 931 int per_2_emi = 0, emi_2_per = 0; 932 /* 933 * These are needed once we start to support transfers between 934 * two peripherals or memory-to-memory transfers 935 */ 936 int per_2_per = 0, emi_2_emi = 0; 937 938 sdmac->pc_from_device = 0; 939 sdmac->pc_to_device = 0; 940 sdmac->device_to_device = 0; 941 sdmac->pc_to_pc = 0; 942 sdmac->is_ram_script = false; 943 944 switch (peripheral_type) { 945 case IMX_DMATYPE_MEMORY: 946 emi_2_emi = sdma->script_addrs->ap_2_ap_addr; 947 break; 948 case IMX_DMATYPE_DSP: 949 emi_2_per = sdma->script_addrs->bp_2_ap_addr; 950 per_2_emi = sdma->script_addrs->ap_2_bp_addr; 951 break; 952 case IMX_DMATYPE_FIRI: 953 per_2_emi = sdma->script_addrs->firi_2_mcu_addr; 954 emi_2_per = sdma->script_addrs->mcu_2_firi_addr; 955 break; 956 case IMX_DMATYPE_UART: 957 per_2_emi = sdma->script_addrs->uart_2_mcu_addr; 958 emi_2_per = sdma->script_addrs->mcu_2_app_addr; 959 break; 960 case IMX_DMATYPE_UART_SP: 961 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr; 962 emi_2_per = sdma->script_addrs->mcu_2_shp_addr; 963 break; 964 case IMX_DMATYPE_ATA: 965 per_2_emi = sdma->script_addrs->ata_2_mcu_addr; 966 emi_2_per = sdma->script_addrs->mcu_2_ata_addr; 967 break; 968 case IMX_DMATYPE_CSPI: 969 per_2_emi = sdma->script_addrs->app_2_mcu_addr; 970 971 /* Use rom script mcu_2_app if ERR009165 fixed */ 972 if (sdmac->sdma->drvdata->ecspi_fixed) { 973 emi_2_per = sdma->script_addrs->mcu_2_app_addr; 974 } else { 975 emi_2_per = sdma->script_addrs->mcu_2_ecspi_addr; 976 sdmac->is_ram_script = true; 977 } 978 979 break; 980 case IMX_DMATYPE_EXT: 981 case IMX_DMATYPE_SSI: 982 case IMX_DMATYPE_SAI: 983 per_2_emi = sdma->script_addrs->app_2_mcu_addr; 984 emi_2_per = sdma->script_addrs->mcu_2_app_addr; 985 break; 986 case IMX_DMATYPE_SSI_DUAL: 987 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr; 988 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr; 989 sdmac->is_ram_script = true; 990 break; 991 case IMX_DMATYPE_SSI_SP: 992 case IMX_DMATYPE_MMC: 993 case IMX_DMATYPE_SDHC: 994 case IMX_DMATYPE_CSPI_SP: 995 case IMX_DMATYPE_ESAI: 996 case IMX_DMATYPE_MSHC_SP: 997 per_2_emi = sdma->script_addrs->shp_2_mcu_addr; 998 emi_2_per = sdma->script_addrs->mcu_2_shp_addr; 999 break; 1000 case IMX_DMATYPE_ASRC: 1001 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr; 1002 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr; 1003 per_2_per = sdma->script_addrs->per_2_per_addr; 1004 sdmac->is_ram_script = true; 1005 break; 1006 case IMX_DMATYPE_ASRC_SP: 1007 per_2_emi = sdma->script_addrs->shp_2_mcu_addr; 1008 emi_2_per = sdma->script_addrs->mcu_2_shp_addr; 1009 per_2_per = sdma->script_addrs->per_2_per_addr; 1010 break; 1011 case IMX_DMATYPE_MSHC: 1012 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr; 1013 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr; 1014 break; 1015 case IMX_DMATYPE_CCM: 1016 per_2_emi = sdma->script_addrs->dptc_dvfs_addr; 1017 break; 1018 case IMX_DMATYPE_SPDIF: 1019 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr; 1020 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr; 1021 break; 1022 case IMX_DMATYPE_IPU_MEMORY: 1023 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr; 1024 break; 1025 default: 1026 break; 1027 } 1028 1029 sdmac->pc_from_device = per_2_emi; 1030 sdmac->pc_to_device = emi_2_per; 1031 sdmac->device_to_device = per_2_per; 1032 sdmac->pc_to_pc = emi_2_emi; 1033 } 1034 1035 static int sdma_load_context(struct sdma_channel *sdmac) 1036 { 1037 struct sdma_engine *sdma = sdmac->sdma; 1038 int channel = sdmac->channel; 1039 int load_address; 1040 struct sdma_context_data *context = sdma->context; 1041 struct sdma_buffer_descriptor *bd0 = sdma->bd0; 1042 int ret; 1043 unsigned long flags; 1044 1045 if (sdmac->direction == DMA_DEV_TO_MEM) 1046 load_address = sdmac->pc_from_device; 1047 else if (sdmac->direction == DMA_DEV_TO_DEV) 1048 load_address = sdmac->device_to_device; 1049 else if (sdmac->direction == DMA_MEM_TO_MEM) 1050 load_address = sdmac->pc_to_pc; 1051 else 1052 load_address = sdmac->pc_to_device; 1053 1054 if (load_address < 0) 1055 return load_address; 1056 1057 dev_dbg(sdma->dev, "load_address = %d\n", load_address); 1058 dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level); 1059 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr); 1060 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr); 1061 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]); 1062 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]); 1063 1064 spin_lock_irqsave(&sdma->channel_0_lock, flags); 1065 1066 memset(context, 0, sizeof(*context)); 1067 context->channel_state.pc = load_address; 1068 1069 /* Send by context the event mask,base address for peripheral 1070 * and watermark level 1071 */ 1072 context->gReg[0] = sdmac->event_mask[1]; 1073 context->gReg[1] = sdmac->event_mask[0]; 1074 context->gReg[2] = sdmac->per_addr; 1075 context->gReg[6] = sdmac->shp_addr; 1076 context->gReg[7] = sdmac->watermark_level; 1077 1078 bd0->mode.command = C0_SETDM; 1079 bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD; 1080 bd0->mode.count = sizeof(*context) / 4; 1081 bd0->buffer_addr = sdma->context_phys; 1082 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel; 1083 ret = sdma_run_channel0(sdma); 1084 1085 spin_unlock_irqrestore(&sdma->channel_0_lock, flags); 1086 1087 return ret; 1088 } 1089 1090 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan) 1091 { 1092 return container_of(chan, struct sdma_channel, vc.chan); 1093 } 1094 1095 static int sdma_disable_channel(struct dma_chan *chan) 1096 { 1097 struct sdma_channel *sdmac = to_sdma_chan(chan); 1098 struct sdma_engine *sdma = sdmac->sdma; 1099 int channel = sdmac->channel; 1100 1101 writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP); 1102 sdmac->status = DMA_ERROR; 1103 1104 return 0; 1105 } 1106 static void sdma_channel_terminate_work(struct work_struct *work) 1107 { 1108 struct sdma_channel *sdmac = container_of(work, struct sdma_channel, 1109 terminate_worker); 1110 /* 1111 * According to NXP R&D team a delay of one BD SDMA cost time 1112 * (maximum is 1ms) should be added after disable of the channel 1113 * bit, to ensure SDMA core has really been stopped after SDMA 1114 * clients call .device_terminate_all. 1115 */ 1116 usleep_range(1000, 2000); 1117 1118 vchan_dma_desc_free_list(&sdmac->vc, &sdmac->terminated); 1119 } 1120 1121 static int sdma_terminate_all(struct dma_chan *chan) 1122 { 1123 struct sdma_channel *sdmac = to_sdma_chan(chan); 1124 unsigned long flags; 1125 1126 spin_lock_irqsave(&sdmac->vc.lock, flags); 1127 1128 sdma_disable_channel(chan); 1129 1130 if (sdmac->desc) { 1131 vchan_terminate_vdesc(&sdmac->desc->vd); 1132 /* 1133 * move out current descriptor into terminated list so that 1134 * it could be free in sdma_channel_terminate_work alone 1135 * later without potential involving next descriptor raised 1136 * up before the last descriptor terminated. 1137 */ 1138 vchan_get_all_descriptors(&sdmac->vc, &sdmac->terminated); 1139 sdmac->desc = NULL; 1140 schedule_work(&sdmac->terminate_worker); 1141 } 1142 1143 spin_unlock_irqrestore(&sdmac->vc.lock, flags); 1144 1145 return 0; 1146 } 1147 1148 static void sdma_channel_synchronize(struct dma_chan *chan) 1149 { 1150 struct sdma_channel *sdmac = to_sdma_chan(chan); 1151 1152 vchan_synchronize(&sdmac->vc); 1153 1154 flush_work(&sdmac->terminate_worker); 1155 } 1156 1157 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac) 1158 { 1159 struct sdma_engine *sdma = sdmac->sdma; 1160 1161 int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML; 1162 int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16; 1163 1164 set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]); 1165 set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]); 1166 1167 if (sdmac->event_id0 > 31) 1168 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE; 1169 1170 if (sdmac->event_id1 > 31) 1171 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE; 1172 1173 /* 1174 * If LWML(src_maxburst) > HWML(dst_maxburst), we need 1175 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap 1176 * r0(event_mask[1]) and r1(event_mask[0]). 1177 */ 1178 if (lwml > hwml) { 1179 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML | 1180 SDMA_WATERMARK_LEVEL_HWML); 1181 sdmac->watermark_level |= hwml; 1182 sdmac->watermark_level |= lwml << 16; 1183 swap(sdmac->event_mask[0], sdmac->event_mask[1]); 1184 } 1185 1186 if (sdmac->per_address2 >= sdma->spba_start_addr && 1187 sdmac->per_address2 <= sdma->spba_end_addr) 1188 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP; 1189 1190 if (sdmac->per_address >= sdma->spba_start_addr && 1191 sdmac->per_address <= sdma->spba_end_addr) 1192 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP; 1193 1194 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT; 1195 } 1196 1197 static int sdma_config_channel(struct dma_chan *chan) 1198 { 1199 struct sdma_channel *sdmac = to_sdma_chan(chan); 1200 1201 sdma_disable_channel(chan); 1202 1203 sdmac->event_mask[0] = 0; 1204 sdmac->event_mask[1] = 0; 1205 sdmac->shp_addr = 0; 1206 sdmac->per_addr = 0; 1207 1208 switch (sdmac->peripheral_type) { 1209 case IMX_DMATYPE_DSP: 1210 sdma_config_ownership(sdmac, false, true, true); 1211 break; 1212 case IMX_DMATYPE_MEMORY: 1213 sdma_config_ownership(sdmac, false, true, false); 1214 break; 1215 default: 1216 sdma_config_ownership(sdmac, true, true, false); 1217 break; 1218 } 1219 1220 sdma_get_pc(sdmac, sdmac->peripheral_type); 1221 1222 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) && 1223 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) { 1224 /* Handle multiple event channels differently */ 1225 if (sdmac->event_id1) { 1226 if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP || 1227 sdmac->peripheral_type == IMX_DMATYPE_ASRC) 1228 sdma_set_watermarklevel_for_p2p(sdmac); 1229 } else { 1230 __set_bit(sdmac->event_id0, sdmac->event_mask); 1231 } 1232 1233 /* Address */ 1234 sdmac->shp_addr = sdmac->per_address; 1235 sdmac->per_addr = sdmac->per_address2; 1236 } else { 1237 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */ 1238 } 1239 1240 return 0; 1241 } 1242 1243 static int sdma_set_channel_priority(struct sdma_channel *sdmac, 1244 unsigned int priority) 1245 { 1246 struct sdma_engine *sdma = sdmac->sdma; 1247 int channel = sdmac->channel; 1248 1249 if (priority < MXC_SDMA_MIN_PRIORITY 1250 || priority > MXC_SDMA_MAX_PRIORITY) { 1251 return -EINVAL; 1252 } 1253 1254 writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel); 1255 1256 return 0; 1257 } 1258 1259 static int sdma_request_channel0(struct sdma_engine *sdma) 1260 { 1261 int ret = -EBUSY; 1262 1263 sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys, 1264 GFP_NOWAIT); 1265 if (!sdma->bd0) { 1266 ret = -ENOMEM; 1267 goto out; 1268 } 1269 1270 sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys; 1271 sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys; 1272 1273 sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY); 1274 return 0; 1275 out: 1276 1277 return ret; 1278 } 1279 1280 1281 static int sdma_alloc_bd(struct sdma_desc *desc) 1282 { 1283 u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor); 1284 int ret = 0; 1285 1286 desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size, 1287 &desc->bd_phys, GFP_NOWAIT); 1288 if (!desc->bd) { 1289 ret = -ENOMEM; 1290 goto out; 1291 } 1292 out: 1293 return ret; 1294 } 1295 1296 static void sdma_free_bd(struct sdma_desc *desc) 1297 { 1298 u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor); 1299 1300 dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd, 1301 desc->bd_phys); 1302 } 1303 1304 static void sdma_desc_free(struct virt_dma_desc *vd) 1305 { 1306 struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd); 1307 1308 sdma_free_bd(desc); 1309 kfree(desc); 1310 } 1311 1312 static int sdma_alloc_chan_resources(struct dma_chan *chan) 1313 { 1314 struct sdma_channel *sdmac = to_sdma_chan(chan); 1315 struct imx_dma_data *data = chan->private; 1316 struct imx_dma_data mem_data; 1317 int prio, ret; 1318 1319 /* 1320 * MEMCPY may never setup chan->private by filter function such as 1321 * dmatest, thus create 'struct imx_dma_data mem_data' for this case. 1322 * Please note in any other slave case, you have to setup chan->private 1323 * with 'struct imx_dma_data' in your own filter function if you want to 1324 * request dma channel by dma_request_channel() rather than 1325 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear 1326 * to warn you to correct your filter function. 1327 */ 1328 if (!data) { 1329 dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n"); 1330 mem_data.priority = 2; 1331 mem_data.peripheral_type = IMX_DMATYPE_MEMORY; 1332 mem_data.dma_request = 0; 1333 mem_data.dma_request2 = 0; 1334 data = &mem_data; 1335 1336 sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY); 1337 } 1338 1339 switch (data->priority) { 1340 case DMA_PRIO_HIGH: 1341 prio = 3; 1342 break; 1343 case DMA_PRIO_MEDIUM: 1344 prio = 2; 1345 break; 1346 case DMA_PRIO_LOW: 1347 default: 1348 prio = 1; 1349 break; 1350 } 1351 1352 sdmac->peripheral_type = data->peripheral_type; 1353 sdmac->event_id0 = data->dma_request; 1354 sdmac->event_id1 = data->dma_request2; 1355 1356 ret = clk_enable(sdmac->sdma->clk_ipg); 1357 if (ret) 1358 return ret; 1359 ret = clk_enable(sdmac->sdma->clk_ahb); 1360 if (ret) 1361 goto disable_clk_ipg; 1362 1363 ret = sdma_set_channel_priority(sdmac, prio); 1364 if (ret) 1365 goto disable_clk_ahb; 1366 1367 return 0; 1368 1369 disable_clk_ahb: 1370 clk_disable(sdmac->sdma->clk_ahb); 1371 disable_clk_ipg: 1372 clk_disable(sdmac->sdma->clk_ipg); 1373 return ret; 1374 } 1375 1376 static void sdma_free_chan_resources(struct dma_chan *chan) 1377 { 1378 struct sdma_channel *sdmac = to_sdma_chan(chan); 1379 struct sdma_engine *sdma = sdmac->sdma; 1380 1381 sdma_terminate_all(chan); 1382 1383 sdma_channel_synchronize(chan); 1384 1385 sdma_event_disable(sdmac, sdmac->event_id0); 1386 if (sdmac->event_id1) 1387 sdma_event_disable(sdmac, sdmac->event_id1); 1388 1389 sdmac->event_id0 = 0; 1390 sdmac->event_id1 = 0; 1391 1392 sdma_set_channel_priority(sdmac, 0); 1393 1394 clk_disable(sdma->clk_ipg); 1395 clk_disable(sdma->clk_ahb); 1396 } 1397 1398 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac, 1399 enum dma_transfer_direction direction, u32 bds) 1400 { 1401 struct sdma_desc *desc; 1402 1403 if (!sdmac->sdma->fw_loaded && sdmac->is_ram_script) { 1404 dev_warn_once(sdmac->sdma->dev, "sdma firmware not ready!\n"); 1405 goto err_out; 1406 } 1407 1408 desc = kzalloc((sizeof(*desc)), GFP_NOWAIT); 1409 if (!desc) 1410 goto err_out; 1411 1412 sdmac->status = DMA_IN_PROGRESS; 1413 sdmac->direction = direction; 1414 sdmac->flags = 0; 1415 1416 desc->chn_count = 0; 1417 desc->chn_real_count = 0; 1418 desc->buf_tail = 0; 1419 desc->buf_ptail = 0; 1420 desc->sdmac = sdmac; 1421 desc->num_bd = bds; 1422 1423 if (sdma_alloc_bd(desc)) 1424 goto err_desc_out; 1425 1426 /* No slave_config called in MEMCPY case, so do here */ 1427 if (direction == DMA_MEM_TO_MEM) 1428 sdma_config_ownership(sdmac, false, true, false); 1429 1430 if (sdma_load_context(sdmac)) 1431 goto err_desc_out; 1432 1433 return desc; 1434 1435 err_desc_out: 1436 kfree(desc); 1437 err_out: 1438 return NULL; 1439 } 1440 1441 static struct dma_async_tx_descriptor *sdma_prep_memcpy( 1442 struct dma_chan *chan, dma_addr_t dma_dst, 1443 dma_addr_t dma_src, size_t len, unsigned long flags) 1444 { 1445 struct sdma_channel *sdmac = to_sdma_chan(chan); 1446 struct sdma_engine *sdma = sdmac->sdma; 1447 int channel = sdmac->channel; 1448 size_t count; 1449 int i = 0, param; 1450 struct sdma_buffer_descriptor *bd; 1451 struct sdma_desc *desc; 1452 1453 if (!chan || !len) 1454 return NULL; 1455 1456 dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n", 1457 &dma_src, &dma_dst, len, channel); 1458 1459 desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM, 1460 len / SDMA_BD_MAX_CNT + 1); 1461 if (!desc) 1462 return NULL; 1463 1464 do { 1465 count = min_t(size_t, len, SDMA_BD_MAX_CNT); 1466 bd = &desc->bd[i]; 1467 bd->buffer_addr = dma_src; 1468 bd->ext_buffer_addr = dma_dst; 1469 bd->mode.count = count; 1470 desc->chn_count += count; 1471 bd->mode.command = 0; 1472 1473 dma_src += count; 1474 dma_dst += count; 1475 len -= count; 1476 i++; 1477 1478 param = BD_DONE | BD_EXTD | BD_CONT; 1479 /* last bd */ 1480 if (!len) { 1481 param |= BD_INTR; 1482 param |= BD_LAST; 1483 param &= ~BD_CONT; 1484 } 1485 1486 dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n", 1487 i, count, bd->buffer_addr, 1488 param & BD_WRAP ? "wrap" : "", 1489 param & BD_INTR ? " intr" : ""); 1490 1491 bd->mode.status = param; 1492 } while (len); 1493 1494 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags); 1495 } 1496 1497 static struct dma_async_tx_descriptor *sdma_prep_slave_sg( 1498 struct dma_chan *chan, struct scatterlist *sgl, 1499 unsigned int sg_len, enum dma_transfer_direction direction, 1500 unsigned long flags, void *context) 1501 { 1502 struct sdma_channel *sdmac = to_sdma_chan(chan); 1503 struct sdma_engine *sdma = sdmac->sdma; 1504 int i, count; 1505 int channel = sdmac->channel; 1506 struct scatterlist *sg; 1507 struct sdma_desc *desc; 1508 1509 sdma_config_write(chan, &sdmac->slave_config, direction); 1510 1511 desc = sdma_transfer_init(sdmac, direction, sg_len); 1512 if (!desc) 1513 goto err_out; 1514 1515 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n", 1516 sg_len, channel); 1517 1518 for_each_sg(sgl, sg, sg_len, i) { 1519 struct sdma_buffer_descriptor *bd = &desc->bd[i]; 1520 int param; 1521 1522 bd->buffer_addr = sg->dma_address; 1523 1524 count = sg_dma_len(sg); 1525 1526 if (count > SDMA_BD_MAX_CNT) { 1527 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n", 1528 channel, count, SDMA_BD_MAX_CNT); 1529 goto err_bd_out; 1530 } 1531 1532 bd->mode.count = count; 1533 desc->chn_count += count; 1534 1535 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) 1536 goto err_bd_out; 1537 1538 switch (sdmac->word_size) { 1539 case DMA_SLAVE_BUSWIDTH_4_BYTES: 1540 bd->mode.command = 0; 1541 if (count & 3 || sg->dma_address & 3) 1542 goto err_bd_out; 1543 break; 1544 case DMA_SLAVE_BUSWIDTH_2_BYTES: 1545 bd->mode.command = 2; 1546 if (count & 1 || sg->dma_address & 1) 1547 goto err_bd_out; 1548 break; 1549 case DMA_SLAVE_BUSWIDTH_1_BYTE: 1550 bd->mode.command = 1; 1551 break; 1552 default: 1553 goto err_bd_out; 1554 } 1555 1556 param = BD_DONE | BD_EXTD | BD_CONT; 1557 1558 if (i + 1 == sg_len) { 1559 param |= BD_INTR; 1560 param |= BD_LAST; 1561 param &= ~BD_CONT; 1562 } 1563 1564 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n", 1565 i, count, (u64)sg->dma_address, 1566 param & BD_WRAP ? "wrap" : "", 1567 param & BD_INTR ? " intr" : ""); 1568 1569 bd->mode.status = param; 1570 } 1571 1572 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags); 1573 err_bd_out: 1574 sdma_free_bd(desc); 1575 kfree(desc); 1576 err_out: 1577 sdmac->status = DMA_ERROR; 1578 return NULL; 1579 } 1580 1581 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic( 1582 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len, 1583 size_t period_len, enum dma_transfer_direction direction, 1584 unsigned long flags) 1585 { 1586 struct sdma_channel *sdmac = to_sdma_chan(chan); 1587 struct sdma_engine *sdma = sdmac->sdma; 1588 int num_periods = buf_len / period_len; 1589 int channel = sdmac->channel; 1590 int i = 0, buf = 0; 1591 struct sdma_desc *desc; 1592 1593 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel); 1594 1595 sdma_config_write(chan, &sdmac->slave_config, direction); 1596 1597 desc = sdma_transfer_init(sdmac, direction, num_periods); 1598 if (!desc) 1599 goto err_out; 1600 1601 desc->period_len = period_len; 1602 1603 sdmac->flags |= IMX_DMA_SG_LOOP; 1604 1605 if (period_len > SDMA_BD_MAX_CNT) { 1606 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n", 1607 channel, period_len, SDMA_BD_MAX_CNT); 1608 goto err_bd_out; 1609 } 1610 1611 while (buf < buf_len) { 1612 struct sdma_buffer_descriptor *bd = &desc->bd[i]; 1613 int param; 1614 1615 bd->buffer_addr = dma_addr; 1616 1617 bd->mode.count = period_len; 1618 1619 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) 1620 goto err_bd_out; 1621 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES) 1622 bd->mode.command = 0; 1623 else 1624 bd->mode.command = sdmac->word_size; 1625 1626 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR; 1627 if (i + 1 == num_periods) 1628 param |= BD_WRAP; 1629 1630 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n", 1631 i, period_len, (u64)dma_addr, 1632 param & BD_WRAP ? "wrap" : "", 1633 param & BD_INTR ? " intr" : ""); 1634 1635 bd->mode.status = param; 1636 1637 dma_addr += period_len; 1638 buf += period_len; 1639 1640 i++; 1641 } 1642 1643 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags); 1644 err_bd_out: 1645 sdma_free_bd(desc); 1646 kfree(desc); 1647 err_out: 1648 sdmac->status = DMA_ERROR; 1649 return NULL; 1650 } 1651 1652 static int sdma_config_write(struct dma_chan *chan, 1653 struct dma_slave_config *dmaengine_cfg, 1654 enum dma_transfer_direction direction) 1655 { 1656 struct sdma_channel *sdmac = to_sdma_chan(chan); 1657 1658 if (direction == DMA_DEV_TO_MEM) { 1659 sdmac->per_address = dmaengine_cfg->src_addr; 1660 sdmac->watermark_level = dmaengine_cfg->src_maxburst * 1661 dmaengine_cfg->src_addr_width; 1662 sdmac->word_size = dmaengine_cfg->src_addr_width; 1663 } else if (direction == DMA_DEV_TO_DEV) { 1664 sdmac->per_address2 = dmaengine_cfg->src_addr; 1665 sdmac->per_address = dmaengine_cfg->dst_addr; 1666 sdmac->watermark_level = dmaengine_cfg->src_maxburst & 1667 SDMA_WATERMARK_LEVEL_LWML; 1668 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) & 1669 SDMA_WATERMARK_LEVEL_HWML; 1670 sdmac->word_size = dmaengine_cfg->dst_addr_width; 1671 } else { 1672 sdmac->per_address = dmaengine_cfg->dst_addr; 1673 sdmac->watermark_level = dmaengine_cfg->dst_maxburst * 1674 dmaengine_cfg->dst_addr_width; 1675 sdmac->word_size = dmaengine_cfg->dst_addr_width; 1676 } 1677 sdmac->direction = direction; 1678 return sdma_config_channel(chan); 1679 } 1680 1681 static int sdma_config(struct dma_chan *chan, 1682 struct dma_slave_config *dmaengine_cfg) 1683 { 1684 struct sdma_channel *sdmac = to_sdma_chan(chan); 1685 1686 memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg)); 1687 1688 /* Set ENBLn earlier to make sure dma request triggered after that */ 1689 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events) 1690 return -EINVAL; 1691 sdma_event_enable(sdmac, sdmac->event_id0); 1692 1693 if (sdmac->event_id1) { 1694 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events) 1695 return -EINVAL; 1696 sdma_event_enable(sdmac, sdmac->event_id1); 1697 } 1698 1699 return 0; 1700 } 1701 1702 static enum dma_status sdma_tx_status(struct dma_chan *chan, 1703 dma_cookie_t cookie, 1704 struct dma_tx_state *txstate) 1705 { 1706 struct sdma_channel *sdmac = to_sdma_chan(chan); 1707 struct sdma_desc *desc = NULL; 1708 u32 residue; 1709 struct virt_dma_desc *vd; 1710 enum dma_status ret; 1711 unsigned long flags; 1712 1713 ret = dma_cookie_status(chan, cookie, txstate); 1714 if (ret == DMA_COMPLETE || !txstate) 1715 return ret; 1716 1717 spin_lock_irqsave(&sdmac->vc.lock, flags); 1718 1719 vd = vchan_find_desc(&sdmac->vc, cookie); 1720 if (vd) 1721 desc = to_sdma_desc(&vd->tx); 1722 else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie) 1723 desc = sdmac->desc; 1724 1725 if (desc) { 1726 if (sdmac->flags & IMX_DMA_SG_LOOP) 1727 residue = (desc->num_bd - desc->buf_ptail) * 1728 desc->period_len - desc->chn_real_count; 1729 else 1730 residue = desc->chn_count - desc->chn_real_count; 1731 } else { 1732 residue = 0; 1733 } 1734 1735 spin_unlock_irqrestore(&sdmac->vc.lock, flags); 1736 1737 dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie, 1738 residue); 1739 1740 return sdmac->status; 1741 } 1742 1743 static void sdma_issue_pending(struct dma_chan *chan) 1744 { 1745 struct sdma_channel *sdmac = to_sdma_chan(chan); 1746 unsigned long flags; 1747 1748 spin_lock_irqsave(&sdmac->vc.lock, flags); 1749 if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc) 1750 sdma_start_desc(sdmac); 1751 spin_unlock_irqrestore(&sdmac->vc.lock, flags); 1752 } 1753 1754 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34 1755 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38 1756 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 45 1757 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 46 1758 1759 static void sdma_add_scripts(struct sdma_engine *sdma, 1760 const struct sdma_script_start_addrs *addr) 1761 { 1762 s32 *addr_arr = (u32 *)addr; 1763 s32 *saddr_arr = (u32 *)sdma->script_addrs; 1764 int i; 1765 1766 /* use the default firmware in ROM if missing external firmware */ 1767 if (!sdma->script_number) 1768 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; 1769 1770 if (sdma->script_number > sizeof(struct sdma_script_start_addrs) 1771 / sizeof(s32)) { 1772 dev_err(sdma->dev, 1773 "SDMA script number %d not match with firmware.\n", 1774 sdma->script_number); 1775 return; 1776 } 1777 1778 for (i = 0; i < sdma->script_number; i++) 1779 if (addr_arr[i] > 0) 1780 saddr_arr[i] = addr_arr[i]; 1781 1782 /* 1783 * get uart_2_mcu_addr/uartsh_2_mcu_addr rom script specially because 1784 * they are now replaced by uart_2_mcu_ram_addr/uartsh_2_mcu_ram_addr 1785 * to be compatible with legacy freescale/nxp sdma firmware, and they 1786 * are located in the bottom part of sdma_script_start_addrs which are 1787 * beyond the SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1. 1788 */ 1789 if (addr->uart_2_mcu_addr) 1790 sdma->script_addrs->uart_2_mcu_addr = addr->uart_2_mcu_addr; 1791 if (addr->uartsh_2_mcu_addr) 1792 sdma->script_addrs->uartsh_2_mcu_addr = addr->uartsh_2_mcu_addr; 1793 1794 } 1795 1796 static void sdma_load_firmware(const struct firmware *fw, void *context) 1797 { 1798 struct sdma_engine *sdma = context; 1799 const struct sdma_firmware_header *header; 1800 const struct sdma_script_start_addrs *addr; 1801 unsigned short *ram_code; 1802 1803 if (!fw) { 1804 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n"); 1805 /* In this case we just use the ROM firmware. */ 1806 return; 1807 } 1808 1809 if (fw->size < sizeof(*header)) 1810 goto err_firmware; 1811 1812 header = (struct sdma_firmware_header *)fw->data; 1813 1814 if (header->magic != SDMA_FIRMWARE_MAGIC) 1815 goto err_firmware; 1816 if (header->ram_code_start + header->ram_code_size > fw->size) 1817 goto err_firmware; 1818 switch (header->version_major) { 1819 case 1: 1820 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; 1821 break; 1822 case 2: 1823 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2; 1824 break; 1825 case 3: 1826 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3; 1827 break; 1828 case 4: 1829 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4; 1830 break; 1831 default: 1832 dev_err(sdma->dev, "unknown firmware version\n"); 1833 goto err_firmware; 1834 } 1835 1836 addr = (void *)header + header->script_addrs_start; 1837 ram_code = (void *)header + header->ram_code_start; 1838 1839 clk_enable(sdma->clk_ipg); 1840 clk_enable(sdma->clk_ahb); 1841 /* download the RAM image for SDMA */ 1842 sdma_load_script(sdma, ram_code, 1843 header->ram_code_size, 1844 addr->ram_code_start_addr); 1845 clk_disable(sdma->clk_ipg); 1846 clk_disable(sdma->clk_ahb); 1847 1848 sdma_add_scripts(sdma, addr); 1849 1850 sdma->fw_loaded = true; 1851 1852 dev_info(sdma->dev, "loaded firmware %d.%d\n", 1853 header->version_major, 1854 header->version_minor); 1855 1856 err_firmware: 1857 release_firmware(fw); 1858 } 1859 1860 #define EVENT_REMAP_CELLS 3 1861 1862 static int sdma_event_remap(struct sdma_engine *sdma) 1863 { 1864 struct device_node *np = sdma->dev->of_node; 1865 struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0); 1866 struct property *event_remap; 1867 struct regmap *gpr; 1868 char propname[] = "fsl,sdma-event-remap"; 1869 u32 reg, val, shift, num_map, i; 1870 int ret = 0; 1871 1872 if (IS_ERR(np) || IS_ERR(gpr_np)) 1873 goto out; 1874 1875 event_remap = of_find_property(np, propname, NULL); 1876 num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0; 1877 if (!num_map) { 1878 dev_dbg(sdma->dev, "no event needs to be remapped\n"); 1879 goto out; 1880 } else if (num_map % EVENT_REMAP_CELLS) { 1881 dev_err(sdma->dev, "the property %s must modulo %d\n", 1882 propname, EVENT_REMAP_CELLS); 1883 ret = -EINVAL; 1884 goto out; 1885 } 1886 1887 gpr = syscon_node_to_regmap(gpr_np); 1888 if (IS_ERR(gpr)) { 1889 dev_err(sdma->dev, "failed to get gpr regmap\n"); 1890 ret = PTR_ERR(gpr); 1891 goto out; 1892 } 1893 1894 for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) { 1895 ret = of_property_read_u32_index(np, propname, i, ®); 1896 if (ret) { 1897 dev_err(sdma->dev, "failed to read property %s index %d\n", 1898 propname, i); 1899 goto out; 1900 } 1901 1902 ret = of_property_read_u32_index(np, propname, i + 1, &shift); 1903 if (ret) { 1904 dev_err(sdma->dev, "failed to read property %s index %d\n", 1905 propname, i + 1); 1906 goto out; 1907 } 1908 1909 ret = of_property_read_u32_index(np, propname, i + 2, &val); 1910 if (ret) { 1911 dev_err(sdma->dev, "failed to read property %s index %d\n", 1912 propname, i + 2); 1913 goto out; 1914 } 1915 1916 regmap_update_bits(gpr, reg, BIT(shift), val << shift); 1917 } 1918 1919 out: 1920 if (!IS_ERR(gpr_np)) 1921 of_node_put(gpr_np); 1922 1923 return ret; 1924 } 1925 1926 static int sdma_get_firmware(struct sdma_engine *sdma, 1927 const char *fw_name) 1928 { 1929 int ret; 1930 1931 ret = request_firmware_nowait(THIS_MODULE, 1932 FW_ACTION_UEVENT, fw_name, sdma->dev, 1933 GFP_KERNEL, sdma, sdma_load_firmware); 1934 1935 return ret; 1936 } 1937 1938 static int sdma_init(struct sdma_engine *sdma) 1939 { 1940 int i, ret; 1941 dma_addr_t ccb_phys; 1942 1943 ret = clk_enable(sdma->clk_ipg); 1944 if (ret) 1945 return ret; 1946 ret = clk_enable(sdma->clk_ahb); 1947 if (ret) 1948 goto disable_clk_ipg; 1949 1950 if (sdma->drvdata->check_ratio && 1951 (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg))) 1952 sdma->clk_ratio = 1; 1953 1954 /* Be sure SDMA has not started yet */ 1955 writel_relaxed(0, sdma->regs + SDMA_H_C0PTR); 1956 1957 sdma->channel_control = dma_alloc_coherent(sdma->dev, 1958 MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control) + 1959 sizeof(struct sdma_context_data), 1960 &ccb_phys, GFP_KERNEL); 1961 1962 if (!sdma->channel_control) { 1963 ret = -ENOMEM; 1964 goto err_dma_alloc; 1965 } 1966 1967 sdma->context = (void *)sdma->channel_control + 1968 MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control); 1969 sdma->context_phys = ccb_phys + 1970 MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control); 1971 1972 /* disable all channels */ 1973 for (i = 0; i < sdma->drvdata->num_events; i++) 1974 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i)); 1975 1976 /* All channels have priority 0 */ 1977 for (i = 0; i < MAX_DMA_CHANNELS; i++) 1978 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4); 1979 1980 ret = sdma_request_channel0(sdma); 1981 if (ret) 1982 goto err_dma_alloc; 1983 1984 sdma_config_ownership(&sdma->channel[0], false, true, false); 1985 1986 /* Set Command Channel (Channel Zero) */ 1987 writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR); 1988 1989 /* Set bits of CONFIG register but with static context switching */ 1990 if (sdma->clk_ratio) 1991 writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG); 1992 else 1993 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG); 1994 1995 writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR); 1996 1997 /* Initializes channel's priorities */ 1998 sdma_set_channel_priority(&sdma->channel[0], 7); 1999 2000 clk_disable(sdma->clk_ipg); 2001 clk_disable(sdma->clk_ahb); 2002 2003 return 0; 2004 2005 err_dma_alloc: 2006 clk_disable(sdma->clk_ahb); 2007 disable_clk_ipg: 2008 clk_disable(sdma->clk_ipg); 2009 dev_err(sdma->dev, "initialisation failed with %d\n", ret); 2010 return ret; 2011 } 2012 2013 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param) 2014 { 2015 struct sdma_channel *sdmac = to_sdma_chan(chan); 2016 struct imx_dma_data *data = fn_param; 2017 2018 if (!imx_dma_is_general_purpose(chan)) 2019 return false; 2020 2021 sdmac->data = *data; 2022 chan->private = &sdmac->data; 2023 2024 return true; 2025 } 2026 2027 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec, 2028 struct of_dma *ofdma) 2029 { 2030 struct sdma_engine *sdma = ofdma->of_dma_data; 2031 dma_cap_mask_t mask = sdma->dma_device.cap_mask; 2032 struct imx_dma_data data; 2033 2034 if (dma_spec->args_count != 3) 2035 return NULL; 2036 2037 data.dma_request = dma_spec->args[0]; 2038 data.peripheral_type = dma_spec->args[1]; 2039 data.priority = dma_spec->args[2]; 2040 /* 2041 * init dma_request2 to zero, which is not used by the dts. 2042 * For P2P, dma_request2 is init from dma_request_channel(), 2043 * chan->private will point to the imx_dma_data, and in 2044 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will 2045 * be set to sdmac->event_id1. 2046 */ 2047 data.dma_request2 = 0; 2048 2049 return __dma_request_channel(&mask, sdma_filter_fn, &data, 2050 ofdma->of_node); 2051 } 2052 2053 static int sdma_probe(struct platform_device *pdev) 2054 { 2055 struct device_node *np = pdev->dev.of_node; 2056 struct device_node *spba_bus; 2057 const char *fw_name; 2058 int ret; 2059 int irq; 2060 struct resource *iores; 2061 struct resource spba_res; 2062 int i; 2063 struct sdma_engine *sdma; 2064 s32 *saddr_arr; 2065 2066 ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 2067 if (ret) 2068 return ret; 2069 2070 sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL); 2071 if (!sdma) 2072 return -ENOMEM; 2073 2074 spin_lock_init(&sdma->channel_0_lock); 2075 2076 sdma->dev = &pdev->dev; 2077 sdma->drvdata = of_device_get_match_data(sdma->dev); 2078 2079 irq = platform_get_irq(pdev, 0); 2080 if (irq < 0) 2081 return irq; 2082 2083 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2084 sdma->regs = devm_ioremap_resource(&pdev->dev, iores); 2085 if (IS_ERR(sdma->regs)) 2086 return PTR_ERR(sdma->regs); 2087 2088 sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2089 if (IS_ERR(sdma->clk_ipg)) 2090 return PTR_ERR(sdma->clk_ipg); 2091 2092 sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 2093 if (IS_ERR(sdma->clk_ahb)) 2094 return PTR_ERR(sdma->clk_ahb); 2095 2096 ret = clk_prepare(sdma->clk_ipg); 2097 if (ret) 2098 return ret; 2099 2100 ret = clk_prepare(sdma->clk_ahb); 2101 if (ret) 2102 goto err_clk; 2103 2104 ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma", 2105 sdma); 2106 if (ret) 2107 goto err_irq; 2108 2109 sdma->irq = irq; 2110 2111 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL); 2112 if (!sdma->script_addrs) { 2113 ret = -ENOMEM; 2114 goto err_irq; 2115 } 2116 2117 /* initially no scripts available */ 2118 saddr_arr = (s32 *)sdma->script_addrs; 2119 for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++) 2120 saddr_arr[i] = -EINVAL; 2121 2122 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask); 2123 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask); 2124 dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask); 2125 2126 INIT_LIST_HEAD(&sdma->dma_device.channels); 2127 /* Initialize channel parameters */ 2128 for (i = 0; i < MAX_DMA_CHANNELS; i++) { 2129 struct sdma_channel *sdmac = &sdma->channel[i]; 2130 2131 sdmac->sdma = sdma; 2132 2133 sdmac->channel = i; 2134 sdmac->vc.desc_free = sdma_desc_free; 2135 INIT_LIST_HEAD(&sdmac->terminated); 2136 INIT_WORK(&sdmac->terminate_worker, 2137 sdma_channel_terminate_work); 2138 /* 2139 * Add the channel to the DMAC list. Do not add channel 0 though 2140 * because we need it internally in the SDMA driver. This also means 2141 * that channel 0 in dmaengine counting matches sdma channel 1. 2142 */ 2143 if (i) 2144 vchan_init(&sdmac->vc, &sdma->dma_device); 2145 } 2146 2147 ret = sdma_init(sdma); 2148 if (ret) 2149 goto err_init; 2150 2151 ret = sdma_event_remap(sdma); 2152 if (ret) 2153 goto err_init; 2154 2155 if (sdma->drvdata->script_addrs) 2156 sdma_add_scripts(sdma, sdma->drvdata->script_addrs); 2157 2158 sdma->dma_device.dev = &pdev->dev; 2159 2160 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources; 2161 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources; 2162 sdma->dma_device.device_tx_status = sdma_tx_status; 2163 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg; 2164 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic; 2165 sdma->dma_device.device_config = sdma_config; 2166 sdma->dma_device.device_terminate_all = sdma_terminate_all; 2167 sdma->dma_device.device_synchronize = sdma_channel_synchronize; 2168 sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS; 2169 sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS; 2170 sdma->dma_device.directions = SDMA_DMA_DIRECTIONS; 2171 sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; 2172 sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy; 2173 sdma->dma_device.device_issue_pending = sdma_issue_pending; 2174 sdma->dma_device.copy_align = 2; 2175 dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT); 2176 2177 platform_set_drvdata(pdev, sdma); 2178 2179 ret = dma_async_device_register(&sdma->dma_device); 2180 if (ret) { 2181 dev_err(&pdev->dev, "unable to register\n"); 2182 goto err_init; 2183 } 2184 2185 if (np) { 2186 ret = of_dma_controller_register(np, sdma_xlate, sdma); 2187 if (ret) { 2188 dev_err(&pdev->dev, "failed to register controller\n"); 2189 goto err_register; 2190 } 2191 2192 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus"); 2193 ret = of_address_to_resource(spba_bus, 0, &spba_res); 2194 if (!ret) { 2195 sdma->spba_start_addr = spba_res.start; 2196 sdma->spba_end_addr = spba_res.end; 2197 } 2198 of_node_put(spba_bus); 2199 } 2200 2201 /* 2202 * Because that device tree does not encode ROM script address, 2203 * the RAM script in firmware is mandatory for device tree 2204 * probe, otherwise it fails. 2205 */ 2206 ret = of_property_read_string(np, "fsl,sdma-ram-script-name", 2207 &fw_name); 2208 if (ret) { 2209 dev_warn(&pdev->dev, "failed to get firmware name\n"); 2210 } else { 2211 ret = sdma_get_firmware(sdma, fw_name); 2212 if (ret) 2213 dev_warn(&pdev->dev, "failed to get firmware from device tree\n"); 2214 } 2215 2216 return 0; 2217 2218 err_register: 2219 dma_async_device_unregister(&sdma->dma_device); 2220 err_init: 2221 kfree(sdma->script_addrs); 2222 err_irq: 2223 clk_unprepare(sdma->clk_ahb); 2224 err_clk: 2225 clk_unprepare(sdma->clk_ipg); 2226 return ret; 2227 } 2228 2229 static int sdma_remove(struct platform_device *pdev) 2230 { 2231 struct sdma_engine *sdma = platform_get_drvdata(pdev); 2232 int i; 2233 2234 devm_free_irq(&pdev->dev, sdma->irq, sdma); 2235 dma_async_device_unregister(&sdma->dma_device); 2236 kfree(sdma->script_addrs); 2237 clk_unprepare(sdma->clk_ahb); 2238 clk_unprepare(sdma->clk_ipg); 2239 /* Kill the tasklet */ 2240 for (i = 0; i < MAX_DMA_CHANNELS; i++) { 2241 struct sdma_channel *sdmac = &sdma->channel[i]; 2242 2243 tasklet_kill(&sdmac->vc.task); 2244 sdma_free_chan_resources(&sdmac->vc.chan); 2245 } 2246 2247 platform_set_drvdata(pdev, NULL); 2248 return 0; 2249 } 2250 2251 static struct platform_driver sdma_driver = { 2252 .driver = { 2253 .name = "imx-sdma", 2254 .of_match_table = sdma_dt_ids, 2255 }, 2256 .remove = sdma_remove, 2257 .probe = sdma_probe, 2258 }; 2259 2260 module_platform_driver(sdma_driver); 2261 2262 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>"); 2263 MODULE_DESCRIPTION("i.MX SDMA driver"); 2264 #if IS_ENABLED(CONFIG_SOC_IMX6Q) 2265 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin"); 2266 #endif 2267 #if IS_ENABLED(CONFIG_SOC_IMX7D) 2268 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin"); 2269 #endif 2270 MODULE_LICENSE("GPL"); 2271