xref: /openbmc/linux/drivers/dma/imx-sdma.c (revision 206204a1)
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19 
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39 #include <linux/of_dma.h>
40 
41 #include <asm/irq.h>
42 #include <linux/platform_data/dma-imx-sdma.h>
43 #include <linux/platform_data/dma-imx.h>
44 
45 #include "dmaengine.h"
46 
47 /* SDMA registers */
48 #define SDMA_H_C0PTR		0x000
49 #define SDMA_H_INTR		0x004
50 #define SDMA_H_STATSTOP		0x008
51 #define SDMA_H_START		0x00c
52 #define SDMA_H_EVTOVR		0x010
53 #define SDMA_H_DSPOVR		0x014
54 #define SDMA_H_HOSTOVR		0x018
55 #define SDMA_H_EVTPEND		0x01c
56 #define SDMA_H_DSPENBL		0x020
57 #define SDMA_H_RESET		0x024
58 #define SDMA_H_EVTERR		0x028
59 #define SDMA_H_INTRMSK		0x02c
60 #define SDMA_H_PSW		0x030
61 #define SDMA_H_EVTERRDBG	0x034
62 #define SDMA_H_CONFIG		0x038
63 #define SDMA_ONCE_ENB		0x040
64 #define SDMA_ONCE_DATA		0x044
65 #define SDMA_ONCE_INSTR		0x048
66 #define SDMA_ONCE_STAT		0x04c
67 #define SDMA_ONCE_CMD		0x050
68 #define SDMA_EVT_MIRROR		0x054
69 #define SDMA_ILLINSTADDR	0x058
70 #define SDMA_CHN0ADDR		0x05c
71 #define SDMA_ONCE_RTB		0x060
72 #define SDMA_XTRIG_CONF1	0x070
73 #define SDMA_XTRIG_CONF2	0x074
74 #define SDMA_CHNENBL0_IMX35	0x200
75 #define SDMA_CHNENBL0_IMX31	0x080
76 #define SDMA_CHNPRI_0		0x100
77 
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88 
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96 
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101 
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108 
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125 
126 /*
127  * Mode/Count of data node descriptors - IPCv2
128  */
129 struct sdma_mode_count {
130 	u32 count   : 16; /* size of the buffer pointed by this BD */
131 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
132 	u32 command :  8; /* command mostlky used for channel 0 */
133 };
134 
135 /*
136  * Buffer descriptor
137  */
138 struct sdma_buffer_descriptor {
139 	struct sdma_mode_count  mode;
140 	u32 buffer_addr;	/* address of the buffer described */
141 	u32 ext_buffer_addr;	/* extended buffer address */
142 } __attribute__ ((packed));
143 
144 /**
145  * struct sdma_channel_control - Channel control Block
146  *
147  * @current_bd_ptr	current buffer descriptor processed
148  * @base_bd_ptr		first element of buffer descriptor array
149  * @unused		padding. The SDMA engine expects an array of 128 byte
150  *			control blocks
151  */
152 struct sdma_channel_control {
153 	u32 current_bd_ptr;
154 	u32 base_bd_ptr;
155 	u32 unused[2];
156 } __attribute__ ((packed));
157 
158 /**
159  * struct sdma_state_registers - SDMA context for a channel
160  *
161  * @pc:		program counter
162  * @t:		test bit: status of arithmetic & test instruction
163  * @rpc:	return program counter
164  * @sf:		source fault while loading data
165  * @spc:	loop start program counter
166  * @df:		destination fault while storing data
167  * @epc:	loop end program counter
168  * @lm:		loop mode
169  */
170 struct sdma_state_registers {
171 	u32 pc     :14;
172 	u32 unused1: 1;
173 	u32 t      : 1;
174 	u32 rpc    :14;
175 	u32 unused0: 1;
176 	u32 sf     : 1;
177 	u32 spc    :14;
178 	u32 unused2: 1;
179 	u32 df     : 1;
180 	u32 epc    :14;
181 	u32 lm     : 2;
182 } __attribute__ ((packed));
183 
184 /**
185  * struct sdma_context_data - sdma context specific to a channel
186  *
187  * @channel_state:	channel state bits
188  * @gReg:		general registers
189  * @mda:		burst dma destination address register
190  * @msa:		burst dma source address register
191  * @ms:			burst dma status register
192  * @md:			burst dma data register
193  * @pda:		peripheral dma destination address register
194  * @psa:		peripheral dma source address register
195  * @ps:			peripheral dma status register
196  * @pd:			peripheral dma data register
197  * @ca:			CRC polynomial register
198  * @cs:			CRC accumulator register
199  * @dda:		dedicated core destination address register
200  * @dsa:		dedicated core source address register
201  * @ds:			dedicated core status register
202  * @dd:			dedicated core data register
203  */
204 struct sdma_context_data {
205 	struct sdma_state_registers  channel_state;
206 	u32  gReg[8];
207 	u32  mda;
208 	u32  msa;
209 	u32  ms;
210 	u32  md;
211 	u32  pda;
212 	u32  psa;
213 	u32  ps;
214 	u32  pd;
215 	u32  ca;
216 	u32  cs;
217 	u32  dda;
218 	u32  dsa;
219 	u32  ds;
220 	u32  dd;
221 	u32  scratch0;
222 	u32  scratch1;
223 	u32  scratch2;
224 	u32  scratch3;
225 	u32  scratch4;
226 	u32  scratch5;
227 	u32  scratch6;
228 	u32  scratch7;
229 } __attribute__ ((packed));
230 
231 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
232 
233 struct sdma_engine;
234 
235 /**
236  * struct sdma_channel - housekeeping for a SDMA channel
237  *
238  * @sdma		pointer to the SDMA engine for this channel
239  * @channel		the channel number, matches dmaengine chan_id + 1
240  * @direction		transfer type. Needed for setting SDMA script
241  * @peripheral_type	Peripheral type. Needed for setting SDMA script
242  * @event_id0		aka dma request line
243  * @event_id1		for channels that use 2 events
244  * @word_size		peripheral access size
245  * @buf_tail		ID of the buffer that was processed
246  * @num_bd		max NUM_BD. number of descriptors currently handling
247  */
248 struct sdma_channel {
249 	struct sdma_engine		*sdma;
250 	unsigned int			channel;
251 	enum dma_transfer_direction		direction;
252 	enum sdma_peripheral_type	peripheral_type;
253 	unsigned int			event_id0;
254 	unsigned int			event_id1;
255 	enum dma_slave_buswidth		word_size;
256 	unsigned int			buf_tail;
257 	unsigned int			num_bd;
258 	struct sdma_buffer_descriptor	*bd;
259 	dma_addr_t			bd_phys;
260 	unsigned int			pc_from_device, pc_to_device;
261 	unsigned long			flags;
262 	dma_addr_t			per_address;
263 	unsigned long			event_mask[2];
264 	unsigned long			watermark_level;
265 	u32				shp_addr, per_addr;
266 	struct dma_chan			chan;
267 	spinlock_t			lock;
268 	struct dma_async_tx_descriptor	desc;
269 	enum dma_status			status;
270 	unsigned int			chn_count;
271 	unsigned int			chn_real_count;
272 	struct tasklet_struct		tasklet;
273 };
274 
275 #define IMX_DMA_SG_LOOP		BIT(0)
276 
277 #define MAX_DMA_CHANNELS 32
278 #define MXC_SDMA_DEFAULT_PRIORITY 1
279 #define MXC_SDMA_MIN_PRIORITY 1
280 #define MXC_SDMA_MAX_PRIORITY 7
281 
282 #define SDMA_FIRMWARE_MAGIC 0x414d4453
283 
284 /**
285  * struct sdma_firmware_header - Layout of the firmware image
286  *
287  * @magic		"SDMA"
288  * @version_major	increased whenever layout of struct sdma_script_start_addrs
289  *			changes.
290  * @version_minor	firmware minor version (for binary compatible changes)
291  * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
292  * @num_script_addrs	Number of script addresses in this image
293  * @ram_code_start	offset of SDMA ram image in this firmware image
294  * @ram_code_size	size of SDMA ram image
295  * @script_addrs	Stores the start address of the SDMA scripts
296  *			(in SDMA memory space)
297  */
298 struct sdma_firmware_header {
299 	u32	magic;
300 	u32	version_major;
301 	u32	version_minor;
302 	u32	script_addrs_start;
303 	u32	num_script_addrs;
304 	u32	ram_code_start;
305 	u32	ram_code_size;
306 };
307 
308 struct sdma_driver_data {
309 	int chnenbl0;
310 	int num_events;
311 	struct sdma_script_start_addrs	*script_addrs;
312 };
313 
314 struct sdma_engine {
315 	struct device			*dev;
316 	struct device_dma_parameters	dma_parms;
317 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
318 	struct sdma_channel_control	*channel_control;
319 	void __iomem			*regs;
320 	struct sdma_context_data	*context;
321 	dma_addr_t			context_phys;
322 	struct dma_device		dma_device;
323 	struct clk			*clk_ipg;
324 	struct clk			*clk_ahb;
325 	spinlock_t			channel_0_lock;
326 	u32				script_number;
327 	struct sdma_script_start_addrs	*script_addrs;
328 	const struct sdma_driver_data	*drvdata;
329 };
330 
331 static struct sdma_driver_data sdma_imx31 = {
332 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
333 	.num_events = 32,
334 };
335 
336 static struct sdma_script_start_addrs sdma_script_imx25 = {
337 	.ap_2_ap_addr = 729,
338 	.uart_2_mcu_addr = 904,
339 	.per_2_app_addr = 1255,
340 	.mcu_2_app_addr = 834,
341 	.uartsh_2_mcu_addr = 1120,
342 	.per_2_shp_addr = 1329,
343 	.mcu_2_shp_addr = 1048,
344 	.ata_2_mcu_addr = 1560,
345 	.mcu_2_ata_addr = 1479,
346 	.app_2_per_addr = 1189,
347 	.app_2_mcu_addr = 770,
348 	.shp_2_per_addr = 1407,
349 	.shp_2_mcu_addr = 979,
350 };
351 
352 static struct sdma_driver_data sdma_imx25 = {
353 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
354 	.num_events = 48,
355 	.script_addrs = &sdma_script_imx25,
356 };
357 
358 static struct sdma_driver_data sdma_imx35 = {
359 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
360 	.num_events = 48,
361 };
362 
363 static struct sdma_script_start_addrs sdma_script_imx51 = {
364 	.ap_2_ap_addr = 642,
365 	.uart_2_mcu_addr = 817,
366 	.mcu_2_app_addr = 747,
367 	.mcu_2_shp_addr = 961,
368 	.ata_2_mcu_addr = 1473,
369 	.mcu_2_ata_addr = 1392,
370 	.app_2_per_addr = 1033,
371 	.app_2_mcu_addr = 683,
372 	.shp_2_per_addr = 1251,
373 	.shp_2_mcu_addr = 892,
374 };
375 
376 static struct sdma_driver_data sdma_imx51 = {
377 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
378 	.num_events = 48,
379 	.script_addrs = &sdma_script_imx51,
380 };
381 
382 static struct sdma_script_start_addrs sdma_script_imx53 = {
383 	.ap_2_ap_addr = 642,
384 	.app_2_mcu_addr = 683,
385 	.mcu_2_app_addr = 747,
386 	.uart_2_mcu_addr = 817,
387 	.shp_2_mcu_addr = 891,
388 	.mcu_2_shp_addr = 960,
389 	.uartsh_2_mcu_addr = 1032,
390 	.spdif_2_mcu_addr = 1100,
391 	.mcu_2_spdif_addr = 1134,
392 	.firi_2_mcu_addr = 1193,
393 	.mcu_2_firi_addr = 1290,
394 };
395 
396 static struct sdma_driver_data sdma_imx53 = {
397 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
398 	.num_events = 48,
399 	.script_addrs = &sdma_script_imx53,
400 };
401 
402 static struct sdma_script_start_addrs sdma_script_imx6q = {
403 	.ap_2_ap_addr = 642,
404 	.uart_2_mcu_addr = 817,
405 	.mcu_2_app_addr = 747,
406 	.per_2_per_addr = 6331,
407 	.uartsh_2_mcu_addr = 1032,
408 	.mcu_2_shp_addr = 960,
409 	.app_2_mcu_addr = 683,
410 	.shp_2_mcu_addr = 891,
411 	.spdif_2_mcu_addr = 1100,
412 	.mcu_2_spdif_addr = 1134,
413 };
414 
415 static struct sdma_driver_data sdma_imx6q = {
416 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
417 	.num_events = 48,
418 	.script_addrs = &sdma_script_imx6q,
419 };
420 
421 static struct platform_device_id sdma_devtypes[] = {
422 	{
423 		.name = "imx25-sdma",
424 		.driver_data = (unsigned long)&sdma_imx25,
425 	}, {
426 		.name = "imx31-sdma",
427 		.driver_data = (unsigned long)&sdma_imx31,
428 	}, {
429 		.name = "imx35-sdma",
430 		.driver_data = (unsigned long)&sdma_imx35,
431 	}, {
432 		.name = "imx51-sdma",
433 		.driver_data = (unsigned long)&sdma_imx51,
434 	}, {
435 		.name = "imx53-sdma",
436 		.driver_data = (unsigned long)&sdma_imx53,
437 	}, {
438 		.name = "imx6q-sdma",
439 		.driver_data = (unsigned long)&sdma_imx6q,
440 	}, {
441 		/* sentinel */
442 	}
443 };
444 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
445 
446 static const struct of_device_id sdma_dt_ids[] = {
447 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
448 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
449 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
450 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
451 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
452 	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
453 	{ /* sentinel */ }
454 };
455 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
456 
457 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
458 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
459 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
460 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
461 
462 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
463 {
464 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
465 	return chnenbl0 + event * 4;
466 }
467 
468 static int sdma_config_ownership(struct sdma_channel *sdmac,
469 		bool event_override, bool mcu_override, bool dsp_override)
470 {
471 	struct sdma_engine *sdma = sdmac->sdma;
472 	int channel = sdmac->channel;
473 	unsigned long evt, mcu, dsp;
474 
475 	if (event_override && mcu_override && dsp_override)
476 		return -EINVAL;
477 
478 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
479 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
480 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
481 
482 	if (dsp_override)
483 		__clear_bit(channel, &dsp);
484 	else
485 		__set_bit(channel, &dsp);
486 
487 	if (event_override)
488 		__clear_bit(channel, &evt);
489 	else
490 		__set_bit(channel, &evt);
491 
492 	if (mcu_override)
493 		__clear_bit(channel, &mcu);
494 	else
495 		__set_bit(channel, &mcu);
496 
497 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
498 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
499 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
500 
501 	return 0;
502 }
503 
504 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
505 {
506 	writel(BIT(channel), sdma->regs + SDMA_H_START);
507 }
508 
509 /*
510  * sdma_run_channel0 - run a channel and wait till it's done
511  */
512 static int sdma_run_channel0(struct sdma_engine *sdma)
513 {
514 	int ret;
515 	unsigned long timeout = 500;
516 
517 	sdma_enable_channel(sdma, 0);
518 
519 	while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
520 		if (timeout-- <= 0)
521 			break;
522 		udelay(1);
523 	}
524 
525 	if (ret) {
526 		/* Clear the interrupt status */
527 		writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
528 	} else {
529 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
530 	}
531 
532 	return ret ? 0 : -ETIMEDOUT;
533 }
534 
535 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
536 		u32 address)
537 {
538 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
539 	void *buf_virt;
540 	dma_addr_t buf_phys;
541 	int ret;
542 	unsigned long flags;
543 
544 	buf_virt = dma_alloc_coherent(NULL,
545 			size,
546 			&buf_phys, GFP_KERNEL);
547 	if (!buf_virt) {
548 		return -ENOMEM;
549 	}
550 
551 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
552 
553 	bd0->mode.command = C0_SETPM;
554 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
555 	bd0->mode.count = size / 2;
556 	bd0->buffer_addr = buf_phys;
557 	bd0->ext_buffer_addr = address;
558 
559 	memcpy(buf_virt, buf, size);
560 
561 	ret = sdma_run_channel0(sdma);
562 
563 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
564 
565 	dma_free_coherent(NULL, size, buf_virt, buf_phys);
566 
567 	return ret;
568 }
569 
570 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
571 {
572 	struct sdma_engine *sdma = sdmac->sdma;
573 	int channel = sdmac->channel;
574 	unsigned long val;
575 	u32 chnenbl = chnenbl_ofs(sdma, event);
576 
577 	val = readl_relaxed(sdma->regs + chnenbl);
578 	__set_bit(channel, &val);
579 	writel_relaxed(val, sdma->regs + chnenbl);
580 }
581 
582 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
583 {
584 	struct sdma_engine *sdma = sdmac->sdma;
585 	int channel = sdmac->channel;
586 	u32 chnenbl = chnenbl_ofs(sdma, event);
587 	unsigned long val;
588 
589 	val = readl_relaxed(sdma->regs + chnenbl);
590 	__clear_bit(channel, &val);
591 	writel_relaxed(val, sdma->regs + chnenbl);
592 }
593 
594 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
595 {
596 	struct sdma_buffer_descriptor *bd;
597 
598 	/*
599 	 * loop mode. Iterate over descriptors, re-setup them and
600 	 * call callback function.
601 	 */
602 	while (1) {
603 		bd = &sdmac->bd[sdmac->buf_tail];
604 
605 		if (bd->mode.status & BD_DONE)
606 			break;
607 
608 		if (bd->mode.status & BD_RROR)
609 			sdmac->status = DMA_ERROR;
610 
611 		bd->mode.status |= BD_DONE;
612 		sdmac->buf_tail++;
613 		sdmac->buf_tail %= sdmac->num_bd;
614 
615 		if (sdmac->desc.callback)
616 			sdmac->desc.callback(sdmac->desc.callback_param);
617 	}
618 }
619 
620 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
621 {
622 	struct sdma_buffer_descriptor *bd;
623 	int i, error = 0;
624 
625 	sdmac->chn_real_count = 0;
626 	/*
627 	 * non loop mode. Iterate over all descriptors, collect
628 	 * errors and call callback function
629 	 */
630 	for (i = 0; i < sdmac->num_bd; i++) {
631 		bd = &sdmac->bd[i];
632 
633 		 if (bd->mode.status & (BD_DONE | BD_RROR))
634 			error = -EIO;
635 		 sdmac->chn_real_count += bd->mode.count;
636 	}
637 
638 	if (error)
639 		sdmac->status = DMA_ERROR;
640 	else
641 		sdmac->status = DMA_COMPLETE;
642 
643 	dma_cookie_complete(&sdmac->desc);
644 	if (sdmac->desc.callback)
645 		sdmac->desc.callback(sdmac->desc.callback_param);
646 }
647 
648 static void sdma_tasklet(unsigned long data)
649 {
650 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
651 
652 	if (sdmac->flags & IMX_DMA_SG_LOOP)
653 		sdma_handle_channel_loop(sdmac);
654 	else
655 		mxc_sdma_handle_channel_normal(sdmac);
656 }
657 
658 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
659 {
660 	struct sdma_engine *sdma = dev_id;
661 	unsigned long stat;
662 
663 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
664 	/* not interested in channel 0 interrupts */
665 	stat &= ~1;
666 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
667 
668 	while (stat) {
669 		int channel = fls(stat) - 1;
670 		struct sdma_channel *sdmac = &sdma->channel[channel];
671 
672 		tasklet_schedule(&sdmac->tasklet);
673 
674 		__clear_bit(channel, &stat);
675 	}
676 
677 	return IRQ_HANDLED;
678 }
679 
680 /*
681  * sets the pc of SDMA script according to the peripheral type
682  */
683 static void sdma_get_pc(struct sdma_channel *sdmac,
684 		enum sdma_peripheral_type peripheral_type)
685 {
686 	struct sdma_engine *sdma = sdmac->sdma;
687 	int per_2_emi = 0, emi_2_per = 0;
688 	/*
689 	 * These are needed once we start to support transfers between
690 	 * two peripherals or memory-to-memory transfers
691 	 */
692 	int per_2_per = 0, emi_2_emi = 0;
693 
694 	sdmac->pc_from_device = 0;
695 	sdmac->pc_to_device = 0;
696 
697 	switch (peripheral_type) {
698 	case IMX_DMATYPE_MEMORY:
699 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
700 		break;
701 	case IMX_DMATYPE_DSP:
702 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
703 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
704 		break;
705 	case IMX_DMATYPE_FIRI:
706 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
707 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
708 		break;
709 	case IMX_DMATYPE_UART:
710 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
711 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
712 		break;
713 	case IMX_DMATYPE_UART_SP:
714 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
715 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
716 		break;
717 	case IMX_DMATYPE_ATA:
718 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
719 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
720 		break;
721 	case IMX_DMATYPE_CSPI:
722 	case IMX_DMATYPE_EXT:
723 	case IMX_DMATYPE_SSI:
724 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
725 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
726 		break;
727 	case IMX_DMATYPE_SSI_DUAL:
728 		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
729 		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
730 		break;
731 	case IMX_DMATYPE_SSI_SP:
732 	case IMX_DMATYPE_MMC:
733 	case IMX_DMATYPE_SDHC:
734 	case IMX_DMATYPE_CSPI_SP:
735 	case IMX_DMATYPE_ESAI:
736 	case IMX_DMATYPE_MSHC_SP:
737 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
738 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
739 		break;
740 	case IMX_DMATYPE_ASRC:
741 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
742 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
743 		per_2_per = sdma->script_addrs->per_2_per_addr;
744 		break;
745 	case IMX_DMATYPE_MSHC:
746 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
747 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
748 		break;
749 	case IMX_DMATYPE_CCM:
750 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
751 		break;
752 	case IMX_DMATYPE_SPDIF:
753 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
754 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
755 		break;
756 	case IMX_DMATYPE_IPU_MEMORY:
757 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
758 		break;
759 	default:
760 		break;
761 	}
762 
763 	sdmac->pc_from_device = per_2_emi;
764 	sdmac->pc_to_device = emi_2_per;
765 }
766 
767 static int sdma_load_context(struct sdma_channel *sdmac)
768 {
769 	struct sdma_engine *sdma = sdmac->sdma;
770 	int channel = sdmac->channel;
771 	int load_address;
772 	struct sdma_context_data *context = sdma->context;
773 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
774 	int ret;
775 	unsigned long flags;
776 
777 	if (sdmac->direction == DMA_DEV_TO_MEM) {
778 		load_address = sdmac->pc_from_device;
779 	} else {
780 		load_address = sdmac->pc_to_device;
781 	}
782 
783 	if (load_address < 0)
784 		return load_address;
785 
786 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
787 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
788 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
789 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
790 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
791 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
792 
793 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
794 
795 	memset(context, 0, sizeof(*context));
796 	context->channel_state.pc = load_address;
797 
798 	/* Send by context the event mask,base address for peripheral
799 	 * and watermark level
800 	 */
801 	context->gReg[0] = sdmac->event_mask[1];
802 	context->gReg[1] = sdmac->event_mask[0];
803 	context->gReg[2] = sdmac->per_addr;
804 	context->gReg[6] = sdmac->shp_addr;
805 	context->gReg[7] = sdmac->watermark_level;
806 
807 	bd0->mode.command = C0_SETDM;
808 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
809 	bd0->mode.count = sizeof(*context) / 4;
810 	bd0->buffer_addr = sdma->context_phys;
811 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
812 	ret = sdma_run_channel0(sdma);
813 
814 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
815 
816 	return ret;
817 }
818 
819 static void sdma_disable_channel(struct sdma_channel *sdmac)
820 {
821 	struct sdma_engine *sdma = sdmac->sdma;
822 	int channel = sdmac->channel;
823 
824 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
825 	sdmac->status = DMA_ERROR;
826 }
827 
828 static int sdma_config_channel(struct sdma_channel *sdmac)
829 {
830 	int ret;
831 
832 	sdma_disable_channel(sdmac);
833 
834 	sdmac->event_mask[0] = 0;
835 	sdmac->event_mask[1] = 0;
836 	sdmac->shp_addr = 0;
837 	sdmac->per_addr = 0;
838 
839 	if (sdmac->event_id0) {
840 		if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
841 			return -EINVAL;
842 		sdma_event_enable(sdmac, sdmac->event_id0);
843 	}
844 
845 	switch (sdmac->peripheral_type) {
846 	case IMX_DMATYPE_DSP:
847 		sdma_config_ownership(sdmac, false, true, true);
848 		break;
849 	case IMX_DMATYPE_MEMORY:
850 		sdma_config_ownership(sdmac, false, true, false);
851 		break;
852 	default:
853 		sdma_config_ownership(sdmac, true, true, false);
854 		break;
855 	}
856 
857 	sdma_get_pc(sdmac, sdmac->peripheral_type);
858 
859 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
860 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
861 		/* Handle multiple event channels differently */
862 		if (sdmac->event_id1) {
863 			sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
864 			if (sdmac->event_id1 > 31)
865 				__set_bit(31, &sdmac->watermark_level);
866 			sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
867 			if (sdmac->event_id0 > 31)
868 				__set_bit(30, &sdmac->watermark_level);
869 		} else {
870 			__set_bit(sdmac->event_id0, sdmac->event_mask);
871 		}
872 		/* Watermark Level */
873 		sdmac->watermark_level |= sdmac->watermark_level;
874 		/* Address */
875 		sdmac->shp_addr = sdmac->per_address;
876 	} else {
877 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
878 	}
879 
880 	ret = sdma_load_context(sdmac);
881 
882 	return ret;
883 }
884 
885 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
886 		unsigned int priority)
887 {
888 	struct sdma_engine *sdma = sdmac->sdma;
889 	int channel = sdmac->channel;
890 
891 	if (priority < MXC_SDMA_MIN_PRIORITY
892 	    || priority > MXC_SDMA_MAX_PRIORITY) {
893 		return -EINVAL;
894 	}
895 
896 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
897 
898 	return 0;
899 }
900 
901 static int sdma_request_channel(struct sdma_channel *sdmac)
902 {
903 	struct sdma_engine *sdma = sdmac->sdma;
904 	int channel = sdmac->channel;
905 	int ret = -EBUSY;
906 
907 	sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
908 	if (!sdmac->bd) {
909 		ret = -ENOMEM;
910 		goto out;
911 	}
912 
913 	memset(sdmac->bd, 0, PAGE_SIZE);
914 
915 	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
916 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
917 
918 	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
919 	return 0;
920 out:
921 
922 	return ret;
923 }
924 
925 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
926 {
927 	return container_of(chan, struct sdma_channel, chan);
928 }
929 
930 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
931 {
932 	unsigned long flags;
933 	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
934 	dma_cookie_t cookie;
935 
936 	spin_lock_irqsave(&sdmac->lock, flags);
937 
938 	cookie = dma_cookie_assign(tx);
939 
940 	spin_unlock_irqrestore(&sdmac->lock, flags);
941 
942 	return cookie;
943 }
944 
945 static int sdma_alloc_chan_resources(struct dma_chan *chan)
946 {
947 	struct sdma_channel *sdmac = to_sdma_chan(chan);
948 	struct imx_dma_data *data = chan->private;
949 	int prio, ret;
950 
951 	if (!data)
952 		return -EINVAL;
953 
954 	switch (data->priority) {
955 	case DMA_PRIO_HIGH:
956 		prio = 3;
957 		break;
958 	case DMA_PRIO_MEDIUM:
959 		prio = 2;
960 		break;
961 	case DMA_PRIO_LOW:
962 	default:
963 		prio = 1;
964 		break;
965 	}
966 
967 	sdmac->peripheral_type = data->peripheral_type;
968 	sdmac->event_id0 = data->dma_request;
969 
970 	clk_enable(sdmac->sdma->clk_ipg);
971 	clk_enable(sdmac->sdma->clk_ahb);
972 
973 	ret = sdma_request_channel(sdmac);
974 	if (ret)
975 		return ret;
976 
977 	ret = sdma_set_channel_priority(sdmac, prio);
978 	if (ret)
979 		return ret;
980 
981 	dma_async_tx_descriptor_init(&sdmac->desc, chan);
982 	sdmac->desc.tx_submit = sdma_tx_submit;
983 	/* txd.flags will be overwritten in prep funcs */
984 	sdmac->desc.flags = DMA_CTRL_ACK;
985 
986 	return 0;
987 }
988 
989 static void sdma_free_chan_resources(struct dma_chan *chan)
990 {
991 	struct sdma_channel *sdmac = to_sdma_chan(chan);
992 	struct sdma_engine *sdma = sdmac->sdma;
993 
994 	sdma_disable_channel(sdmac);
995 
996 	if (sdmac->event_id0)
997 		sdma_event_disable(sdmac, sdmac->event_id0);
998 	if (sdmac->event_id1)
999 		sdma_event_disable(sdmac, sdmac->event_id1);
1000 
1001 	sdmac->event_id0 = 0;
1002 	sdmac->event_id1 = 0;
1003 
1004 	sdma_set_channel_priority(sdmac, 0);
1005 
1006 	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1007 
1008 	clk_disable(sdma->clk_ipg);
1009 	clk_disable(sdma->clk_ahb);
1010 }
1011 
1012 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1013 		struct dma_chan *chan, struct scatterlist *sgl,
1014 		unsigned int sg_len, enum dma_transfer_direction direction,
1015 		unsigned long flags, void *context)
1016 {
1017 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1018 	struct sdma_engine *sdma = sdmac->sdma;
1019 	int ret, i, count;
1020 	int channel = sdmac->channel;
1021 	struct scatterlist *sg;
1022 
1023 	if (sdmac->status == DMA_IN_PROGRESS)
1024 		return NULL;
1025 	sdmac->status = DMA_IN_PROGRESS;
1026 
1027 	sdmac->flags = 0;
1028 
1029 	sdmac->buf_tail = 0;
1030 
1031 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1032 			sg_len, channel);
1033 
1034 	sdmac->direction = direction;
1035 	ret = sdma_load_context(sdmac);
1036 	if (ret)
1037 		goto err_out;
1038 
1039 	if (sg_len > NUM_BD) {
1040 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1041 				channel, sg_len, NUM_BD);
1042 		ret = -EINVAL;
1043 		goto err_out;
1044 	}
1045 
1046 	sdmac->chn_count = 0;
1047 	for_each_sg(sgl, sg, sg_len, i) {
1048 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1049 		int param;
1050 
1051 		bd->buffer_addr = sg->dma_address;
1052 
1053 		count = sg_dma_len(sg);
1054 
1055 		if (count > 0xffff) {
1056 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1057 					channel, count, 0xffff);
1058 			ret = -EINVAL;
1059 			goto err_out;
1060 		}
1061 
1062 		bd->mode.count = count;
1063 		sdmac->chn_count += count;
1064 
1065 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1066 			ret =  -EINVAL;
1067 			goto err_out;
1068 		}
1069 
1070 		switch (sdmac->word_size) {
1071 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1072 			bd->mode.command = 0;
1073 			if (count & 3 || sg->dma_address & 3)
1074 				return NULL;
1075 			break;
1076 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1077 			bd->mode.command = 2;
1078 			if (count & 1 || sg->dma_address & 1)
1079 				return NULL;
1080 			break;
1081 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1082 			bd->mode.command = 1;
1083 			break;
1084 		default:
1085 			return NULL;
1086 		}
1087 
1088 		param = BD_DONE | BD_EXTD | BD_CONT;
1089 
1090 		if (i + 1 == sg_len) {
1091 			param |= BD_INTR;
1092 			param |= BD_LAST;
1093 			param &= ~BD_CONT;
1094 		}
1095 
1096 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1097 				i, count, (u64)sg->dma_address,
1098 				param & BD_WRAP ? "wrap" : "",
1099 				param & BD_INTR ? " intr" : "");
1100 
1101 		bd->mode.status = param;
1102 	}
1103 
1104 	sdmac->num_bd = sg_len;
1105 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1106 
1107 	return &sdmac->desc;
1108 err_out:
1109 	sdmac->status = DMA_ERROR;
1110 	return NULL;
1111 }
1112 
1113 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1114 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1115 		size_t period_len, enum dma_transfer_direction direction,
1116 		unsigned long flags, void *context)
1117 {
1118 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1119 	struct sdma_engine *sdma = sdmac->sdma;
1120 	int num_periods = buf_len / period_len;
1121 	int channel = sdmac->channel;
1122 	int ret, i = 0, buf = 0;
1123 
1124 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1125 
1126 	if (sdmac->status == DMA_IN_PROGRESS)
1127 		return NULL;
1128 
1129 	sdmac->status = DMA_IN_PROGRESS;
1130 
1131 	sdmac->buf_tail = 0;
1132 
1133 	sdmac->flags |= IMX_DMA_SG_LOOP;
1134 	sdmac->direction = direction;
1135 	ret = sdma_load_context(sdmac);
1136 	if (ret)
1137 		goto err_out;
1138 
1139 	if (num_periods > NUM_BD) {
1140 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1141 				channel, num_periods, NUM_BD);
1142 		goto err_out;
1143 	}
1144 
1145 	if (period_len > 0xffff) {
1146 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1147 				channel, period_len, 0xffff);
1148 		goto err_out;
1149 	}
1150 
1151 	while (buf < buf_len) {
1152 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1153 		int param;
1154 
1155 		bd->buffer_addr = dma_addr;
1156 
1157 		bd->mode.count = period_len;
1158 
1159 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1160 			goto err_out;
1161 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1162 			bd->mode.command = 0;
1163 		else
1164 			bd->mode.command = sdmac->word_size;
1165 
1166 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1167 		if (i + 1 == num_periods)
1168 			param |= BD_WRAP;
1169 
1170 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1171 				i, period_len, (u64)dma_addr,
1172 				param & BD_WRAP ? "wrap" : "",
1173 				param & BD_INTR ? " intr" : "");
1174 
1175 		bd->mode.status = param;
1176 
1177 		dma_addr += period_len;
1178 		buf += period_len;
1179 
1180 		i++;
1181 	}
1182 
1183 	sdmac->num_bd = num_periods;
1184 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1185 
1186 	return &sdmac->desc;
1187 err_out:
1188 	sdmac->status = DMA_ERROR;
1189 	return NULL;
1190 }
1191 
1192 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1193 		unsigned long arg)
1194 {
1195 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1196 	struct dma_slave_config *dmaengine_cfg = (void *)arg;
1197 
1198 	switch (cmd) {
1199 	case DMA_TERMINATE_ALL:
1200 		sdma_disable_channel(sdmac);
1201 		return 0;
1202 	case DMA_SLAVE_CONFIG:
1203 		if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1204 			sdmac->per_address = dmaengine_cfg->src_addr;
1205 			sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1206 						dmaengine_cfg->src_addr_width;
1207 			sdmac->word_size = dmaengine_cfg->src_addr_width;
1208 		} else {
1209 			sdmac->per_address = dmaengine_cfg->dst_addr;
1210 			sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1211 						dmaengine_cfg->dst_addr_width;
1212 			sdmac->word_size = dmaengine_cfg->dst_addr_width;
1213 		}
1214 		sdmac->direction = dmaengine_cfg->direction;
1215 		return sdma_config_channel(sdmac);
1216 	default:
1217 		return -ENOSYS;
1218 	}
1219 
1220 	return -EINVAL;
1221 }
1222 
1223 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1224 				      dma_cookie_t cookie,
1225 				      struct dma_tx_state *txstate)
1226 {
1227 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1228 
1229 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1230 			sdmac->chn_count - sdmac->chn_real_count);
1231 
1232 	return sdmac->status;
1233 }
1234 
1235 static void sdma_issue_pending(struct dma_chan *chan)
1236 {
1237 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1238 	struct sdma_engine *sdma = sdmac->sdma;
1239 
1240 	if (sdmac->status == DMA_IN_PROGRESS)
1241 		sdma_enable_channel(sdma, sdmac->channel);
1242 }
1243 
1244 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1245 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1246 
1247 static void sdma_add_scripts(struct sdma_engine *sdma,
1248 		const struct sdma_script_start_addrs *addr)
1249 {
1250 	s32 *addr_arr = (u32 *)addr;
1251 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1252 	int i;
1253 
1254 	/* use the default firmware in ROM if missing external firmware */
1255 	if (!sdma->script_number)
1256 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1257 
1258 	for (i = 0; i < sdma->script_number; i++)
1259 		if (addr_arr[i] > 0)
1260 			saddr_arr[i] = addr_arr[i];
1261 }
1262 
1263 static void sdma_load_firmware(const struct firmware *fw, void *context)
1264 {
1265 	struct sdma_engine *sdma = context;
1266 	const struct sdma_firmware_header *header;
1267 	const struct sdma_script_start_addrs *addr;
1268 	unsigned short *ram_code;
1269 
1270 	if (!fw) {
1271 		dev_err(sdma->dev, "firmware not found\n");
1272 		return;
1273 	}
1274 
1275 	if (fw->size < sizeof(*header))
1276 		goto err_firmware;
1277 
1278 	header = (struct sdma_firmware_header *)fw->data;
1279 
1280 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1281 		goto err_firmware;
1282 	if (header->ram_code_start + header->ram_code_size > fw->size)
1283 		goto err_firmware;
1284 	switch (header->version_major) {
1285 		case 1:
1286 			sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1287 			break;
1288 		case 2:
1289 			sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1290 			break;
1291 		default:
1292 			dev_err(sdma->dev, "unknown firmware version\n");
1293 			goto err_firmware;
1294 	}
1295 
1296 	addr = (void *)header + header->script_addrs_start;
1297 	ram_code = (void *)header + header->ram_code_start;
1298 
1299 	clk_enable(sdma->clk_ipg);
1300 	clk_enable(sdma->clk_ahb);
1301 	/* download the RAM image for SDMA */
1302 	sdma_load_script(sdma, ram_code,
1303 			header->ram_code_size,
1304 			addr->ram_code_start_addr);
1305 	clk_disable(sdma->clk_ipg);
1306 	clk_disable(sdma->clk_ahb);
1307 
1308 	sdma_add_scripts(sdma, addr);
1309 
1310 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1311 			header->version_major,
1312 			header->version_minor);
1313 
1314 err_firmware:
1315 	release_firmware(fw);
1316 }
1317 
1318 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1319 		const char *fw_name)
1320 {
1321 	int ret;
1322 
1323 	ret = request_firmware_nowait(THIS_MODULE,
1324 			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1325 			GFP_KERNEL, sdma, sdma_load_firmware);
1326 
1327 	return ret;
1328 }
1329 
1330 static int __init sdma_init(struct sdma_engine *sdma)
1331 {
1332 	int i, ret;
1333 	dma_addr_t ccb_phys;
1334 
1335 	clk_enable(sdma->clk_ipg);
1336 	clk_enable(sdma->clk_ahb);
1337 
1338 	/* Be sure SDMA has not started yet */
1339 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1340 
1341 	sdma->channel_control = dma_alloc_coherent(NULL,
1342 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1343 			sizeof(struct sdma_context_data),
1344 			&ccb_phys, GFP_KERNEL);
1345 
1346 	if (!sdma->channel_control) {
1347 		ret = -ENOMEM;
1348 		goto err_dma_alloc;
1349 	}
1350 
1351 	sdma->context = (void *)sdma->channel_control +
1352 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1353 	sdma->context_phys = ccb_phys +
1354 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1355 
1356 	/* Zero-out the CCB structures array just allocated */
1357 	memset(sdma->channel_control, 0,
1358 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1359 
1360 	/* disable all channels */
1361 	for (i = 0; i < sdma->drvdata->num_events; i++)
1362 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1363 
1364 	/* All channels have priority 0 */
1365 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1366 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1367 
1368 	ret = sdma_request_channel(&sdma->channel[0]);
1369 	if (ret)
1370 		goto err_dma_alloc;
1371 
1372 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1373 
1374 	/* Set Command Channel (Channel Zero) */
1375 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1376 
1377 	/* Set bits of CONFIG register but with static context switching */
1378 	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1379 	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1380 
1381 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1382 
1383 	/* Set bits of CONFIG register with given context switching mode */
1384 	writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1385 
1386 	/* Initializes channel's priorities */
1387 	sdma_set_channel_priority(&sdma->channel[0], 7);
1388 
1389 	clk_disable(sdma->clk_ipg);
1390 	clk_disable(sdma->clk_ahb);
1391 
1392 	return 0;
1393 
1394 err_dma_alloc:
1395 	clk_disable(sdma->clk_ipg);
1396 	clk_disable(sdma->clk_ahb);
1397 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1398 	return ret;
1399 }
1400 
1401 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1402 {
1403 	struct imx_dma_data *data = fn_param;
1404 
1405 	if (!imx_dma_is_general_purpose(chan))
1406 		return false;
1407 
1408 	chan->private = data;
1409 
1410 	return true;
1411 }
1412 
1413 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1414 				   struct of_dma *ofdma)
1415 {
1416 	struct sdma_engine *sdma = ofdma->of_dma_data;
1417 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1418 	struct imx_dma_data data;
1419 
1420 	if (dma_spec->args_count != 3)
1421 		return NULL;
1422 
1423 	data.dma_request = dma_spec->args[0];
1424 	data.peripheral_type = dma_spec->args[1];
1425 	data.priority = dma_spec->args[2];
1426 
1427 	return dma_request_channel(mask, sdma_filter_fn, &data);
1428 }
1429 
1430 static int __init sdma_probe(struct platform_device *pdev)
1431 {
1432 	const struct of_device_id *of_id =
1433 			of_match_device(sdma_dt_ids, &pdev->dev);
1434 	struct device_node *np = pdev->dev.of_node;
1435 	const char *fw_name;
1436 	int ret;
1437 	int irq;
1438 	struct resource *iores;
1439 	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1440 	int i;
1441 	struct sdma_engine *sdma;
1442 	s32 *saddr_arr;
1443 	const struct sdma_driver_data *drvdata = NULL;
1444 
1445 	if (of_id)
1446 		drvdata = of_id->data;
1447 	else if (pdev->id_entry)
1448 		drvdata = (void *)pdev->id_entry->driver_data;
1449 
1450 	if (!drvdata) {
1451 		dev_err(&pdev->dev, "unable to find driver data\n");
1452 		return -EINVAL;
1453 	}
1454 
1455 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1456 	if (ret)
1457 		return ret;
1458 
1459 	sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1460 	if (!sdma)
1461 		return -ENOMEM;
1462 
1463 	spin_lock_init(&sdma->channel_0_lock);
1464 
1465 	sdma->dev = &pdev->dev;
1466 	sdma->drvdata = drvdata;
1467 
1468 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1469 	irq = platform_get_irq(pdev, 0);
1470 	if (!iores || irq < 0) {
1471 		ret = -EINVAL;
1472 		goto err_irq;
1473 	}
1474 
1475 	if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1476 		ret = -EBUSY;
1477 		goto err_request_region;
1478 	}
1479 
1480 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1481 	if (IS_ERR(sdma->clk_ipg)) {
1482 		ret = PTR_ERR(sdma->clk_ipg);
1483 		goto err_clk;
1484 	}
1485 
1486 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1487 	if (IS_ERR(sdma->clk_ahb)) {
1488 		ret = PTR_ERR(sdma->clk_ahb);
1489 		goto err_clk;
1490 	}
1491 
1492 	clk_prepare(sdma->clk_ipg);
1493 	clk_prepare(sdma->clk_ahb);
1494 
1495 	sdma->regs = ioremap(iores->start, resource_size(iores));
1496 	if (!sdma->regs) {
1497 		ret = -ENOMEM;
1498 		goto err_ioremap;
1499 	}
1500 
1501 	ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1502 	if (ret)
1503 		goto err_request_irq;
1504 
1505 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1506 	if (!sdma->script_addrs) {
1507 		ret = -ENOMEM;
1508 		goto err_alloc;
1509 	}
1510 
1511 	/* initially no scripts available */
1512 	saddr_arr = (s32 *)sdma->script_addrs;
1513 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1514 		saddr_arr[i] = -EINVAL;
1515 
1516 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1517 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1518 
1519 	INIT_LIST_HEAD(&sdma->dma_device.channels);
1520 	/* Initialize channel parameters */
1521 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1522 		struct sdma_channel *sdmac = &sdma->channel[i];
1523 
1524 		sdmac->sdma = sdma;
1525 		spin_lock_init(&sdmac->lock);
1526 
1527 		sdmac->chan.device = &sdma->dma_device;
1528 		dma_cookie_init(&sdmac->chan);
1529 		sdmac->channel = i;
1530 
1531 		tasklet_init(&sdmac->tasklet, sdma_tasklet,
1532 			     (unsigned long) sdmac);
1533 		/*
1534 		 * Add the channel to the DMAC list. Do not add channel 0 though
1535 		 * because we need it internally in the SDMA driver. This also means
1536 		 * that channel 0 in dmaengine counting matches sdma channel 1.
1537 		 */
1538 		if (i)
1539 			list_add_tail(&sdmac->chan.device_node,
1540 					&sdma->dma_device.channels);
1541 	}
1542 
1543 	ret = sdma_init(sdma);
1544 	if (ret)
1545 		goto err_init;
1546 
1547 	if (sdma->drvdata->script_addrs)
1548 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1549 	if (pdata && pdata->script_addrs)
1550 		sdma_add_scripts(sdma, pdata->script_addrs);
1551 
1552 	if (pdata) {
1553 		ret = sdma_get_firmware(sdma, pdata->fw_name);
1554 		if (ret)
1555 			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1556 	} else {
1557 		/*
1558 		 * Because that device tree does not encode ROM script address,
1559 		 * the RAM script in firmware is mandatory for device tree
1560 		 * probe, otherwise it fails.
1561 		 */
1562 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1563 					      &fw_name);
1564 		if (ret)
1565 			dev_warn(&pdev->dev, "failed to get firmware name\n");
1566 		else {
1567 			ret = sdma_get_firmware(sdma, fw_name);
1568 			if (ret)
1569 				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1570 		}
1571 	}
1572 
1573 	sdma->dma_device.dev = &pdev->dev;
1574 
1575 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1576 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1577 	sdma->dma_device.device_tx_status = sdma_tx_status;
1578 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1579 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1580 	sdma->dma_device.device_control = sdma_control;
1581 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1582 	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1583 	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1584 
1585 	ret = dma_async_device_register(&sdma->dma_device);
1586 	if (ret) {
1587 		dev_err(&pdev->dev, "unable to register\n");
1588 		goto err_init;
1589 	}
1590 
1591 	if (np) {
1592 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
1593 		if (ret) {
1594 			dev_err(&pdev->dev, "failed to register controller\n");
1595 			goto err_register;
1596 		}
1597 	}
1598 
1599 	dev_info(sdma->dev, "initialized\n");
1600 
1601 	return 0;
1602 
1603 err_register:
1604 	dma_async_device_unregister(&sdma->dma_device);
1605 err_init:
1606 	kfree(sdma->script_addrs);
1607 err_alloc:
1608 	free_irq(irq, sdma);
1609 err_request_irq:
1610 	iounmap(sdma->regs);
1611 err_ioremap:
1612 err_clk:
1613 	release_mem_region(iores->start, resource_size(iores));
1614 err_request_region:
1615 err_irq:
1616 	kfree(sdma);
1617 	return ret;
1618 }
1619 
1620 static int sdma_remove(struct platform_device *pdev)
1621 {
1622 	return -EBUSY;
1623 }
1624 
1625 static struct platform_driver sdma_driver = {
1626 	.driver		= {
1627 		.name	= "imx-sdma",
1628 		.of_match_table = sdma_dt_ids,
1629 	},
1630 	.id_table	= sdma_devtypes,
1631 	.remove		= sdma_remove,
1632 };
1633 
1634 static int __init sdma_module_init(void)
1635 {
1636 	return platform_driver_probe(&sdma_driver, sdma_probe);
1637 }
1638 module_init(sdma_module_init);
1639 
1640 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1641 MODULE_DESCRIPTION("i.MX SDMA driver");
1642 MODULE_LICENSE("GPL");
1643