1 // SPDX-License-Identifier: GPL-2.0+ 2 // 3 // drivers/dma/imx-sdma.c 4 // 5 // This file contains a driver for the Freescale Smart DMA engine 6 // 7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de> 8 // 9 // Based on code from Freescale: 10 // 11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved. 12 13 #include <linux/init.h> 14 #include <linux/iopoll.h> 15 #include <linux/module.h> 16 #include <linux/types.h> 17 #include <linux/bitfield.h> 18 #include <linux/bitops.h> 19 #include <linux/mm.h> 20 #include <linux/interrupt.h> 21 #include <linux/clk.h> 22 #include <linux/delay.h> 23 #include <linux/sched.h> 24 #include <linux/semaphore.h> 25 #include <linux/spinlock.h> 26 #include <linux/device.h> 27 #include <linux/dma-mapping.h> 28 #include <linux/firmware.h> 29 #include <linux/slab.h> 30 #include <linux/platform_device.h> 31 #include <linux/dmaengine.h> 32 #include <linux/of.h> 33 #include <linux/of_address.h> 34 #include <linux/of_device.h> 35 #include <linux/of_dma.h> 36 #include <linux/workqueue.h> 37 38 #include <asm/irq.h> 39 #include <linux/dma/imx-dma.h> 40 #include <linux/regmap.h> 41 #include <linux/mfd/syscon.h> 42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h> 43 44 #include "dmaengine.h" 45 #include "virt-dma.h" 46 47 /* SDMA registers */ 48 #define SDMA_H_C0PTR 0x000 49 #define SDMA_H_INTR 0x004 50 #define SDMA_H_STATSTOP 0x008 51 #define SDMA_H_START 0x00c 52 #define SDMA_H_EVTOVR 0x010 53 #define SDMA_H_DSPOVR 0x014 54 #define SDMA_H_HOSTOVR 0x018 55 #define SDMA_H_EVTPEND 0x01c 56 #define SDMA_H_DSPENBL 0x020 57 #define SDMA_H_RESET 0x024 58 #define SDMA_H_EVTERR 0x028 59 #define SDMA_H_INTRMSK 0x02c 60 #define SDMA_H_PSW 0x030 61 #define SDMA_H_EVTERRDBG 0x034 62 #define SDMA_H_CONFIG 0x038 63 #define SDMA_ONCE_ENB 0x040 64 #define SDMA_ONCE_DATA 0x044 65 #define SDMA_ONCE_INSTR 0x048 66 #define SDMA_ONCE_STAT 0x04c 67 #define SDMA_ONCE_CMD 0x050 68 #define SDMA_EVT_MIRROR 0x054 69 #define SDMA_ILLINSTADDR 0x058 70 #define SDMA_CHN0ADDR 0x05c 71 #define SDMA_ONCE_RTB 0x060 72 #define SDMA_XTRIG_CONF1 0x070 73 #define SDMA_XTRIG_CONF2 0x074 74 #define SDMA_CHNENBL0_IMX35 0x200 75 #define SDMA_CHNENBL0_IMX31 0x080 76 #define SDMA_CHNPRI_0 0x100 77 #define SDMA_DONE0_CONFIG 0x1000 78 79 /* 80 * Buffer descriptor status values. 81 */ 82 #define BD_DONE 0x01 83 #define BD_WRAP 0x02 84 #define BD_CONT 0x04 85 #define BD_INTR 0x08 86 #define BD_RROR 0x10 87 #define BD_LAST 0x20 88 #define BD_EXTD 0x80 89 90 /* 91 * Data Node descriptor status values. 92 */ 93 #define DND_END_OF_FRAME 0x80 94 #define DND_END_OF_XFER 0x40 95 #define DND_DONE 0x20 96 #define DND_UNUSED 0x01 97 98 /* 99 * IPCV2 descriptor status values. 100 */ 101 #define BD_IPCV2_END_OF_FRAME 0x40 102 103 #define IPCV2_MAX_NODES 50 104 /* 105 * Error bit set in the CCB status field by the SDMA, 106 * in setbd routine, in case of a transfer error 107 */ 108 #define DATA_ERROR 0x10000000 109 110 /* 111 * Buffer descriptor commands. 112 */ 113 #define C0_ADDR 0x01 114 #define C0_LOAD 0x02 115 #define C0_DUMP 0x03 116 #define C0_SETCTX 0x07 117 #define C0_GETCTX 0x03 118 #define C0_SETDM 0x01 119 #define C0_SETPM 0x04 120 #define C0_GETDM 0x02 121 #define C0_GETPM 0x08 122 /* 123 * Change endianness indicator in the BD command field 124 */ 125 #define CHANGE_ENDIANNESS 0x80 126 127 /* 128 * p_2_p watermark_level description 129 * Bits Name Description 130 * 0-7 Lower WML Lower watermark level 131 * 8 PS 1: Pad Swallowing 132 * 0: No Pad Swallowing 133 * 9 PA 1: Pad Adding 134 * 0: No Pad Adding 135 * 10 SPDIF If this bit is set both source 136 * and destination are on SPBA 137 * 11 Source Bit(SP) 1: Source on SPBA 138 * 0: Source on AIPS 139 * 12 Destination Bit(DP) 1: Destination on SPBA 140 * 0: Destination on AIPS 141 * 13-15 --------- MUST BE 0 142 * 16-23 Higher WML HWML 143 * 24-27 N Total number of samples after 144 * which Pad adding/Swallowing 145 * must be done. It must be odd. 146 * 28 Lower WML Event(LWE) SDMA events reg to check for 147 * LWML event mask 148 * 0: LWE in EVENTS register 149 * 1: LWE in EVENTS2 register 150 * 29 Higher WML Event(HWE) SDMA events reg to check for 151 * HWML event mask 152 * 0: HWE in EVENTS register 153 * 1: HWE in EVENTS2 register 154 * 30 --------- MUST BE 0 155 * 31 CONT 1: Amount of samples to be 156 * transferred is unknown and 157 * script will keep on 158 * transferring samples as long as 159 * both events are detected and 160 * script must be manually stopped 161 * by the application 162 * 0: The amount of samples to be 163 * transferred is equal to the 164 * count field of mode word 165 */ 166 #define SDMA_WATERMARK_LEVEL_LWML 0xFF 167 #define SDMA_WATERMARK_LEVEL_PS BIT(8) 168 #define SDMA_WATERMARK_LEVEL_PA BIT(9) 169 #define SDMA_WATERMARK_LEVEL_SPDIF BIT(10) 170 #define SDMA_WATERMARK_LEVEL_SP BIT(11) 171 #define SDMA_WATERMARK_LEVEL_DP BIT(12) 172 #define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16) 173 #define SDMA_WATERMARK_LEVEL_LWE BIT(28) 174 #define SDMA_WATERMARK_LEVEL_HWE BIT(29) 175 #define SDMA_WATERMARK_LEVEL_CONT BIT(31) 176 177 #define SDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 178 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 179 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 180 181 #define SDMA_DMA_DIRECTIONS (BIT(DMA_DEV_TO_MEM) | \ 182 BIT(DMA_MEM_TO_DEV) | \ 183 BIT(DMA_DEV_TO_DEV)) 184 185 #define SDMA_WATERMARK_LEVEL_N_FIFOS GENMASK(15, 12) 186 #define SDMA_WATERMARK_LEVEL_OFF_FIFOS GENMASK(19, 16) 187 #define SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO GENMASK(31, 28) 188 #define SDMA_WATERMARK_LEVEL_SW_DONE BIT(23) 189 190 #define SDMA_DONE0_CONFIG_DONE_SEL BIT(7) 191 #define SDMA_DONE0_CONFIG_DONE_DIS BIT(6) 192 193 /* 194 * struct sdma_script_start_addrs - SDMA script start pointers 195 * 196 * start addresses of the different functions in the physical 197 * address space of the SDMA engine. 198 */ 199 struct sdma_script_start_addrs { 200 s32 ap_2_ap_addr; 201 s32 ap_2_bp_addr; 202 s32 ap_2_ap_fixed_addr; 203 s32 bp_2_ap_addr; 204 s32 loopback_on_dsp_side_addr; 205 s32 mcu_interrupt_only_addr; 206 s32 firi_2_per_addr; 207 s32 firi_2_mcu_addr; 208 s32 per_2_firi_addr; 209 s32 mcu_2_firi_addr; 210 s32 uart_2_per_addr; 211 s32 uart_2_mcu_addr; 212 s32 per_2_app_addr; 213 s32 mcu_2_app_addr; 214 s32 per_2_per_addr; 215 s32 uartsh_2_per_addr; 216 s32 uartsh_2_mcu_addr; 217 s32 per_2_shp_addr; 218 s32 mcu_2_shp_addr; 219 s32 ata_2_mcu_addr; 220 s32 mcu_2_ata_addr; 221 s32 app_2_per_addr; 222 s32 app_2_mcu_addr; 223 s32 shp_2_per_addr; 224 s32 shp_2_mcu_addr; 225 s32 mshc_2_mcu_addr; 226 s32 mcu_2_mshc_addr; 227 s32 spdif_2_mcu_addr; 228 s32 mcu_2_spdif_addr; 229 s32 asrc_2_mcu_addr; 230 s32 ext_mem_2_ipu_addr; 231 s32 descrambler_addr; 232 s32 dptc_dvfs_addr; 233 s32 utra_addr; 234 s32 ram_code_start_addr; 235 /* End of v1 array */ 236 s32 mcu_2_ssish_addr; 237 s32 ssish_2_mcu_addr; 238 s32 hdmi_dma_addr; 239 /* End of v2 array */ 240 s32 zcanfd_2_mcu_addr; 241 s32 zqspi_2_mcu_addr; 242 s32 mcu_2_ecspi_addr; 243 s32 mcu_2_sai_addr; 244 s32 sai_2_mcu_addr; 245 s32 uart_2_mcu_rom_addr; 246 s32 uartsh_2_mcu_rom_addr; 247 /* End of v3 array */ 248 s32 mcu_2_zqspi_addr; 249 /* End of v4 array */ 250 }; 251 252 /* 253 * Mode/Count of data node descriptors - IPCv2 254 */ 255 struct sdma_mode_count { 256 #define SDMA_BD_MAX_CNT 0xffff 257 u32 count : 16; /* size of the buffer pointed by this BD */ 258 u32 status : 8; /* E,R,I,C,W,D status bits stored here */ 259 u32 command : 8; /* command mostly used for channel 0 */ 260 }; 261 262 /* 263 * Buffer descriptor 264 */ 265 struct sdma_buffer_descriptor { 266 struct sdma_mode_count mode; 267 u32 buffer_addr; /* address of the buffer described */ 268 u32 ext_buffer_addr; /* extended buffer address */ 269 } __attribute__ ((packed)); 270 271 /** 272 * struct sdma_channel_control - Channel control Block 273 * 274 * @current_bd_ptr: current buffer descriptor processed 275 * @base_bd_ptr: first element of buffer descriptor array 276 * @unused: padding. The SDMA engine expects an array of 128 byte 277 * control blocks 278 */ 279 struct sdma_channel_control { 280 u32 current_bd_ptr; 281 u32 base_bd_ptr; 282 u32 unused[2]; 283 } __attribute__ ((packed)); 284 285 /** 286 * struct sdma_state_registers - SDMA context for a channel 287 * 288 * @pc: program counter 289 * @unused1: unused 290 * @t: test bit: status of arithmetic & test instruction 291 * @rpc: return program counter 292 * @unused0: unused 293 * @sf: source fault while loading data 294 * @spc: loop start program counter 295 * @unused2: unused 296 * @df: destination fault while storing data 297 * @epc: loop end program counter 298 * @lm: loop mode 299 */ 300 struct sdma_state_registers { 301 u32 pc :14; 302 u32 unused1: 1; 303 u32 t : 1; 304 u32 rpc :14; 305 u32 unused0: 1; 306 u32 sf : 1; 307 u32 spc :14; 308 u32 unused2: 1; 309 u32 df : 1; 310 u32 epc :14; 311 u32 lm : 2; 312 } __attribute__ ((packed)); 313 314 /** 315 * struct sdma_context_data - sdma context specific to a channel 316 * 317 * @channel_state: channel state bits 318 * @gReg: general registers 319 * @mda: burst dma destination address register 320 * @msa: burst dma source address register 321 * @ms: burst dma status register 322 * @md: burst dma data register 323 * @pda: peripheral dma destination address register 324 * @psa: peripheral dma source address register 325 * @ps: peripheral dma status register 326 * @pd: peripheral dma data register 327 * @ca: CRC polynomial register 328 * @cs: CRC accumulator register 329 * @dda: dedicated core destination address register 330 * @dsa: dedicated core source address register 331 * @ds: dedicated core status register 332 * @dd: dedicated core data register 333 * @scratch0: 1st word of dedicated ram for context switch 334 * @scratch1: 2nd word of dedicated ram for context switch 335 * @scratch2: 3rd word of dedicated ram for context switch 336 * @scratch3: 4th word of dedicated ram for context switch 337 * @scratch4: 5th word of dedicated ram for context switch 338 * @scratch5: 6th word of dedicated ram for context switch 339 * @scratch6: 7th word of dedicated ram for context switch 340 * @scratch7: 8th word of dedicated ram for context switch 341 */ 342 struct sdma_context_data { 343 struct sdma_state_registers channel_state; 344 u32 gReg[8]; 345 u32 mda; 346 u32 msa; 347 u32 ms; 348 u32 md; 349 u32 pda; 350 u32 psa; 351 u32 ps; 352 u32 pd; 353 u32 ca; 354 u32 cs; 355 u32 dda; 356 u32 dsa; 357 u32 ds; 358 u32 dd; 359 u32 scratch0; 360 u32 scratch1; 361 u32 scratch2; 362 u32 scratch3; 363 u32 scratch4; 364 u32 scratch5; 365 u32 scratch6; 366 u32 scratch7; 367 } __attribute__ ((packed)); 368 369 370 struct sdma_engine; 371 372 /** 373 * struct sdma_desc - descriptor structor for one transfer 374 * @vd: descriptor for virt dma 375 * @num_bd: number of descriptors currently handling 376 * @bd_phys: physical address of bd 377 * @buf_tail: ID of the buffer that was processed 378 * @buf_ptail: ID of the previous buffer that was processed 379 * @period_len: period length, used in cyclic. 380 * @chn_real_count: the real count updated from bd->mode.count 381 * @chn_count: the transfer count set 382 * @sdmac: sdma_channel pointer 383 * @bd: pointer of allocate bd 384 */ 385 struct sdma_desc { 386 struct virt_dma_desc vd; 387 unsigned int num_bd; 388 dma_addr_t bd_phys; 389 unsigned int buf_tail; 390 unsigned int buf_ptail; 391 unsigned int period_len; 392 unsigned int chn_real_count; 393 unsigned int chn_count; 394 struct sdma_channel *sdmac; 395 struct sdma_buffer_descriptor *bd; 396 }; 397 398 /** 399 * struct sdma_channel - housekeeping for a SDMA channel 400 * 401 * @vc: virt_dma base structure 402 * @desc: sdma description including vd and other special member 403 * @sdma: pointer to the SDMA engine for this channel 404 * @channel: the channel number, matches dmaengine chan_id + 1 405 * @direction: transfer type. Needed for setting SDMA script 406 * @slave_config: Slave configuration 407 * @peripheral_type: Peripheral type. Needed for setting SDMA script 408 * @event_id0: aka dma request line 409 * @event_id1: for channels that use 2 events 410 * @word_size: peripheral access size 411 * @pc_from_device: script address for those device_2_memory 412 * @pc_to_device: script address for those memory_2_device 413 * @device_to_device: script address for those device_2_device 414 * @pc_to_pc: script address for those memory_2_memory 415 * @flags: loop mode or not 416 * @per_address: peripheral source or destination address in common case 417 * destination address in p_2_p case 418 * @per_address2: peripheral source address in p_2_p case 419 * @event_mask: event mask used in p_2_p script 420 * @watermark_level: value for gReg[7], some script will extend it from 421 * basic watermark such as p_2_p 422 * @shp_addr: value for gReg[6] 423 * @per_addr: value for gReg[2] 424 * @status: status of dma channel 425 * @context_loaded: ensure context is only loaded once 426 * @data: specific sdma interface structure 427 * @bd_pool: dma_pool for bd 428 * @terminate_worker: used to call back into terminate work function 429 * @terminated: terminated list 430 * @is_ram_script: flag for script in ram 431 * @n_fifos_src: number of source device fifos 432 * @n_fifos_dst: number of destination device fifos 433 * @sw_done: software done flag 434 * @stride_fifos_src: stride for source device FIFOs 435 * @stride_fifos_dst: stride for destination device FIFOs 436 * @words_per_fifo: copy number of words one time for one FIFO 437 */ 438 struct sdma_channel { 439 struct virt_dma_chan vc; 440 struct sdma_desc *desc; 441 struct sdma_engine *sdma; 442 unsigned int channel; 443 enum dma_transfer_direction direction; 444 struct dma_slave_config slave_config; 445 enum sdma_peripheral_type peripheral_type; 446 unsigned int event_id0; 447 unsigned int event_id1; 448 enum dma_slave_buswidth word_size; 449 unsigned int pc_from_device, pc_to_device; 450 unsigned int device_to_device; 451 unsigned int pc_to_pc; 452 unsigned long flags; 453 dma_addr_t per_address, per_address2; 454 unsigned long event_mask[2]; 455 unsigned long watermark_level; 456 u32 shp_addr, per_addr; 457 enum dma_status status; 458 struct imx_dma_data data; 459 struct work_struct terminate_worker; 460 struct list_head terminated; 461 bool is_ram_script; 462 unsigned int n_fifos_src; 463 unsigned int n_fifos_dst; 464 unsigned int stride_fifos_src; 465 unsigned int stride_fifos_dst; 466 unsigned int words_per_fifo; 467 bool sw_done; 468 }; 469 470 #define IMX_DMA_SG_LOOP BIT(0) 471 472 #define MAX_DMA_CHANNELS 32 473 #define MXC_SDMA_DEFAULT_PRIORITY 1 474 #define MXC_SDMA_MIN_PRIORITY 1 475 #define MXC_SDMA_MAX_PRIORITY 7 476 477 #define SDMA_FIRMWARE_MAGIC 0x414d4453 478 479 /** 480 * struct sdma_firmware_header - Layout of the firmware image 481 * 482 * @magic: "SDMA" 483 * @version_major: increased whenever layout of struct 484 * sdma_script_start_addrs changes. 485 * @version_minor: firmware minor version (for binary compatible changes) 486 * @script_addrs_start: offset of struct sdma_script_start_addrs in this image 487 * @num_script_addrs: Number of script addresses in this image 488 * @ram_code_start: offset of SDMA ram image in this firmware image 489 * @ram_code_size: size of SDMA ram image 490 * @script_addrs: Stores the start address of the SDMA scripts 491 * (in SDMA memory space) 492 */ 493 struct sdma_firmware_header { 494 u32 magic; 495 u32 version_major; 496 u32 version_minor; 497 u32 script_addrs_start; 498 u32 num_script_addrs; 499 u32 ram_code_start; 500 u32 ram_code_size; 501 }; 502 503 struct sdma_driver_data { 504 int chnenbl0; 505 int num_events; 506 struct sdma_script_start_addrs *script_addrs; 507 bool check_ratio; 508 /* 509 * ecspi ERR009165 fixed should be done in sdma script 510 * and it has been fixed in soc from i.mx6ul. 511 * please get more information from the below link: 512 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf 513 */ 514 bool ecspi_fixed; 515 }; 516 517 struct sdma_engine { 518 struct device *dev; 519 struct sdma_channel channel[MAX_DMA_CHANNELS]; 520 struct sdma_channel_control *channel_control; 521 void __iomem *regs; 522 struct sdma_context_data *context; 523 dma_addr_t context_phys; 524 struct dma_device dma_device; 525 struct clk *clk_ipg; 526 struct clk *clk_ahb; 527 spinlock_t channel_0_lock; 528 u32 script_number; 529 struct sdma_script_start_addrs *script_addrs; 530 const struct sdma_driver_data *drvdata; 531 u32 spba_start_addr; 532 u32 spba_end_addr; 533 unsigned int irq; 534 dma_addr_t bd0_phys; 535 struct sdma_buffer_descriptor *bd0; 536 /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/ 537 bool clk_ratio; 538 bool fw_loaded; 539 }; 540 541 static int sdma_config_write(struct dma_chan *chan, 542 struct dma_slave_config *dmaengine_cfg, 543 enum dma_transfer_direction direction); 544 545 static struct sdma_driver_data sdma_imx31 = { 546 .chnenbl0 = SDMA_CHNENBL0_IMX31, 547 .num_events = 32, 548 }; 549 550 static struct sdma_script_start_addrs sdma_script_imx25 = { 551 .ap_2_ap_addr = 729, 552 .uart_2_mcu_addr = 904, 553 .per_2_app_addr = 1255, 554 .mcu_2_app_addr = 834, 555 .uartsh_2_mcu_addr = 1120, 556 .per_2_shp_addr = 1329, 557 .mcu_2_shp_addr = 1048, 558 .ata_2_mcu_addr = 1560, 559 .mcu_2_ata_addr = 1479, 560 .app_2_per_addr = 1189, 561 .app_2_mcu_addr = 770, 562 .shp_2_per_addr = 1407, 563 .shp_2_mcu_addr = 979, 564 }; 565 566 static struct sdma_driver_data sdma_imx25 = { 567 .chnenbl0 = SDMA_CHNENBL0_IMX35, 568 .num_events = 48, 569 .script_addrs = &sdma_script_imx25, 570 }; 571 572 static struct sdma_driver_data sdma_imx35 = { 573 .chnenbl0 = SDMA_CHNENBL0_IMX35, 574 .num_events = 48, 575 }; 576 577 static struct sdma_script_start_addrs sdma_script_imx51 = { 578 .ap_2_ap_addr = 642, 579 .uart_2_mcu_addr = 817, 580 .mcu_2_app_addr = 747, 581 .mcu_2_shp_addr = 961, 582 .ata_2_mcu_addr = 1473, 583 .mcu_2_ata_addr = 1392, 584 .app_2_per_addr = 1033, 585 .app_2_mcu_addr = 683, 586 .shp_2_per_addr = 1251, 587 .shp_2_mcu_addr = 892, 588 }; 589 590 static struct sdma_driver_data sdma_imx51 = { 591 .chnenbl0 = SDMA_CHNENBL0_IMX35, 592 .num_events = 48, 593 .script_addrs = &sdma_script_imx51, 594 }; 595 596 static struct sdma_script_start_addrs sdma_script_imx53 = { 597 .ap_2_ap_addr = 642, 598 .app_2_mcu_addr = 683, 599 .mcu_2_app_addr = 747, 600 .uart_2_mcu_addr = 817, 601 .shp_2_mcu_addr = 891, 602 .mcu_2_shp_addr = 960, 603 .uartsh_2_mcu_addr = 1032, 604 .spdif_2_mcu_addr = 1100, 605 .mcu_2_spdif_addr = 1134, 606 .firi_2_mcu_addr = 1193, 607 .mcu_2_firi_addr = 1290, 608 }; 609 610 static struct sdma_driver_data sdma_imx53 = { 611 .chnenbl0 = SDMA_CHNENBL0_IMX35, 612 .num_events = 48, 613 .script_addrs = &sdma_script_imx53, 614 }; 615 616 static struct sdma_script_start_addrs sdma_script_imx6q = { 617 .ap_2_ap_addr = 642, 618 .uart_2_mcu_addr = 817, 619 .mcu_2_app_addr = 747, 620 .per_2_per_addr = 6331, 621 .uartsh_2_mcu_addr = 1032, 622 .mcu_2_shp_addr = 960, 623 .app_2_mcu_addr = 683, 624 .shp_2_mcu_addr = 891, 625 .spdif_2_mcu_addr = 1100, 626 .mcu_2_spdif_addr = 1134, 627 }; 628 629 static struct sdma_driver_data sdma_imx6q = { 630 .chnenbl0 = SDMA_CHNENBL0_IMX35, 631 .num_events = 48, 632 .script_addrs = &sdma_script_imx6q, 633 }; 634 635 static struct sdma_driver_data sdma_imx6ul = { 636 .chnenbl0 = SDMA_CHNENBL0_IMX35, 637 .num_events = 48, 638 .script_addrs = &sdma_script_imx6q, 639 .ecspi_fixed = true, 640 }; 641 642 static struct sdma_script_start_addrs sdma_script_imx7d = { 643 .ap_2_ap_addr = 644, 644 .uart_2_mcu_addr = 819, 645 .mcu_2_app_addr = 749, 646 .uartsh_2_mcu_addr = 1034, 647 .mcu_2_shp_addr = 962, 648 .app_2_mcu_addr = 685, 649 .shp_2_mcu_addr = 893, 650 .spdif_2_mcu_addr = 1102, 651 .mcu_2_spdif_addr = 1136, 652 }; 653 654 static struct sdma_driver_data sdma_imx7d = { 655 .chnenbl0 = SDMA_CHNENBL0_IMX35, 656 .num_events = 48, 657 .script_addrs = &sdma_script_imx7d, 658 }; 659 660 static struct sdma_driver_data sdma_imx8mq = { 661 .chnenbl0 = SDMA_CHNENBL0_IMX35, 662 .num_events = 48, 663 .script_addrs = &sdma_script_imx7d, 664 .check_ratio = 1, 665 }; 666 667 static const struct of_device_id sdma_dt_ids[] = { 668 { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, }, 669 { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, }, 670 { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, }, 671 { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, }, 672 { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, }, 673 { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, }, 674 { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, }, 675 { .compatible = "fsl,imx6ul-sdma", .data = &sdma_imx6ul, }, 676 { .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, }, 677 { /* sentinel */ } 678 }; 679 MODULE_DEVICE_TABLE(of, sdma_dt_ids); 680 681 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */ 682 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */ 683 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */ 684 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/ 685 686 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event) 687 { 688 u32 chnenbl0 = sdma->drvdata->chnenbl0; 689 return chnenbl0 + event * 4; 690 } 691 692 static int sdma_config_ownership(struct sdma_channel *sdmac, 693 bool event_override, bool mcu_override, bool dsp_override) 694 { 695 struct sdma_engine *sdma = sdmac->sdma; 696 int channel = sdmac->channel; 697 unsigned long evt, mcu, dsp; 698 699 if (event_override && mcu_override && dsp_override) 700 return -EINVAL; 701 702 evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR); 703 mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR); 704 dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR); 705 706 if (dsp_override) 707 __clear_bit(channel, &dsp); 708 else 709 __set_bit(channel, &dsp); 710 711 if (event_override) 712 __clear_bit(channel, &evt); 713 else 714 __set_bit(channel, &evt); 715 716 if (mcu_override) 717 __clear_bit(channel, &mcu); 718 else 719 __set_bit(channel, &mcu); 720 721 writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR); 722 writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR); 723 writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR); 724 725 return 0; 726 } 727 728 static int is_sdma_channel_enabled(struct sdma_engine *sdma, int channel) 729 { 730 return !!(readl(sdma->regs + SDMA_H_STATSTOP) & BIT(channel)); 731 } 732 733 static void sdma_enable_channel(struct sdma_engine *sdma, int channel) 734 { 735 writel(BIT(channel), sdma->regs + SDMA_H_START); 736 } 737 738 /* 739 * sdma_run_channel0 - run a channel and wait till it's done 740 */ 741 static int sdma_run_channel0(struct sdma_engine *sdma) 742 { 743 int ret; 744 u32 reg; 745 746 sdma_enable_channel(sdma, 0); 747 748 ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP, 749 reg, !(reg & 1), 1, 500); 750 if (ret) 751 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n"); 752 753 /* Set bits of CONFIG register with dynamic context switching */ 754 reg = readl(sdma->regs + SDMA_H_CONFIG); 755 if ((reg & SDMA_H_CONFIG_CSM) == 0) { 756 reg |= SDMA_H_CONFIG_CSM; 757 writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG); 758 } 759 760 return ret; 761 } 762 763 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size, 764 u32 address) 765 { 766 struct sdma_buffer_descriptor *bd0 = sdma->bd0; 767 void *buf_virt; 768 dma_addr_t buf_phys; 769 int ret; 770 unsigned long flags; 771 772 buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL); 773 if (!buf_virt) 774 return -ENOMEM; 775 776 spin_lock_irqsave(&sdma->channel_0_lock, flags); 777 778 bd0->mode.command = C0_SETPM; 779 bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD; 780 bd0->mode.count = size / 2; 781 bd0->buffer_addr = buf_phys; 782 bd0->ext_buffer_addr = address; 783 784 memcpy(buf_virt, buf, size); 785 786 ret = sdma_run_channel0(sdma); 787 788 spin_unlock_irqrestore(&sdma->channel_0_lock, flags); 789 790 dma_free_coherent(sdma->dev, size, buf_virt, buf_phys); 791 792 return ret; 793 } 794 795 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event) 796 { 797 struct sdma_engine *sdma = sdmac->sdma; 798 int channel = sdmac->channel; 799 unsigned long val; 800 u32 chnenbl = chnenbl_ofs(sdma, event); 801 802 val = readl_relaxed(sdma->regs + chnenbl); 803 __set_bit(channel, &val); 804 writel_relaxed(val, sdma->regs + chnenbl); 805 806 /* Set SDMA_DONEx_CONFIG is sw_done enabled */ 807 if (sdmac->sw_done) { 808 val = readl_relaxed(sdma->regs + SDMA_DONE0_CONFIG); 809 val |= SDMA_DONE0_CONFIG_DONE_SEL; 810 val &= ~SDMA_DONE0_CONFIG_DONE_DIS; 811 writel_relaxed(val, sdma->regs + SDMA_DONE0_CONFIG); 812 } 813 } 814 815 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event) 816 { 817 struct sdma_engine *sdma = sdmac->sdma; 818 int channel = sdmac->channel; 819 u32 chnenbl = chnenbl_ofs(sdma, event); 820 unsigned long val; 821 822 val = readl_relaxed(sdma->regs + chnenbl); 823 __clear_bit(channel, &val); 824 writel_relaxed(val, sdma->regs + chnenbl); 825 } 826 827 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t) 828 { 829 return container_of(t, struct sdma_desc, vd.tx); 830 } 831 832 static void sdma_start_desc(struct sdma_channel *sdmac) 833 { 834 struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc); 835 struct sdma_desc *desc; 836 struct sdma_engine *sdma = sdmac->sdma; 837 int channel = sdmac->channel; 838 839 if (!vd) { 840 sdmac->desc = NULL; 841 return; 842 } 843 sdmac->desc = desc = to_sdma_desc(&vd->tx); 844 845 list_del(&vd->node); 846 847 sdma->channel_control[channel].base_bd_ptr = desc->bd_phys; 848 sdma->channel_control[channel].current_bd_ptr = desc->bd_phys; 849 sdma_enable_channel(sdma, sdmac->channel); 850 } 851 852 static void sdma_update_channel_loop(struct sdma_channel *sdmac) 853 { 854 struct sdma_buffer_descriptor *bd; 855 int error = 0; 856 enum dma_status old_status = sdmac->status; 857 858 /* 859 * loop mode. Iterate over descriptors, re-setup them and 860 * call callback function. 861 */ 862 while (sdmac->desc) { 863 struct sdma_desc *desc = sdmac->desc; 864 865 bd = &desc->bd[desc->buf_tail]; 866 867 if (bd->mode.status & BD_DONE) 868 break; 869 870 if (bd->mode.status & BD_RROR) { 871 bd->mode.status &= ~BD_RROR; 872 sdmac->status = DMA_ERROR; 873 error = -EIO; 874 } 875 876 /* 877 * We use bd->mode.count to calculate the residue, since contains 878 * the number of bytes present in the current buffer descriptor. 879 */ 880 881 desc->chn_real_count = bd->mode.count; 882 bd->mode.count = desc->period_len; 883 desc->buf_ptail = desc->buf_tail; 884 desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd; 885 886 /* 887 * The callback is called from the interrupt context in order 888 * to reduce latency and to avoid the risk of altering the 889 * SDMA transaction status by the time the client tasklet is 890 * executed. 891 */ 892 spin_unlock(&sdmac->vc.lock); 893 dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL); 894 spin_lock(&sdmac->vc.lock); 895 896 /* Assign buffer ownership to SDMA */ 897 bd->mode.status |= BD_DONE; 898 899 if (error) 900 sdmac->status = old_status; 901 } 902 903 /* 904 * SDMA stops cyclic channel when DMA request triggers a channel and no SDMA 905 * owned buffer is available (i.e. BD_DONE was set too late). 906 */ 907 if (sdmac->desc && !is_sdma_channel_enabled(sdmac->sdma, sdmac->channel)) { 908 dev_warn(sdmac->sdma->dev, "restart cyclic channel %d\n", sdmac->channel); 909 sdma_enable_channel(sdmac->sdma, sdmac->channel); 910 } 911 } 912 913 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data) 914 { 915 struct sdma_channel *sdmac = (struct sdma_channel *) data; 916 struct sdma_buffer_descriptor *bd; 917 int i, error = 0; 918 919 sdmac->desc->chn_real_count = 0; 920 /* 921 * non loop mode. Iterate over all descriptors, collect 922 * errors and call callback function 923 */ 924 for (i = 0; i < sdmac->desc->num_bd; i++) { 925 bd = &sdmac->desc->bd[i]; 926 927 if (bd->mode.status & (BD_DONE | BD_RROR)) 928 error = -EIO; 929 sdmac->desc->chn_real_count += bd->mode.count; 930 } 931 932 if (error) 933 sdmac->status = DMA_ERROR; 934 else 935 sdmac->status = DMA_COMPLETE; 936 } 937 938 static irqreturn_t sdma_int_handler(int irq, void *dev_id) 939 { 940 struct sdma_engine *sdma = dev_id; 941 unsigned long stat; 942 943 stat = readl_relaxed(sdma->regs + SDMA_H_INTR); 944 writel_relaxed(stat, sdma->regs + SDMA_H_INTR); 945 /* channel 0 is special and not handled here, see run_channel0() */ 946 stat &= ~1; 947 948 while (stat) { 949 int channel = fls(stat) - 1; 950 struct sdma_channel *sdmac = &sdma->channel[channel]; 951 struct sdma_desc *desc; 952 953 spin_lock(&sdmac->vc.lock); 954 desc = sdmac->desc; 955 if (desc) { 956 if (sdmac->flags & IMX_DMA_SG_LOOP) { 957 if (sdmac->peripheral_type != IMX_DMATYPE_HDMI) 958 sdma_update_channel_loop(sdmac); 959 else 960 vchan_cyclic_callback(&desc->vd); 961 } else { 962 mxc_sdma_handle_channel_normal(sdmac); 963 vchan_cookie_complete(&desc->vd); 964 sdma_start_desc(sdmac); 965 } 966 } 967 968 spin_unlock(&sdmac->vc.lock); 969 __clear_bit(channel, &stat); 970 } 971 972 return IRQ_HANDLED; 973 } 974 975 /* 976 * sets the pc of SDMA script according to the peripheral type 977 */ 978 static int sdma_get_pc(struct sdma_channel *sdmac, 979 enum sdma_peripheral_type peripheral_type) 980 { 981 struct sdma_engine *sdma = sdmac->sdma; 982 int per_2_emi = 0, emi_2_per = 0; 983 /* 984 * These are needed once we start to support transfers between 985 * two peripherals or memory-to-memory transfers 986 */ 987 int per_2_per = 0, emi_2_emi = 0; 988 989 sdmac->pc_from_device = 0; 990 sdmac->pc_to_device = 0; 991 sdmac->device_to_device = 0; 992 sdmac->pc_to_pc = 0; 993 sdmac->is_ram_script = false; 994 995 switch (peripheral_type) { 996 case IMX_DMATYPE_MEMORY: 997 emi_2_emi = sdma->script_addrs->ap_2_ap_addr; 998 break; 999 case IMX_DMATYPE_DSP: 1000 emi_2_per = sdma->script_addrs->bp_2_ap_addr; 1001 per_2_emi = sdma->script_addrs->ap_2_bp_addr; 1002 break; 1003 case IMX_DMATYPE_FIRI: 1004 per_2_emi = sdma->script_addrs->firi_2_mcu_addr; 1005 emi_2_per = sdma->script_addrs->mcu_2_firi_addr; 1006 break; 1007 case IMX_DMATYPE_UART: 1008 per_2_emi = sdma->script_addrs->uart_2_mcu_addr; 1009 emi_2_per = sdma->script_addrs->mcu_2_app_addr; 1010 break; 1011 case IMX_DMATYPE_UART_SP: 1012 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr; 1013 emi_2_per = sdma->script_addrs->mcu_2_shp_addr; 1014 break; 1015 case IMX_DMATYPE_ATA: 1016 per_2_emi = sdma->script_addrs->ata_2_mcu_addr; 1017 emi_2_per = sdma->script_addrs->mcu_2_ata_addr; 1018 break; 1019 case IMX_DMATYPE_CSPI: 1020 per_2_emi = sdma->script_addrs->app_2_mcu_addr; 1021 1022 /* Use rom script mcu_2_app if ERR009165 fixed */ 1023 if (sdmac->sdma->drvdata->ecspi_fixed) { 1024 emi_2_per = sdma->script_addrs->mcu_2_app_addr; 1025 } else { 1026 emi_2_per = sdma->script_addrs->mcu_2_ecspi_addr; 1027 sdmac->is_ram_script = true; 1028 } 1029 1030 break; 1031 case IMX_DMATYPE_EXT: 1032 case IMX_DMATYPE_SSI: 1033 case IMX_DMATYPE_SAI: 1034 per_2_emi = sdma->script_addrs->app_2_mcu_addr; 1035 emi_2_per = sdma->script_addrs->mcu_2_app_addr; 1036 break; 1037 case IMX_DMATYPE_SSI_DUAL: 1038 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr; 1039 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr; 1040 sdmac->is_ram_script = true; 1041 break; 1042 case IMX_DMATYPE_SSI_SP: 1043 case IMX_DMATYPE_MMC: 1044 case IMX_DMATYPE_SDHC: 1045 case IMX_DMATYPE_CSPI_SP: 1046 case IMX_DMATYPE_ESAI: 1047 case IMX_DMATYPE_MSHC_SP: 1048 per_2_emi = sdma->script_addrs->shp_2_mcu_addr; 1049 emi_2_per = sdma->script_addrs->mcu_2_shp_addr; 1050 break; 1051 case IMX_DMATYPE_ASRC: 1052 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr; 1053 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr; 1054 per_2_per = sdma->script_addrs->per_2_per_addr; 1055 sdmac->is_ram_script = true; 1056 break; 1057 case IMX_DMATYPE_ASRC_SP: 1058 per_2_emi = sdma->script_addrs->shp_2_mcu_addr; 1059 emi_2_per = sdma->script_addrs->mcu_2_shp_addr; 1060 per_2_per = sdma->script_addrs->per_2_per_addr; 1061 break; 1062 case IMX_DMATYPE_MSHC: 1063 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr; 1064 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr; 1065 break; 1066 case IMX_DMATYPE_CCM: 1067 per_2_emi = sdma->script_addrs->dptc_dvfs_addr; 1068 break; 1069 case IMX_DMATYPE_SPDIF: 1070 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr; 1071 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr; 1072 break; 1073 case IMX_DMATYPE_IPU_MEMORY: 1074 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr; 1075 break; 1076 case IMX_DMATYPE_MULTI_SAI: 1077 per_2_emi = sdma->script_addrs->sai_2_mcu_addr; 1078 emi_2_per = sdma->script_addrs->mcu_2_sai_addr; 1079 break; 1080 case IMX_DMATYPE_HDMI: 1081 emi_2_per = sdma->script_addrs->hdmi_dma_addr; 1082 sdmac->is_ram_script = true; 1083 break; 1084 default: 1085 dev_err(sdma->dev, "Unsupported transfer type %d\n", 1086 peripheral_type); 1087 return -EINVAL; 1088 } 1089 1090 sdmac->pc_from_device = per_2_emi; 1091 sdmac->pc_to_device = emi_2_per; 1092 sdmac->device_to_device = per_2_per; 1093 sdmac->pc_to_pc = emi_2_emi; 1094 1095 return 0; 1096 } 1097 1098 static int sdma_load_context(struct sdma_channel *sdmac) 1099 { 1100 struct sdma_engine *sdma = sdmac->sdma; 1101 int channel = sdmac->channel; 1102 int load_address; 1103 struct sdma_context_data *context = sdma->context; 1104 struct sdma_buffer_descriptor *bd0 = sdma->bd0; 1105 int ret; 1106 unsigned long flags; 1107 1108 if (sdmac->direction == DMA_DEV_TO_MEM) 1109 load_address = sdmac->pc_from_device; 1110 else if (sdmac->direction == DMA_DEV_TO_DEV) 1111 load_address = sdmac->device_to_device; 1112 else if (sdmac->direction == DMA_MEM_TO_MEM) 1113 load_address = sdmac->pc_to_pc; 1114 else 1115 load_address = sdmac->pc_to_device; 1116 1117 if (load_address < 0) 1118 return load_address; 1119 1120 dev_dbg(sdma->dev, "load_address = %d\n", load_address); 1121 dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level); 1122 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr); 1123 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr); 1124 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]); 1125 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]); 1126 1127 spin_lock_irqsave(&sdma->channel_0_lock, flags); 1128 1129 memset(context, 0, sizeof(*context)); 1130 context->channel_state.pc = load_address; 1131 1132 /* Send by context the event mask,base address for peripheral 1133 * and watermark level 1134 */ 1135 if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) { 1136 context->gReg[4] = sdmac->per_addr; 1137 context->gReg[6] = sdmac->shp_addr; 1138 } else { 1139 context->gReg[0] = sdmac->event_mask[1]; 1140 context->gReg[1] = sdmac->event_mask[0]; 1141 context->gReg[2] = sdmac->per_addr; 1142 context->gReg[6] = sdmac->shp_addr; 1143 context->gReg[7] = sdmac->watermark_level; 1144 } 1145 1146 bd0->mode.command = C0_SETDM; 1147 bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD; 1148 bd0->mode.count = sizeof(*context) / 4; 1149 bd0->buffer_addr = sdma->context_phys; 1150 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel; 1151 ret = sdma_run_channel0(sdma); 1152 1153 spin_unlock_irqrestore(&sdma->channel_0_lock, flags); 1154 1155 return ret; 1156 } 1157 1158 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan) 1159 { 1160 return container_of(chan, struct sdma_channel, vc.chan); 1161 } 1162 1163 static int sdma_disable_channel(struct dma_chan *chan) 1164 { 1165 struct sdma_channel *sdmac = to_sdma_chan(chan); 1166 struct sdma_engine *sdma = sdmac->sdma; 1167 int channel = sdmac->channel; 1168 1169 writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP); 1170 sdmac->status = DMA_ERROR; 1171 1172 return 0; 1173 } 1174 static void sdma_channel_terminate_work(struct work_struct *work) 1175 { 1176 struct sdma_channel *sdmac = container_of(work, struct sdma_channel, 1177 terminate_worker); 1178 /* 1179 * According to NXP R&D team a delay of one BD SDMA cost time 1180 * (maximum is 1ms) should be added after disable of the channel 1181 * bit, to ensure SDMA core has really been stopped after SDMA 1182 * clients call .device_terminate_all. 1183 */ 1184 usleep_range(1000, 2000); 1185 1186 vchan_dma_desc_free_list(&sdmac->vc, &sdmac->terminated); 1187 } 1188 1189 static int sdma_terminate_all(struct dma_chan *chan) 1190 { 1191 struct sdma_channel *sdmac = to_sdma_chan(chan); 1192 unsigned long flags; 1193 1194 spin_lock_irqsave(&sdmac->vc.lock, flags); 1195 1196 sdma_disable_channel(chan); 1197 1198 if (sdmac->desc) { 1199 vchan_terminate_vdesc(&sdmac->desc->vd); 1200 /* 1201 * move out current descriptor into terminated list so that 1202 * it could be free in sdma_channel_terminate_work alone 1203 * later without potential involving next descriptor raised 1204 * up before the last descriptor terminated. 1205 */ 1206 vchan_get_all_descriptors(&sdmac->vc, &sdmac->terminated); 1207 sdmac->desc = NULL; 1208 schedule_work(&sdmac->terminate_worker); 1209 } 1210 1211 spin_unlock_irqrestore(&sdmac->vc.lock, flags); 1212 1213 return 0; 1214 } 1215 1216 static void sdma_channel_synchronize(struct dma_chan *chan) 1217 { 1218 struct sdma_channel *sdmac = to_sdma_chan(chan); 1219 1220 vchan_synchronize(&sdmac->vc); 1221 1222 flush_work(&sdmac->terminate_worker); 1223 } 1224 1225 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac) 1226 { 1227 struct sdma_engine *sdma = sdmac->sdma; 1228 1229 int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML; 1230 int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16; 1231 1232 set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]); 1233 set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]); 1234 1235 if (sdmac->event_id0 > 31) 1236 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE; 1237 1238 if (sdmac->event_id1 > 31) 1239 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE; 1240 1241 /* 1242 * If LWML(src_maxburst) > HWML(dst_maxburst), we need 1243 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap 1244 * r0(event_mask[1]) and r1(event_mask[0]). 1245 */ 1246 if (lwml > hwml) { 1247 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML | 1248 SDMA_WATERMARK_LEVEL_HWML); 1249 sdmac->watermark_level |= hwml; 1250 sdmac->watermark_level |= lwml << 16; 1251 swap(sdmac->event_mask[0], sdmac->event_mask[1]); 1252 } 1253 1254 if (sdmac->per_address2 >= sdma->spba_start_addr && 1255 sdmac->per_address2 <= sdma->spba_end_addr) 1256 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP; 1257 1258 if (sdmac->per_address >= sdma->spba_start_addr && 1259 sdmac->per_address <= sdma->spba_end_addr) 1260 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP; 1261 1262 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT; 1263 } 1264 1265 static void sdma_set_watermarklevel_for_sais(struct sdma_channel *sdmac) 1266 { 1267 unsigned int n_fifos; 1268 unsigned int stride_fifos; 1269 unsigned int words_per_fifo; 1270 1271 if (sdmac->sw_done) 1272 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SW_DONE; 1273 1274 if (sdmac->direction == DMA_DEV_TO_MEM) { 1275 n_fifos = sdmac->n_fifos_src; 1276 stride_fifos = sdmac->stride_fifos_src; 1277 } else { 1278 n_fifos = sdmac->n_fifos_dst; 1279 stride_fifos = sdmac->stride_fifos_dst; 1280 } 1281 1282 words_per_fifo = sdmac->words_per_fifo; 1283 1284 sdmac->watermark_level |= 1285 FIELD_PREP(SDMA_WATERMARK_LEVEL_N_FIFOS, n_fifos); 1286 sdmac->watermark_level |= 1287 FIELD_PREP(SDMA_WATERMARK_LEVEL_OFF_FIFOS, stride_fifos); 1288 if (words_per_fifo) 1289 sdmac->watermark_level |= 1290 FIELD_PREP(SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO, (words_per_fifo - 1)); 1291 } 1292 1293 static int sdma_config_channel(struct dma_chan *chan) 1294 { 1295 struct sdma_channel *sdmac = to_sdma_chan(chan); 1296 int ret; 1297 1298 sdma_disable_channel(chan); 1299 1300 sdmac->event_mask[0] = 0; 1301 sdmac->event_mask[1] = 0; 1302 sdmac->shp_addr = 0; 1303 sdmac->per_addr = 0; 1304 1305 switch (sdmac->peripheral_type) { 1306 case IMX_DMATYPE_DSP: 1307 sdma_config_ownership(sdmac, false, true, true); 1308 break; 1309 case IMX_DMATYPE_MEMORY: 1310 sdma_config_ownership(sdmac, false, true, false); 1311 break; 1312 default: 1313 sdma_config_ownership(sdmac, true, true, false); 1314 break; 1315 } 1316 1317 ret = sdma_get_pc(sdmac, sdmac->peripheral_type); 1318 if (ret) 1319 return ret; 1320 1321 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) && 1322 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) { 1323 /* Handle multiple event channels differently */ 1324 if (sdmac->event_id1) { 1325 if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP || 1326 sdmac->peripheral_type == IMX_DMATYPE_ASRC) 1327 sdma_set_watermarklevel_for_p2p(sdmac); 1328 } else { 1329 if (sdmac->peripheral_type == 1330 IMX_DMATYPE_MULTI_SAI) 1331 sdma_set_watermarklevel_for_sais(sdmac); 1332 1333 __set_bit(sdmac->event_id0, sdmac->event_mask); 1334 } 1335 1336 /* Address */ 1337 sdmac->shp_addr = sdmac->per_address; 1338 sdmac->per_addr = sdmac->per_address2; 1339 } else { 1340 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */ 1341 } 1342 1343 return 0; 1344 } 1345 1346 static int sdma_set_channel_priority(struct sdma_channel *sdmac, 1347 unsigned int priority) 1348 { 1349 struct sdma_engine *sdma = sdmac->sdma; 1350 int channel = sdmac->channel; 1351 1352 if (priority < MXC_SDMA_MIN_PRIORITY 1353 || priority > MXC_SDMA_MAX_PRIORITY) { 1354 return -EINVAL; 1355 } 1356 1357 writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel); 1358 1359 return 0; 1360 } 1361 1362 static int sdma_request_channel0(struct sdma_engine *sdma) 1363 { 1364 int ret = -EBUSY; 1365 1366 sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys, 1367 GFP_NOWAIT); 1368 if (!sdma->bd0) { 1369 ret = -ENOMEM; 1370 goto out; 1371 } 1372 1373 sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys; 1374 sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys; 1375 1376 sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY); 1377 return 0; 1378 out: 1379 1380 return ret; 1381 } 1382 1383 1384 static int sdma_alloc_bd(struct sdma_desc *desc) 1385 { 1386 u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor); 1387 int ret = 0; 1388 1389 desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size, 1390 &desc->bd_phys, GFP_NOWAIT); 1391 if (!desc->bd) { 1392 ret = -ENOMEM; 1393 goto out; 1394 } 1395 out: 1396 return ret; 1397 } 1398 1399 static void sdma_free_bd(struct sdma_desc *desc) 1400 { 1401 u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor); 1402 1403 dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd, 1404 desc->bd_phys); 1405 } 1406 1407 static void sdma_desc_free(struct virt_dma_desc *vd) 1408 { 1409 struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd); 1410 1411 sdma_free_bd(desc); 1412 kfree(desc); 1413 } 1414 1415 static int sdma_alloc_chan_resources(struct dma_chan *chan) 1416 { 1417 struct sdma_channel *sdmac = to_sdma_chan(chan); 1418 struct imx_dma_data *data = chan->private; 1419 struct imx_dma_data mem_data; 1420 int prio, ret; 1421 1422 /* 1423 * MEMCPY may never setup chan->private by filter function such as 1424 * dmatest, thus create 'struct imx_dma_data mem_data' for this case. 1425 * Please note in any other slave case, you have to setup chan->private 1426 * with 'struct imx_dma_data' in your own filter function if you want to 1427 * request dma channel by dma_request_channel() rather than 1428 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear 1429 * to warn you to correct your filter function. 1430 */ 1431 if (!data) { 1432 dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n"); 1433 mem_data.priority = 2; 1434 mem_data.peripheral_type = IMX_DMATYPE_MEMORY; 1435 mem_data.dma_request = 0; 1436 mem_data.dma_request2 = 0; 1437 data = &mem_data; 1438 1439 ret = sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY); 1440 if (ret) 1441 return ret; 1442 } 1443 1444 switch (data->priority) { 1445 case DMA_PRIO_HIGH: 1446 prio = 3; 1447 break; 1448 case DMA_PRIO_MEDIUM: 1449 prio = 2; 1450 break; 1451 case DMA_PRIO_LOW: 1452 default: 1453 prio = 1; 1454 break; 1455 } 1456 1457 sdmac->peripheral_type = data->peripheral_type; 1458 sdmac->event_id0 = data->dma_request; 1459 sdmac->event_id1 = data->dma_request2; 1460 1461 ret = clk_enable(sdmac->sdma->clk_ipg); 1462 if (ret) 1463 return ret; 1464 ret = clk_enable(sdmac->sdma->clk_ahb); 1465 if (ret) 1466 goto disable_clk_ipg; 1467 1468 ret = sdma_set_channel_priority(sdmac, prio); 1469 if (ret) 1470 goto disable_clk_ahb; 1471 1472 return 0; 1473 1474 disable_clk_ahb: 1475 clk_disable(sdmac->sdma->clk_ahb); 1476 disable_clk_ipg: 1477 clk_disable(sdmac->sdma->clk_ipg); 1478 return ret; 1479 } 1480 1481 static void sdma_free_chan_resources(struct dma_chan *chan) 1482 { 1483 struct sdma_channel *sdmac = to_sdma_chan(chan); 1484 struct sdma_engine *sdma = sdmac->sdma; 1485 1486 sdma_terminate_all(chan); 1487 1488 sdma_channel_synchronize(chan); 1489 1490 sdma_event_disable(sdmac, sdmac->event_id0); 1491 if (sdmac->event_id1) 1492 sdma_event_disable(sdmac, sdmac->event_id1); 1493 1494 sdmac->event_id0 = 0; 1495 sdmac->event_id1 = 0; 1496 1497 sdma_set_channel_priority(sdmac, 0); 1498 1499 clk_disable(sdma->clk_ipg); 1500 clk_disable(sdma->clk_ahb); 1501 } 1502 1503 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac, 1504 enum dma_transfer_direction direction, u32 bds) 1505 { 1506 struct sdma_desc *desc; 1507 1508 if (!sdmac->sdma->fw_loaded && sdmac->is_ram_script) { 1509 dev_warn_once(sdmac->sdma->dev, "sdma firmware not ready!\n"); 1510 goto err_out; 1511 } 1512 1513 desc = kzalloc((sizeof(*desc)), GFP_NOWAIT); 1514 if (!desc) 1515 goto err_out; 1516 1517 sdmac->status = DMA_IN_PROGRESS; 1518 sdmac->direction = direction; 1519 sdmac->flags = 0; 1520 1521 desc->chn_count = 0; 1522 desc->chn_real_count = 0; 1523 desc->buf_tail = 0; 1524 desc->buf_ptail = 0; 1525 desc->sdmac = sdmac; 1526 desc->num_bd = bds; 1527 1528 if (bds && sdma_alloc_bd(desc)) 1529 goto err_desc_out; 1530 1531 /* No slave_config called in MEMCPY case, so do here */ 1532 if (direction == DMA_MEM_TO_MEM) 1533 sdma_config_ownership(sdmac, false, true, false); 1534 1535 if (sdma_load_context(sdmac)) 1536 goto err_bd_out; 1537 1538 return desc; 1539 1540 err_bd_out: 1541 sdma_free_bd(desc); 1542 err_desc_out: 1543 kfree(desc); 1544 err_out: 1545 return NULL; 1546 } 1547 1548 static struct dma_async_tx_descriptor *sdma_prep_memcpy( 1549 struct dma_chan *chan, dma_addr_t dma_dst, 1550 dma_addr_t dma_src, size_t len, unsigned long flags) 1551 { 1552 struct sdma_channel *sdmac = to_sdma_chan(chan); 1553 struct sdma_engine *sdma = sdmac->sdma; 1554 int channel = sdmac->channel; 1555 size_t count; 1556 int i = 0, param; 1557 struct sdma_buffer_descriptor *bd; 1558 struct sdma_desc *desc; 1559 1560 if (!chan || !len) 1561 return NULL; 1562 1563 dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n", 1564 &dma_src, &dma_dst, len, channel); 1565 1566 desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM, 1567 len / SDMA_BD_MAX_CNT + 1); 1568 if (!desc) 1569 return NULL; 1570 1571 do { 1572 count = min_t(size_t, len, SDMA_BD_MAX_CNT); 1573 bd = &desc->bd[i]; 1574 bd->buffer_addr = dma_src; 1575 bd->ext_buffer_addr = dma_dst; 1576 bd->mode.count = count; 1577 desc->chn_count += count; 1578 bd->mode.command = 0; 1579 1580 dma_src += count; 1581 dma_dst += count; 1582 len -= count; 1583 i++; 1584 1585 param = BD_DONE | BD_EXTD | BD_CONT; 1586 /* last bd */ 1587 if (!len) { 1588 param |= BD_INTR; 1589 param |= BD_LAST; 1590 param &= ~BD_CONT; 1591 } 1592 1593 dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n", 1594 i, count, bd->buffer_addr, 1595 param & BD_WRAP ? "wrap" : "", 1596 param & BD_INTR ? " intr" : ""); 1597 1598 bd->mode.status = param; 1599 } while (len); 1600 1601 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags); 1602 } 1603 1604 static struct dma_async_tx_descriptor *sdma_prep_slave_sg( 1605 struct dma_chan *chan, struct scatterlist *sgl, 1606 unsigned int sg_len, enum dma_transfer_direction direction, 1607 unsigned long flags, void *context) 1608 { 1609 struct sdma_channel *sdmac = to_sdma_chan(chan); 1610 struct sdma_engine *sdma = sdmac->sdma; 1611 int i, count; 1612 int channel = sdmac->channel; 1613 struct scatterlist *sg; 1614 struct sdma_desc *desc; 1615 1616 sdma_config_write(chan, &sdmac->slave_config, direction); 1617 1618 desc = sdma_transfer_init(sdmac, direction, sg_len); 1619 if (!desc) 1620 goto err_out; 1621 1622 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n", 1623 sg_len, channel); 1624 1625 for_each_sg(sgl, sg, sg_len, i) { 1626 struct sdma_buffer_descriptor *bd = &desc->bd[i]; 1627 int param; 1628 1629 bd->buffer_addr = sg->dma_address; 1630 1631 count = sg_dma_len(sg); 1632 1633 if (count > SDMA_BD_MAX_CNT) { 1634 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n", 1635 channel, count, SDMA_BD_MAX_CNT); 1636 goto err_bd_out; 1637 } 1638 1639 bd->mode.count = count; 1640 desc->chn_count += count; 1641 1642 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) 1643 goto err_bd_out; 1644 1645 switch (sdmac->word_size) { 1646 case DMA_SLAVE_BUSWIDTH_4_BYTES: 1647 bd->mode.command = 0; 1648 if (count & 3 || sg->dma_address & 3) 1649 goto err_bd_out; 1650 break; 1651 case DMA_SLAVE_BUSWIDTH_2_BYTES: 1652 bd->mode.command = 2; 1653 if (count & 1 || sg->dma_address & 1) 1654 goto err_bd_out; 1655 break; 1656 case DMA_SLAVE_BUSWIDTH_1_BYTE: 1657 bd->mode.command = 1; 1658 break; 1659 default: 1660 goto err_bd_out; 1661 } 1662 1663 param = BD_DONE | BD_EXTD | BD_CONT; 1664 1665 if (i + 1 == sg_len) { 1666 param |= BD_INTR; 1667 param |= BD_LAST; 1668 param &= ~BD_CONT; 1669 } 1670 1671 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n", 1672 i, count, (u64)sg->dma_address, 1673 param & BD_WRAP ? "wrap" : "", 1674 param & BD_INTR ? " intr" : ""); 1675 1676 bd->mode.status = param; 1677 } 1678 1679 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags); 1680 err_bd_out: 1681 sdma_free_bd(desc); 1682 kfree(desc); 1683 err_out: 1684 sdmac->status = DMA_ERROR; 1685 return NULL; 1686 } 1687 1688 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic( 1689 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len, 1690 size_t period_len, enum dma_transfer_direction direction, 1691 unsigned long flags) 1692 { 1693 struct sdma_channel *sdmac = to_sdma_chan(chan); 1694 struct sdma_engine *sdma = sdmac->sdma; 1695 int num_periods = 0; 1696 int channel = sdmac->channel; 1697 int i = 0, buf = 0; 1698 struct sdma_desc *desc; 1699 1700 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel); 1701 1702 if (sdmac->peripheral_type != IMX_DMATYPE_HDMI) 1703 num_periods = buf_len / period_len; 1704 1705 sdma_config_write(chan, &sdmac->slave_config, direction); 1706 1707 desc = sdma_transfer_init(sdmac, direction, num_periods); 1708 if (!desc) 1709 goto err_out; 1710 1711 desc->period_len = period_len; 1712 1713 sdmac->flags |= IMX_DMA_SG_LOOP; 1714 1715 if (period_len > SDMA_BD_MAX_CNT) { 1716 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n", 1717 channel, period_len, SDMA_BD_MAX_CNT); 1718 goto err_bd_out; 1719 } 1720 1721 if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) 1722 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags); 1723 1724 while (buf < buf_len) { 1725 struct sdma_buffer_descriptor *bd = &desc->bd[i]; 1726 int param; 1727 1728 bd->buffer_addr = dma_addr; 1729 1730 bd->mode.count = period_len; 1731 1732 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) 1733 goto err_bd_out; 1734 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES) 1735 bd->mode.command = 0; 1736 else 1737 bd->mode.command = sdmac->word_size; 1738 1739 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR; 1740 if (i + 1 == num_periods) 1741 param |= BD_WRAP; 1742 1743 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n", 1744 i, period_len, (u64)dma_addr, 1745 param & BD_WRAP ? "wrap" : "", 1746 param & BD_INTR ? " intr" : ""); 1747 1748 bd->mode.status = param; 1749 1750 dma_addr += period_len; 1751 buf += period_len; 1752 1753 i++; 1754 } 1755 1756 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags); 1757 err_bd_out: 1758 sdma_free_bd(desc); 1759 kfree(desc); 1760 err_out: 1761 sdmac->status = DMA_ERROR; 1762 return NULL; 1763 } 1764 1765 static int sdma_config_write(struct dma_chan *chan, 1766 struct dma_slave_config *dmaengine_cfg, 1767 enum dma_transfer_direction direction) 1768 { 1769 struct sdma_channel *sdmac = to_sdma_chan(chan); 1770 1771 if (direction == DMA_DEV_TO_MEM) { 1772 sdmac->per_address = dmaengine_cfg->src_addr; 1773 sdmac->watermark_level = dmaengine_cfg->src_maxburst * 1774 dmaengine_cfg->src_addr_width; 1775 sdmac->word_size = dmaengine_cfg->src_addr_width; 1776 } else if (direction == DMA_DEV_TO_DEV) { 1777 sdmac->per_address2 = dmaengine_cfg->src_addr; 1778 sdmac->per_address = dmaengine_cfg->dst_addr; 1779 sdmac->watermark_level = dmaengine_cfg->src_maxburst & 1780 SDMA_WATERMARK_LEVEL_LWML; 1781 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) & 1782 SDMA_WATERMARK_LEVEL_HWML; 1783 sdmac->word_size = dmaengine_cfg->dst_addr_width; 1784 } else if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) { 1785 sdmac->per_address = dmaengine_cfg->dst_addr; 1786 sdmac->per_address2 = dmaengine_cfg->src_addr; 1787 sdmac->watermark_level = 0; 1788 } else { 1789 sdmac->per_address = dmaengine_cfg->dst_addr; 1790 sdmac->watermark_level = dmaengine_cfg->dst_maxburst * 1791 dmaengine_cfg->dst_addr_width; 1792 sdmac->word_size = dmaengine_cfg->dst_addr_width; 1793 } 1794 sdmac->direction = direction; 1795 return sdma_config_channel(chan); 1796 } 1797 1798 static int sdma_config(struct dma_chan *chan, 1799 struct dma_slave_config *dmaengine_cfg) 1800 { 1801 struct sdma_channel *sdmac = to_sdma_chan(chan); 1802 struct sdma_engine *sdma = sdmac->sdma; 1803 1804 memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg)); 1805 1806 if (dmaengine_cfg->peripheral_config) { 1807 struct sdma_peripheral_config *sdmacfg = dmaengine_cfg->peripheral_config; 1808 if (dmaengine_cfg->peripheral_size != sizeof(struct sdma_peripheral_config)) { 1809 dev_err(sdma->dev, "Invalid peripheral size %zu, expected %zu\n", 1810 dmaengine_cfg->peripheral_size, 1811 sizeof(struct sdma_peripheral_config)); 1812 return -EINVAL; 1813 } 1814 sdmac->n_fifos_src = sdmacfg->n_fifos_src; 1815 sdmac->n_fifos_dst = sdmacfg->n_fifos_dst; 1816 sdmac->stride_fifos_src = sdmacfg->stride_fifos_src; 1817 sdmac->stride_fifos_dst = sdmacfg->stride_fifos_dst; 1818 sdmac->words_per_fifo = sdmacfg->words_per_fifo; 1819 sdmac->sw_done = sdmacfg->sw_done; 1820 } 1821 1822 /* Set ENBLn earlier to make sure dma request triggered after that */ 1823 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events) 1824 return -EINVAL; 1825 sdma_event_enable(sdmac, sdmac->event_id0); 1826 1827 if (sdmac->event_id1) { 1828 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events) 1829 return -EINVAL; 1830 sdma_event_enable(sdmac, sdmac->event_id1); 1831 } 1832 1833 return 0; 1834 } 1835 1836 static enum dma_status sdma_tx_status(struct dma_chan *chan, 1837 dma_cookie_t cookie, 1838 struct dma_tx_state *txstate) 1839 { 1840 struct sdma_channel *sdmac = to_sdma_chan(chan); 1841 struct sdma_desc *desc = NULL; 1842 u32 residue; 1843 struct virt_dma_desc *vd; 1844 enum dma_status ret; 1845 unsigned long flags; 1846 1847 ret = dma_cookie_status(chan, cookie, txstate); 1848 if (ret == DMA_COMPLETE || !txstate) 1849 return ret; 1850 1851 spin_lock_irqsave(&sdmac->vc.lock, flags); 1852 1853 vd = vchan_find_desc(&sdmac->vc, cookie); 1854 if (vd) 1855 desc = to_sdma_desc(&vd->tx); 1856 else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie) 1857 desc = sdmac->desc; 1858 1859 if (desc) { 1860 if (sdmac->flags & IMX_DMA_SG_LOOP) 1861 residue = (desc->num_bd - desc->buf_ptail) * 1862 desc->period_len - desc->chn_real_count; 1863 else 1864 residue = desc->chn_count - desc->chn_real_count; 1865 } else { 1866 residue = 0; 1867 } 1868 1869 spin_unlock_irqrestore(&sdmac->vc.lock, flags); 1870 1871 dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie, 1872 residue); 1873 1874 return sdmac->status; 1875 } 1876 1877 static void sdma_issue_pending(struct dma_chan *chan) 1878 { 1879 struct sdma_channel *sdmac = to_sdma_chan(chan); 1880 unsigned long flags; 1881 1882 spin_lock_irqsave(&sdmac->vc.lock, flags); 1883 if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc) 1884 sdma_start_desc(sdmac); 1885 spin_unlock_irqrestore(&sdmac->vc.lock, flags); 1886 } 1887 1888 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34 1889 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38 1890 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 45 1891 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 46 1892 1893 static void sdma_add_scripts(struct sdma_engine *sdma, 1894 const struct sdma_script_start_addrs *addr) 1895 { 1896 s32 *addr_arr = (u32 *)addr; 1897 s32 *saddr_arr = (u32 *)sdma->script_addrs; 1898 int i; 1899 1900 /* use the default firmware in ROM if missing external firmware */ 1901 if (!sdma->script_number) 1902 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; 1903 1904 if (sdma->script_number > sizeof(struct sdma_script_start_addrs) 1905 / sizeof(s32)) { 1906 dev_err(sdma->dev, 1907 "SDMA script number %d not match with firmware.\n", 1908 sdma->script_number); 1909 return; 1910 } 1911 1912 for (i = 0; i < sdma->script_number; i++) 1913 if (addr_arr[i] > 0) 1914 saddr_arr[i] = addr_arr[i]; 1915 1916 /* 1917 * For compatibility with NXP internal legacy kernel before 4.19 which 1918 * is based on uart ram script and mainline kernel based on uart rom 1919 * script, both uart ram/rom scripts are present in newer sdma 1920 * firmware. Use the rom versions if they are present (V3 or newer). 1921 */ 1922 if (sdma->script_number >= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3) { 1923 if (addr->uart_2_mcu_rom_addr) 1924 sdma->script_addrs->uart_2_mcu_addr = addr->uart_2_mcu_rom_addr; 1925 if (addr->uartsh_2_mcu_rom_addr) 1926 sdma->script_addrs->uartsh_2_mcu_addr = addr->uartsh_2_mcu_rom_addr; 1927 } 1928 } 1929 1930 static void sdma_load_firmware(const struct firmware *fw, void *context) 1931 { 1932 struct sdma_engine *sdma = context; 1933 const struct sdma_firmware_header *header; 1934 const struct sdma_script_start_addrs *addr; 1935 unsigned short *ram_code; 1936 1937 if (!fw) { 1938 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n"); 1939 /* In this case we just use the ROM firmware. */ 1940 return; 1941 } 1942 1943 if (fw->size < sizeof(*header)) 1944 goto err_firmware; 1945 1946 header = (struct sdma_firmware_header *)fw->data; 1947 1948 if (header->magic != SDMA_FIRMWARE_MAGIC) 1949 goto err_firmware; 1950 if (header->ram_code_start + header->ram_code_size > fw->size) 1951 goto err_firmware; 1952 switch (header->version_major) { 1953 case 1: 1954 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; 1955 break; 1956 case 2: 1957 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2; 1958 break; 1959 case 3: 1960 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3; 1961 break; 1962 case 4: 1963 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4; 1964 break; 1965 default: 1966 dev_err(sdma->dev, "unknown firmware version\n"); 1967 goto err_firmware; 1968 } 1969 1970 addr = (void *)header + header->script_addrs_start; 1971 ram_code = (void *)header + header->ram_code_start; 1972 1973 clk_enable(sdma->clk_ipg); 1974 clk_enable(sdma->clk_ahb); 1975 /* download the RAM image for SDMA */ 1976 sdma_load_script(sdma, ram_code, 1977 header->ram_code_size, 1978 addr->ram_code_start_addr); 1979 clk_disable(sdma->clk_ipg); 1980 clk_disable(sdma->clk_ahb); 1981 1982 sdma_add_scripts(sdma, addr); 1983 1984 sdma->fw_loaded = true; 1985 1986 dev_info(sdma->dev, "loaded firmware %d.%d\n", 1987 header->version_major, 1988 header->version_minor); 1989 1990 err_firmware: 1991 release_firmware(fw); 1992 } 1993 1994 #define EVENT_REMAP_CELLS 3 1995 1996 static int sdma_event_remap(struct sdma_engine *sdma) 1997 { 1998 struct device_node *np = sdma->dev->of_node; 1999 struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0); 2000 struct property *event_remap; 2001 struct regmap *gpr; 2002 char propname[] = "fsl,sdma-event-remap"; 2003 u32 reg, val, shift, num_map, i; 2004 int ret = 0; 2005 2006 if (IS_ERR(np) || !gpr_np) 2007 goto out; 2008 2009 event_remap = of_find_property(np, propname, NULL); 2010 num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0; 2011 if (!num_map) { 2012 dev_dbg(sdma->dev, "no event needs to be remapped\n"); 2013 goto out; 2014 } else if (num_map % EVENT_REMAP_CELLS) { 2015 dev_err(sdma->dev, "the property %s must modulo %d\n", 2016 propname, EVENT_REMAP_CELLS); 2017 ret = -EINVAL; 2018 goto out; 2019 } 2020 2021 gpr = syscon_node_to_regmap(gpr_np); 2022 if (IS_ERR(gpr)) { 2023 dev_err(sdma->dev, "failed to get gpr regmap\n"); 2024 ret = PTR_ERR(gpr); 2025 goto out; 2026 } 2027 2028 for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) { 2029 ret = of_property_read_u32_index(np, propname, i, ®); 2030 if (ret) { 2031 dev_err(sdma->dev, "failed to read property %s index %d\n", 2032 propname, i); 2033 goto out; 2034 } 2035 2036 ret = of_property_read_u32_index(np, propname, i + 1, &shift); 2037 if (ret) { 2038 dev_err(sdma->dev, "failed to read property %s index %d\n", 2039 propname, i + 1); 2040 goto out; 2041 } 2042 2043 ret = of_property_read_u32_index(np, propname, i + 2, &val); 2044 if (ret) { 2045 dev_err(sdma->dev, "failed to read property %s index %d\n", 2046 propname, i + 2); 2047 goto out; 2048 } 2049 2050 regmap_update_bits(gpr, reg, BIT(shift), val << shift); 2051 } 2052 2053 out: 2054 if (gpr_np) 2055 of_node_put(gpr_np); 2056 2057 return ret; 2058 } 2059 2060 static int sdma_get_firmware(struct sdma_engine *sdma, 2061 const char *fw_name) 2062 { 2063 int ret; 2064 2065 ret = request_firmware_nowait(THIS_MODULE, 2066 FW_ACTION_UEVENT, fw_name, sdma->dev, 2067 GFP_KERNEL, sdma, sdma_load_firmware); 2068 2069 return ret; 2070 } 2071 2072 static int sdma_init(struct sdma_engine *sdma) 2073 { 2074 int i, ret; 2075 dma_addr_t ccb_phys; 2076 2077 ret = clk_enable(sdma->clk_ipg); 2078 if (ret) 2079 return ret; 2080 ret = clk_enable(sdma->clk_ahb); 2081 if (ret) 2082 goto disable_clk_ipg; 2083 2084 if (sdma->drvdata->check_ratio && 2085 (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg))) 2086 sdma->clk_ratio = 1; 2087 2088 /* Be sure SDMA has not started yet */ 2089 writel_relaxed(0, sdma->regs + SDMA_H_C0PTR); 2090 2091 sdma->channel_control = dma_alloc_coherent(sdma->dev, 2092 MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control) + 2093 sizeof(struct sdma_context_data), 2094 &ccb_phys, GFP_KERNEL); 2095 2096 if (!sdma->channel_control) { 2097 ret = -ENOMEM; 2098 goto err_dma_alloc; 2099 } 2100 2101 sdma->context = (void *)sdma->channel_control + 2102 MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control); 2103 sdma->context_phys = ccb_phys + 2104 MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control); 2105 2106 /* disable all channels */ 2107 for (i = 0; i < sdma->drvdata->num_events; i++) 2108 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i)); 2109 2110 /* All channels have priority 0 */ 2111 for (i = 0; i < MAX_DMA_CHANNELS; i++) 2112 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4); 2113 2114 ret = sdma_request_channel0(sdma); 2115 if (ret) 2116 goto err_dma_alloc; 2117 2118 sdma_config_ownership(&sdma->channel[0], false, true, false); 2119 2120 /* Set Command Channel (Channel Zero) */ 2121 writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR); 2122 2123 /* Set bits of CONFIG register but with static context switching */ 2124 if (sdma->clk_ratio) 2125 writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG); 2126 else 2127 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG); 2128 2129 writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR); 2130 2131 /* Initializes channel's priorities */ 2132 sdma_set_channel_priority(&sdma->channel[0], 7); 2133 2134 clk_disable(sdma->clk_ipg); 2135 clk_disable(sdma->clk_ahb); 2136 2137 return 0; 2138 2139 err_dma_alloc: 2140 clk_disable(sdma->clk_ahb); 2141 disable_clk_ipg: 2142 clk_disable(sdma->clk_ipg); 2143 dev_err(sdma->dev, "initialisation failed with %d\n", ret); 2144 return ret; 2145 } 2146 2147 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param) 2148 { 2149 struct sdma_channel *sdmac = to_sdma_chan(chan); 2150 struct imx_dma_data *data = fn_param; 2151 2152 if (!imx_dma_is_general_purpose(chan)) 2153 return false; 2154 2155 sdmac->data = *data; 2156 chan->private = &sdmac->data; 2157 2158 return true; 2159 } 2160 2161 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec, 2162 struct of_dma *ofdma) 2163 { 2164 struct sdma_engine *sdma = ofdma->of_dma_data; 2165 dma_cap_mask_t mask = sdma->dma_device.cap_mask; 2166 struct imx_dma_data data; 2167 2168 if (dma_spec->args_count != 3) 2169 return NULL; 2170 2171 data.dma_request = dma_spec->args[0]; 2172 data.peripheral_type = dma_spec->args[1]; 2173 data.priority = dma_spec->args[2]; 2174 /* 2175 * init dma_request2 to zero, which is not used by the dts. 2176 * For P2P, dma_request2 is init from dma_request_channel(), 2177 * chan->private will point to the imx_dma_data, and in 2178 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will 2179 * be set to sdmac->event_id1. 2180 */ 2181 data.dma_request2 = 0; 2182 2183 return __dma_request_channel(&mask, sdma_filter_fn, &data, 2184 ofdma->of_node); 2185 } 2186 2187 static int sdma_probe(struct platform_device *pdev) 2188 { 2189 struct device_node *np = pdev->dev.of_node; 2190 struct device_node *spba_bus; 2191 const char *fw_name; 2192 int ret; 2193 int irq; 2194 struct resource spba_res; 2195 int i; 2196 struct sdma_engine *sdma; 2197 s32 *saddr_arr; 2198 2199 ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 2200 if (ret) 2201 return ret; 2202 2203 sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL); 2204 if (!sdma) 2205 return -ENOMEM; 2206 2207 spin_lock_init(&sdma->channel_0_lock); 2208 2209 sdma->dev = &pdev->dev; 2210 sdma->drvdata = of_device_get_match_data(sdma->dev); 2211 2212 irq = platform_get_irq(pdev, 0); 2213 if (irq < 0) 2214 return irq; 2215 2216 sdma->regs = devm_platform_ioremap_resource(pdev, 0); 2217 if (IS_ERR(sdma->regs)) 2218 return PTR_ERR(sdma->regs); 2219 2220 sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2221 if (IS_ERR(sdma->clk_ipg)) 2222 return PTR_ERR(sdma->clk_ipg); 2223 2224 sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 2225 if (IS_ERR(sdma->clk_ahb)) 2226 return PTR_ERR(sdma->clk_ahb); 2227 2228 ret = clk_prepare(sdma->clk_ipg); 2229 if (ret) 2230 return ret; 2231 2232 ret = clk_prepare(sdma->clk_ahb); 2233 if (ret) 2234 goto err_clk; 2235 2236 ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, 2237 dev_name(&pdev->dev), sdma); 2238 if (ret) 2239 goto err_irq; 2240 2241 sdma->irq = irq; 2242 2243 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL); 2244 if (!sdma->script_addrs) { 2245 ret = -ENOMEM; 2246 goto err_irq; 2247 } 2248 2249 /* initially no scripts available */ 2250 saddr_arr = (s32 *)sdma->script_addrs; 2251 for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++) 2252 saddr_arr[i] = -EINVAL; 2253 2254 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask); 2255 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask); 2256 dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask); 2257 dma_cap_set(DMA_PRIVATE, sdma->dma_device.cap_mask); 2258 2259 INIT_LIST_HEAD(&sdma->dma_device.channels); 2260 /* Initialize channel parameters */ 2261 for (i = 0; i < MAX_DMA_CHANNELS; i++) { 2262 struct sdma_channel *sdmac = &sdma->channel[i]; 2263 2264 sdmac->sdma = sdma; 2265 2266 sdmac->channel = i; 2267 sdmac->vc.desc_free = sdma_desc_free; 2268 INIT_LIST_HEAD(&sdmac->terminated); 2269 INIT_WORK(&sdmac->terminate_worker, 2270 sdma_channel_terminate_work); 2271 /* 2272 * Add the channel to the DMAC list. Do not add channel 0 though 2273 * because we need it internally in the SDMA driver. This also means 2274 * that channel 0 in dmaengine counting matches sdma channel 1. 2275 */ 2276 if (i) 2277 vchan_init(&sdmac->vc, &sdma->dma_device); 2278 } 2279 2280 ret = sdma_init(sdma); 2281 if (ret) 2282 goto err_init; 2283 2284 ret = sdma_event_remap(sdma); 2285 if (ret) 2286 goto err_init; 2287 2288 if (sdma->drvdata->script_addrs) 2289 sdma_add_scripts(sdma, sdma->drvdata->script_addrs); 2290 2291 sdma->dma_device.dev = &pdev->dev; 2292 2293 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources; 2294 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources; 2295 sdma->dma_device.device_tx_status = sdma_tx_status; 2296 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg; 2297 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic; 2298 sdma->dma_device.device_config = sdma_config; 2299 sdma->dma_device.device_terminate_all = sdma_terminate_all; 2300 sdma->dma_device.device_synchronize = sdma_channel_synchronize; 2301 sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS; 2302 sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS; 2303 sdma->dma_device.directions = SDMA_DMA_DIRECTIONS; 2304 sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; 2305 sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy; 2306 sdma->dma_device.device_issue_pending = sdma_issue_pending; 2307 sdma->dma_device.copy_align = 2; 2308 dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT); 2309 2310 platform_set_drvdata(pdev, sdma); 2311 2312 ret = dma_async_device_register(&sdma->dma_device); 2313 if (ret) { 2314 dev_err(&pdev->dev, "unable to register\n"); 2315 goto err_init; 2316 } 2317 2318 if (np) { 2319 ret = of_dma_controller_register(np, sdma_xlate, sdma); 2320 if (ret) { 2321 dev_err(&pdev->dev, "failed to register controller\n"); 2322 goto err_register; 2323 } 2324 2325 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus"); 2326 ret = of_address_to_resource(spba_bus, 0, &spba_res); 2327 if (!ret) { 2328 sdma->spba_start_addr = spba_res.start; 2329 sdma->spba_end_addr = spba_res.end; 2330 } 2331 of_node_put(spba_bus); 2332 } 2333 2334 /* 2335 * Because that device tree does not encode ROM script address, 2336 * the RAM script in firmware is mandatory for device tree 2337 * probe, otherwise it fails. 2338 */ 2339 ret = of_property_read_string(np, "fsl,sdma-ram-script-name", 2340 &fw_name); 2341 if (ret) { 2342 dev_warn(&pdev->dev, "failed to get firmware name\n"); 2343 } else { 2344 ret = sdma_get_firmware(sdma, fw_name); 2345 if (ret) 2346 dev_warn(&pdev->dev, "failed to get firmware from device tree\n"); 2347 } 2348 2349 return 0; 2350 2351 err_register: 2352 dma_async_device_unregister(&sdma->dma_device); 2353 err_init: 2354 kfree(sdma->script_addrs); 2355 err_irq: 2356 clk_unprepare(sdma->clk_ahb); 2357 err_clk: 2358 clk_unprepare(sdma->clk_ipg); 2359 return ret; 2360 } 2361 2362 static int sdma_remove(struct platform_device *pdev) 2363 { 2364 struct sdma_engine *sdma = platform_get_drvdata(pdev); 2365 int i; 2366 2367 devm_free_irq(&pdev->dev, sdma->irq, sdma); 2368 dma_async_device_unregister(&sdma->dma_device); 2369 kfree(sdma->script_addrs); 2370 clk_unprepare(sdma->clk_ahb); 2371 clk_unprepare(sdma->clk_ipg); 2372 /* Kill the tasklet */ 2373 for (i = 0; i < MAX_DMA_CHANNELS; i++) { 2374 struct sdma_channel *sdmac = &sdma->channel[i]; 2375 2376 tasklet_kill(&sdmac->vc.task); 2377 sdma_free_chan_resources(&sdmac->vc.chan); 2378 } 2379 2380 platform_set_drvdata(pdev, NULL); 2381 return 0; 2382 } 2383 2384 static struct platform_driver sdma_driver = { 2385 .driver = { 2386 .name = "imx-sdma", 2387 .of_match_table = sdma_dt_ids, 2388 }, 2389 .remove = sdma_remove, 2390 .probe = sdma_probe, 2391 }; 2392 2393 module_platform_driver(sdma_driver); 2394 2395 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>"); 2396 MODULE_DESCRIPTION("i.MX SDMA driver"); 2397 #if IS_ENABLED(CONFIG_SOC_IMX6Q) 2398 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin"); 2399 #endif 2400 #if IS_ENABLED(CONFIG_SOC_IMX7D) || IS_ENABLED(CONFIG_SOC_IMX8M) 2401 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin"); 2402 #endif 2403 MODULE_LICENSE("GPL"); 2404